Tax cuts for the wealthy, mortgages for the poor, and the makings of a housing crisis for all

James A. Graham University of Sydney

Christopher G. Gibbs University of Sydney

RBA Quantitative Macroeconomic Workshop May 27, 2022

Outline

Motivation

Literature

An Illustrative Two-Agent Model

Quantitative Heterogeneous Agents Model

Next Steps

Motivation

- Novel explanation for the acceleration of US house prices in the mid-2000s
 - The Bush Tax Cuts of 2001 and 2003
- Effects, timing, and size of the tax cuts make for a compelling shock to explain the 2000s US mortgage credit and housing boom

The Bush Tax Cuts

- The Jobs and Growth Tax Relief Reconciliation Act (2003)
 - 1. Cut the top marginal income tax rate from 38% to 35%
 - 2. Cut the capital gains tax rate from 20% to 15%
 - 3. Created a new income category "Qualified Dividends" which were subject to capital gains rather than income. Top rate fell from 38% to 15%
- One of the largest ever changes to US capital income taxes (Yagan, 2015)

The Bush Tax Cuts

Table: Evolution of the top maringal tax rates

Years	Ordinary Income	% Change	Dividend Income	% Change	Capital Gains	%Change
1988 - 1990	28.0	-	28.0	-	28.0	-
1991 - 1992	31.0	10%	31.0	10.7%	28.0	0.0%
1993 - 1997	39.6	27.7%	39.6	27.7%	28.0	0.0%
1997 - 2001	39.6	0.0%	39.6	0.0%	20.0	-28.6%
2001	39.1	-1.3%	39.1	-1.3%	20.0	0.0%
2002	38.6	-1.3%	38.6	-1.3%	20.0	0.0%
2003 - post	35	-10.3%	15.0	-61.1%	15.0	-25.0%

Timing of Tax Cuts: "The Savings Glut of the Rich"

- Mian et al. (2020) point to rising savings of top 1% of households
- Savings of the top 1% moved into borrowing of the bottom 90%
- Sudden acceleration in 2003 coincides with the Bush Tax Cuts

Timing of Tax Cuts: Increasing Equity Investment

• Lower "Qualified Dividends" taxes shifted savings of wealthy into equities

Timing of Tax Cuts: "The Mortgage Rate Conundrum"

- Justiniano et al. (2022): 2003 was turning point for the mortgage market
- Mortgage spread fell despite beginning of Fed tightening cycle
- Coincides with tax cuts and the rise in bank equity capital

Literature

Competing theories of the causes of the housing boom:

- The Fed's fault Jordà et al. (2015) and Justiniano et al. (2022)
- The Global Savings Glut Bernanke (2005), Justiniano et al. (2014), and Justiniano et al. (2019)
- Loose lending standards Geanakoplos (2010); Favilukis et al. (2017)
- Beliefs/Expectations Kaplan et al. (2020), Bordalo et al. (2021)

Effect of inequality on debt, interest rates, and credit supply:

- Mian, Straub, and Sufi (2021a) "The Saving Glut of the Rich"
- Mian, Straub, and Sufi (2021b) "Indebted Demand"

An Illustrative Two-Agent Model

- Justiniano et al. (2019) explain housing boom with lender-borrower model:
 - Relaxation of a "mortgage lending constraint"
 - Increase in credit supply, lowers mortgage interest rate
 - Segmented housing market with rigid wealthy demand for housing
 - Borrowers are marginal house buyers, and push up the price of housing
- We swap "mortgage lending constraint" with a tax cut for the wealthy
 - Tax cuts raise after-tax rate of return on saving for wealthy
 - Greater savings by wealthy, accommodated by increase in borrowing
 - In equilibrium interest rates fall, thereby expanding mortgage supply
 - Higher housing demand from borrowers induces house price boom

An Illustrative Two-Agent Model

• The model:

- Same setup as Justiniano et al. (2019)
- Two agents: lenders (β_l) and borrowers (β_b)
- Linear utility in consumption
- Housing market segmentation (i.e. rich and poor consume different houses)
- Borrowers face borrowing constraint with maximum LTV limit
- Lenders taxed on interest income at rate τ

An Illustrative Two-Agent Model

• Simple first order conditions assuming borrowing constraint always binds:

$$\begin{array}{rcl} 1 & = & \beta_l(1+r_l(1-\tau)) & \text{Lender's Euler Eqn} \\ 1-\lambda_t & = & \beta_b(1+r_l) & \text{Borrower's Euler Eqn} \\ p_t & = & \frac{\beta_b}{1-\lambda_l\theta} \left(\overline{mrs} + (1-\delta)E_tp_{t+1}\right) \text{Borrower Housing Euler/Pricing Eqn} \\ D_{b,t} & = & \theta p_t \bar{h}_b & \text{Borrower's borrowing constraint} \\ D_{b,t} & = & S_{l,t} & \text{Eqm: Poor Debt} & = \text{Wealthy Saving} \end{array}$$

