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1 Introduction

In the aftermath of the global financial crisis of 2008, many advanced economies experienced

large capital inflows and appreciation pressures on their currencies. To avoid the resulting losses

in competitiveness, central banks in these economies implemented policies geared toward con-

taining these appreciations. With interest rates close to their zero lower bound, however, central

banks were unable to weaken their currencies by reducing interest rates, and resorted to massive

interventions in currency markets. At the same time, historically large deviations from cov-

ered interest rate parity have also emerged, with assets denominated in the currencies of these

economies displaying a higher return. The case of Switzerland is emblematic in this respect.

After experiencing a 35% appreciation of the Swiss franc between 2008 and 2010, the Swiss

National Bank (SNB) responded by reducing interest rates to zero and increasing its holdings

of foreign reserves up to 100% of GDP between 2011 and 2015. During the same period, the

return on Swiss Franc denominated safe assets, converted into US dollars using forward rates,

have been consistently higher than returns on comparable US dollar assets (CIP deviations of

over 100 basis points). Eventually, in January 2015, the SNB let the exchange rate appreciate,

triggering an intense policy debate about the desirability and effectiveness of these interventions.

The goal of this paper is to shed some light on this debate and in particular to address the

following questions. First, how can a monetary authority depreciate its currency when it cannot

lower interest rates any further? Second, are there costs associated with such policies? And

finally, how do external factors, such as the degree of capital mobility, affect the answers to these

questions?

To address these questions, we develop a simple monetary model that potentially features

nominal interest rates at their zero lower bound (ZLB) and limits to international arbitrage. Our

main result is that a central bank can indeed depreciate its currency at the ZLB. However, it

needs to intervene in foreign exchange markets, accumulating foreign reserves while triggering

capital inflows and deviations from interest rate parity. Such interventions result in losses that

are proportional to the stock of reserves and to the deviations from interest rate parity. In

addition, the more integrated an economy is to international markets, the larger the required

interventions and the resulting losses. Our results help to rationalize the observed movements

of gross private and official capital flows, and establish a link between the observed deviations

from CIP to the exchange rate policies of advanced economies operating at the ZLB.

To gain some intuition for our results, consider a central bank that wants to achieve a tem-

porarily depreciated nominal exchange rate target. Such a policy, given the domestic nominal

interest rate, makes the domestic assets attractive to foreign investors. The increased demand for

domestic assets will lead to an increase in domestic asset prices and a reduction in the domestic

interest rate. If the market clearing nominal rate remains positive, the domestic and foreign
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real rates equalize, and the central bank does not need to intervene to achieve its exchange rate

target.

The situation is more complicated if, because of the ZLB, the domestic interest rate cannot

fall enough. In this case, domestic assets will pay a higher return than foreign ones in equilib-

rium, resulting in a deviation from interest rate parity. In the absence of limits to international

arbitrage, this would be unsustainable. However, when arbitrage is limited, a potentially large

but finite capital inflow would result. To maintain equilibrium, the central bank needs to re-

verse the inflow by accumulating foreign assets. Therefore, foreign exchange interventions are

the instrument through which the central bank achieves its exchange rate target when the ZLB

constraint binds. These interventions are costly for the economy as a whole because the central

bank takes the opposite side of profitable trades made by foreign investors. At the ZLB, there-

fore, the central bank faces a dilemma: it has to either give up on its exchange rate target, or

intervene in foreign exchange markets and face losses.

Within our framework, deviations from parity that make domestic assets more attractive

than foreign are associated with large reserve accumulation by central banks. In addition, these

deviations should more likely emerge when interest rates are closer to their lower bound, as

they are otherwise unnecessary. In section 4, we provide empirical support for these two key

predictions. In particular, we first identify deviations in parity with observed deviations from

CIP. We then show that sustained positive deviations in CIP for a currency (which appear mostly

after the global financial crisis) are indeed associated, both across countries and over time, with

the accumulation of foreign reserves by the central bank issuing that currency. In addition, these

deviations arise mostly for currencies with nominal interest rates gravitating around zero.

The above evidence provides an alternative explanation to the “safe haven view” which ar-

gues that flight to safety has driven up private capital flows to the advanced economies like

Switzerland. If flight to safety was the only driver of these flows, we should observe international

investors earning a lower return on Swiss versus international assets. However, the evidence on

CIP indicates that investors are earning a higher return on Swiss assets.

We show how data on CIP deviations and foreign reserves can be used to quantify the costs

of the foreign exchange interventions. In particular, we found that these costs could have been

substantial for the SNB, reaching around 0.8-1% of monthly GDP in January 2015—a result

that arises from both the large size of the interventions and the large magnitude of the CIP

deviations.

Having established that the costs of foreign exchange interventions can be large in practice,

we next use our framework to understand the determinants of these costs. Factors that stimulate

capital flows toward the small open economy (SOE), and that are typically thought to be bene-

ficial, increase these costs. For example, a deepening in international capital market integration

is beneficial when nominal interest rates are away from zero, but it undermines the efforts of the
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central bank to weaken the exchange rate when nominal interest rates are at zero. In this latter

case, an increase in the wealth available for international arbitrage translates into more inflows of

capital toward the SOE because domestic assets are attractive under the policy pursued by the

central bank. In order to sustain its policy, the monetary authority needs to purchase a larger

amount of foreign assets, and this magnifies the costs of the interventions.

This property also implies that exchange rate policies at the ZLB are more vulnerable to

changes in the beliefs of private agents. Consider, for example, the situation when the ZLB

constraint does not bind. If private agents expected a higher appreciation rate of the domestic

currency relative to the actual policy, then the central bank can lower the domestic interest

rate, accumulate foreign assets, and profit from the mistaken beliefs. When the ZLB constraint

binds, however, the central bank cannot decrease the nominal interest rate. Expecting further

appreciation, foreign investors increase their demand for assets of the SOE. The central bank’s

only option for sustaining its exchange rate policy is to accumulate foreign assets.

Policies that hinder capital inflows reduce the costs of carrying out exchange rate interventions

at the ZLB. We show that both quantity restrictions and taxes on capital inflows allow the

central bank to achieve the exchange rate target without resorting to costly foreign exchange

interventions. Our paper also offers a distinct rationale for implementing negative rates. Rather

than stimulating aggregate demand management, the role of negative rates in our model is to

reduce the arbitrage losses faced by the central bank. Our framework can thus rationalize the

behavior of central banks in Switzerland, Denmark, and Sweden, which recently implemented

negative nominal interest rates while facing severe appreciation pressures on their currencies.

A remaining question is why a central bank would choose to implement a costly exchange

rate target. To this end, we introduce nominal rigidities into our basic model so that equilib-

rium output might be inefficiently low. At the ZLB, the central bank now faces a trade-off: it

can weaken its currency in order to increase output, but this requires costly foreign exchange

interventions. If the distortions generated by nominal rigidities are severe enough, the benefits

of depreciating the exchange rate dominate its costs, and the central bank finds it optimal to

intervene.

Related literature. Our paper is related to the literature on segmented capital markets and

exchange rate determination. Backus and Kehoe (1989) derive general conditions under which

sterilized official purchases of foreign assets do not affect equilibrium allocations and therefore are

irrelevant for the exchange rate determination. An important assumption, in contrast with our

paper, is that international arbitrage is perfect. Alvarez, Atkeson and Kehoe (2009) show how

asset market segmentation within domestic markets can lead to variable risk premia in exchange

rates, and real effects from domestic open market operations. In contrast, we study asset market

segmentation within international markets, analyze deviations from covered interest parity and
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the real effects from foreign open market operations.

More recently, Gabaix and Maggiori (2015) present a model where capital flows across coun-

tries are intermediated by global financial intermediaries that face constraints on their leverage,

generating limited international arbitrage (as in ours). Cavallino (2016) and Fanelli and Straub

(2015) study the optimality of foreign exchange rate interventions for economies that feature

terms of trade externalities (e.g., Costinot, Lorenzoni and Werning 2014). Cavallino (2016)

shows, in an open economy New Keynesian model, as in Gali and Monacelli (2005), that foreign

exchange interventions are desirable in response to exogenous shifts in the demand for domestic

bonds. Fanelli and Straub (2015) show that the deviations from interest parity induced by these

interventions generate a cost in the inter-temporal resource constraint of the economy, which is

proportional to the size of the deviation.1 These papers emphasize the role of foreign exchange

interventions as an instrument complementing interest rate policy. These papers do not study

the restrictions that the ZLB imposes on policies, its implications for covered interest parity

deviations, and their potential costs.2

The focus on exchange rate policies connects to the various generations of papers on fixed

exchange rates and speculative attacks (see, among others, Krugman 1979, Obstfeld 1986, Lahiri

and Vegh 2003, and Corsetti and Mackowiak 2006). In that literature, fiscal reasons lead the

monetary authority to depreciate the currency when its reserves are depleted. Reserves are

also central in our model, but for a different reason. When the nominal interest rate that

is consistent with interest rate parity is negative, the accumulation of international reserves

becomes necessary to eliminate the resulting excess demand for domestic assets and keep the

exchange rate depreciated.

The failure of CIP for certain currencies since 2008 has been documented in detail by Du,

Tepper and Verdelhan (2016), who argue that the inability of markets to arbitrage this out

may be due to regulatory restrictions on banks implemented after the crisis.3 We complement

this empirical work by providing a theory that explains why CIP deviations appear for some

currencies and not others, account for their sign, and account for their connections to foreign

reserves accumulation and low interest rates.

The main mechanism at play in our model is related to the one highlighted in New Keynesian

models with a ZLB, such as Eggertsson and Woodford (2003), Christiano, Eichenbaum and

1A related literature makes a similar point. Calvo (1991) first raised the warning about the potential costs of
sterilizations by central banks in emerging markets. Subsequent papers have discussed and estimated the “quasi-
fiscal” costs of these operations and similarly identified the costs of sterilization as a loss in the inter-temporal
budget constraint of the government, proportional to the interest parity deviations and the size of the accumulated
reserves (see Kletzer and Spiegel 2004, Devereux and Yetman 2014, Liu and Spiegel 2015, and references therein).

2A related paper, but in a closed economy setting, is Bassetto and Phelan (2015). They also explore how the
limits of arbitrage interact with government policy while analyzing speculative runs on interest rate pegs.

3For other work on this topic, see Baba and Packer (2009), Ivashina, Scharfstein and Stein (2015), Borio,
McCauley, McGuire and Sushko (2016), and Avdjiev, Du, Koch and Shin (2016).
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Rebelo (2011), and Werning (2011). In both environments, there is “too much” desired saving

in domestic asset markets. In New Keynesian models, excess savings in domestic asset markets

is restored by declines in current output, and the cost associated with the ZLB is the recession

itself. Here, the reduction in domestic private savings is achieved through the accumulation of

foreign assets by the central bank, and the cost arises because the intervention entails a transfer

of resources from domestic to foreign agents.

Like our paper, several recent contributions emphasize open economy dimensions of the ZLB

(see, among others, Krugman 1998, Cook and Devereux 2013, 2016, Acharya and Bengui 2015,

Fornaro 2015, Caballero, Farhi and Gourinchas 2015, Eggertsson, Mehrotra, Singh and Summers

2016, and Corsetti, Kuester and Müller 2016). Svensson (2003) and others have advocated

interventions in foreign exchange markets at the ZLB, on the grounds that these interventions

would trigger increases in inflation expectations and help achieve a depreciation. Caballero et

al. (2015) show how unlimited promises by the government to exchange foreign assets, under

perfected arbitrage, can coordinate expectations on a good equilibrium during a liquidity trap.

Overall, a distinctive feature of our paper is an explicit modeling of exchange rate policies through

reserve accumulation in an environment featuring limited arbitrage.

Our work is also related to the literature that studies unconventional policies when monetary

policy is constrained. Correia, Farhi, Nicolini and Teles (2013) and Farhi, Gopinath and Itskhoki

(2014) emphasize how schemes of taxes and subsidies can achieve the same outcomes that would

prevail in the absence of constraints to monetary policy. Closer to us is the work of Schmitt-Grohé

and Uribe (2016) and Farhi and Werning (2012), which studies capital controls as second-best

policy instruments to deal with capital flows under fixed exchange rate regimes. In our model

with limited international arbitrage, foreign exchange interventions is an alternative, albeit costly,

tool to achieve a depreciation at the ZLB.

The structure of the paper is as follows. Section 2 introduces the basic monetary setup and

Section 3 studies the implementation of an exchange rate policy. Section 4 presents empirical

evidence and measures the costs of foreign exchange rate interventions. 5 examines the deter-

minants of the costs of intervention and Section 6 studies optimal exchange rate interventions.

Section 7 concludes.

2 The model

We consider a two-period (t = 1, 2), two currency (domestic and foreign), one-good, deterministic

SOE, inhabited by a continuum of domestic households, a monetary and a fiscal authority.4 The

4In Appendix B we show how to interpret this two-period environment as an infinite horizon economy in
which the exchange rate policy is stationary from date 2 onward. See also Amador et al. (2017), which introduces
uncertainty.
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SOE trades domestic assets with a continuum of foreign investors and foreign currency assets in

the international financial market. We now proceed to describe the economy in detail.

2.1 Exchange rates and interest rates

We denote by st the exchange rate in period t (i.e., the amount of domestic currency needed

to purchase one unit of foreign currency in period t). We normalize the foreign price level (i.e.,

the amount of foreign currency needed to buy one unit of the good) to 1 in each period, and we

assume that the law of one price holds. As a result, st is also the domestic price level, (i.e., the

units of domestic currency needed to purchase one unit of the consumption good).

There are three assets available. The first is a domestic nominal bond, which is traded

both domestically and internationally. This bond is denominated in domestic currency and pays

interest i. Domestic agents can also access the international financial markets and save in a bond

denominated in foreign currency, paying interest i∗. The last asset is domestic currency.

While the domestic interest rate will be determined endogenously on the domestic credit

market, the foreign rate is exogenously given, in accordance with the SOE assumption.

2.2 Domestic households

Domestic households value consumption of the final good and derive utility from holding real

currency balances according to the following utility function:

U(c1, c2,m) = u(c1) + βu(c2) + h

(
m

s1

)
, (1)

where u(.) is a standard utility function, ct is household consumption in period t, m is the

nominal stock of money held by the household at the end of period 1, and h(.) is an increasing

and concave function, also displaying a satiation level x̄ (i.e., there exists an x̄ s.t. h(x) = h(x̄),

for all x ≥ x̄).

Domestic households are endowed with y1 and y2 units of the good in the two periods. The

domestic households’ budget constraints in periods 1 and 2 are

y1 + T1 = c1 +
m+ a

s1

+ f (2)

y2 + T2 = c2 −
m+ (1 + i)a

s2

− (1 + i∗)f (3)

where a and f represent the domestic holdings of domestic and foreign bonds and Ti represents

the (real) transfer from the fiscal authority to the households in period i.

We assume that households cannot borrow in international financial markets, f ≥ 0. This
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assumption guarantees that domestic households cannot take full advantage of arbitrage oppor-

tunities in capital markets.5

The domestic households’ problem is thus

max
m,a,f,c1,c2

U(c1, c2,m)

subject to equations (2), (3), and

f ≥ 0; m ≥ 0.

2.3 Monetary authority

We impose for now that the monetary authority has a given nominal exchange rate objective,

which we denote by the pair (s1, s2). In general, an exchange rate objective would arise from

the desire to achieve a particular inflation or output target. In Section 6, we will study optimal

exchange rate policies in a model with wage rigidities. For the moment, however, we simply

assume that the monetary authority follows this objective and define equilibrium for the economy

given (s1, s2). This allows us to transparently illustrate the implementation of an exchange rate

and the costs that will arise at the ZLB.

In period 1, the monetary authority issues monetary liabilities M . It uses these resources to

purchase foreign and domestic bonds by amounts F and A, respectively, as well as to make a

transfer, τ1, to the fiscal authority.

In the second period, the monetary authority uses the proceeds from these investments to

redeem the outstanding monetary liabilities at the exchange rate s2 and to make a final transfer

to the fiscal authority, τ2.6

Just as in the domestic households’ case, we assume that the monetary authority cannot

borrow in foreign bonds. As a result, the monetary authority faces the following constraints:

M

s1

= F +
A

s1

+ τ1

(1 + i?)F + (1 + i)
A

s2

M =
M

s2

+ τ2; M ≥ 0; F ≥ 0

We will sometimes find it useful to analyze the case in which the central bank cannot receive

transfers from the fiscal authority in the first period, and cannot issue domestic bonds: [Lack

of Fiscal Support] The monetary authority does not receive a positive transfer from the fiscal

5The assumption that households cannot borrow from foreigners could be relaxed by assuming a finite bor-
rowing limit, f ≥ −κ, without altering our results.

