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Abstract

A prolonged period of extremely low nominal interest rates has not resulted
in high inflation. This has led to increased interest in the “Neo-Fisherian”
proposition according to which low nominal interest rates may themselves cause
inflation to be lower. The fact that standard models of the effects of monetary
policy have the property that perfect foresight equilibria in which the nomi-
nal interest rate remains low forever necessarily involve low inflation (at least
eventually) might seem to support such a view. Here, however, we argue that
such a conclusion depends on a misunderstanding of the circumstances under
which it makes sense to predict the effects of a monetary policy commitment
by calculating the perfect foresight equilibrium consistent with the policy. We
propose an explicit cognitive process by which agents may form their expec-
tations of future endogenous variables. Under some circumstances, such as a
commitment to follow a Taylor rule, a perfect foresight equilibrium (PFE) can
arise as a limiting case of our more general concept of reflective equilibrium,
when the process of reflection is pursued sufficiently far. But we show that an
announced intention to fix the nominal interest rate for a long enough period
of time creates a situation in which reflective equilibrium need not resemble
any PFE. In our view, this makes PFE predictions not plausible outcomes in
the case of policies of the latter sort. According to the alternative approach
that we recommend, a commitment to maintain a low nominal interest rate
for longer should always be expansionary and inflationary, rather than causing
deflation; but the effects of such “forward guidance” are likely, in the case of
a long-horizon commitment, to be much less expansionary or inflationary than
the usual PFE analysis would imply.
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1 Perfect-Foresight Analyses of the Effects of

Forward Guidance: A Paradox

One of the more notable features of recent monetary experience has been the fact that

first Japan, and now more recently the U.S. as well, have gone through prolonged

periods of extremely low nominal interest rates (overnight interest rates reduced prac-

tically to zero and kept there for years) without this leading to the sort of inflationary

spiral that one might have expected to follow from such a reckless experiment. In-

stead, inflation has remained low, below both countries’ desired levels of inflation

(and even below zero, much of the time, in Japan), while real activity has remained

disappointing as well. A common reaction to these surprising developments has been

to conclude that financial crises of the kind that both countries experienced can lower

the equilibrium real rate of interest for a very prolonged period of time, so that real

interest rates that seem very low by historical standards may nonetheless continue to

be contractionary.

But some have proposed an alternative interpretation of these experiences, ac-

cording to which low nominal interest rates themselves may cause inflation to be

lower. In this view, the monetary policy reactions to these crises may have actually

prolonged the disinflationary slumps by creating disinflationary expectations. Under

such a view, actually promising to keep interest rates low for a longer period than

would otherwise have been expected — as both the Fed and a number of other central

banks have done in the recent period1 — would be the worst possible policy for a

central bank worried that inflation will continue to run below its target, and some

(beginning with Bullard, 2010, and Schmitt-Grohé and Uribe, 2010) have proposed

that such a central bank should actually raise interest rates in order to head off the

possibility of a deflationary trap. As the period over which the U.S. has kept its

federal funds rate target near zero has continued, views of this kind, that some have

taken to calling “neo-Fisherian,” have gained increasing currency, at least on the

internet.2

Moreover, it might seem that even a standard textbook model of the effects of

alternative monetary policy commitments would support the “neo-Fisherian” posi-

tion. The most straightforward theoretical argument proceeds in two steps.3 One

1See, for example, Woodford (2012) for a discussion of these experiences.
2See, for example, Cochrane (2015b) for discussion and additional references.
3The argument is explained more formally in section 2.2 below.
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first considers what should happen if a central bank were to commit to maintain the

short-term nominal interest rate at an arbitrarily chosen level forever. According to

a traditional view, famously articulated by Friedman (1968), this is not a possible

experiment, because any such attempt would lead to explosive inflation dynamics

that would require the central bank to abandon the policy in finite time. But in fact,

many modern equilibrium models of inflation determination, including standard New

Keynesian models, imply that there exist rational-expectations equilibria associated

with such a policy in which inflation and other variables remain forever bounded —

so that there is no reason to deny the logical possibility of the proposed thought ex-

periment.4 In a deterministic setting, there is typically a one-dimensional continuum

of perfect foresight equilibria consistent with this policy commitment, all of which

converge asymptotically to a steady state in which the constant inflation rate is the

one determined by the nominal interest-rate target and the Fisher equation. Thus

one might conclude that such an experiment should lead to an inflation rate that

converges to the one determined by the Fisher equation (and hence that is higher by

one percentage point for each percentage point increase in the nominal interest-rate

target), at least eventually.

The second step in the argument notes that it doesn’t make sense to suppose

that the outcome resulting from a given forward path for policy should be extremely

sensitive to small changes in anticipated policy that relate only to the very distant

future. More specifically, one might assert that an expected shift in the monetary

policy rule should have an effect on outcomes now that shrinks to zero as the date of

the anticipated policy shift is pushed far enough into the future.5 But this means that

a commitment to keep the nominal interest rate at some level up until some finite

date T should not have consequences that are very different than those that would

follow from keeping the interest rate at that level forever. If keeping the interest rate

low forever must eventually lower the inflation rate, then there must be some finite

length of time such that keeping the interest rate low for that length of time also

must eventually lower the inflation rate almost as much. It is only a question of how

long a period of low interest rates should be required to observe this effect.

This is a paradoxical result: it seems that the very assumptions that underly com-

4This is emphasized in expositions of the neo-Fisherian view such as that of Cochrane (2015b).
5This is the basis for the proposal in Cochrane (2015a) that a plausible analysis should select the

“backward stable” perfect foresight solution consistent with a given forward path policy.
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mon arguments for the efficacy of forward guidance — the use of a New Keynesian

model of the monetary transmission mechanism, and the assumption of perfect fore-

sight (or rational expectations) to determine the effects of a given policy commitment

— imply that a commitment to keep interest rates low for a long time should be even

more disinflationary than a plan of returning sooner to a more normal policy. Yet

this is not at all what standard model-based analyses of the implications of forward

guidance have concluded, and it is certainly not what policymakers have assumed

when recently announcing or contemplating commitments of that kind.