• Lower $\tau \Rightarrow$ lower $r_t \Rightarrow$ higher $\lambda_t \Rightarrow$ higher p_t , higher $D_{b,t}$, and higher $S_{l,t}$

An Illustrative Two-Agent Model: Experiment

- Borrow calibrated parameters from Justiniano et al. (2019)
- Observed changes in capital tax rates + proportion of income attracting lower capital gains tax rate

Figure: Calibrated path of effective capital tax rate

An Illustrative Two-Agent Model: Experiment

Quantitative Heterogeneous Agents Model

- Heterogenous agents life-cycle model
 - Life-cycle: working age 24–66, retirement 68–80
 - Stochastic income: AR(1) + "superstar income" states
 - Four assets: housing, mortgages, deposits, equity
 - Rent or own housing
 - Mortgages borrowed at rate r_m , subject to LTV and PTI constraints
 - Return on deposits = $r_d < r_e$ = return on equity
 - Equity subject to fixed participation cost f_e
 - Extensive margin only: deposits *or* equity
 - Separate progressive tax schedules for ordinary income and asset income
- Simple banking sector
 - Assets: mortgages
 - Liabilities: deposits and equity

Households: Income Process

- Superstar income yields realistic inequality (Kindermann and Krueger, 2022)
- AR(1) process for lowest income states, two top-income states
- Simple Markov chain:

Households: Tax System

• Define total taxable income as:

$$Taxable\ Income = y + r_d d + r_e e$$

• Separate progressive tax schedules (i.e. Heathcote et al., 2017):

Ordinary Income
$$Tax = (y + r_d d)(1 - \lambda_o (Taxable\ Income)^{-\tau_o})$$

Capital Income $Tax = (r_e e)(1 - \lambda_g (Taxable\ Income)^{-\tau_g})$

- λ_o, λ_e govern tax levels
- τ_o, τ_e govern tax progressivity

Households: Tax System

• Marginal tax rates with respect to each income source are:

Marginal Tax Rate_o =
$$1 - \lambda_o (Tax Inc)^{-\tau_o} + (y + r_d d)\tau_o \lambda_o (Tax Inc)^{-\tau_o - 1}$$

Marginal Tax Rate_g = $1 - \lambda_g (Tax Inc)^{-\tau_g} + (r_e e)\tau_g \lambda_g (Tax Inc)^{-\tau_g - 1}$

Banking Sector

• Simple one-period bank:

$$\max_{M,D,E} (1+r_m)M - (1+r_d)D - (1+r_e)E$$
 s.t. $M=D+E$ Balance Sheet Constraint $M \leq \Omega E$ Capital Constraint

• First order conditions yield:

$$r_m = \left(\frac{1}{\Omega}\right) r_e + \left(1 - \frac{1}{\Omega}\right) r_d$$

- Link between equity and credit:
 - Tax cuts \Rightarrow inflow of equity \Rightarrow loosen capital constraint \Rightarrow fall in r_e , fall in r_m

General Equilibrium

- Rental market clears (P_r)
- Housing market clears (P_h)
- Mortgage market clears (r_m)
- Deposit market clears (r_d)
- Equity market clears (r_e)

Model Life-Cycle Profiles

Distribution of Income and Wealth

	Inco	ome	Networth		
	Model	Data	Model	Data	
Bottom 50%	0.133	0.159	0.171	0.148	
Top 20%	0.640	0.593	0.580	0.638	
Top 10%	0.500	0.454	0.441	0.505	
Top 5%	0.367	0.354	0.280	0.387	
Top 1%	0.175	0.200	0.126	0.162	

Homeownership and Equity Ownership Across Income Distribution

Wealth Portfolio Shares

	Housing Networth		Depo	osits	Equity		
	Model	Data	Model	Data	Model	Data	
Bottom 50%	0.562	0.635	0.113	0.079	0.324	0.286	
Top 20%	0.438	0.297	0.027	0.101	0.534	0.603	
Top 10%	0.382	0.272	0.014	0.102	0.604	0.626	
Top 5%	0.318	0.246	0.004	0.110	0.678	0.643	
Top 1%	0.185	0.210	0.000	0.128	0.815	0.662	

Experiment: Cut in Capital Income Marginal Tax Rates

• Experiment:

- Model in steady state, unexpectedly hit by the 2000s Bush tax cuts
- Perfect foresight transition path to new steady state

• Effects:

- Increase in after-tax rate of return on equity for wealthy households
- Greater investment in bank equity
- Relaxation of bank capital constraint
- Fall in mortgage interest rates
- Housing boom

• Compare to alternative experiments:

- Exogenous loosening of credit conditions
- "Global Savings Shock": external increase in bank funding

Experiment: Cut in Capital Income Marginal Tax Rates

Experiment: Partial Equilibrium Changes in Equity

- Lower capital income tax leads to increase in equity investment
- However, currently concentrated among lower income households
- But changes in top income households' equity have large aggregate effects

	Equiy Ownership			Equity Share of Networth			Change Total Equity
	Baseline	Tax Cut	Δ (%)	Baseline	Tax Cut	Δ (%)	Frac. Baseline
Bottom 50%	0.192	0.323	0.131	0.324	0.437	0.112	0.042
Top 20%	0.592	0.742	0.150	0.534	0.562	0.028	0.048
Top 10%	0.755	0.877	0.122	0.604	0.622	0.018	0.025
Top 5%	0.946	1.000	0.054	0.678	0.688	0.011	0.010
Top 1%	1.000	1.000	-0.000	0.815	0.818	0.003	0.003

Next Steps

Next Steps

- Empirical work:
 - Use HMDA data on universe of mortgage originations
 - Do C-corp lenders issue more mortgages following exposure to Bush Tax Cuts?
 - Direct evidence on credit supply mechanism
 - Note contrast with Yagan (2015)
- Illustrative model:
 - Two-period life-cycle model?
 - Include simple banking sector?
- Quantitative model:
 - Fix banking sector setup!
 - Solve for new steady state following tax change
 - Solve for equilibrium transition paths following tax changes
 - Comparison to "Global Savings Shock" (e.g. Favilukis et al., 2017)

Calibration: Internal Parameters

-4	
	Back
м	

Parameter		Value	Moment	Model	Data	Source
Discount factor	β	0.926	Networth-to-income	2.753	2.992	SCF, 2001
Bequest preference	ψ	49.558	Homeownership rate, $j \geq 65$	0.774	0.820	SCF, 2001
Minimum house size	h	1.750	Median owner LTV ratio	0.627	0.560	SCF, 2001
Equity participation cost	f_e	0.007	Deposits-to-Equity	0.106	0.180	SCF, 2001
Ordinary income tax, level	λ_o	0.780	Tax revenue-to-income	0.414	0.250	OECD
Capital income tax, level	λ_{q}	0.598	Dividend marg. tax rate, top 1%	0.651	0.618	Model
Trans. prob. to z_6	π_{6}	0.005	Income share, 95%–99%	0.190	0.153	SCF, 2001
Trans. prob. remain in z_6	$\pi_{6,6}$	0.955	Income share, $99\%-100\%$	0.168	0.154	SCF, 2001
Trans. prob. z_6 to z_7	$\pi_{6,7}$	0.003	Income Gini	0.580	0.593	SCF, 2001
Trans. prob. remain in z_7	$\pi_{7,7}$	0.641	Wealth share, 95%–99%	0.203	0.234	SCF, 2001
Income z_6	z_6	6.647	Wealth share, 99%–100%	0.168	0.277	SCF, 2001
Income z_7	z_7	366.910	Wealth Gini	0.688	0.778	SCF, 2001
Firm rental cost	κ	0.140	Homeownership rate	0.671	0.710	SCF, 2001

Calibration: External Parameters

Description	Parameter	Value	Source
Maximum age	J	80	Standard
Retirement age	J_{ret}	66	Standard
Life-cycle income, peak age	J_y	50	Ma and Zubairy (2021)
Life-cycle income, growth	ξ	0.50	Ma and Zubairy (2021)
Productivity standard deviation	σ_z	0.20	Kaplan et al. (2020)
Productivity persistence	$ ho_z$	0.97	Kaplan et al. (2020)
Retirement replacement rate	ω	0.50	OECD (2019)
Fraction receiving bequest	π_{beq}	0.67	SCF, 2001
Bequest-to-income ratio	ω_{beq}	0.11	SCF, 2001
Housing depreciation rate	δ	0.03	Harding et al. (2007)
Maximum LTV ratio	$ heta_m$	0.95	Greenwald (2018)
Maximum PTI ratio	θ_y	0.55	Greenwald (2018)
House sale cost	f_s	0.06	Standard
Mortgage origination cost	f_m	0.01	FRED 1990-2000
Max-to-min house size	$\dot{ar{h}}/\underline{h}$	8.75	SCF, 2001
Risk aversion	σ	2	Standard
Non-durable consumption share	χ	0.80	Piazzesi and Schneider (2016)
Tax progressivity	au	0.20	Heathcote et al. (2017)