6The assumption of withdrawing currency at the exchange rate s2 is one of convenience given that our economy
lasts only two periods. The analysis is preserved in an infinite horizon economy, assuming that the economy
becomes stationary from period 2 onwards (see Appendix B).
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authority in the first period and cannot issue interest-paying liabilities: τ1 ≥ 0 and A ≥ 0.

2.4 Fiscal authority

The fiscal authority makes transfers (T1, T2) to households in each period. It also receives trans-

fers from the monetary authority, (τ1, τ2), in each period. The fiscal authority issues domestic

nominal bonds B in period 1 and redeems them in period 2. The associated budget constraints

are

B

s1

+ τ1 = T1 (4)

τ2 = T2 + (1 + i)
B

s2

. (5)

Note that we assume that the fiscal authority neither borrows now invests in foreign markets.

Because public debt does not affect equilibrium outcomes due to Ricardian equivalence, we

will treat the amount of bonds issued by the fiscal authority, B, as a fixed parameter.

2.5 Foreign investors and the international financial markets

A key assumption is that domestic and foreign markets are not fully integrated. We model this

in the simplest possible fashion, that is, by assuming that the only foreign capital that can be

invested in the domestic economy is in the hands of a continuum of foreign investors and is

limited by a total amount w̄, denominated in foreign currency.

We assume that the foreign investors only value consumption in the second period. The

investors cannot borrow in any of the financial markets but can purchase both domestic and

foreign assets.7 In period 1, they decide how to allocate their wealth between foreign assets

f ?, domestic assets a?, and domestic currency m?, whereas in the second period they use the

proceeds from their investments to finance their second-period consumption, c∗. The foreign

investor’s problem is

max
f?,a?,m?

c∗ subject to (6)

w̄ = f ? +
a? +m?

s1

(7)

c? = (1 + i?)f ? + (1 + i)
a?

s2

+
m?

s2

(8)

f ? ≥ 0, a? ≥ 0 and m? ≥ 0. (9)

7An alternative interpretation is that w̄ already represents the total wealth available for investing in period 0,
inclusive of any amount that could be borrowed.
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Notice that unlike domestic investors, foreign investors do not enjoy a utility flow from holding

domestic currency, so as expected, they will choose not to hold domestic currency when the

domestic interest rate i is strictly positive.

2.6 Market clearing and the monetary equilibrium

Recall that our objective is to study whether a particular exchange rate policy can be attained

as an equilibrium by the monetary authority and to compute the costs of pursuing such a policy.

Toward this goal, we now define an equilibrium for a given exchange rate policy (s1, s2):

Definition 1. A monetary equilibrium, given an exchange rate policy (s1, s2), is a consumption

profile for households, (c1, c2), and asset positions, (a, f,m); second-period consumption for

investors, c?, and their asset positions (a?, f ?,m?); money supply, M ; transfers from the fiscal to

the monetary authority, (τ1, τ2); investments by the monetary authority, (A,F ); transfers from

the fiscal authority to the households, (T1, T2); and a domestic interest rate i, such that:

(i) the domestic households make consumption and portfolio choices to maximize utility, sub-

ject to their budget and borrowing constraints;

(ii) foreign investors make consumption and portfolio choices to maximize their utility, subject

to their budget and borrowing constraints;

(iii) the purchases of assets by the monetary authority, its decision about the money supply

and its transfers to the fiscal authority satisfy its budget constraints as well as F ≥ 0;

(iv) the fiscal authority satisfies its budget constraints;

(v) and the domestic asset market clears for both money and bonds

m+m? = M

a+ a? + A = B.

It is helpful to write down, using the market-clearing conditions, the foreign asset position of

the SOE in any equilibrium. Using the household budget constraint in the first period, as well as

the monetary authority and fiscal authority budget constraints, we obtain the following equality,

linking the trade deficit to the net foreign asset position:

c1 − y1︸ ︷︷ ︸
trade deficit

=
m? + a?

s1︸ ︷︷ ︸
foreign liabilities

− [f + F ]︸ ︷︷ ︸
foreign assets

. (10)
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Similarly, using the budget constraint in the second period, we obtain the following equality:

c2 − y2 = (1 + i?)(f + F )− m? + (1 + i)a?

s2

. (11)

3 Implementing an exchange rate policy

We now study how the SOE achieves an equilibrium given a policy for the exchange rate (s1, s2).

We start in Section 3.1 by analyzing foreign reserve accumulation in a real version of the model.

The upshot is that these interventions are costly.

We next turn in Section 3.2 to study the monetary equilibria given the exchange rate policy

(s1, s2). The main result is that a monetary authority that wishes to sustain a given exchange

rate policy has to engage in these costly interventions when the domestic nominal interest rate

hits the ZLB constraint.

Importantly, throughout this Section, we take the exchange rate policy as given, and we focus

on the best implementation: the one that maximizes the domestic household’s welfare. We show

that some exchange rate policies reduce welfare, even under the best implementation. Clearly,

there are reasons why the Central Bank might choose these exchange rate policies in the first

place, and one may worry that, in a more general model where the exchange rate is endogenous,

the Central Bank might choose an implementation that is not the best. In Section 6, however,

we show that this concern is not valid in our set up. That is, even though the Central Bank

optimally chooses an exchange rate policy, it will carry it out using the best implementation

described in this section.

3.1 A non-monetary economy

In order to explain in the most transparent way how the accumulation of foreign reserves affects

the equilibrium, we begin by considering a version of the model without money, and where the

central bank and the fiscal authority are just one single government agency.

We denote by r and i? the rates of return on real domestic and foreign bonds. In this envi-

ronment, the only action of the central bank consists of choosing the amount of foreign reserves

F in the first period. Because foreign reserves (plus interest) are rebated back to households

in the second period, an increase in F is equivalent to a shift of the domestic endowment from

the first to the second period. It is convenient to define the households’ endowment after the
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monetary authority sets the level of foreign reserves,

ỹ1 = y1 − F,
ỹ2 = y2 + (1 + i?)F.

The domestic households maximize utility u(c1) + βu(c2) subject to the following budget

constraints:

c1 = ỹ1 − f − a
c2 = ỹ2 + (1 + i?)f + (1 + r)a,

where f and a represent their purchases of foreign and domestic assets, respectively. As in the

monetary economy, we impose that they cannot borrow abroad, so f ≥ 0.

The foreign investors are willing to invest up to the maximum of their wealth, w̄, to maximize

their returns. That is, their demand of domestic assets a∗ satisfies

max
0≤a?≤w̄

a?(r − i?) = w̄(r − i?), (12)

where the last equality follows from the maximization in (6).

We assume that the government does not have a position in domestic bonds, so equilibrium

in domestic financial markets requires a∗ + a = 0.

To characterize an equilibrium, note that the first-order conditions of the household imply

u′(c1) = (1 + r)βu′(c2) (13)

r ≥ i?, (14)

with f = 0 if the last inequality strictly holds.

The first condition is the standard Euler equation, while the second condition imposes that

the real interest rate at home cannot be below the one abroad. If that were the case, the demand

for domestic assets by households would be unbounded. Importantly, the converse is not true

because we have assumed that households cannot borrow in foreign currency, f ≥ 0, and because

of the foreign investors’ limited wealth.

We can eliminate a in the household’s budget constraints and obtain an intertemporal resource

constraint for the SOE

ỹ1 − c1 +
ỹ2 − c2

1 + r
− f

[
r − i?
1 + r

]
= 0.

From the household optimality condition stated above, we know that f = 0 if r > i?, so it then
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follows that the intertemporal budget constraint simplifies to

ỹ1 − c1 +
ỹ2 − c2

1 + r
= 0. (15)

There is an additional equilibrium condition constraining the trade deficit that the SOE can

run in the first period. Indeed, because −a = a? ≤ w̄, one must have that

c1 = ỹ1 − f − a ≤ ỹ1 + w̄, (16)

where the last inequality follows from the fact that f ≥ 0. This expression tells us that the

first-period consumption of the households and the foreign reserves of the monetary authority

cannot exceed the endowment of the SOE and the wealth of foreigners w̄. An equilibrium in

the non-monetary economy (non-monetary equilibrium henceforth) is then fully characterized by

conditions (13)-(16).

Before turning to the characterization of the equilibrium, it is useful to define the “first best”

consumption allocation,

(cfb1 , c
fb
2 ) ≡ arg max

(c1,c2)
{u(c1) + βu(c2)}

subject to:

c1 +
c2

1 + i?
= y1 +

y2

1 + i?
.

That is, (cfb1 , c
fb
2 ) represents the equilibrium consumption allocation when the constraint on the

first-period trade balance does not bind.

We then have the following proposition.

Proposition 1 (Characterization of non-monetary equilibria). Non-monetary equilibria given F

are characterized as follows:

(i) If F ∈ [0, y1 + w̄ − cfb1 ], there is a unique non-monetary equilibrium, in which r = i?,

c1 = cfb1 , and c2 = cfb2 .

(ii) If F ∈ (y1 + w̄ − cfb1 , y1 + w̄), there is a unique non-monetary equilibrium, in which c1 =

y1 − F + w̄ < cfb1 , and c2 solves

c2 = y2 − (1 + r)w̄ + (1 + i?)F,

with r = u′(c1)
βu′(c2)

− 1 > i?.

(iii) If F > y1 + w̄, then there is no non-monetary equilibrium.

12



Proposition 1 tells us that there are only two possible equilibrium outcomes in the real

economy, depending on the accumulation of foreign reserves by the central bank. We illustrate

these two cases in Figure 1.

Panel (a) in the figure illustrates the first case, when interventions do not move the con-

sumption allocation away from the first best. Point A represents the original endowment of the

representative household, while point B is the households’ endowment after taking into account

the foreign reserves accumulated by the central bank, F . Point C in the figure represents the

first best consumption allocation, the one that would arise if the household could freely borrow

and lend at the world interest rate i?. Importantly, point C is feasible for the SOE only if there

is sufficient foreign wealth to cover the first-period trade balance, that is, if y1 − F − cfb1 < w̄.

This is precisely what happens in case (i) of Proposition 1.

Panel (b) in the figure illustrates the second case, when interventions increase domestic rates

r. The accumulation of foreign reserves by the central bank is so large that there is not enough

foreign wealth to finance the trade deficit that would arise with the first best consumption

allocation. Therefore, the constraint (16) binds, and the consumption allocation is now at point

D. Competition for these limited external resources results in a higher domestic real interest

rate, which induces the household to consume less in the first period than what it would under

the first best. In period 2, the household’s consumption equals the endowment minus payments

to foreigners, net of the proceeds from the accumulation of foreign reserves by the central bank.

We can now characterize the effects that foreign reserves have on the non-monetary equilibrium.

(a) Neutral Interventions (b) Interventions increasing r
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1 , cfb

2 )
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c1
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(a) (b)

B
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D

Figure 1: Reserves (F ) and non-monetary equilibria
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Corollary 1 (Impact of Foreign Reserves). In the non-monetary equilibrium given F , if F ≤
y1 + w̄ − cfb1 , foreign reserves have no impact on the domestic interest rate (r = i?) nor on

domestic welfare. If instead F ∈ (y1 + w̄− cfb1 , y1 + w̄), the domestic real interest rate r is strictly

increasing in F while the welfare of the domestic households is strictly decreasing in F .

The increase in F reduces ỹ1 and increases ỹ2. When F is small (that is, F < y1 + w̄ − cfb1 ),

these interventions have no effects on the equilibrium because the private sector is able to undo

the external position taken by the central bank: enough foreign wealth flows in from the rest

of the world to equilibrate the domestic and foreign real rates. When F is large enough (that

is, F > y1 + w̄ − cfb1 ), however, the private sector cannot undo these interventions because the

available foreign wealth is not large enough. In this case, the central bank interventions effectively

make the SOE “credit constrained” and induce an increase in the domestic real interest rate.

To understand the consequences of this policy on welfare, let us rewrite the intertemporal

resource constraint for the SOE, equation (15), as follows:

BC ≡ (1 + r)(y1 − c1) + y2 − c2 − F (r − i?) = 0. (17)

The term F (r−i?) captures the losses associated with foreign reserve accumulation by the central

bank. These losses appear because the central bank strategy consists of saving abroad, at a low

return, while the economy is in effect borrowing at a higher one.

The welfare of the domestic household is given by the maximization of its utility subject

to just (17), so we can read the effects on domestic welfare by understanding the effects of

F on the budget constraint. Taking first-order conditions (assuming that the equilibrium r is

differentiable), we obtain that the marginal effect of F , for F ∈ (y1 + w̄ − cfb1 , y1 + w̄), is

dBC

dF
= −(r − i?)− (c1 + F − y1)︸ ︷︷ ︸

w̄

dr

dF
< 0.

From the above, we can see that there are two effects generated by an increase in F . First,

one additional unit of reserves directly increases the budget constraint losses by the interest rate

differential, (r−i?) > 0. But in addition, an increase in F also increases the equilibrium domestic

real rate in this region, dr/dF > 0; and given that domestic households are net borrowers with

respect to endowment point ỹ1, ỹ2, this induces a negative effect on the budget constraint.8

8As done in Fanelli and Straub (2015), another way of representing the losses faced by domestic households is to
rewrite the intertemporal budget constraint solving out for foreign reserve holdings, using that a?(r−i?) = w̄(r−i?)
together with the market-clearing condition, which leads to y1 − c1 + y2−c2

1+i? − w̄
[

1+r
1+i? − 1

]
= 0. The first two

terms represent the standard intertemporal resource constraint for an economy that could borrow and save freely
at rate i?. But there is an additional term that captures the resource losses faced by domestic households. Note
that differently from Fanelli and Straub (2015), in our environment, these losses may arise even absent a central
bank intervention if the foreign wealth is not large enough to take the economy to the first best allocation.
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Figure 2: The welfare costs of central bank interventions

Figure 2 graphically illustrates these welfare losses. Without intervention, the equilibrium

is denoted by point A, which in this case corresponds to the first best allocation. With a

sufficiently large accumulation of foreign reserves, the central bank moves the economy from the

income profile (y1,y2) to (ỹ1, ỹ2). In this example, the first best allocation cannot be attained

because foreign wealth is not large enough. The intervention leads to an increase in the domestic

real rate, which now exceeds i?, and a new consumption allocation which is now at point B.

We can see from Figure 2 the two effects associated with this intervention of the central bank.

The movement from point A to the gray dot in the figure isolates the effect that operates through

an increase in the domestic interest rate (which negatively affects the country, given that it is

originally a borrower). The movement of the budget set from BC1 to BC2 captures the resource

costs associated with the central bank interventions.

In this non-monetary world, central bank interventions are never desirable (at best, they have

no effect). As a result, it is optimal in this environment for the central bank to always set F = 0.

However, as we show below, in the monetary economy the central bank may be forced to engage

in these costly interventions when its exchange rate objectives conflict with the ZLB constraint

on nominal interest rates.

3.2 The implementation of an exchange rate policy

So far, we have seen that the central bank can sustain a wedge between domestic and foreign

interest rates by accumulating foreign reserves. In the non-monetary economy, these interventions

are never desirable because they entail welfare losses for the domestic household. We now return
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to the monetary economy and show that in some cases, the central bank will need to engage in

these costly interventions in order to sustain a given exchange rate objective (s1, s2).

From the household’s optimization problem in any monetary equilibrium given (s1, s2), the

following conditions must hold:

u′(c1) = β(1 + i)
s1

s2

u′(c2) (18)

(1 + i)
s1

s2

≥ (1 + i?) (19)

h′
(
m

s1

)
=

i

1 + i
u′(c1), (20)

and

f = 0 if (1 + i)
s1

s2

> (1 + i?). (21)

Using the budget constraints of the households, together with the market-clearing condition

in the money market, we get the following equation:

y1 − c1 +
y2 − c2
s1
s2

(1 + i)
− (f + F )

[
1− s2(1 + i?)

s1(1 + i)

]
+

i
s1
s2

(1 + i)

m?

s2

= 0.