It might seem that an argument of the kind just sketched about the consequences

of policies expected to last for unboundedly long periods of time has no consequences

for anything we will ever actually observe, and therefore no bearing upon either prac-

tical policy analysis or the interpretation of historical experience. But the standard

approach to analyzing the consequences of an expectation that the short-term interest

rate will remain at the zero lower bound (ZLB) for several more quarters — which

looks at the perfect foresight equilibrium (or the rational-expectations equilibrium,

in the case of a stochastic model) consistent with the forward path of policy that

converges asymptotically to the steady state in which the central bank’s long-run

inflation target is achieved — has the consequence, in a standard (very forward-

looking) New Keynesian model, that as the length of time that the interest rate is

expected to remain at zero is made longer, the predicted positive effects on inflation

and output at the time that the policy attention is announced grow explosively, as

shown by Del Negro et al. (2013), Chung (2015), and McKay et al. (2015). This

prediction violates the principle that anticipated policy paths that differ only in the

specification of policy far in the future should have similar near-term effects; but if

one thinks that the conclusion must be wrong about the effects of commitments to

long spells of zero-interest-rate policy, one may suspect that it is wrong about the

effects of shorter-range policy commitments as well.

And similarly, if one thinks that selecting instead the “backward stable” perfect

foresight equilibrium as the relevant model prediction (as proposed by Cochrane,

2015a) makes sense in the case of commitments to a long spell of zero-interest-rate

policy, one may find this a reason to regard it as the more sensible prediction in the

case of shorter-range policy commitments as well. But the conventional equilibrium

selection and the “backward stable” selection lead to very different predictions about
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the effects of even periods of modest length at the zero lower bound.6

Thus the conclusion that one reaches about the paradoxes resulting from attempts

to analyze very long spells at the zero lower bound matters for the analysis that one

should give of types of policy experiments that have recently been attempted or

contemplated. Indeed, if one accepts the analysis proposed by Cochrane (2015a),

the neo-Fisherian logic applies also to spells at the zero lower bound of only a few

years. In the numerical solutions that he displays, a temporary reduction of the

natural rate of interest to a level that makes the zero lower bound inconsistent with

the central bank’s inflation target — so that the ZLB requires an interest rate higher

than the one consistent with the target inflation rate, for a time — is inflationary,

rather than deflationary as in analyses like that of Eggertsson and Woodford (2003).

And maintaining a higher interest rate during the period of the shock would be even

more inflationary, according to the “backward stable” equilibrium selection.

In this paper we consider whether a standard New Keynesian model of the effects

of monetary policy requires one to accept paradoxical conclusions of this kind.7 We

shall argue that it does not. Our quarrel, however, is not with the postulate that

anticipated changes in policy sufficiently far in the future should have negligible effects

on current economic outcomes. Rather, we deny the practical relevance of the perfect

foresight solutions (or more generally, rational-expectations solutions) of the model

under the thought experiment of a permanent interest-rate peg.

Moreover, our criticism of the perfect-foresight analysis of this case is not based on

a wholesale denial of the plausibility of forward-looking expectations. It is well-known

that Friedman’s view of the consequences of an interest-rate peg can be defended if

one supposes that people’s expectations are purely backward-looking, as Friedman’s

6See the demonstration of this in Cochrane (2015), sec. 3.1
7Of course, we do not pretend to consider all of the logically possible models, and all of the

logically possible assumptions about policy, that might be consistent with neo-Fisherian claims. For

example, we do not discuss Cochrane’s (2014) derivation of neo-Fisherian conclusions under the

assumption of a non-Ricardian fiscal policy; here we are solely concerned with situations in which

fiscal policy is expected to be Ricardian, in a sense made precise in Woodford (2013). We would

dispute the argument in Cochrane (2014) that a non-Ricardian fiscal policy should be assumed

because the path of the price level is otherwise indeterminate in New Keynesian models. We offer

here a way of obtaining a determinate prediction despite Ricardian expectations regarding fiscal

policy, and show that it leads to quite different conclusions from those that would result from the

kinds of expectations about fiscal policy analyzed in Cochrane (2014), in addition to differing from

the predictions obtained in Cochrane (2015a) by selecting the “backward stable” equilibrium.
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informal discussion presumed.8 However, this particular defense of conventional views

about the effects of interest-rate policy would also imply that “forward guidance”

as to a central bank’s intentions regarding future policy should have no effects on

equilibrium outcomes, as expectations regarding the future are assumed to follow

solely from the data that have already been observed. Such a view would imply that

if the zero lower bound prevents a central bank from lowering the current short-term

rate enough to achieve its stabilization objectives through that channel alone, there

is nothing further to be done; keeping the interest rate low even beyond the end of

the period in which the bank’s current targets cannot be achieved can achieve higher

output and inflation in that later period, but because this will not be anticipated

until it occurs, this will do nothing to improve outcomes during the constrained

period (while meaning less successful stabilization later). So while it would not imply

that a commitment to keep the nominal interest rate low for a long time would

actually lower inflation, it would nonetheless imply that such a policy would impede

macroeconomic stabilization rather than improving it.

We offer a different reason for rejecting the neo-Fisherian conclusion. We believe

that people are at least somewhat forward-looking; this is why central bank commit-

ments about the way in which monetary policy will be conducted in the future (such

as explicit inflation targets) matter. Nonetheless, it may not be reasonable to expect

that the outcome associated with a given policy commitment should be a perfect

foresight equilibrium, even when the commitment is fully credible and people have

the knowledge about how the economy works that would be required for calculation

of such an equilibrium.