Note, however, that f = 0 if 1− s2(1+i?)
s1(1+i)

> 0. Therefore, the above expression simplifies to

y1 − c1 +
y2 − c2
s1
s2

(1 + i)
− F

[
1− s2(1 + i?)

s1(1 + i)

]
+

i
s1
s2

(1 + i)

m?

s2

= 0.

The first three terms in the above expression correspond to the intertemporal resource constraint

for the non-monetary economy, equation (17), as the domestic real interest rate in this monetary

economy equals (1 + i) s1
s2

. The last term, which is peculiar to the monetary economy, captures

the potential seigniorage collected from foreigners. Because foreigners do not receive liquidity

services from holding money balances, they set m? = 0, unless the domestic nominal interest rate

is 0, implying that im? = 0. As a result, the intertemporal resource constraint further simplifies

to

y1 − c1 +
y2 − c2
s1
s2

(1 + i)
− F

[
1− s2(1 + i?)

s1(1 + i)

]
= 0. (22)

The final equilibrium condition revolves around the central bank asset position. Recall from

equation (10) that

c1 − y1 + F =
m? + a?

s1

− f ≤ w̄,

where the last inequality follows from f ≥ 0 and m? + a? ≤ s1w̄. In addition, if 1+i
1+i?

s1
s2
− 1 > 0,

then we know that m? + a? = s1w̄ and f = 0 (i.e., foreigners invest everything in the domestic
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assets, and households do not invest in the foreign asset). Therefore, in any monetary equilibrium

we must have

c1 ≤ y1 − F + w̄; with equality if
1 + i

1 + i?
s1

s2

− 1 > 0. (23)

In other words, the foreign wealth must finance the trade deficit plus the reserve accumulation

of the central bank.

It is then immediate to verify the following result.

Lemma 1. An allocation (c1, c2, F, i,m) is part of a monetary equilibrium if and only if equations

(18), (19), (20), (22), and (23) are satisfied.

Note that equations (18), (19), (22), and (23) are the same equations that characterize a non-

monetary equilibrium, equations (13), (14), (15), and (16), with r = (1 + i) s1
s2
− 1, ỹ1 = y1 − F ,

and ỹ2 = y1 + (1 + i?)F . Thus, any monetary equilibrium must deliver an allocation consistent

with a non-monetary equilibrium outcome. In addition, equation (20), imposes the restriction

that the nominal interest rate must be nonnegative (i.e., the ZLB), a key restriction that will

play an important role in what follows.

As a result, there is potentially a continuum of monetary equilibria given the exchange rate

objective (s1, s2). Each equilibrium differs for the level of foreign reserves F accumulated by the

central bank and potentially for the level of the nominal interest rate i, and the consumption

allocation (c1, c2). For future reference, we denote by r the domestic real interest rate in the

non-monetary equilibrium associated with F = 0. From Proposition 1 we know that r ≥ i?.

We can now study how the central bank can implement a given policy for the exchange rate

(s1, s2) in the monetary economy. We will distinguish between two cases, depending on whether

the zero lower bound constraint under the exchange rate policy binds.

3.2.1 Implementation when the ZLB constraint does not bind

We first consider the case in which (1 + r) s2
s1
≥ 1. We have the following result.

Proposition 2 (Implementation away from the ZLB). If (1 + r) s2
s1
≥ 1 then, for all F ∈

[0, y1 + w̄), the non-monetary equilibrium given F constitutes a monetary equilibrium outcome.

The household’s welfare is maximized in the equilibrium with F = 0.

When the central bank does not accumulate foreign reserves, the real interest rate in the

non-monetary economy is equal to r. This real rate, along with the exchange rate policy (s1, s2),

does not violate the ZLB constraint because, by assumption, the domestic nominal interest rate

satisfies i = (1 + r) s2
s1
− 1 ≥ 0. Therefore, the allocation (c1, c2, r) for F = 0 constitutes a

monetary equilibrium outcome. From Corollary 1, we know that the real interest rate is weakly
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increasing in F . Thus, all non-monetary equilibria given F , for F > 0, will not violate the ZLB

constraint on nominal interest rates and will also constitute a monetary equilibrium outcome.

Combining Propositions 1 and 2, we can see that the central bank can implement an exchange

rate objective (s1, s2) in two distinct ways. First, the Central Bank could implement (s1, s2) by

adjusting the nominal interest rate in order to guarantee that foreign investors are indifferent be-

tween holding domestic or foreign currency assets, that is, that the interest rate parity condition

in (19) holds with equality. This is case (i) in Proposition 1. In this first scenario, the accumu-

lation of foreign reserves does not affect the equilibrium outcomes (locally), thus mirroring the

classic irrelevance result of Backus and Kehoe (1989).

There is, however, a second way to implement the exchange rate objective (s1, s2). This is

described in case (ii) of Proposition 1: the central bank could achieve its desired exchange rate

policy (s1, s2) by accumulating foreign reserves and setting a higher domestic interest rate than

the one consistent with interest rate parity.

These results generalize the classic trilemma of international finance to an environment with

limits to international arbitrage. The central bank can implement an exchange rate policy by

adjusting the nominal interest rate and eliminate arbitrage opportunities in capital markets. In

our environment, however, this is not the only option, and the central bank could implement an

exchange rate policy (s1, s2) while maintaining some degree of monetary independence. To do

so, it will need to engage in the costly interventions described in Section 3.1.

In the model described here, though, this trade-off is not operating: given an exchange rate

policy (s1, s2), the optimal central bank policy would be to not accumulate foreign reserves (a

result that follows directly from Proposition 1).9 However, there is a sense in which this is a

stronger result. If a central bank has no fiscal support in the first period, then it may not be

feasible for the central bank to engineer a deviation from interest parity. We then have the

following proposition.

Proposition 3. Suppose that (1 + r) s2
s1
≥ 1 and that Assumption 2.3 holds. In addition, suppose

that cfb1 − y1 + x̄ ≤ w̄. Then all monetary equilibria attain the first best consumption allocation

and the same domestic welfare, and the interest rate parity condition (19) holds with equality.

Proposition 3 tells us that a central bank that cannot issue interest rate bearing liabilities

and does not receive transfers from the fiscal authority is constrained in its ability to raise the

domestic real rate above the foreign one. In order to understand why, suppose that the central

bank tries to do so. This leads to an immediate inflow of foreign capital of size w̄, which puts

9One issue is related to the value of money balances, a consideration that, of course, does not appear in the
non-monetary equilibria analysis. However, the equilibrium with F = 0 is the monetary equilibrium with the
lowest possible nominal interest rate, given the exchange rate policy. And thus, it ends up maximizing total
households’ utility, inclusive of money balances. Indeed, there is no additional value of raising the domestic
interest rate beyond what is necessary to support the exchange rate policy under no reserve accumulation.

18



downward pressure on the domestic interest rate. To keep the interest rate from falling, the

central bank must purchase a large amount of the inflow and accumulate foreign reserves. But

the purchasing power of the central bank is limited by its balance sheet because, by Assumption

2.3, the central bank’s real liabilities are bounded by the satiation point of money x̄. If the

external wealth is sufficiently high, the central bank will not be able to sustain a deviation from

interest rate parity, and the domestic interest rate will need to adjust. Therefore, it could be

challenging for the central bank to gain monetary independence while committing to an exchange

rate policy when nominal interest rates are positive.

3.2.2 Implementation when the ZLB constraint binds

The second case we analyze is when (1 + r) s2
s1
< 1. In this case, the non-monetary equilibrium

with F = 0 cannot arise as a monetary equilibrium outcome because it would lead to a domestic

nominal interest rate that violates the ZLB constraint. As a result, the monetary equilibrium

will necessarily feature a deviation from interest rate parity, and the domestic real interest rate

will need to lie strictly above the foreign one.10

So, for there to be a monetary equilibrium, the central bank will need to intervene and

accumulate reserves of a magnitude sufficient to increase the real interest rate above the level

consistent with interest parity. Let r̄ be the highest possible real interest rate in the non-monetary

economy (that is, the interest rate associated with the maximum possible intervention). We then

have the following result.

Proposition 4 (Implementation at the ZLB). Suppose that 1+r < s1
s2
< 1+ r̄. Then there exists

an F > 0 such that for all F ∈ [F , y1 + w̄), the non-monetary equilibrium given F , (c1, c2, r),

constitutes a monetary equilibrium outcome. In all these monetary equilibria, the interest rate

parity condition (19) holds as a strict inequality. The household’s welfare is maximized in the

equilibrium with F = F .

Proposition 4 tells us that the central bank is able to sustain the exchange rate policy.

However, because of the ZLB, it has to engage in the costly interventions described in Section

3.1.

It follows, however, that given an exchange rate policy (s1, s2), the optimal central bank

policy is to accumulate the minimum amount of foreign reserves necessary to deliver a monetary

equilibrium. As a result, the best monetary equilibrium in this case will feature i = 0 and

10This follows immediately from the following set of inequalities:

(1 + i)
s1

s2
− 1 ≥ s1

s2
− 1 > r ≥ i?,

where the first term is the domestic real rate, the first inequality follows from the ZLB constraint, the second
defines the case of interest, and the last one is the restriction that appears in any non-monetary equilibrium.
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a violation of the interest parity condition. Differently from the situation in which the ZLB

constraint is slack, the central bank can always sustain these exchange rate policies, even without

the support of the fiscal authority. This is summarized in the following proposition.

Proposition 5. Suppose that (1 + r) s2
s1
< 1 and that Assumption 2.3 holds. In addition, suppose

that cfb1 − y1 + x̄ ≤ w̄. Then the unique monetary equilibrium outcome is the one where F = F

and i = 0.

Proposition 5 tells us that a central bank without fiscal support is able to raise the domestic

real rate above the foreign one as long as the nominal interest rate remains at zero. In this case,

by sustaining the exchange rate path, the central bank is forced to issue currency to purchase

the foreign assets necessary to maintain the domestic rate above the foreign one. The main

difference from the case analyzed previously is that now, because of the zero nominal rate, bonds

and money are perfect substitutes. Thus, the central bank can expand its balance sheet without

limits.

To recap, the analysis above tells us that interest parity deviations in a world with limited

arbitrage are sustained by foreign reserve accumulation. We have also shown that central banks

need to intervene only when their interest rates are at their ZLB, as interventions are otherwise

unnecessary. In the next section, we provide empirical support for these two key predictions of

the framework.

4 Empirical evidence

In our framework, the central bank, by accumulating foreign assets, can increase the domestic real

interest rate relative to the world real interest rate i.e., open a gap in the interest parity condition.

Doing so creates an arbitrage opportunity for foreign investors, which gain at the expense of the

central bank, thus these interventions are costly for the domestic economy. Nevertheless, central

banks need to carry those interventions out, if they want to achieve an exchange rate objective

while their interest rate is constrained by the ZLB. This logic implies that when we observe

domestic assets paying a higher return than foreign ones (where returns are made comparable

using forward rates) we should also observe large foreign reserve accumulation by the domestic

central bank, because the domestic central bank take long positions in the assets with the lower

return. The logic also implies that we should observe these gaps when interest rates that are

close to zero, because otherwise they are unncessary.

In subsections 4.1 and 4.2 we provide evidence that positive gaps in interest parity (i.e.

domestic rates higher than foreign) are indeed associated, both across countries and over time,

with an accumulation of reserves by domestic central banks and that these positive deviations

arise mostly for currencies with nominal interest rates gravitating around zero. This evidence
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suggests that the pursuit of an exchange rate policy at the ZLB might be an important factor in

explaining observed deviations from interest parity. In the second part of this section (subsection

4.3), we show how data on deviations from interest parity plus data on reserve accumulation can

be combined to quantify the costs of achieving a certain exchange rate objective. In order to

make this point concrete, we provide an estimate of the costs of the extensive foreign exchange

interventions by the Swiss National Bank (SNB) during the 2010-2015 period.

4.1 Interest parity, foreign reserves, and the ZLB: Recent evidence

As we detail below, we measure deviations between the domestic and world real interest rates

using gaps in the covered interest rate parity condition. Because of that, we restrict the analysis

to a set of countries for which data on currency forwards are of sufficiently good quality. Our

sample borrows mostly from Du et al. (2016) and includes Switzerland, Japan, Denmark, Sweden,

Canada, the United Kingdom, Australia, and New Zealand over the 2000-2015 period.

We obtain yearly data on foreign reserve holdings from the International Financial Statistics

of the IMF,11 and we scale it by annual gross domestic product obtained from the OECD National

Accounts. Both foreign reserves and gross domestic product are expressed in U.S. dollars at

current prices.
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Figure 3: Foreign reserves, interest rates, and CIP gaps

The measurement of deviations between the domestic and world real interest rates is more

involved. In our deterministic model, we could proxy these gaps either with deviations from

11Total reserves comprise holdings of monetary gold, special drawing rights, reserves of IMF members held by
the IMF, and holdings of foreign exchange under the control of monetary authorities. The gold component of
these reserves is valued at year-end (December 31) London prices.
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the covered interest rate parity (CIP) conditions or using deviations from the uncovered one

(UIP). When adding uncertainty, however, the two indicators differ. In Amador et al. (2017)

we show that the correct measure to compute the costs of foreign exchange interventions in an

environment with uncertainty is the CIP rather than the UIP deviation.12 For this reason, we

use deviations from CIP. Letting i$t,t+n denote the nominal interest rate in U.S. dollars between

time t and time t+ n, ijt,t+n the corresponding interest rate in currency j, sj,$t the spot exchange

rate of currency j per U.S. dollar, and f j,$t,t+n the n-periods ahead associated forward contract,

we can express deviations from the CIP condition as

cip gapsj,$t,t+n = ijt,t+n − i$t,t+n +
1

n
[log(sj,$t )− log(f j,$t,t+n)].

A positive value for this indicator is equivalent, in our model, to a positive gap between the real

interest rate in country j and the world real interest rate.

We calculate deviations from the CIP condition at a three-months horizon between major

currencies and the U.S. dollar for the period 2000-2015. We map ijt,t+n to the interest rate on an

overnight indexed swap (OIS) of three-month duration in currency j, while i$t,t+n is the respective

OIS rate in U.S. dollars with the same duration.13 The variable f j,$t,t+n is the three-months forward

rate between currency j and the U.S. dollar. All these data are obtained at a daily frequency

from Bloomberg, and we use the midpoint between the bid and ask quotes.

Figure 3 plots the three time series (aggregated at a yearly frequency) for the countries

considered. The figure shows interesting patterns, both over time and across countries. First,

there has been a sizable increase in the ratio of foreign reserve to GDP for advanced economies

over this period, which on average went from 9% in 2001 to 25.4% in 2015. This trend was

more pronounced for certain economies than for others: central banks in Switzerland, Japan,

and Denmark substantially increased their foreign asset positions during the sample, whereas

central banks in Australia, Canada and the United Kingdom did not. Second, nominal interest

rates have been declining over time: by the end of the period, we have a group of countries with

zero or even negative nominal interest rates (Denmark, Switzerland, Japan, and Sweden) and

countries with clearly positive nominal rates (Australia, and New Zealand). The third panel in

the figure reports yearly average CIP gaps in our sample. Prior to 2007, CIP deviations were on

average small and within 20bp from 0 for all the economies, a well-established fact in international

finance. During the global financial crisis of 2007-2009, we have observed major deviations from

covered interest rate parity for all the currencies in our sample. Interestingly, these deviations

12Basically, UIP deviations also contain compensation that lenders may require for holding currency risk, rather
than the riskless arbitrage opportunity.

13Our results would not change significantly if we were to use the LIBOR rather than the OIS rate when
computing deviations from CIP. See Du et al. (2016) for a comparison of CIP deviations computed using the
LIBOR and OIS rate.
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Figure 4: Relation between CIP gaps, reserves, and interest rates

have persisted even after the financial crisis for a group of countries, most notably Switzerland,

Denmark, Japan, and Sweden.