We argue that predicting what should happen as a result of a particular policy

commitment requires that one model the cognitive process by which one imagines peo-

ple to arrive at particular expectations taking that information into account. In this

paper, we offer a simple example of such an explicit model of reasoning. Under our

approach, a perfect foresight equilibrium (or more generally, a rational-expectations

equilibrium9) can be understood as a limiting case of a more general concept of re-

8One can show formally, in a model derived from intertemporal optimization of the kind used

below, that an interest-rate peg will imply explosive dynamics if expectations are based on extrapo-

lation from past data, as under Friedman’s hypothesis of “adaptive expectations” or the hypothesis

of “least-squares learning” that has been popular more recently. See Woodford (2003, sec. 2.3) for

discussion and references.
9We consider only deterministic environments in which, after some (possibly unexpected) change
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flective equilibrium, which limit may be reached under some circumstances if the

process of reflection about what forward paths for the economy to expect is carried

far enough. Our concept of reflective equilibrium is similar to the “calculation equilib-

rium” proposed by Evans and Ramey (1992, 1995, 1998): we consider what economic

outcomes should be if people optimize on the basis of expectations that they derive

from a process of reflection about what they should expect, given both their under-

standing of how the economy works and (as part of that structural knowledge) their

understanding of the central bank’s policy intentions.

Furthermore, like Evans and Ramey, we model this process of reflection as an

iterative process that adjusts the provisional forecasts that are entertained at a given

stage of the process in response to the predictable discrepancy between those forecasts

and what one should expect to happen if people were to behave optimally on the basis

of those forecasts. Thus the process is one under which beliefs should continue to be

adjusted, if the process is carried farther, unless perfect-foresight equilibrium beliefs

have been reached. And like Evans and Ramey, we are interested in the theoretical

question of where such a process of belief revision would end up asymptotically,

if carried forward indefinitely, but we regard it as more realistic to suppose that

in practice, the process of reflection will be suspended after some finite degree of

reflection, and people will act upon the beliefs obtained in this way.

The most important difference between our approach and that of Evans and

Ramey is that the primary goal of their analysis is to determine how far the belief

revision process should be carried forward, by specifying costs of additional calcu-

lation and a criterion for judging the benefits that should be weighed against those

costs; we do not propose any explicit model of such costs or the decision to terminate

the process of belief revision. Our concerns are instead to determine whether the

process will necessarily reach a perfect foresight equilibrium even if carried forward

indefinitely; to ask which perfect foresight equilibrium is reached in the case that

in economic fundamentals and/or the announced path of monetary policy, neither fundamentals nor

policy should depend on any further random events, and so we consider only the reasonableness

of assuming a perfect foresight equilibrium. But the kind of reflective equilibrium that we define

below could also be considered in stochastic environments, in which case we could instead consider

under what conditions the process of reflection will eventually converge to a rational-expectations

equilibrium; and some of the convergence results obtained below have direct extensions to stochastic

environments. To economize on notation and technicality, however, we here expound the idea only

in the simpler deterministic setting.
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the process converges; and to understand what determines the speed of convergence

when it occurs.

In our view, the predictions obtained by considering the perfect foresight equilib-

rium (PFE) consistent with a given forward path for policy are of practical relevance

only in that the belief revision process converges to those PFE beliefs, sufficiently

rapidly and from a large enough range of possible beliefs that may be initially en-

tertained. If one has fast convergence to certain PFE beliefs from many possible

starting points, then the PFE predictions should be a good approximation to what

one should expect to occur in a reflective equilibrium, under any of a considerable

range of assumptions about where the process starts and how far it is carried forward.

We show below that standard conclusions about equilibrium determination under a

Taylor rule (when the zero lower bound does not constrain policy) can be justified in

this way; our analysis not only provides a reason for interest in the perfect-foresight

(or rational-expectations) predictions about such a policy commitment, but explains

why one particular PFE solution should be regarded as the relevant prediction of

the model, addressing Cochrane’s (2011) critique of the standard New Keynesian

literature.

If, instead, a particular perfect foresight equilibrium cannot be reached under the

belief revision process, except by starting from extremely special initial beliefs, then

we do not think it is plausible to expect actual outcomes to resemble those PFE out-

comes.10 And if the belief revision process does not converge, or if it converges only

very slowly, then we do not believe there is ground to make any very specific predic-

tion about the beliefs that people should be expected to hold in practice and hence

about the economic outcomes that should be observed; and the range of outcomes

that should be considered to represent reasonable possibilities need have little to do

with the set of perfect foresight equilibria. We show below that in a standard New

Keynesian model, the thought experiment of an interest-rate peg that is maintained

forever produces a situation of this kind: while perfect foresight equilibria do indeed

exist, the belief revision process that we consider does not converge to any of them,

and the set of reflective equilibria resulting from different finite degrees of reflection

do not resemble perfect foresight equilibria. Thus in our view, the forward guidance

paradox sketched above results from reliance upon the concept of perfect foresight

10This is our view of the “backward stable” PFE solutions analyzed by Cochrane (2015a) in the

case of a temporary interest-rate peg.
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equilibrium in a context in which it is especially inappropriate.

Some may protest that an equilibrium concept that allows no definite conclusion

about what should occur (in the case of non-convergence or slow convergence) is of

no use in informing policy design. Yet as our results below illustrate, even in such

a case, it may well be possible to derive qualitative conclusions about the effects on

a reflective equilibrium that should be expected from changing policy in a particular

direction; and these may differ, even as to sign, from those that would be suggested

by considering the set of perfect foresight equilibria.

In particular, we show that in our model, a commitment to maintain a low nominal

interest rate for a longer period of time — or to maintain a lower rate, for any fixed

length of time — will typically result (under any given finite degree of reflection) in

increased aggregate demand, increasing both output and inflation in the near term,

though the exact degree of stimulus that should result depends (considerably) on the

assumed degree of reflection. This is true regardless of the length of time for which

the interest-rate peg is expected to be maintained, and even in the limit of a perpetual

interest-rate peg. Thus consideration of the reflective equilibrium resulting from a

finite degree of reflection yields conventional conclusions about the sign of the effects

of commitments to lower interest rates in the future, and does so without implying

any non-negligible effects of changing the specification of policy only very far in the

future.