We exploit the variation in these three series, both across countries and over time, to verify

two main predictions of the model. Because the deviations from CIP during the 2007- 2009

period were extreme and, as discussed by Baba and Packer (2009), Ivashina, Scharfstein and

Stein (2015), Du et al. (2016), and Borio, McCauley, McGuire and Sushko (2016), were due to

unusually tight limits to arbitrage during the crisis, we exclude this period and split the time

dimension of our sample in two subsets: before (2002-2006) and after (2010-2015) the financial

crisis. The left panel of Figure 4 plots the average foreign reserve holdings to GDP ratio against

the average CIP deviations in these two sub-samples. The plot shows a positive relationship,

both across countries and over time, between the level of foreign reserves and the deviations from

the CIP (with the appropriate sign). This empirical finding, which to the best of our knowledge

has not been previously noted in the literature, is consistent with the mechanism at the heart

of our model, whereby the monetary authority is able to sustain a positive gap between the

domestic and world real interest rate by accumulating a sufficiently large position in foreign

assets. Moreover, this finding helps us understand not only the deviations from CIP per se (any

model with limited arbitrage can generate those), but their specific sign. The right panel of Figure

4 plots the nominal interest rate against the average CIP deviations in these two subsamples.

We can observe that the CIP gaps are positive for countries-time periods characterized by low

nominal interest rates, while they tend to be small when nominal interest rates are positive. This

negative relation between CIP gaps and nominal interest rates, also documented by Du et al.

(2016), lends support to our result that central banks find it optimal to engage in large foreign

exchange interventions when the ZLB constraint on nominal interest rates binds.
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4.2 Interest parity, reserves and the ZLB: Switzerland in the 1970s

The experience of Switzerland in the late 1970s provides another interesting episode of exchange

rate policy in an environment with very low interest rates.14 Panel (a) of Figure 5 shows the

monthly time series for the Swiss franc against the U.S. dollar for the period 1977-1979, and

it shows that the Swiss franc had been steadily appreciating against the U.S. dollar, just as it

did in the aftermath of the 2007-2009 crisis.15 In an effort to prevent the appreciation, the SNB

initially reduced the domestic rate, which by the end of 1978 reached levels close to zero (see the

shaded area in panel (b) of the figure). At this point, just as it did in 2011, the SNB announced

a temporary floor between the Swiss franc and the Deutsche mark, and, to maintain the floor,

it engaged in large foreign exchange interventions. Panel (c) of Figure 5 shows monthly times

series of foreign reserves (excluding gold, as a fraction of trend GDP), together with deviations

from CIP, calculated in exactly the same way as in the previous section.16
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Figure 5: Foreign reserves, interest rates and CIP deviations: Switzerland 1977-1979

Note: The shaded areas represent the months in which the Swiss interest rate was below 0.5%.

The panel shows that the ratio of foreign reserves to GDP increased by over 10% of GDP, and

around the same time, the deviations from CIP increased by over 50 basis points. By mid-1979,

the international macroeconomic conditions changed substantially, and the SNB was able to avoid

appreciation of the currency while maintaining a positive interest rate. As a consequence, both

the level of foreign reserves and the deviations from covered parity abated. We should be clear

14For an informal description of the macroeconomic environment in Switzerland at the time, see, for example,
Jones (2011).

15Over the period 1977-1978, the Swiss franc also appreciated 30% against the deutsche mark.
16The only difference is our data source, since Bloomberg data are not available for this early period. Three-

months nominal interest rates are interbank rates from the OECD Main Economic Indicators, and daily spot and
three-months forward rates are provided by the SNB.
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that we do not claim that CIP deviations only occur with interest rates that are close to zero.

During the pre-financial globalization period, with extensive capital controls, deviations from CIP

were routinely documented, even between currencies with positive interest rates. The objective

of this section is to show that this particular episode of CIP deviations seems closely connected

to the reserve accumulation conducted to avoid currency appreciation in an environment with

low interest rates.

4.3 The costs of the SNB foreign exchange interventions

In this subsection, we use the Swiss experience to obtain guidance on the size of the potential

losses faced by central banks. Starting from 2010, the SNB has intervened massively in foreign

exchange markets, either to defend an explicit target for the exchange rate17 or, more informally,

to fight appreciation pressures on the Swiss franc. Our theory provides a simple expression to

measure the costs associated with these interventions:

lossest =

[
(1 + it)

(1 + i?t )

st
st+1

− 1

]
× Ft. (24)

We can use our data on CIP deviations (on a horizon of three months) and on foreign reserves

to provide an approximation for the costs of these foreign exchange interventions.18

(a) CIP deviations and Reserves (b) Losses

Figure 6: Foreign reserves, CIP deviations, and losses

Panel (a) of Figure 6, we report the monthly three-month CIP deviations between the Swiss

franc and the U.S. dollar, along with a monthly series for the stock of foreign reserves as a

fraction of Swiss GDP. This plot confirms that the positive relation between foreign reserves and

CIP deviations that we documented earlier also holds at a much higher frequency: after the U.S.

financial crisis, spikes in the CIP gaps are associated with massive interventions of the SNB.

17Between 2011 and 2015, the SNB successfully kept a floor of 1.2 Swiss francs per euro.
18See Appendix E.
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Panel (b) of Figure 6, we report our corresponding measure of the monthly losses as a frac-

tion of monthly Swiss GDP. The lightly shaded area represents the period in which the SNB

maintained an official floor on the franc. As can be seen, throughout this period, the losses were

significant. They reach their highest point (around 1% of monthly GDP) around January 2015,

the month when the SNB decided to abandon the currency floor vis-à-vis the euro.

5 Capital inflows and foreign exchange interventions

So far we have seen that a central bank that wishes to implement an exchange rate path when

nominal interest rates are at zero needs to accumulate foreign reserves. We have also seen that

these interventions are costly from the perspective of the SOE. In this section, we study those

costs in more detail and discuss how they are affected by changes in the underlying economic

environment. The main result of this section will be that factors that raise capital inflows

toward the domestic economy increase the costs that the central bank incurs when implementing

an exchange rate policy at the ZLB.

5.1 Changes in foreign wealth and the foreign interest rate

We start by considering the effects of increases in foreign wealth, w̄, and of reductions in the

foreign interest rate i? (when the country is a net borrower). Before moving to the ZLB envi-

ronment, let us first argue that both of these changes unambiguously improve welfare when the

ZLB constraint does not bind, that is, when (1 + r) s2
s1
≥ 1.

To see this, note that, away from the ZLB, the best monetary equilibrium given an exchange

rate policy (s1, s2) sets F = 0. As a result, the welfare effects can be read by studying the effects

of such changes on the budget constraint of domestic households,

y1 − c1 +
y2 − c2

1 + r
≥ 0,

where r is the domestic equilibrium real rate. So, whether increases in w̄ or decreases in i? are

welfare improving or not depend on the effect of these changes on the equilibrium domestic real

interest rate. The following Lemma helps to clarify the effects.

Lemma 2. Consider the non-monetary equilibrium given F = 0. Then,

(i) if cfb1 > y1 + w̄, a marginal increase in w̄ strictly decreases the domestic real interest rate,

while a marginal decrease in i? has no effect.

(ii) if cfb1 < y1 + w̄, a marginal increase in w̄ has no effect on the domestic interest rate, while

a marginal decrease in i? strictly decreases it.
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The results of this lemma follow from our characterization of the non-monetary equilibrium.

When F = 0, if cfb1 < y1 +w̄, then the economy achieves the first best consumption outcome, and

the domestic real interest rate will equal i?. As a result, an increase in w̄ would have no effect

on the real interest rate in this region, but a reduction in i? will reduce the domestic rate one to

one, explaining part (ii) of the lemma. However, if cfb1 > y1 +w̄, then the economy is constrained,

and the domestic interest rate is the unique value r that solves the following equation:

(1 + r) =
u′(y1 + w̄)

βu′(y2 − (1 + r)w̄)
.

In this case, changes in the foreign interest rate have no effects on the equilibrium r. An increase

in w̄, however, strictly reduces r, a natural outcome of the increase in competition from foreign

investors.19

It follows that an increase in w̄ either has no effect on the domestic real rate or reduces it

when c1 = y1 + w̄, that is, when the country is a net borrower. From the household’s budget

constraint, an increase in w̄ then weakly increases welfare.

A reduction in i? has no effect on the domestic real rate when the economy is constrained and

reduces the real rate when the economy is at its first best allocation, c1 = cfb1 . If cfb1 > y1, that

is, the economy is a net borrower at the first best consumption allocation, then the reduction in

i? will increase welfare.

We now proceed to show how these beneficial changes become welfare reducing when the

economy follows an exchange rate policy at the ZLB. We start by analyzing how a change in

foreign wealth w̄ affects the costs of foreign reserves accumulation when the central bank is

committed to the exchange rate path (s1, s2) and (1 + r) s2
s1
< 1. In this case, the best monetary

equilibrium will set the nominal interest rate to zero.

We can characterize domestic welfare as follows:

W ≡ max
(c1,c2)

u(c1) + βu(c2) + h(x̄) (25)

subject to

y1 − c1 +
y2 − c2

s1/s2

− F
[
1− s2(1 + i?)

s1

]
= 0,

where F is the minimum level of foreign reserves necessary for i = 0 given (s2/s1).20

19To see this, we can differentiate the equation with respect to w̄ and obtain that

dr

dw̄
=

(1 + r)2βu′′(c2) + u′′(c1)

βu′(c2)− (1 + r)βu′′(c2)w̄
< 0.

20The presence of h(x) arises from the utility value of money balances. At i = 0, domestic households are
satiated with respect to money balances, so that m/s1 ≥ x and h(m/s1) = h(x).
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Figure 7: Comparative statics at the ZLB

Note that at the ZLB, the domestic real interest rate equals the rate of appreciation of the

currency, which is fixed under the central bank policy. Therefore, a change in the welfare of

domestic households purely reflects changes in the arbitrage losses that the central bank sustains

when accumulating foreign reserves, the term F
[
1− s2(1+i?)

s1

]
in the resource constraint.

Let us now consider how an increase in the wealth of foreign investors affects this term. In

equation (25), the term in the square bracket is independent of w̄, so a change in w̄ affects

welfare only through its effect on F : if higher w̄ leads to higher F , then welfare unambiguously

declines. This is indeed what happens. When foreign wealth increases, the central bank is forced

to accumulate more foreign reserves in order to sustain the exchange rate path (s1, s2). Because

for every penny of foreign reserve accumulated, the central bank incurs a loss, the overall costs

of the intervention increase with w̄.

Figure 7, panel (a), illustrates this point graphically. Point A depicts the equilibrium con-

sumption under the exchange rate policy for a given level of foreign wealth w̄. Suppose now that

foreign wealth increases to w̄′. Because the interest rate parity condition is violated under the

policy, more foreign capital will fly toward the SOE, putting downward pressure on the domestic

real interest rate. In order to sustain the path for the exchange rate, the central bank will have to

lean against these capital flows and purchase foreign assets, so F must increase. Point B in the

figure represents the equilibrium that prevails when foreign wealth moves to w̄′. The domestic

real interest rate at equilibrium B is the same as at A, as the economy is at the ZLB at both

points and the domestic real interest rate is pinned down by s1
s2

. Even though the real rate has

not changed, welfare at point B is unambiguously lower than at A, as the higher w̄ forces the
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central bank to intervene more (∆F > 0). The losses generated by this bigger intervention are

represented by the parallel shift in the budget lines from point A to point B.

This result shows that a higher degree of capital market integration makes the pursue of an

exchange rate objective more costly when the economy is at the ZLB: the central bank has to

accumulate more foreign reserves in order to sustain the path (s1, s2), and this accumulation

leads to resource costs for the SOE.

A similar result occurs when i? declines. Suppose, again, that the central bank is sustaining

the path (s1, s2) at the ZLB, and the foreign interest rate declines. As it was for a change in

foreign wealth, the impact of a decline in i? on welfare depends on its impact on F
[
1− s2(1+i?)

s1

]
.

However, two effects must now be considered. First, for a given (s1, s2), the decline in the foreign

interest rate implies a larger deviation from interest rate parity, and it leads to an increase in

the arbitrage losses made by the central bank for a given F . Second, the decline in i? forces the

central bank to accumulate more reserves, and F must increase. Both of these forces increase

the costs of sustaining the exchange rate path for the central bank.

We illustrate this result in Figure 7, panel (b). We are considering a situation in which

the SOE is already at the ZLB, and its consumption lies at point A. The dashed budget line

represents the resource constraint using an initial foreign rate equal to i?0. We then consider

a reduction in the international rate to i?1 < i?0. The first effect is isolated by the shift of the

intertemporal resource constraint from BC1 to BC2: the central bank intervention generates

bigger resource costs for the SOE because the interest parity deviations, for a given exchange

rate path, are larger if the foreign interest rate is i?1. However, A′ is not an equilibrium. The

domestic household would now like to save because its endowment in the second period is not

as high as it was before the decrease in the foreign rate, which implies that the domestic asset

market is not in equilibrium. As a result, the central bank must increase its foreign reserves,

driving the economy to its equilibrium at point B, with an even higher reduction in welfare.21

5.2 Expectational mistakes

Capital inflows toward the domestic economy not only may be triggered by changes in underlying

fundamentals, but they might also be the results of a change in the beliefs of private agents

regarding the appreciation of the domestic currency. In this section we show that when the

central bank follows an exchange rate path that conflicts with the ZLB, incorrect beliefs about a

future appreciation of the domestic currency necessarily induce an increase in the foreign reserve

21There is potentially another effect that we do not consider here. Suppose that the reduction in i? allows
foreigners to borrow more from the international financial markets. This is equivalent to a larger amount of
foreign wealth w̄ available for investment in the SOE in the first period. The additional effects generated by this
will be similar to the already discussed exogenous increase in w̄: it will increase the foreign reserve holdings by
the central bank, magnifying the welfare losses.
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holdings of the central bank, and they end up increasing the welfare costs of sustaining the

exchange rate path (s1, s2). This stands in contrast with the case when the ZLB constraint does

not bind, as in this latter scenario, a central bank can always exploit these expectational mistakes

and strictly increase the welfare of the domestic household.

We introduce the possibility of expectational mistakes as follows. We continue to let (s1, s2)

denote the actual exchange rate policy, and we maintain the assumption that the central bank

will pursue it. Market participants (i.e., domestic households and foreign investors) see the value

of s1 in the first period and believe that the exchange rate in the second period will be ŝ2.

Expectational mistakes arise when ŝ2 6= s2. Keeping with our desire to maintain simplicity, we

assume that the private agents do not learn about or infer any information from the actions of

the central bank. We define an equilibrium under potentially mistaken market beliefs as follows.

Definition 2. An equilibrium given (s1, s2) and market beliefs ŝ2 consists of a domestic interest

rate i, a consumption profile (c1, c2, ĉ2), asset positions for foreign investors (a?, f ?,m?), money

M , investments by the monetary authority (A,F ), transfers from the monetary authority to the

fiscal authority, (τ1, τ2, τ̂2), and transfers from the fiscal authority to the households, (T1, T2, T̂2),

such that

(i) the allocation (c1, ĉ2, a, f,m, a
?, f ?,m?, τ1, τ̂2, A, F, T1, T̂2) with nominal interest rate i con-

stitutes a monetary equilibrium given the exchange rate s1, ŝ2.

(ii) The second-period consumption and transfers, (c2, τ2, T2), satisfy

c2 = y2 + T2 +
(1 + i)a+m

s2

+ (1 + i?)f

τ2 = (1 + i?)F + (1 + i)
A

s2

− M

s2

T2 = τ2 − (1 + i)
B

s2

.

Note that in part (i) we use the beliefs to define the monetary equilibrium. However, in

period 2, the realization of the exchange rate will be s2, and the second-period “true” allocations

(c2, τ2, T2) are calculated with respect to the true exchange rate (part (ii) of the definition). We

will call (c1, ĉ2) the perceived consumption allocation and (c1, c2) the true consumption allocation.

We will also say that (1 + i) s1
ŝ2

is the perceived real interest rate, and we call (1 + i) s1
s2

the true

real rate interest rate. Clearly if s2 = ŝ2, the above definition of equilibrium is identical to our

definition of a monetary equilibrium given the exchange rate policy (s1, s2).

As explained earlier, we will consider the case in which s2 > ŝ2, that is, when private agents

expect the currency to be more appreciated next period relative to the policy that is actually

chosen by the central bank. We evaluate welfare by considering the household’s utility under the
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Figure 8: Expectational mistakes

true consumption allocation.

Proposition 6. Suppose that s2 > ŝ2. Consider the equilibrium with market beliefs ŝ2 that

maximizes the household’s welfare. Then

(i) if (1 + r) ŝ2
s1
≥ 1, the household’s welfare strictly decreases with ŝ2;

(ii) if (1 + r) s2
s1
< 1, the household’s welfare strictly increases with ŝ2.

In case (i) of the proposition, the central bank maximizes welfare by reducing the interest rate

so that private agents perceive the interest rate parity condition to hold, and by accumulating

foreign assets. Ex post, these foreign assets are worth more under the realized exchange rate in

period 2 because s2 > ŝ2. These profits are rebated back to the households and increase their

effective second-period consumption. As a result, households’ welfare, as evaluated by the central

bank, increases. An example of this is illustrated in Figure 8, panel (a). Point A represents the

rational expectation case, ŝ2 = s2. In our example, the central bank is sustaining the path for

the exchange rate with no interventions (F = 0). We then consider how the equilibrium changes

when ŝ2 < s2. In this case, the central bank reduces the nominal interest rate, such that the

“perceived” real rate of return remains the same. Moreover, it accumulates foreign reserves to the

point at which all foreign wealth enters the SOE. These two changes do not affect the behavior

of private agents, who believe the equilibrium will be at point A. However, ex post, the exchange

rate equals s2, and the consumption of the domestic households will be at point B rather than

A, generating a strictly positive welfare gain.
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The key reason why the central bank can exploit the mistaken beliefs in case (i) of Proposition

6 is based on its ability to lower the domestic nominal interest rate when the beliefs deviate from

the true ones. At the ZLB, this is not possible. As a result, the expectation mistakes cannot

be exploited and welfare cannot be increased. We now show an even more negative result: the

mistaken beliefs at the ZLB unambiguously generate a reduction in welfare.

Figure 8, panel (b), illustrates case (ii) of the proposition. Point A represents the original

equilibrium, where the ZLB binds, and ŝ2 = s2. We then consider how the equilibrium changes

if ŝ2 < s2. In this case, the central bank cannot further reduce i, because the interest rate is at

zero. As a result, the perceived domestic rate of return is necessarily above the foreign one. Thus,

the central bank has to accumulate foreign reserves in order to maintain its desired path for the

exchange rate. The perceived equilibrium consumption allocation shifts to point B. However, ex

post, the exchange rate remains at s2, and the realized rate of return is identical to the original.

The realized consumption allocation that is attained in equilibrium is given by point C, which

dominated by A. Hence, welfare has been reduced.

The results of this section highlight that even if the central bank is committed to its exchange

rate policy, if the markets do not believe it, then costs will be associated with defending the

policy when the economy operates at the zero bound. In addition, the larger the expectational

mistake, the larger the required foreign exchange interventions by the central bank, and the

larger the welfare losses. That is, at the ZLB, expectational mistakes are accompanied by costly

balance sheet expansions by the central bank. Those expansions could, by themselves, trigger an

abandonment of the exchange rate policy if the central bank finds it costly to maintain a large

balance sheet.22 This mechanism opens the door to the possibility of self-fulfilling “appreciation”

runs at the ZLB, something that we leave for future work.

5.3 Capital controls and negative nominal interest rates

So far we have shown that capital inflows increase the costs of foreign exchange interventions

for a monetary authority that is pursuing an exchange rate policy at the ZLB. An important

question, then, is whether the central bank could reduce these costs by imposing capital controls.

It is straightforward to extend our framework to tackle such a question. Appendix C provides

a full account of the interactions between capital controls and foreign exchange interventions in

our setup. In what follows, we provide a summary of our findings and a brief discussion.

In propositions 7 and 8 in Appendix C, we show that capital controls, in the form of either

taxes on foreign inflows of capital or quantity restrictions, grant the monetary authority the

ability to implement any exchange rate policy for any nominal interest rate without the need

to engage in costly foreign exchange interventions. In addition, we show that the monetary

22We do not analyze this point here, but we studied it in Amador et al. (2016).
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authority, when implementing an exchange rate policy, strictly prefers using capital controls over

foreign exchange interventions, making the latter redundant.

This result, however, hinges on the monetary authority’s ability to implement capital con-

trols at no cost. In practice, however, monetary authorities face both implementation hurdles

and potential costs. First, capital controls often require some form of coordination between the

monetary authority and the fiscal authority, whereas foreign exchange interventions can usu-

ally be carried out directly by the central bank. Second, for capital controls to be effective

with nominal interest rates close to zero, the central bank needs to tax money or near-money

financial instruments; otherwise, at the ZLB, the capital inflows would redirect toward these

financial instruments. Finally other costs that we do not model might arise, such as reputational

considerations or other distortions.

An alternative to capital controls is the policy of imposing negative nominal interest rates.

To see why our framework provides a rationale for this intervention, suppose that the monetary

authority could impose a tax on money holdings, τm.23 The first-order condition of households

with respect to money is modified as follows:

h′
(
m

s1

)
= (i+ τm)

λ2

s2

.

It follows that by setting i = −τm = (1 + i∗) s2
s1
− 1, the monetary authority can implement the

exchange rate policy with negative nominal interest rates, rather than by accumulating foreign

assets and introducing deviations from interest parity. If the central bank had this option,

it could implement any exchange rate policy by varying nominal interest rates, making the

accumulation of foreign reserves redundant. Moreover, from Proposition 2 we know that the

monetary authority would strictly prefer using negative nominal interest rates in place of foreign

exchange interventions. This latter result helps to rationalize the recent behavior of the monetary

authorities in Denmark, Switzerland, and Sweden, which experimented with negative nominal

interest rates while pursuing exchange rate policies.

6 Optimal exchange rate policy

Until now, we have studied the implementation of a given exchange rate policy (s1, s2). In this

section, we allow the central bank to choose its exchange rate policy. This approach allows us

to verify the robustness of the insights obtained earlier, but now in an environment in which

exchange rate policies and foreign exchange interventions are jointly determined. In line with

23Buiter and Panigirtzoglou (2003) study how one can overcome the ZLB constraint by imposing a tax on
money. Rognlie (2015) analyzes the policy trade-offs of setting negative rates in a model in which storing cash is
costly.
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the analysis above, we will show that when the ZLB does not bind, the central bank will im-

plement the chosen path for the exchange rate by varying nominal interest rates rather than

by accumulating foreign reserves. When the ZLB binds, the central bank may instead find it

optimal to incur losses from foreign exchange interventions in order to depreciate its exchange

rate.

We extend our basic SOE model to include non tradable (NT) goods, endogenous production,

and a nominal rigidity that takes the form of sticky wages. In particular, wages, denoted by pw,

are fixed (and constant) in domestic currency, pw1 = pw2 = p̄w. We follow the usual tradition in

New Keynesian models of working with a cashless limit, where the value of real money balances

in the utility vanishes.

Firms. Tradable and non-tradable goods are produced with a production function that uses

labor, l. Taking as given prices and wages, firms in the tradable and non-tradable sector maximize

profits

ΠT
t ≡ max

lT

(
lTt
)α − p̄w

st
lTt ,

ΠN
t ≡ max

lN
pNt (lNt )α − p̄w

st
lNt ,

where lTt , l
N
t represent labor demands in each sector, pNt is the price of non-tradables expressed

in foreign currency and p̄w/st represents the wage in foreign currency. The first-order conditions

lead to standard labor demand equations:

lNt =
(
αpNt st
p̄w

)1/(1−α)

, (26)

lTt =
(
αst
p̄w

)1/(1−α)

. (27)

Households. Households’ preferences over tradable and non-tradable consumption, cT and cN ,

and labor, n, are given by

∑

t=1,2

β
t−1 [

φ log(cTt ) + (1− φ) log(cNt ) + χ log(1− nt)
]
. (28)

Households solve essentially the same problem as in the previous version of the model. They face

a portfolio in domestic and foreign bonds, and in addition they choose the amount of tradable and

non-tradable consumption. In line with the sticky wage assumption, we assume that households

are off their labor supply, and supply as many hours as firms demand at the given wage. Hence,

the household problem consists of choosing {cT1 , cN1 , cT2 , cT2 , f, a} to maximize (28) subject to the
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following budget constraints

cT1 + cN1 p
N
1 = p̄wn1 + ΠT

1 + ΠN
1 + T1 −

a

s1

− f

cT2 + cN2 p
N
2 = p̄wn2 + ΠT

2 + ΠN
2 + T2 + f(1 + i∗) +

a(1 + i)

s2

and f ≥ 0. In addition to the first-order conditions (18)-(21), the household problem features

an intratemporal Euler equation that equates the relative price of non-tradables to the marginal

rate of substitution:

pNt =
1− φ
φ

cTt
cNt
. (29)

In equilibrium, the market for non-tradable goods clears:

yNt = cNt , (30)

and households supply labor to meet the labor demand, nt = lTt + lNt . Notice also that combining

(26), (29), and (30) yields a NT employment allocation as a function of the exchange rate and

the level of tradable consumption given by

l̂N(cTt , st) =

(
1− φ
φ

)
αcTt st
p̄w

. (31)

Central bank problem. The objective of the central bank is to choose the monetary equilibria

that deliver higher welfare.24 The Central Bank chooses an exchange rate policy (s1, s2), in

addition to a nominal interest rate i and a foreign asset position F . The key difference with

the analysis in the previous section is that now the central bank optimally chooses (s1, s2). The

optimality conditions for the path of the exchange rate, formally derived in Appendix D, are

respectively:

∂l̂T1
∂s1︸︷︷︸

Keynesian Channel

(
λ(1 + i?)αl̂T (s1)α−1 − χ

1− n1︸ ︷︷ ︸
Labor Wedge

)

+
∂ ˆlN1
∂s1︸︷︷︸

Keynesian Channel

(
1− φ
cN1

αl̂N(s1, c
T
1 )α−1 − χ

1− n1︸ ︷︷ ︸
Labor Wedge

)
≤ λ

s2

w̄
︸︷︷︸

Intervention Loss

+ ξcT1 β,︸ ︷︷ ︸
Saving Distortion

(32)

24Appendix D states the formal definition of monetary equilibrium in this setup, which extends Definition 1
with firms’ optimal decision for employment and the market-clearing condition for non-tradables.
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and

∂l̂T2
∂s2︸︷︷︸

Keynesian Channel

(
λαl̂T (s2)α−1 − βχ

1− n2︸ ︷︷ ︸
Labor Wedge

)

+ β
∂ ˆlN2
∂s2︸ ︷︷ ︸

Keynesian Channel

(
1− φ
cN2

αl̂N(s2, c
T
2 )α−1 − χ

1− n2︸ ︷︷ ︸
Labor Wedge

)
≤ −λs1

s2
2

w̄

︸ ︷︷ ︸
Intervention Loss

− ξcT2︸︷︷︸
Saving Distortion

(33)

where λ, ξ denote, respectively, the Lagrange multipliers associated with the resource constraint

and the domestic Euler equation, and l̂T (s1) denote the employment equilibrium function equa-

tion given by (27). In a solution in which the central bank intervenes in the asset markets, (33)

and (32) hold with equality. The left-hand side of (32) indicates the benefits of depreciating the

exchange rate in period 1: by depreciating the exchange rate, the central bank can increase labor

demand (the terms labelled Keynesian Channel), and this has positive effects on welfare to the

extent that production is inefficiently low (when there are positive labor wedges in the tradable

and non-tradable sectors). The right-hand side indicates the potential costs from depreciating

the exchange rate, which is composed of the two terms we analyzed in Section 2. The first term

represents the intervention losses. Given i and s2, an increase in s1 raises the expected apprecia-

tion rate of the domestic currency, which opens a wider gap in the interest parity condition. As

we have shown in equation (17), this produces losses for the SOE, which are proportional to the

foreign wealth of investors. The second term is the loss due to the distortion in the consumption-

saving decisions of domestic households. A rise in s1 increases the real interest rate, and distorts

consumption toward the second period.

Equation (33) is analogous to (32), with the key difference that the two terms on the right

hand side have the opposite sign. That is, a higher s2 reduces the real return of domestic bonds

and reduces both the intervention losses and the interest rate distortions. Because the right hand

side is negative, this indicates that the central bank at the optimum allows for a non-positive

labor wedge in the second period, as long as there is also a positive labor wedge in the first

period. Putting together (32) and (33) indicates that the central bank trades-off a positive labor

wedge in the first period against a negative labor wedge in the second period. While away from

the ZLB, the central bank can offset these wedges by cutting down the nominal interest rate, this

is not the case at the ZLB. Below, we solve the model numerically and show the role of foreign

exchange interventions once the economy hits the ZLB.

Optimal exchange rate policies. We now present a numerical illustration and discuss the

optimal policy of the monetary authority. Figure 9 reports key variables in the central bank
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solution as a function of the discount factor of the households β.25 When β increases, households

become more patient and reduce their current consumption. In absence of a policy response by

the central bank, this shift would depress output in period 1: by reducing their demand for non-

tradable consumption, the price of non-tradable goods would drop, leading to a decline in the

demand of labor in the non-tradable sector (see equation (31)). The response of the monetary

authority to this increase in households’ patience is to depreciate the exchange rate; by doing so,

the central bank can stimulate labor demand and restore efficient production. Importantly, this

policy is achieved initially with a reduction in nominal interest rates and without accumulating

foreign assets (see panel (d) and (e) of the figure). This mirrors our results in Proposition 2.
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Figure 9: Optimal interventions with endogenous exchange rate policy

Note: Numerical illustration for two different values of foreign wealth for a range of discount factors.

Parameter values are as follows φ = 0.5, pw = 1, χ = 1, α = 0.7, i? = 0 and low and high values for

w̄ = {0.02, 0.04}. The discount factor is represented by the x-axis. Output in panel (b) denotes the sum

of tradable and non-tradable output expressed in units of tradables.

This response of the central bank, however, is not always feasible. For sufficiently high values

of β, the nominal interest rates that would allow the central bank to achieve the desired exchange

rate policy is negative. Initially, the central bank sets nominal interest rates at zero and tolerates

the output inefficiencies induced by high discounting of the households: we can see from panel

25We follow the tradition of closed economy New Keynesian models in generating a binding ZLB with an
increase in the households’ discount factor (e.g., Eggertsson and Woodford, 2003, Christiano et al., 2011, and
Werning, 2011).
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Welfare
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Figure 10: Welfare and foreign wealth under the ZLB

Note: Parameter values are just as in Figure 9 with β = 1.2. The figure shows the welfare gains

generated by the optimal intervention policy relative to a policy where the Central Bank does

not accumulate reserves, for different values of foreign wealth. Welfare gains are expressed as

percentage increases in permanent consumption of both non-traded and tradable goods.

(b) that output starts dropping as a function of β. Eventually, however, the welfare costs of

the recession are so large that the central bank becomes willing to bear the losses from foreign

exchange interventions in order to depreciate the exchange rate and moderate the output gaps.

The threshold at which the central bank intervenes is higher when the level of foreign wealth

is higher, in line with our results that a deviation from interest parity generates a first-order

loss proportional to w̄. Once the monetary authority intervenes, however, it requires a larger

accumulation of foreign assets. This in turn generates a non-monotonic relationship between F

and w̄, as illustrated in panel (e) of Figure 9.26

The lessons learned in the model with an exogenous exchange rate policy carry over to this

more general environment. For example, we showed that, when operating at the ZLB, a higher

level of foreign wealth unambiguously decreased households’ welfare when the exchange rate

policy was given. In this new environment, in which the central bank optimally chooses its

exchange rate policy, a similar result holds. However, there is a caveat: the central bank may

eventually stop intervening and give up on its exchange rate policy if the foreign wealth is large

enough. Figure 6 presents a case in which the central bank is operating at the ZLB. As can be

seen, higher wealth strictly reduces domestic welfare, up to the point where the central bank

stops intervening.

26The policies conducted by several developed economies following the global financial crisis have a natural
interpretation through the lens of our model. Facing a slump and deflationary pressures, central banks first
lowered interest rates before engaging in accumulation of foreign assets to stimulate employment via a weakening
of the domestic currency. For the case of Switzerland, in particular, our model suggests that in response to
the European Central Bank’s quantitative easing, the Swiss National Bank faced larger losses from sustaining
a depreciated exchange rate (because of a combination of lower i? and higher w̄) and hence let the currency
appreciate in January 2015.
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7 Conclusions

This paper has devloped a simple framework for analyzing the trade-offs that a central bank faces

when it implements an exchange rate policy while constrained in its ability to move the nominal

interest rate. Consistent with the classic trilemma of international finance, an independent

exchange rate policy can be achieved only if international capital mobility is limited. In this case,

we have shown that the central bank can achieve the exchange rate objective by using foreign

exchange interventions that result in observable deviations from arbitrage in capital markets.