Hence the reflective equilibrium analysis avoids both of the paradoxical conclu-

sions that a PFE analysis requires one to choose between: affirming either that main-

taining low nominal interest rates must eventually be deflationary, or that the out-

come implied by a given policy commitment can depend critically on the specification

of policy extremely far in the future. It implies that PFE (or rational-expectations

equilibrium) analyses of the effects of committing to keep the nominal interest rate

low for a longer (but still fairly short) period of time, under the conventional approach

to equilibrium selection, are likely to be correct as to the signs of the predicted effects,

but that the numerical magnitudes of the effects obtained from such analyses may

be quite inaccurate. In particular, our numerical illustrations below suggest that the

predicted effects on output and inflation from the PFE analysis are likely to be upper

bounds on the effects that should occur in a reflective equilibrium with only a finite

degree of reflection — and indeed, wild exaggerations in cases where the interest rate

is expected to remain at the zero lower bound for many years.
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We proceed as follows. Section 2 introduces our New Keynesian model of infla-

tion and output determination under alternative monetary policies and alternative

assumptions about private-sector expectations, and the belief revision process that

underlies our proposed concept of reflective equilibrium. Section 3 then considers

reflective equilibrium when the forward path of monetary policy is specified by a

Taylor rule, and both the path of policy and the economy’s exogenous fundamentals

are such that the ZLB never binds in equilibrium. We allow the Taylor rule to involve

a possibly time-varying intercept (or inflation target), so that we can analyze a type

of forward guidance (but not one that involves commitment to a constant interest

rate). By contrast, section 4 considers reflective equilibrium in the less well-behaved

case of an expectation that the short-term interest rate will remain fixed until some

horizon T , and then revert to a Taylor rule thereafter; and also the limiting case

of a commitment to keep the interest rate fixed forever. Section 5 offers concluding

reflections.

2 Reflective Equilibrium in a New Keynesian Model

We expound our concept of reflective equilibrium in the context of a log-linearized

New Keynesian (NK) model. The model is one that has frequently been used, un-

der the assumption of perfect foresight or rational expectations, in analyses of the

potential effects of forward guidance when policy is temporarily constrained by the

zero lower bound (e.g., Eggertsson and Woodford, 2003; Werning, 2012; McKay et

al., 2015; Cochrane, 2015a).11 As in the analyses of Evans and Ramey (1992, 1995,

1998), we must begin by specifying the temporary equilibrium relations that map

arbitrary subjective expectations about future economic conditions into market out-

comes; these relations play a crucial role in the process of reflection that we wish to

model, in addition to being required in order to predict what should happen if peo-

ple’s beliefs do not converge to PFE beliefs. Because these relations are not generally

discussed in a form that would be valid under arbitrary subjective expectations in

expositions of the NK model that consider only its rational-expectations equilibria,

it is necessary to briefly sketch the foundations of the model. The presentation here

11Werning (2012) and Cochrane (2015a) analyze a continuous-time version of the model, but the

structure of the model that they consider is otherwise the same as the discrete-time model considered

here.
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largely follows Woodford (2013), where the derivations are discussed in more detail.

2.1 Temporary Equilibrium Relations

In our model, both households and firms solve infinite-horizon decision problems,

and hence their optimal decision rules depend on their expectations about economic

conditions in a series of future periods extending indefinitely. It is important that we

explicitly represent the way in which actions depend on expectations about different

future dates, because of our interest in analyzing the effects of announcements about

future policy that may refer to points in time at different distances from the present.

The economy is made up of identical, infinite-lived households. Each household i

seeks to maximize a discounted flow of utility

Êi
t

∞∑
T=t

e
∑T−1
s=t ρs [u(Ci

T )− v(H i
T )] (2.1)

when planning their path of consumption, looking forward from date t. Here Ci
t is a

Dixit-Stiglitz aggregate of the household’s purchases of differentiated consumer goods,

H i
t is hours worked, the sub-utility functions satisfy u′ > 0, u′′ < 0, v′ > 0, v′′ ≥ 0,

and ρt is a possibly time-varying discount rate. We allow for the possibility of a non-

uniform discount rate in order to introduce a reason why the ZLB may temporarily

constrain monetary policy; the fact that intra-temporal preferences are uniform over

time will allow the efficient level of output to be constant over time.12 The operator

Êi
t indicates that this objective is evaluated using the future paths of the variables

implied by the household’s subjective expectations, which need neither be model-

consistent nor common across all households.

For simplicity, there is assumed to be a single traded asset each period: one-period

riskless nominal debt (a market for which must exist in order for the central bank

to control a short-term nominal interest rate). Each household also owns an equal

share of each of the firms (discussed below), but these shares are assumed not to

be tradeable. In the present exposition, we abstract from fiscal policy, by assuming

that there are no government purchases, government debt, or taxes and transfers.13

We can then define the set of expenditure sequences {CT} for dates T ≥ t that the

12In Woodford (2013), a more general version of the model is presented, in which a variety of

other types of exogenous disturbances are allowed for.
13Woodford (2013) shows how the temporary equilibrium framework can be extended to include
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household expects will be feasible as a function of the expected paths of real income,

the one-period nominal interest rate, and the rate of inflation.

We can then solve for the household’s optimal expenditure plan as a function of

those expectations, and log-linearize the optimal decision rule around the constant

plan that is optimal in the event that ρT = ρ̄ > 0 for all T ≥ t, the inflation rate

is expected to equal the central bank’s target rate π∗ in all periods, and real income

and the nominal interest rate are also expected to be constant in all periods at values

that represent a PFE for a monetary policy that achieves the inflation target at all

times.14 We obtain

cit =
∞∑
T=t

βT−t Êi
t {(1− β)yT − βσ (iT − πT+1 − ρT )} (2.2)

where {yT , iT , πT} are the expected paths of real income (or aggregate output, in

units of the Dixit-Stiglitz aggregate), the nominal interest rate, and inflation, and

all variables appearing in the equation are measured as log deviations from their

steady-state values (hence the use of cit rather than the Ci
t that appears in (2.1)).