These interventions, however, are costly from the point of view of the domestic economy. We

characterize how these costs vary with the economic environment: we show that factors that

increase capital inflows toward the country raise the costs of these interventions, whereas policies

such as capital controls or negative nominal interest rates can reduce these costs. Moreover,

the main predictions of our theory are consistent with the behavior of foreign reserves, nominal

interest rates, and deviations from the covered interest rate parity conditions for a panel of

advanced economies.

The analysis could be extended in several directions. A first interesting question relates to

reserve management: given that reserves accumulation is a necessary tool for conducting an

exchange rate policy at the zero lower bound, what are the optimality principles that should

govern its asset allocations? In Amador et al. (2017) we introduce uncertainty and multiple

assets to the model studied in this paper, and we characterize the trade-offs that the monetary

authority faces. Moreover, as we have emphasized in our discussion on expectational mistakes,

the costs of keeping an exchange rate depreciated at the ZLB increase in private agents’ beliefs

about the appreciation rate, a mechanism that can potentially generate self-fulfilling exchange

rate dynamics. Finally, our theory points toward the role of the central bank’s balance sheet in

overcoming the ZLB constraint on nominal interest rates, but it is silent about other potential

costs associated with these “large” balance sheets. We believe these topics represent exciting

avenues for future research.
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Appendix to “Exchange Rate Policies at the
Zero Lower Bound”

By Manuel Amador, Javier Bianchi, Luigi Bocola, and Fabrizio Perri

A Omitted proofs

Proof of Proposition 1

Proof. The allocations of the non-monetary equilibrium can be reduced to (c1, c2, a, r) which

satisfy

u′(c1) = (1 + r)βu′(c2)

c2 = y2 + (1 + r)a+ (1 + i?)F

c1 = y1 − F − a
r ≥ i?

−a ∈ argmax
0≤x≤w̄

x(r − i?),

given F . Note that we have set f = 0 without loss of generality, and we have combined the

budget constraints of the households and the government.

Part (i): the case F ∈ [0, y1 + w̄ − cfb1 ]. First, we argue that r = i?. Suppose, by

contradiction, that r > i?. In this case, w̄ = −a from the maximization of foreign investors, and

c1 = y1 − F + w̄ ≥ cfb1 . Using the budget constraints, we arrive at

(1 + r)(y1 − c1) + y2 − c2 − F (r − i?) = 0.

Because c1 ≥ cfb1 , this implies that c2 ≤ cfb2 . Using the Euler equation of the households, we then

arrive at

(1 + i?)βu′(cfb2 ) = u′(cfb1 ) ≥ u′(c1) = (1 + r)βu′(c2).

That is

(1 + i?)βu′(cfb2 ) ≥ (1 + r)βu′(c2),

which implies, using c2 ≤ cfb2 , that r ≤ i?, a contradiction. Therefore, r = i?. Now, in this case,

the equilibrium conditions are reduced to

u′(c1) = (1 + i?)βu′(c2)

(1 + i?)(y1 − c1) + y2 − c2 = 0,
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which are the necessary and sufficient conditions for a solution to the first best problem defined

in Section 3.1, which has a unique solution, (cfb1 , c
fb
2 ).

Part (ii): the case F ∈ (y1 + w̄ − cfb1 , y + w̄). We first show that r > i?. Suppose, by

contradiction, that r = i?. Then the consumption allocation solve:

u′(c1) = (1 + i?)βu′(c2)

(1 + i?)(y1 − c1) + y2 − c2 = 0,

which would yield the first best allocation. This allocation, however, can no longer be an equi-

librium outcome as c1 = cfb1 = y1 − F − a ≤ y1 − F + w̄, which puts F outside of the range

considered in this case. Therefore, we must have r > i?, and similar to part (i), a = −w̄. It

follows that c1 = y1 − F + w̄, and c2 = y2 − (1 + r)w̄ + (1 + i?)F . The range of F guarantees

that both c1 and c2 are strictly positive.

Part (iii): the case F > y + w̄. Following part (ii), we must have that r > i? and thus

c1 = y1−F + w̄, which is negative given that F > y+ w̄. It follows that there is no non monetary

equilibrium in this range.

Proof of Corollary 1

Proof. From part (ii) of Proposition 1, we know that c1 = y1 − F + w̄, and c2 = y2 − (1 + r)w̄+

(1 + i?)F when F ∈ (y1 + w̄ − cfb1 , y1 + w̄). Differentiating both sides of the households’ Euler

equation and rearranging terms, we obtain

d(1 + r)

dF
=
−u′′(c1)u′(c2)− u′(c1)u′′(c2)(1 + i?)

β(u′(c2))2
> 0,

which shows that the real rate strictly increases in F in this range. The proof that F adversely

affects welfare is in the main body of the text. Taken together, they deliver the first part of the

corollary.

As to the second part, we know from part (i) of Proposition 1 that if F ≤ y1 + w̄ − cfb1 , the

allocations are independent of F .

Proof of Lemma 1

The necessary part of the lemma follows from the derivations in the text.

For the sufficiency part, consider an allocation (c1, c2, F, i,m) that satisfies (18), (19), (20),

(22), and (23). We first need to specify the rest of the equilibrium objects: a, f, a?, f ?,m?, τ1, τ2, A, T1,M,
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and T2.

We let M = m, A = B, τ1 = −F + (M − A)/s1, τ2 = (1 + i?)F + (1 + i)A/s2 −M/s2,

T1 = B/s1 + τ1, and T2 = τ2 − (1 + i)B/s2. Note that M ≥ 0, and by construction, the budget

constraints of the monetary and fiscal authorities are satisfied.

For the domestic households, we let

f = max{y1 − c1 − F, 0}
a = s1 min{y1 − c1 − F, 0}.

Note that this implies that the household’s budget constraint in the first period, which is:

y1 − F +M/s1 = c1 + (m+ a)/s1 + f,

is satisfied at the equilibrium choices and that f ≥ 0.

The household’s budget constraint in the second period is then

y2 + (1 + i?)F −M/s2 = c2 − (m+ (1 + i)a)/s2 − (1 + i?)f

.Using that M = m, and that y1 − F +M/s1 = c1 + (m+ a)/s1 + f , we get that

(y1 − c1) +
y2 − c2

(1+i)s1
s2

+

[
(1 + i?)

(1+i)s1
s2

− 1

]
(f + F ) = 0.

But given that (23), it follows that if
[

(1+i?)s2
(1+i)s1

− 1
]
> 0, c1 = y1 − F + w̄ and thus f =

max{y1−c1−F, 0} = max{−w̄, 0} = 0. So we have that for the second-period budget constraint

to hold, it must be that

(y1 − c1) +
y2 − c2

(1+i)s1
s2

+

[
(1 + i?)

(1+i)s1
s2

− 1

]
F = 0,

,which is (22). Thus, the budget constraint for the household in the second period is satisfied.

The household’s problem is convex. In addition, (19) holds, and so do the optimality condi-

tions, (18), (20), and (21). It follows that (c1, c2, a, f,m) solves the household’s problem.

Finally, we let m? = 0, and a? = −a . This implies that (a?+m?)/s1 = max{c1−y1−F, 0} ≤ w̄

and a? ≥ 0. It follows that the constraints for the foreign investors’ problem are satisfied with

f ? = w̄−(a?+m?)/s1 ≥ 0 and c? = (1+i?)f ?+(1+i)a?/s2+m?/s2. The optimality conditions for

the foreign investors are satisfied, as m? = 0 (which is optimal given that i ≥ 0) and a?/s1 = w̄

if
[

(1+i?)s2
(1+i)s1

− 1
]
> 0. So, the foreign investors are maximizing.

Finally, market clearing holds as a+ a? + A = B and m+m? = M .
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Proof of Proposition 2

Proof. We first prove that for all F ∈ [0, y1 + w̄), the non-monetary equilibrium given F

constitutes a monetary equilibrium outcome. Consider a non-monetary equilibrium for any

F ∈ [0, y1 +w̄), and let r be the associated real rate. Then, we have that (1+r) s2
s1
≥ (1+r) s2

s1
≥ 1

where the first inequality follows from Corollary 1 as r is increasing with F and r corresponds

to the equilibrium real rate when F = 0, and the second inequality follows from the statement

of this proposition. Finally, to construct the monetary equilibrium, we set (1 + i) = (1 + r) s2
s1

,

which satisfies the ZLB constraint. We then let M = m such that h′(m/s1) = i
1+i

u′(c1)
s1

, which

has a solution given that i ≥ 0. We can set m? = 0, A = 0, and f ? = w̄ − a?/s1. The asset

positions and the consumption allocation for the domestic households remain the same as in

the non-monetary equilibrium. We then let τ1, τ2, and T1, T2 be chosen such that the budget

constraints of agents hold.

For the second part, we already know from Corollary 1 that u(c1)+βu(c2) is weakly decreasing

in F in the non-monetary equilibrium. Note that from Proposition 1, we have that an increase in

F weakly reduces c1. Together with the associated increase in r, it follows that, in the associated

monetary equilibrium, i increases and c1 decreases with F . As a result, from h′(m/s1) = i
1+i

u′(c1)
s1

,

m decreases with F . Domestic welfare (the sum of utility from consumption plus utility services

from money balances) decreases in F , and thus it is maximized when F = 0.

Proof of Proposition 3

Proof. Note first that for F = 0, the non-monetary equilibrium is given by part (i) of Proposition

1, and thus r = i?. Towards a contradiction, suppose there is a monetary equilibrium such that

1 + i > (1 + i?) s2
s1

= (1 + r) s2
s1
≥ 1. Then, we must have a = −w̄, and c1 = y1 − F + w̄ < cfb1 ,

where the last inequality follows from part (ii) of Proposition 1. Note also that i > 0, which

implies that m? = 0 and m = M . The household’s optimality condition with respect to money

balances then delivers that x̄ > m/s1.27

Recall that M/s1 = F + A/s1 + τ1. From Assumption 2.3, we have that M/s1 ≥ F . Using

the previous result, it follows that x̄ > F , and

c1 = y1 − F + w̄ > y1 − x̄+ w̄ ≥ cfb1

a contradiction. Hence, for all monetary equilibria, (1+ i) = (1+ i?)s2/s1, and thus we attain the

first best consumption allocation and the same domestic welfare inclusive of the value of money

balances.

27From the decision problem of the households, we obtain that money demand satisfies h′(ms1 ) = i
1+i

u′(c1)
s1

.
When nominal interest rates are positive, we must have h′(ms1 ) > 0, which implies x̄ > m

s1
.
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Proof of Proposition 4

Proof. First, note that (1 + i) ≥ (1 + r) s2
s1
≥ (1 + i?) s2

s1
. The fact that (1 + r) s2

s1
< 1 implies that

(1 + i) > (1 + r) s2
s1
≥ (1 + i?) s2

s1
. The non-monetary equilibria given F that can correspond to an

outcome of the monetary economy are characterized by part (ii) of Proposition 1.

Let F be
u′(y1 − F + w̄)

βu′(y2 − (1 + r)w̄ + (1 + i?)F )
=
s1

s2

.

Note that the assumption that 1 + r < s1/s2 < 1 + r guarantees that there exist a finite F > 0

such that the above equality holds.

We can then verify that the non-monetary equilibrium given F can be implemented as a mon-

etary equilibrium with i = 0. For F ∈ (F , y1 + w̄), to implement the non-monetary equilibrium

given F as a monetary outcome, the nominal interest rate will equal

(1 + i) =
s2

s1

u′(y1 − F − w̄)

βu′( y2 + (1 + r)w̄ + (1 + i?)F )
=
s2

s1

(1 + r) ≥ s2

s1

(1 + r) > 1,

where the first inequality follows from the fact that r is increasing in F . As a result, the nominal

interest rate is consistent with the zero lower bound constraint, and we can construct a monetary

equilibrium in a fashion similar to that in the proof of Proposition 2.

Again, similar to the proof of Proposition 2, welfare is maximized with i = 0 and F = F

because of Corollary 1, together with the fact thath(m
s1

) achieves its maximum when nominal

interest rates are at zero.

Proof of Proposition 5

Proof. From Proposition 4, we know that when (1+r) s2
s1
< 1, a monetary equilibrium exists only

if F ≥ F . Suppose F > F. Then, the monetary equilibrium must feature i > 0. An argument

similar to that in the proof of Proposition 3 shows that in this case, the central bank does not

have a large enough balance sheet to accumulate the required reserves. Therefore, the unique

equilibrium outcome is the one where F = F and i = 0.

Proof of Lemma 2

The proof of this lemma is contained in the main body of the text.

Proof of Proposition 6

Proof. An allocation (c1, ĉ2, f, F, i) satisfies a monetary equilibrium with market beliefs ŝ2 if
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(y1 − c1) +
y2 − ĉ2

1 + r̂
− F (r̂ − i?)

1 + r̂
= 0 (34)

u′(c1)

βu′(ĉ2)
= (1 + r̂) ≥ 1 + i? (35)

u′(c1)

βu′(ĉ2)

ŝ2

s1

≥ 1 (36)

f(r̂ − i?) = 0 (37)

(1 + i) = (1 + r̂)
ŝ2

s1

(38)

c1 ≤ y1 − (F + f) + w, (39)

where the last inequality holds with equality if r̂ > i?, and where r̂ represents the perceived real

interest rate. For a given F , there is a unique (c1, ĉ2, i) that solves the above system. In addition,

if for a given F , r̂ = i?, then any f ∈ [0, y1 − c1 − F − w̄] is consistent with an equilibrium.

For a given F and its associated perceived consumption allocation (c1, ĉ2), the actual con-

sumption in the second period, c2, is given by the “true” resource constraint, which in this case

is

c2 = y2 + T2 +
(1 + i)a+m

s2

+ (1 + i?)f.

Using the budget constraints of the fiscal and monetary authorities, we get that

T2 = τ2 − (1 + i)
B

s2

= (1 + i?)F + (1 + i)

(
A−B
s2

)
− M

s2

.

Substituting back into the previous equation and rearranging terms, we obtain that

c2 = y2 + (1 + i?)(F + f)−
(

(1 + i)a? + (1 + i?)m?

s2

)
+
i?m?

s2

,

which can be further simplified to

c2 = y2 + (1 + i?)(F + f)− (1 + i)
s1

s2

(
a? +m?

s1

)
,

because im?

s2
= 0. The household’s budget constraint in the first period is

f + F + c1 − y1 =
a? +m?

s1

,
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and substituting out (a?+m?)/s1, we get that the true consumption in the second period become:

c2 = y2 + (1 + i?)(F + f)− (1 + i)
s1

s2

(f + F + c1 − y1)

= y2 +

[
(1 + i?)− (1 + i)

s1

s2

]
(F + f) + (1 + i)

s1

s2

(y1 − c1) .

We can follow the same steps but for the perceived allocation, obtaining that:

ĉ2 = y2 +

[
(1 + i?)− (1 + i)

s1

ŝ2

]
(F + f) + (1 + i)

s1

ŝ2

(y1 − c1) .

Taking the difference:

c2 = ĉ2 +
(1 + i)s1

ŝ2

[
1− ŝ2

s2

]
(f + F + c1 − y1).

Let us define H(i, c1) to be

H(i, c1) ≡ h

(
m

s1

)
for m such that h′

(
m

s1

)
=

i

1 + i

u′(c1)

s1

(40)

Note that H(i, c1) is uniquely defined, and it represents the utility value of money balances in an

equilibrium given the nominal interest rate and first period consumption. Note that H is weakly

decreasing in i and weakly increasing in c1.

Then, given an equilibrium allocation with distorted beliefs, (c1, c2, ĉ2, f, F, i), the welfare of

the household is given by:

u(c1) + βu(c2) +H(i, c1).

We first prove part (i) of the proposition.