Here β ≡ e−ρ̄ < 1 is the steady-state discount factor and σ > 0 is the intertemporal

elasticity of substitution of consumer expenditure. Note that (2.2) generalizes the

familiar “permanent-income hypothesis” formula (obtained by keeping only the yT

terms on the right-hand side) to allow for a non-constant desired path of spending

owing either to variation in the anticipated real rate of return or transitory variation

in the rate of time preference.

We assume that households can correctly forecast the variation over time (if any)

in their discount rate in their intertemporal planning, so that Êi
tρT = ρT for all

T ≥ t.15 The subjective expectations (that instead may not be model-consistent)

fiscal variables. The resulting temporary equilibrium relations are essentially of the kind derived

here, as long as households have “Ricardian expectations” (defined precisely there) regarding their

future net tax liabilities: that is, they expect that no matter how prices and interest rates evolve, net

taxes collected by the government will have a present value exactly equal to the value of outstanding

government debt. The assumption of Ricardian expectations is important for one’s conclusions about

the macroeconomic effects of interest-rate policy, as shown by Cochrane (2014).
14We assume that π∗ > −ρ̄, so that the required nominal interest rate in this steady state is

positive.
15This means that expectations regarding future preference shocks are treated differently in (2.3)

below than in the expression given in Woodford (2013). The definition of the composite expectational

variable vit is correspondingly different.
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regarding future conditions that matter for a household’s expenditure decision can

then be collected in a single expectational term, allowing us to rewrite (2.2) as

cit = (1− β)yt − βσit + βgt + β Êi
tv
i
t+1, (2.3)

where

gt ≡ σ
∞∑
T=t

βT−t ρT

measures the cumulative impact on the urgency of current expenditure of a changed

path for the discount rate, and

vit ≡
∞∑
T=t

βT−t Êi
t {(1− β)yT − σ(βiT − πT )}

is a household-specific subjective variable.

Then defining aggregate demand yt (which will also be aggregate output and each

household’s non-financial income) as the integral of expenditure cit over households i,

the individual decision rules (2.3) aggregate to an aggregate demand (AD) relation

yt = gt − σit + e1t, (2.4)

where

e1t ≡
∫

Êi
tv
i
t+1 di

is a measure of average subjective expectations.

The continuum of differentiated goods are produced by Dixit-Stiglitz monopolistic

competitors, who each adjust their prices only intermittently to changing market

conditions; as in the Calvo-Yun model of staggered pricing, only a fraction 1 − α of

prices are reconsidered each period, where 0 < α < 1 measures the degree of price

stickiness. Our version of this model differs from many textbook presentations (but

follows the original presentation of Yun, 1996) in assuming that prices that are not

reconsidered in any given period are automatically increased at the target rate π∗.16

If a firm j reconsiders its price in period t (rather than simply increasing it at the

16This allows us to assume a positive steady-state inflation rate — which is important for the

quantitative realism of the numerical examples below, since the steady-state inflation rate matters

for the tightness of the ZLB constraint — while at the same time retaining the convenience of

a steady state in which the prices of all goods are identical, despite the assumption of staggered

pricing.
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rate π∗), it chooses a price that it expects to maximize the present discounted value

of profits in all future states prior to the next reconsideration of its price, given its

subjective expectations regarding the evolution of aggregate demand {yT} for the

composite good and of the log Dixit-Stiglitz price index {pT} for all T ≥ t. A log-

linear approximation to its optimal decision rule (again around the steady state with

constant inflation rate π∗) takes the form

p∗jt = (1− αβ)
∞∑
T=t

(αβ)T−tÊj
t [pT + ξyT − π∗(T − t)] (2.5)

− (pt−1 + π∗) (2.6)

where p∗jt is the amount by which j′s log price exceeds the average of the prices that

are not reconsidered, pt−1 + π∗, ξ > 0 measures the elasticity of a firm’s optimal

relative price with respect to aggregate demand,17 and the operator Êj[·] indicates

that what matter are the subjective expectations of firm j regarding future market

conditions.

Again, the terms on the right-hand side of (2.6) involving subjective expectations

of conditions at various future horizons can be collected in a single composite term,

αβÊj
t p
∗j
t+1. Aggregating across the prices chosen in period t by the continuum of firms,

we obtain an implied aggregate supply (AS) relation

πt = κyt + (1− α)β e2t (2.7)

where πt ≡ pt − pt−1 − π∗ is inflation in excess of the target rate,

κ ≡ (1− α)(1− αβ)ξ

α
> 0,

and

e2t ≡
∫

Êj
t p
∗j
t+1 dj

measures average expectations of the composite variable.

We can close the system by assuming a reaction function for the central bank of

the Taylor (1993) form

it = ı̄t + φππt + φyyt (2.8)

17The parameter ξ is thus a measure of the degree of “real rigidities.” See Woodford (2003, chap.

3) for a detailed discussion of its dependence on underlying parameters relating to preferences,

technology and market structure.
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where the response coefficients satisfy φπ, φy ≥ 0. We allow for a possibly time-varying

intercept in order to consider the effects of announcing a transitory departure from

the central bank’s normal reaction function. (More generally, we consider below the

possibility of situations in which the response coefficients are assumed to be different

at different times, though they are assumed time-invariant in (2.8).) Equations (2.4),

(2.7) and (2.8) then comprise a three-equation system, that determines the temporary

equilibrium (TE) values of yt, πt, and it in a given period, as functions of the exogenous

disturbances (gt, ı̄t) and subjective expectations (e1t, e2t). Under our sign assumptions,

it is easily shown that the TE values are uniquely determined, linear functions of the

vector of disturbances and the vector of subjective expectations (see the Appendix

for details).

As preparation for our discussion of the process of expectation revision, it is useful

to note the relationship between subjective expectations and the actual values of the

variables that people seek to forecast. The two sufficient statistics for subjective

expectations eit are each the average forecast of a certain average of the future values

of a certain composite variable aiT at different horizons T > t, where aiT is a variable

that is determined purely by disturbances and subjective expectations in period T .

For i = 1, 2, we can write

eit = (1− δi)
∞∑
j=0

δji Ētai,t+j+1, (2.9)

where

δ1 = β, δ2 = αβ

(so that 0 < δi < 1 for both variables),

a1t ≡ yt −
σ

1− β (βit − πt),

a2t ≡
1

1− αβ πt + ξyt,

and the operator Ēt[·] indicates the average of the population’s forecasts at date t.18

18While we still allow for the possibility of heterogeneous forecasts, from here on we assume that

the distribution of forecasts across the continuum of households is the same as the distribution across

the continuum of firms, and so refer simply to the distribution of forecasts. Ēt[·] refers to the mean

of this distribution of forecasts at some date t.
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We can then use the TE relations to solve for the equilibrium values of the variables

ait that people seek to forecast as linear functions of the current vector of disturbances

and current average expectations. This solution can be written in the form

at = M et + mωt, (2.10)

where at is the vector consisting of (a1t, a2t), et is the vector consisting of (e1t, e2t),

ωt is the vector consisting of (gt, ı̄t), and the matrices of coefficients are given in

the Appendix. The system (2.10) shows how expectations determine the endogenous

variables that are themselves being forecasted in those expectations, as indicated by

(2.9).

2.2 Perfect Foresight Equilibrium

The assumption of perfect foresight equilibrium adds to the above model the further

assumption that the expected paths for output, inflation and the interest rate (and

hence the expected paths for the variables {at}) are precisely the paths for those

variables implied by the TE relations under those expectations. Thus a PFE cor-

responds to sequences {at, et} that both satisfy (2.10) each period and satisfy (2.9)

when the equilibrium paths {at} are substituted for the average expectations in those

equations.

It can be shown (see Woodford, 2013) that under the PFE assumption, the TE

relations (2.4) and (2.7) imply that the paths of output, inflation and the interest

rate must satisfy difference equations of the form

yt = yt+1 − σ(it − πt+1 − ρt) (2.11)

πt = κyt + βπt+1 (2.12)

which are simply perfect-foresight versions of the usual “New Keynesian IS curve”

and “New Keynesian Phillips curve” respectively. Using the policy specification (2.8)

to eliminate it, one obtains a pair of difference equations that can be written in the

form

xt = B xt+1 + b (ρt − ı̄t) (2.13)

where xt is the vector consisting of (yt, πt), and the matrix B and vector b are defined

in the Appendix.
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Under our sign assumptions for the model coefficients, the matrix B is invertible,

and the system (2.13) can be uniquely solved for xt+1 as a function of xt and the period

t disturbances. One then obtains a two-parameter family of possible PFE solutions

consistent with any given forward paths for the disturbances, corresponding to the set

of possible choices for the elements of x0. The asymptotic behavior of these solutions

as t is made large depends as usual on the eigenvalues of the matrix B.

As shown in the Appendix, the matrix B has both eigenvalues inside the unit

circle if and only if

φπ +
1− β
κ

φy > 1 (2.14)

so that the “Taylor Principle” is satisfied. In this case, there is a unique bounded

PFE solution for the sequences {xt} corresponding to any bounded sequences {ρt, ı̄t},
obtained by “solving forward” the system (2.13) to obtain

xt =
∞∑
j=0

Bjb (ρt+j − ı̄t+j). (2.15)

When this is uniquely defined, we shall call this the “forward stable” PFE (FS-PFE).

It is common to regard this as the relevant prediction of the model in such a case;19

below we shall provide a justification for this in terms of our concept of reflective

equilibrium.

This solution implies that in the case of a sufficiently transitory change in policy,

a reduction of ı̄t (for a given path of the real disturbance) must be both expansionary

and inflationary (must raise both yt and πt), while the nominal interest rate is tem-

porarily reduced (though by less than the reduction in ı̄t). In the case of a sufficiently

persistent shift in ı̄t, output, inflation and the nominal interest rate are all predicted

to increase, because of the endogenous effect of the output and inflation increases on

the central bank’s interest-rate target;20 but even in this case, a downward shift in

the reaction function (reducing the interest-rate target implied by any given current

levels of inflation and output) is inflationary rather than deflationary.

19See however Cochrane (2011) for objections to this interpretation.
20In a more realistic model than the simple NK model used in this paper, there will be delays in

the effect of the policy change on output and inflation. It is then possible to have an initial decline

in the nominal interest rate in the case of an expansionary monetary policy shock, even in the case

of a relatively persistent shift in the central-bank reaction function, as shown in Woodford (2003,

secs. 5.1-5.2).
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If the inequality in (2.14) is reversed, the matrix B instead has two real eigenvalues

satisfying

0 < µ1 < 1 < µ2,

so that the larger is outside the unit circle. In particular, this is true if the central

bank fixes the forward path for the nominal interest rate (the case φπ = φy = 0),

regardless of whether this path is constant. In this case, there is no longer a unique

bounded solution; instead, assuming again that the sequences {ρt, ı̄t} are bounded,

there is a bounded PFE solution

xt = v1(e′1b)
∞∑
j=0

µj1 (ρt+j − ı̄t+j) − v2(e′2b)
t∑

j=1

µ−j2 (ρt−j − ı̄t−j) + χ v2µ
−t
2 (2.16)

in the case of any real number χ. (In this expression, vi is the right eigenvector

corresponding to eigenvalue µi, e
′
i is the left eigenvector corresponding to that same

eigenvalue, and we normalize the eigenvectors so that e′ivi = 1 for each i.) Since such

solutions necessarily exist, the PFE analysis gives us no reason to suppose that there

is anything problematic about a commitment to fix a path for the nominal interest

rate, including a commitment to fix it at a constant rate forever.