Part (i). This is the case in which (1 + r) ≥ s1
ŝ2

. The proof is straightforward. Consider an

equilibrium with distorted beliefs ŝ2. The respective allocation (c1, ĉ2, f, F, i) must solve (34)-

(39). Suppose that ŝ2 decreases to ŝ′2 < ŝ2. Then, (c1, ĉ2, F
′, i′) where (1 + i′) = (1 + i)

ŝ′2
ŝ2

, f ′ = 0

and

F ′ =




F if r̂ > i?

c1 − y1 − w̄ if r̂ = i?

also solves (34)-(39) with ŝ′2. As long as (1 + r) ≥ s1
ŝ′2

, this allocation constitutes an equilibrium

with distorted beliefs ŝ′2. In addition, note that i′ < i and, by construction,

f ′ + F ′ + c1 − y1 = w̄
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.Hence,

c′2 = ĉ2 + (1 + i)s1

[
1

ŝ′2
− 1

s2

]
w̄ >

ĉ2 + (1 + i)s1

[
1

ŝ2

− 1

s2

]
w̄ ≥ ĉ2 + (1 + i)s1

[
1

ŝ2

− 1

s2

]
(f + F + c1 − y1) = c2

where the first inequality follows from w̄ > 0 and ŝ′2 < ŝ2 and the second inequality from

(f + F + c1 − y1) ≤ w̄. Thus c′2 > c2. It follows then that household welfare with beliefs at ŝ′2 is

u(c1) + u(c′2) +H(i′, c1) > u(c1) + u(c2) +H(i, c1)

where the inequality follows as c1 did not change, c′2 > c2 and i′ < i. Given that the original

allocation was arbitrary, households’ welfare at the best equilibrium must then strictly increase

with a reduction in ŝ2.

Part (ii). If (1 + r) < s1
s2

, it follows that (1 + r) < s1
ŝ2

as ŝ2 < s2. Then by Proposition 4,

in all equilibria, we must have that the perceived interest rate parity condition holds with strict

inequality, r̂ > i? and F ≥ F . It then follows that f = 0 and c1 = y1 − F + w̄. Note also that

ĉ2 = y2 + (1 + i?)F − (1 + i) s1
ŝ2
w̄ and c2 = ĉ2 + (1+i)s1

ŝ2

[
1− ŝ2

s2

]
w̄ = y2 + (1 + i?)F − (1+i)s1

s2
w̄.

Households welfare can be written as a function of F :

W (F ) ≡ u(y1 − F + w̄) + βu

(
y2 + (1 + i?)F − (1 + i)

s1

s2

w̄

)
+H (i, y1 − F + w̄) ,

where i is the unique value that solves

u′(y1 − F + w̄)

βu′(y2 + (1 + i?)F − (1 + i) s1
ŝ2
w̄)

ŝ2

s1

= (1 + i).

We then have that

W ′(F ) = −u′(c1) + β(1 + i?)u′(c2)− βu′(c2)w̄
s1

ŝ2

di

dF
+Hi

di

dF
−Hc

< −u′(c1) + β(1 + i?)u′(ĉ2)− βu′(c2)w̄
s1

ŝ2

di

dF
+Hi

di

dF
−Hc

where the inequality uses that c2 − ĉ2 = (1+i)s1
ŝ2

[
1− ŝ2

s2

]
w̄ < 0 as s2 > ŝ2. Our equilibrium

requirements impose that −u′(c1) + β(1 + i?)u′(ĉ2) ≤ 0. Given that i is strictly increasing in F ,

Hi ≤ 0, and Hc ≥ 0, it then follows that W ′(F ) < 0.

As a result, the monetary equilibrium that maximizes households welfare is the one where

F is as small as possible, that is, the one where F = F (s2) and i = 0. This means that the
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maximum welfare level is

w̄(ŝ2) = u(y1 − F (ŝ2) + w̄) + βu

(
y2 + (1 + i?)F (ŝ2)− s1

s2

w̄

)
+H (0, y1 − F (ŝ2) + w̄)

where F (ŝ2) is such that

u′(y1 − F (ŝ2) + w̄)

βu′
(
y2 + (1 + i?)F (ŝ2)− s1

ŝ2
w̄
) ŝ2

s1

= 1 (41)

Then note that

w̄′(ŝ2) = [−u′(c1) + β(1 + i?)u′(c2)−Hc]F
′(ŝ2)

.We have already argued that −u′(c1)+β(1+ i?)u′(c2)−Hc < −u′(c1)+β(1+ i?)u′(ĉ2)−Hc ≤ 0.

From equation (41), we have that

F ′(ŝ2) =
βu′′(ĉ2)w̄ s1

ŝ22
− u′(c1)

s1

−u′′(c1) ŝ2
s1
− βu′′(ĉ2)(1 + i?)

< 0,

and thus w̄′(ŝ2) > 0. That is, household welfare is strictly increasing in ŝ2.

B Infinite Horizon

In this section we show how the two-period model discussed in the paper can be interpreted as

an infinite horizon economy where the exchange rate policy from date 2 onward is stationary.

Consider the economy described in Section 2, but now assume that t = 1, . . . . The households

choosect, at, ft,mt to maximize their objective function

∞∑

t=1

βt−1

[
u(ct) + h

(
mt

st

)]
,

subject to the budget constraints

yt + Tt +
mt−1 + at−1

st
+ ft−1 = ct +

mt + qtat
st

+ q?t ft,

where qt = 1/(1 + it) and q?t = 1/(1 + i?t ) are the prices, respectively in local and in foreign

currency, of domestic and foreign discount bonds. We assume that the foreign interest rate is

constant over time, and β(1 + i?) = 1.

The time t budget constraint for the monetary authority is

Mt −Mt−1 + At−1

st
+ Ft−1 =

qtAt
st

+ q?tFt + τt,
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while the budget constraint for the government is

qtBt

st
+ τt = Tt +

Bt−1

st
.

The decision problem of foreign investors is the same as in the main text, and the market

clearing conditions in domestic asset markets are

mt +m?
t = Mt

at + a?t + At = Bt.

An equilibrium given an exchange rate policyst is defined as in Section 2.

We assume throughout this section that the exchange rate policy that the Central Bank needs

to implement from date 2 onward is stationary, st+1 = αst. For simplicity, we also assume that

the endowment is constant from date 2 onward and equal to ȳ. We can then proove the following

Lemma.

Lemma 3. Consider the infinite horizon economy, and assume that (1 + i?)α ≥ 1 for all t ≥ 2.

Then, in the best monetary equilibrium we must have:

(i) ct = c̄ for t ≥ 2, with

c̄ = ȳ + i?
[
(F1 + f1)− a?1 +m?

1

s2

]

(ii) The welfare of the households from date 1 onward can be written as ũ(c̄).

Proof. From the households’ problem we know that in any equilibrium we must have

u′(ct) = β(1 + it)
st
st+1

u′(ct+1).

Because (1 + i?)α by assumption, we have that (1 + it)
st
st+1

= (1 + i?) in the best monetary

equilibrium. Therefore, the households set a constant consumption between any two periods

t and t + 1 because β(1 + i?) = 1. The expression for c̄ is a standard intertemporal resource

constraint that tells us that consumption is equal to income plus the returns on the net foreign

asset positions inherited from date 1. This expression is obtained by consolidating the households’

budget constraint with that of the fiscal and monetary authority, and using market clearing for

domestic assets. To obtain the expression for households’ welfare, note that the money demand

equation of households implies

h′
(
mt

st

)
= u′(ct)

it
1 + it

.

52



Because st+1 = αst by assumption, we have that it is constant in the best monetary equilib-

rium. Therefore, from the previous equation we can express h(mt/st) as h̃(c̄). We then have,

∞∑

t=2

βt−2

[
u(ct) + h

(
mt

st

)]
=
∞∑

t=2

βt−2
[
u(c̄) + h̃(c̄)

]
= ũ(c̄),

which proves the second part of the Lemma.

Given this property, we can now show that there exists a two-period economy whose equilibrium

outcome corresponds to the one of the infinite horizon model described in this section. For this

purpose, let’s fix an exchange rate policy (s1, s2) and assume that from date t ≥ 2 the exchange

rate policy isα = 1/(1 + i?). This assumption guarantees that nominal interest rates from date 2

onward are at zero, and households utility from money is satiated. We can than verify that the

allocation (c1, c̄, F, f,m1, a
?
1,m

?
1, i1, q1) that arises in the best monetary equilibrium of the infinite

horizon economy can be derived from the following two-period planning problem28

max
c1,c̄,F,f,m1,m?

1,a
?
1,i1,q1

u(c1) + h
(
m1

s1

)
+ ũ(c̄) s.t.

c1 = y1 − q?1(F1 + f1) +
m?

1+q1a?1
s1

c̄ = ȳ + i?
[
(F1 + f1)− a?1+m?

1

s2

]

h′
(
m1

s1

)
= u′(c1)(1− q1)

u(c1) = β(1 + i) s1
s2
ũ′(c̄)(1− β)

(1 + i1) ≥ (1 + i?) s2
s1

m?
1 = 0 if i1 > 0

a?1+m?
1

s1
∈





w if (1 + i1) > (1 + i?) s2
s1

[0, w̄] if (1 + i1) = (1 + i?) s2
s1

0 otherwise.

It is straightforward to verify that this planning problem would also implement the best

monetary equilibrium of the two period economy described in Section 2, with c̄ = r?c2and

ȳ = r?y2. Therefore, all our results carry over to the infinite horizon environment.

28The fact that the demand for money is satiated is important for this result. Otherwise, the planner would
have an incentive to manipulate households’ consumption in order to change its demand for money, and achieve
higher welfare than what is achieved under a competitive equilibrium.
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C Capital controls

In this section, we study how capital controls interact with foreign exchange interventions in

our environment. We consider both price and quantity instruments. We proceed by first char-

acterizing these two types of controls and then comparing the outcomes achieved in the two

cases.

C.1 Taxes on inflows

We start by allowing the monetary authority to impose a tax, φ, on all capital inflows from

foreign investors. We note that at the ZLB the practical implementation of such a policy faces

an important hurdle. Taxes must be levied not only on foreign bond holdings, but also on foreign

holdings of domestic money. Because bonds and money yield the same pre-tax return at the ZLB,

taxing only bonds would have no implications for capital inflows, as the foreign investors would

substitute toward money.

With taxes on bond and money inflows, the budget constraint of foreign investors in the

second period becomes

c?2 = (1 + i?)f ? + (1− φ)

[
(1 + i)

a?

s2

+
m?

s2

]
,

while the budget constraint of the monetary authority in the second period changes to account

for the revenues from capital inflows:

(1 + i?)F + (1 + i)
A

s2

+ φ

[
(1 + i)

a?

s2

+
m?

s2

]
=
M

s2

+ τ2.

A monetary equilibrium is defined as in Definition 1, with the exception that the second-period

budget constraints of the foreign investors and the monetary authority are replaced by the ones

above. Note that the decision problem of the household is not affected by the tax policy. This

implies that the conditions given by equations (18), (19), and (20) are still necessary conditions

for a monetary equilibrium and that the households’ foreign position, f , must satisfy the same

conditions as before. That is,

f ≥ 0 and f

[
1− s2(1 + i?)

s1(1 + i)

]
= 0. (42)

However, the tax on foreign inflows affects the post-tax return on domestic assets held by

foreigners. Hence, their demand of assets of the SOE now satisfies
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a? +m?

s1

∈





w if (1 + i)(1− φ) > (1 + i?) s2
s1

[0, w̄] if (1 + i)(1− φ) = (1 + i?) s2
s1

0 otherwise.

The intertemporal resource constraint can be obtained as before. In particular, from the

budget constraint of the household and the money market clearing condition, and using the

household’s optimality condition with respect to f , we obtain

(y1 − c1) +
y2 − c2
s1
s2

(1 + i)
−
[
1− s2(1 + i?)

s1(1 + i)

]
F + φ

[
a? +m?

s1

]
= 0,

where the term φ
[
a?+m?

s1

]
represents the potential income generated from taxing foreign capital

inflows.

The trade deficit equation is as before, c1 = y1 − (f + F ) + a?+m?

s1
. Hence, the intertemporal

resource constraint becomes

(1− φ)(y1 − c1) +
y2 − c2
s1
s2

(1 + i)
−
[
(1− φ)− s2(1 + i?)

s1(1 + i)

]
F + φf = 0, (43)

where we have again used the optimality condition of the households with respect to f . Finally,

the optimality conditions on a? +m? can be restated in terms of c1, f , and F as

c1 − y1 + f + F ∈





{w̄} if (1 + i)(1− φ) > (1 + i?) s2
s1

[0, w̄] if (1 + i)(1− φ) = (1 + i?) s2
s1

{0} otherwise.

(44)

A version of Lemma 1 applies here: an allocation (c1, c2, f, F, i,m, φ) is part of a monetary

equilibrium if and only if equations (18), (19), (20), (42), (43), and (44) holds. Note that these

conditions collapse to the ones of Lemma 1 when φ = 0, as expected.29

We can now characterize the optimal tax on capital inflows, given an exchange rate objective

and a fixed nominal interest rate i. Toward this goal, and for a given s1, s2, and i, let us define

29Note that, in Lemma 1, f can be dropped from the equilibrium conditions. However, in this case, when
φ 6= 0, f needs to be stated because the rate of return on assets is different, depending on whether the savings
are originated by households or foreign investors.
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ctax1 as

ctax1 ≡max{c1} such that

c1 ≤ y1 + w̄ (45)

y1 − c1 +
y2 − cEE2 (c1)

1 + i?
≥ 0 (46)

where cEE2 (c1) ≡ (u′)−1
(

s2
β(1+i)s1

u′(c1)
)

.30

Let φtax ≡ 1 − s2(1+i?)
s1(1+i)

{
1 + 1

w̄

[
y1 − c?1 +

y2−cEE
2 (ctax1 )

1+i?

]}
. We will see below that φtax corre-

sponds to the optimal tax. Equation (46) implies that φtax ≥ 1 − s2(1+i?)
s1(1+i)

. And in particular,

φtax = 1 − s2(1+i?)
s1(1+i)

if and only if equation (46) holds with equality. We then have the following

proposition,

Proposition 7. Consider any equilibrium allocation q = (c1, c2, f, F, i,m, φ). There exists an-

other equilibrium allocation q̂ = (ĉ1, ĉ2, f̂ , F̂ , i, m̂, φ̂) with ĉ1 = ctax1 , ĉ2 = cEE2 (ctax1 ), φ̂ = φtax,

F̂ = max{y1 − ĉ1, 0} and f̂ = 0 such that the utility to the households under q̂ is weakly higher

than under q.

Proof. We first argue that in any equilibrium allocation, c1 must satisfy (45) and (46).

To see this, note that c1 ≤ y1 − f − F + w̄, and thus inequality (45) follows. For inequality

(46), note that equation (43) is equivalent to

(1− φ)(y1 − c1) +
y2 − c2
s1
s2

(1 + i)
−
[
(1− φ)− s2(1 + i?)

s1(1 + i)

]
F + φf = 0

(y1 − c1) +
y2 − c2

1 + i?
− s1(1 + i)

s2(1 + i?)

[
(1− φ)− s2(1 + i?)

s1(1 + i)

]
(c1 − y1 + F + f) = 0

but
[
(1− φ)− s2(1+i?)

s1(1+i)

]
(c1− y1 +F + f) ≥ 0, from (44), and thus (y1− c1) + y2−c2

1+i?
≥ 0. Finally,

c2 must satisfy the Euler equation, (18), which implies that c2 = cEE2 (c1). Taken together, all

this confirms inequality (46).

Note that ctax2 (c1) is strictly increasing in c1. Thus, any equilibrium consumption allocation

(c1, c2) will be strictly below (ctax1 , cEE2 (ctax1 )), as the latter is the highest possible consumption

allocation consistent with (45) and (46). That is, c1 ≤ ctax1 and c2 ≤ cEE2 (ctax1 ).

Now let us check the equilibrium conditions for the q̂ allocation. Conditions (18), (19), and

(42) are automatically satisfied. We know from the above that equation (43) is equivalent to

(y1 − ctax1 ) +
y2 − cEE2 (ctax1 )

1 + i?
− s1(1 + i)

s2(1 + i?)

[(
1− φ̂

)
− s2(1 + i?)

s1(1 + i)

]
(ctax1 − y1 + F̂ ) = 0

30Note that the ctax1 , cEE2 (ctax1 ) does not necessarily correspond to the first best allocation. They coincide only
when (1 + i) s1s2 = 1 + i?, that is, when the interest parity condition holds from the household’s perspective.
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and using the definition of φ̂ we get that the above is equivalent to

[
y1 − ctax1 +

y2 − cEE2 (ctax1 )

1 + i?