Now suppose that not only are the exogenous disturbance sequences bounded,

but that after some finite date T , they are expected to be constant: ρt = ρLR and

ı̄t = ı̄LR for all t ≥ T, where the long-run values need not equal zero. We show in the

Appendix that in any of the continuum of bounded PFE solutions, the elements of

xt converge asymptotically to long-run values

πLR = ı̄LR − ρLR, yLR =
1− β
κ

(̄ıLR − ρLR). (2.17)

One observes that the long-run inflation rate increases one-for-one with increases in

the long-run interest-rate target. Hence if we suppose that the economy must follow

one or another of the PFE associated with the central bank’s policy commitment,

we would conclude that a lower path for the nominal interest rate must at least

eventually result in a lower rate of inflation; and similarly, a higher nominal interest

rate must eventually make inflation higher.

One might obtain even stronger conclusions under further assumptions about how

to select a particular solution from among the set of PFE. Consider the simple case

of a policy commitment under which the interest rate will be fixed at one level ı̄SR
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for all 0 ≤ t < T, and another (possibly different) level ı̄LR for all t ≥ T, and let us

suppose for simplicity that ρt = 0 for all t.21 In this case, the complete set of PFE

solutions (2.16) are of the form

xt = −v1(e′1b)

[
1− µT−t1

1− µ1

ı̄SR +
µT−t1

1− µ1

ı̄LR

]
+ v2(e′2b)

[
µ−1

2

1− µ−1
2

ı̄SR

]
+ χ v2µ

−t
2 (2.18)

for all 0 ≤ t ≤ T, and

xt = −v1(e′1b)

[
1

1− µ1

ı̄∞

]
+ v2(e′2b)

[
µT−t−1

2

1− µ−1
2

ı̄SR +
µ−1

2 − µT−t−1
2

1− µ−1
2

ı̄LR

]
+ χ v2µ

−t
2 (2.19)

for all t ≥ T.

Now suppose that we believe that there should be a unique prediction regarding

the equilibrium outcomes under such a policy; then equilibrium output and inflation

in period t should be given by a single-valued outcome function x(t, T ; ı̄SR, ı̄LR). And

suppose further that we demand that the equilibrium outcomes from any period k > 0

onward should also be given by the same outcome function, if period k is re-numbered

as period 0, and all periods t > k are re-numbered as t− k, given that the structural

equations that define PFE from period k onward are of exactly the same form as

those that define PFE from period 0 onward, with this re-numbering of the periods.22

This means that the outcome function can depend only on t− T, rather than on the

absolute magnitudes of either t or T . But the only one of the PFE given by (2.18)–

(2.19) with this property is the solution with χ = 0. Under this criterion, there is a

21Given the linearity of the model’s structural equations, it is reasonable to suppose that the

prediction in the case of any disturbance sequences {ρt, ı̄t} can be expressed as the sum of a predicted

effect of the real disturbance {ρt} (under the assumption that ı̄t = 0 for all t) and a predicted effect

of the monetary policy disturbance {ı̄t} (under the assumption that ρt = 0 for all t). The discussion

in the text concerns the latter half of this problem; but similar considerations can be offered to

select a particular prediction regarding the effects of alternative sequences {ρt}.
22This assumption about the form of the correct prediction is in the spirit of McCallum’s (1983,

1999) “minimal-state-variable criterion.” It requires that the predicted outcome in any period not

depend on the number of the period, but only on its distance from the period T in which the interest

rate changes, since the equilibrium conditions do not involve the former state variable.
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unique PFE prediction, obtained by substituting χ = 0 into equations (2.18)–(2.19).

This is also the unique PFE solution selected by the “backward stability” criterion

proposed by Cochrane (2015a).

Under this equilibrium selection, the perfect foresight analysis yields a “neo-

Fisherian” conclusion about the effects of interest-rate policy in the short run, and

not just in the long run. When we set χ to zero, the solution (2.18)–(2.19) implies

that the inflation rate will equal

πt = λ(t− T ) ı̄SR + (1− λ(t− T )) ı̄LR,

where the sequence of weights {λ(t− T )} depend only on the distance in time from

the date of the policy shift. Increasing both ı̄SR and ı̄LR by the same number of

percentage points is predicted to increase the inflation rate in all periods by exactly

that same number of percentage points. Increasing only one of the interest rates is

also predicted to increase the inflation rate both initially and later, and an increase

in ı̄SR should immediately increase inflation by nearly as much as the increase in the

interest rate, even though the increase is not expected to be permanent, if T is far

enough in the future.

The conclusions that one obtains about the sign of the effects of a shift in the

anticipated path of {ı̄t} on inflation seem then to depend crucially on the magnitude

of the reaction coefficients (φπ, φy), if one believes the results of the perfect foresight

analysis. We shall argue however, that the conclusions of PFE analysis are misleading

in the case just discussed, in which the “Taylor principle” is violated. This requires

that we consider whether the PFE paths just discussed are ones that can be justified

as resulting from beliefs that people would arrive at under a process of reflection,

that involves a comparison between their beliefs and the outcomes that should be

expected to result from such beliefs.

2.3 Reflective Equilibrium

Why should people have the particular expectations about the future that are as-

sumed in a perfect foresight equilibrium? One answer could be that, if they expected

a future path for the economy of any other type, action on the basis of their ex-

pectations would produce outcomes that disconfirm those expectations. One might

suppose, then, that experience should sooner or later disabuse people of any expec-

tations that are not consistent with a PFE. And if one supposes that people have
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sufficient structural knowledge (including understanding of the central bank’s inten-

tions regarding future policy), one might even think that they should be able to

recognize the inconsistency between their expectations and what they should expect

to happen if others were also to think that way — allowing them to refine their be-

liefs on the basis of their understanding of how the economy works, even prior to any

experience with the current economic disturbance or policy regime. Here we explore

the conditions under which a PFE might arise (or under which outcomes would at

least approximate a PFE) as a result of reflection of the latter sort.