]
(w̄ − ctax1 + y1 − F̂ ) = 0

But from the solution to the tax problem, we have that either y1 − ctax1 +
y2−cEE

2 (ctax1 )

1+i?
= 0 or

ctax1 = y1 + w̄. But not that if ctax1 = y1 + w̄, then F̂ = 0. And thus the equation is satisfied.

Equation (44) is satisfied as (1 + i)(1− φ̂) = (1 + i?) s2
s1

and

ctax1 − y1 + f̂ + F̂ = ctax1 − y1 + max{y1 − ctax1 , 0}.

This last either equals 0, when y1 ≥ ctax1 or equals ctax1 −y1, when ctax1 −y1 > 0. But ctax1 −y1 ≤ w̄,

and thus ctax1 − y1 + f̂ + F̂ ∈ [0, w̄], satisfying the requirement for Equation (44).

Note that at the q allocation, m satisfies h(m/s1) = H(i, c1) where H is as defined in equation

(40). In addition, we can find an m̂ such that h(m̂/s1) = H(i, ĉ1), which guarantees that (20)

holds for the q̂ allocation.

As a result, the welfare of the households under the q̂ allocation, u(ĉ1) + βu(ĉ2) +H(i, ĉ1), is

higher than under the q allocation, u(c1) + βu(c2) +H(i, c1) , as all functions are monotonically

increasing in consumption, and ctax1 ≥ c1 and cEE2 (ctax1 ) ≥ c2.

Proposition 7 tells us that when y1 < ctax1 , the monetary authority can achieve its exchange

rate objective without accumulating foreign reserves.31 When y1 > ctax1 , the monetary authority

accumulates reserves, F̂ > 0, but at the same time, it is optimal to leave foreign investors

indifferent between home and foreign assets, φtax = 1 − s2(1+i?)
s1(1+i)

. In this manner, the foreign

exchange interventions by the monetary authority cease to be costly, as the country is able to

completely extract the rents made by foreigners in these transactions.

Overall, the introduction of a capital tax instrument grants the monetary authority the ability

to implement any exchange rate policy for any nominal interest rate without the need to engage

in costly foreign exchange interventions.

Interestingly, the imposition of an optimal capital flow tax restores the comparative statics

of the optimal allocation back to their more standard signs: higher foreign wealth, w̄, and lower

foreign interest rates (when the country is a borrower) weakly increase domestic welfare.

31In this case, the monetary authority may be unable to extract all the rents. This occurs if constraint (45)
binds before (46) when solving for ctax1 . That is, wealth is sufficiently scarce, and the monetary authority is
unable to tax all of the profits that accrue to foreign investors and maintain a competitive equilibrium at the
same domestic nominal interest rate.
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C.2 Quantity controls

An alternative policy to taxing capital inflows is to place quantity restrictions on these flows.

In this section, we consider a situation in which the monetary authority imposes a cap on the

amount of foreign wealth that can be invested in domestic assets.

We model quantity restrictions as a direct reduction in the amount of foreign wealth available

to be invested at home. That is, the total wealth in the foreign investors problem now becomes

a choice variable of the monetary authority, which we denote by w ∈ [0, w̄]. As a result, the

definition of an equilibrium allocation is as in Definition 1, with the exception that w̄ is replaced

by w ∈ [0, w̄], which is now an equilibrium object.

We already know, from the discussion in Section 5.1, that a marginal decrease in w̄ when the

economy operates at the ZLB is beneficial. This immediately implies that a quantity restriction

on capital inflows can be welfare enhancing. We can, however, say a bit more, and characterize

the optimal quantity restriction on capital inflows, given an exchange rate objective and a fixed

nominal interest rate i.

Toward this goal, and for a given s1, s2, and i, let us define cqc1 as

cqc1 ≡max{c1} such that

equation (45) holds and

(y1 − c1) +
y2 − cEE2 (c1)

(1 + i?)
=

[
s1(1 + i)

s2(1 + i?)
− 1

]
max{c1 − y1, 0}. (47)

We then have the following proposition

Proposition 8. Consider any equilibrium allocation q = (c1, c2, F, i,m,w) with w ≤ w̄. Then

there exists another equilibrium allocation q̂ = (ĉ1, ĉ2, F̂ , i, m̂, ŵ) with ĉ1 = cqc1 , ĉ2 = cqc2 , F̂ =

max{y1 − ĉ1, 0} and ŵ = max{ĉ1 − y1, 0} ≤ w̄, and such that the household’s welfare is higher

under q̂ than under q.

Proof. First, let us construct the q̂ allocation and argue that it is an equilibrium.

First note that (18) holds, given the construction of ĉ1 and ĉ2 = cEE2 (ĉ1). Given that (19)

holds in the q allocation , it is therefore also satisfied under the q̂ allocation, as i did not change.

The resource constraint, (22), is

y1 − ĉ1 +
y2 − ĉ2
s1
s2

(1 + i)
− F̂

[
1− s2(1 + i?)

s1(1 + i)

]
= 0.
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But ĉ1 = y1 − F̂ + ŵ (by construction), and thus

y1 − ĉ1 +
y2 − ĉ2
s1
s2

(1 + i)
− (y1 − ĉ1 + ŵ)

[
1− s2(1 + i?)

s1(1 + i)

]
= 0

(
s2(1 + i?)

s1(1 + i)

)
(y1 − ĉ1) +

y2 − ĉ2
s1
s2

(1 + i)
− ŵ

[
1− s2(1 + i?)

s1(1 + i)

]
= 0

(y1 − ĉ1) +
y2 − ĉ2

(1 + i?)
=ŵ

[
s1(1 + i)

s2(1 + i?)
− 1

]

Using that ŵ = max{ĉ1 − y1, 0}, then the above equation is equivalent to (47). It then follows

that (22) is satisfied. Note that by construction

ĉ1 = y1 − F̂ + ŵ

so (23) is automatically satisfied. Finally, let m̂ be the value such that h(m̂/s1) = H(i, ĉ1), where

H is as defined in equation (40), and it follows that (20) is satisfied at the q̂ allocation. As a

result, the q̂ allocation constitutes a monetary equilibrium with wealth ŵ ≤ w̄ (where this one

follows from (45).

Now note that any equilibrium with a wealth constraint w must satisfy (45) and (47). To

see this note that (45) must hold in any equilibrium as it is implied by (23) and that F̂ ≥ 0. In

addition, because (18), (22), and (23) hold, it follows that, in any equilibrium,

y1 − c1 +
y2 − c2
s1
s2

(1 + i)
= (y1 − c1 + w)

[
1− s2(1 + i?)

s1(1 + i)

]

and thus (47) holds.

As a result, c1 ≤ cqc1 , as cqc1 is the highest consumption that satisfies the necessary equilibrium

conditions (45) and (47). From (18), we get that c2 ≤ cEE2 (cqc1 ). Hence, for any other equilibrium

with interest rate i, it must be the case that

u(ĉ1) + βu(ĉ2) +H(i, ĉ1) ≥ u(c1) + βu(c2) +H(i, c1),

as both u and H are increasing in c.

Proposition 8 indicates that the monetary authority can improve upon any allocation by

restricting capital inflows to the point where there is no longer a need to accumulate foreign assets

in order to implement the desired exchange rate policy, F̂ = 0, or where the capital inflows are

completely restricted, ŵ = 0. That is, given any allocation, the monetary authority can find an

alternative allocation that maintains the same nominal interest rate and the same exchange rate

policy, but without incurring intervention losses. This ability to insulate the conduct of monetary
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policy from potentially large intervention losses is the main benefit of capital controls.32

C.3 Price versus quantity controls

Which type of controls achieve higher welfare? Propositions 7 and 8 imply that what can be

achieved with the quantity control policy can always be achieved with a price policy. But the

reverse is not true.33

When ŵ = 0 under a quantity restriction, the allocation that results is identical to the

allocation that could have been achieved with a tax on capital inflows. In both of these cases,

the foreign investors obtain no arbitrage profits, either because they are not investing in the

country’s assets (ŵ = 0) or because their profits are being completely taxed by the monetary

authority.

If under the quantity controls we have ŵ > 0, however, then the allocation that results with

quantity controls could be strictly improved upon by a capital inflow tax as in Proposition 7,

because profits are still being been made by the foreign investors, which the monetary authority

could, in principle, tax.34

D Optimal exchange rate policy

In this appendix, we provide additional details for Section 6.

D.1 Monetary equilibrium in extended model with sticky wages

The definition of a monetary equilibrium is the same as before, modified for the inclusion of

nominal wages, as well as for the replacement of money balances in the utility function by a

nonnegativity constraint on the nominal interest rate.

Definition 3. A monetary equilibrium, given an exchange rate policy (s1, s2), is a consumption

profile for households, (cT1 , c
T
2 , c

N
1 c

N
2 ), asset positions, (a, f), employment (lT , lN), a consumption

for investors, c?, and their asset positions, (a?, f ?); transfers from the fiscal to the monetary au-

thority, (τ1, τ2); investments by the monetary authority, (A,F ); transfers from the fiscal authority

to the households, (T1, T2); and a domestic interest rate i, such that

32With log utility, or with constant relative risk aversion in general, we can obtain in closed form that

consumption in period 1 and period 2 is decreasing in w̄: c1 =
(
y2+y1(1+r∗)−w̄(s1/s2−(1+r∗))

βs1/s2+(1+r∗)

)
, c2 = β(1 +

r)
(
y2+y1(1+r∗)−w̄(s1/s2−(1+r∗))

βs1/s2+(1+r∗)

)
.

33To see this note that (47) implies (46). That is, in both cases, the allocation needs to satisfy equation (45),
but with the quantity control policy, the allocation must satisfy the stricter condition (47) rather than (46).

34The difference between capital controls based on quantities and those based on taxes contrasts with standard
equivalence results (see, e.g., Bianchi, 2011).
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(i) the domestic households make consumption and portfolio choices to maximize utility, sub-

ject to their budget and borrowing constraints, and the supply of hours equals the labor

demand nt = lTt + lNt ;

(ii) foreign investors make consumption and portfolio choices to maximize their utility, subject

to their budget and borrowing constraints;

(iii) the purchases of assets by the monetary authority, its decision about the money supply,

and its transfers to the fiscal authority satisfy its budget constraints, as well as F ≥ 0;

(iv) the fiscal authority satisfies its budget constraints;

(v) firms’ employment (lTt , l
N
t ) maximizes profits;

(vi) the domestic market for bonds, employment and non-tradables goods clear

a+ a? + A = B

cNt =
(
lNt
)α

nt = lTt + lNt

(vii) and the nominal interest rate is nonnegative, i ≥ 0.

D.2 Central bank’s problem

The central bank’s problem consists of choosing (cT1 , c
T
2 , l1, l2, s1, s2, i, F ) to maximize lifetime

utility subject to resource constraints, and implementability constraints given by households’,

firms’ and foreign investors’ optimality conditions.

The central bank’s problem can be written as

max
{cT1 ,cT2 ,lT1 ,lN1 ,lT2 ,lN2 ,s1,s2,i,F}

∑

t=1,2

β
t−1 [

φ log(cTt ) + (1− φ) log(cNt ) + χ log(1− lTt − lNt )
]

(48)
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subject to

(1 + i?)y1 + y2 −
(
s1

s2

(1 + i)− (1 + i?)

)
w̄ ≥ (1 + i?)cT1 + cT2

cNt = (lNt )α

lNt =
1− φ
φ

αcTt st
p̄w

.

lTt =

(
αs1

p̄w

)1/(1−α)

s1(1 + i) ≥ s2(1 + i?)

cT2
βcT1

=
s1

s2

(1 + i)

yT1 − cT1 + w̄ ≥ F ≥ 0

i ≥ 0

with yT1 − cT1 + w̄ = F if s1(1 + i) > s2(1 + i?).

Note that in the above problem it is always feasible to set F = yT1 − cT1 + w̄, which implies

that F (and the complementary slackness condition) can be dropped from the maximization and

replaced with just the constraint that yT1 − cT1 + w̄ ≥ 0. This is the problem that is solved in

Figures 9 and 6.

It is straightforward to see that if the ZLB does not bind, the central bank can achieve

the first-best allocations. Replacing the employment in the non-tradable sector by (31) and the

employment in the tradable sector by (27), which we replace by l̂T (st) , and using market clearing

(30), we can write the Lagrangian as follows:

L(cT1 , c
N
1 , c

T
2 , c

N
2 , s1, s2, i) = φ log(cT1 ) + (1− φ) log(l̂N(cT1 , s1)α) + χ log(1− l̂N(cT1 , s1)− l̂T (s1))+

βφ log(cT2 ) + β(1− φ) log(l̂N(cT2 , s2)α) + βχ log(1− l̂N(cT2 , s2)− l̂T (s2))

+ λ

[
(1 + i?)

(
l̂T (s1)α − cT1

)
+
(
l̂T (s2)α − cT2

)
−
(
s1

s2

(1 + i)− (1 + i?)

)
w̄

]

+ ζ(s1(1 + i)− s2(1 + i?))

+ ξ(cT2 s2 − s1(1 + i)βcT1 )

+ η(yT1 − cT1 + w̄)

+ νi.
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The first-order conditions with respect to cT1 , c
T
2 , s1, s2 are as follows:

cT1 ::
φ

cT1
+

1− φ
(l̂N1 )α

α(l̂N1 )α−1∂l̂
N
1

∂cT1
−

χ
∂l̂Nt
∂cT1

1− n1

− ξs1(1 + i)β − η = λ(1 + i∗) (49)

cT2 :: β


 φ
cT2

+
1− φ
(l̂N2 )α

α(l̂N2 )α−1∂l̂
N
2

∂cT2
−

χ
l̂N2
∂cT2

1− n2


+ ξs2 = λ (50)

s1 :: λ(1 + i?)α(l̂T1 )α−1∂l̂
T
1

∂s1

+
1− φ
(lN1 )α

α(lN1 )α−1∂l̂
N
1

∂s1

−
χ
(
∂l̂T1
∂s1

+
∂l̂N1
∂s1

)

1− n1

− ξcT1 β(1 + i) + ζ(1 + i) =
λ(1 + i)w̄

s2

(51)

s2 :: λα(l̂T2 )α−1∂l̂
T
2

∂s2

+ β
1− φ
(lN2 )α

(lN2 )α−1α
∂l̂2

N

∂s2

−
βχ
(
∂l̂T2
∂s2

+
∂l̂N2
∂s2

)

1− n2

+ ξcT2 − ζ(1 + i∗) = −λ(1 + i)s1w̄

s2
2

. (52)

Consider a state with deviation from the IP condition and binding ZLB, which implies ν > 0, i =

0, and ζ = 0, by complementary slackness conditions. Rearranging (51) and (52), we obtain

equations (32) and (33) in the main text.

E Calculating the losses

Our formula in equation (24) is an approximation because the Swiss National Bank holds several

assets in the form of foreign reserves that differ by maturity, currency of denomination, and

underlying riskiness. The appropriate way to measure the losses would be that of computing

CIP deviations for different currencies and at different horizons, and appropriately matching

these gaps with the different asset purchases made by the SNB.

Because it is not feasible to compute deviations from CIP at every horizon, we approximate

the losses as follows. We will assume that all assets in the SNB balance sheet are three months

zero coupon bonds, denominated in U.S. dollars. We observe the monthly market value of the

reserves portfolio from the SNB. Let us denote that series by St. Let nt denote the amount of

foreign denominated zero coupon bonds purchased by the SNB in period t.

The market value of the foreign reserve portfolio at the end of period t is

St = q3
t nt + q2

t nt−1 + q1
t nt−2,

where qit is the international price at time t of a zero-coupon bond that matures in i periods.
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The amount of foreign reserves purchased in period t is then

Ft = q3
t nt.

And thus, we have that the market value of the stock can be written as

St = Ft +
q2
t

q3
t−1

Ft−1 +
q1
t

q3
t−2

Ft−2.

We know that q3
t = (1 + i?t )

−1, and we approximate the one-period and the two-period-ahead

interest rate to be q2
t = (1 + i?t )

−2/3 and q1
t = (1 + i?t )

−1/3.

Using the observed series for St, and the three-month international interest rate, i?t , we can

then solve for the series Ft that solves

St = Ft +
1 + i?t−1

(1 + i?t )
2/3
Ft−1 +

1 + i?t−2

(1 + i?t )
−1/3

Ft−2,

for some starting points with Ft0 = Ft0+1 = 0.

Having computed Ft, we then apply the formula (24) to calculate the monthly losses of the

central bank.
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