Presumably the structural knowledge required for such reasoning would have to

reflect previous observation of the economy; but it might reflect only experience

with the effects of shocks and/or policy changes of different magnitudes and different

degrees of persistence than the ones currently faced. If it were possible to acquire such

knowledge of how the economy responds to shocks and to monetary policy from past

experience, and then also to have reason to expect time paths for the current shock

and current policy regime that are different from any prior experience, a process of

reflection of the kind proposed here would make more sense than simply forecasting

by extrapolating the past evolution of the variables that are forecasted. This kind

of reasoning is particularly relevant when considering how one should expect people

to respond to an announcement about future policy intentions that are historically

unprecedented, as with recent experiments in “forward guidance.”

We model a process of reflection by a decisionmaker (DM) who understands how

the economy works — that is, who knows the correct quantitative specification of the

TE relations (2.4) and (2.7) — and who also understands the policy intentions of the

central bank, in the sense of knowing the policy rule (2.8) that will determine policy

in all future periods. However, while the DM understands (and fully believes) the

announcement of what the central bank will do, she does not know, without further

reflection, what this implies about the future evolution of national income, inflation,

or the resulting level of interest rates (unless the policy rule specifies a fixed interest

rate).

The assumed structural knowledge can however be used to refine her expecta-

tions about the evolution of those variables. Suppose that the DM starts with some

conjecture about the future evolution of the economy, which we can summarize by

paths for the variables {et} for each of the dates t ≥ 0, where t = 0 means the date

at which the economy’s future evolution is being contemplated. She can then ask:

20



suppose that others were sophisticated enough to have exactly these expectations (on

average), both now and at all of the future dates under consideration. What path for

the economy should she expect, given her structural knowledge, under this conjec-

ture about others’ average expectations? (Note that specification of the conjecture

in terms of the implied sequences {et} for t ≥ 0 gives exactly the information that is

needed to answer this question, using the TE relations and the assumed path for the

central-bank reaction function.)

Under such a conjecture {et}, the TE relations imply unique paths for the variables

{at}, where in each period the implied at is given by (2.10). From these predictions

the DM can infer implied paths {e∗t} for all t ≥ 0, where for each date t, e∗t are

the forecasts that would be correct at that date if the economy evolves in the way

implied by the TE relations, in the case of the average expectations {et}. This

deduction yields an affine operator23

e∗ = Ψe

mapping sequences {et} of conjectured expectations into sequences {e∗t} of correct

forecasts of the same variables.24 Note that the operator Ψ is purely forward-looking;

in fact, we can write

e∗t =
∞∑
j=1

ψjet+j +
∞∑
j=1

ϕjωt+j (2.20)

for all t ≥ 0, where the sequences of matrices {ψj} and {ϕj} are given by

ψj ≡ (I − Λ)Λj−1M, ϕj ≡ (I − Λ)Λj−1m, Λ ≡
(
δ1 0

0 δ2

)
for all j ≥ 1.

We suppose (following the logic sketched above) that an awareness that the im-

plied correct sequences e∗ differ from the conjectured sequences e should constitute a

23Note that the definition of the operator Ψ depends on the sequences of fundamental perturba-

tions {ωt}. To simplify notation, we suppress these additional arguments. We shall be interested

in the application of this operator to different possible conjectured beliefs {et}, holding fixed the

fundamentals.
24Note that the definition of the operator Ψ depends on the sequences of fundamental perturba-

tions {ωt}. To simplify notation, we suppress these additional arguments. We shall be interested

in the application of this operator to different possible conjectured beliefs {et}, holding fixed the

fundamentals.
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reason to doubt the reasonableness of expecting people to hold the conjectured beliefs.

But what should one expect instead? We propose that the conjectured beliefs should

be adjusted in the direction of the discrepancy between the model prediction on the

basis of the conjectured beliefs and the conjectured beliefs themselves. Specifically,

we consider a process of belief revision described by a differential equation

ėt(n) = e∗t (n) − et(n), (2.21)

where the continuous variable n ≥ 0 indexes how far the process of reflection has been

carried forward, et(n) is the conjecture regarding average beliefs in period t at stage n

of the process, e∗t (n) is the implied correct forecast in period t if average expectations

are given by the stage n conjectures, and ėt(n) is the derivative of et(n) with respect

to n.

One possible interpretation of the law of motion (2.21) for the belief-revision

process would be as follows.25 At each stage n of the process, one conjectures a

particular sequence of average forecasts {et(n)}. But one supposes that people ought

to further revise their beliefs, and considers the consequences of their revising their

beliefs each time an event occurs that arrives as an independent Poisson process

for each member of the population, with some fixed rate. If one supposes that each

time someone revises their own expectations, they switch from whatever expectations

they had held until that point, to the expectations that would be correct given the

distribution of beliefs held by others at that state of the process of belief revision,

then the rate of change of average beliefs will be given by (2.21); for the average of the

previous period-t expectations of those revising their beliefs in any small time window

will be et(n), while the expectations that they adopt after reconsidering reconsidering

their beliefs will be e∗t (n).

We suppose that the process of reflection starts from some initial “naive” conjec-

ture about average expectations et(0), and that the differential equations (2.21) are

then integrated forward from those initial conditions. This initial conjecture might

be based on the forecasts that would have been correct, but for the occurrence of

the unusual shock and/or the change in policy that are the occasion for the process

25Note that this is not the only possible interpretation of the equation, as it specifies only a

dynamic process for average beliefs, and not the heterogeneity in beliefs that may exist at each

stage of the process. An alternative interpretation, in which n indexes the Poisson distribution of

discrete “levels of thinking” in the population, is discussed below in section 2.4.
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of reflection about what to expect in light of new circumstances. (One might sup-

pose that but for these changes, the situation would have been a sufficiently routine

one for people to have learned how to accurately forecast the economy’s evolution.)

The process of belief revision might be integrated forward to an arbitrary extent,

but like Evans and Ramey (1992, 1995, 1998), we suppose that it would typically

be terminated at some finite stage n, even if the sequences {e∗t (n)} still differ from

{et(n)}.
By a reflective equilibrium26 we mean a situation in which output, inflation and

the nominal interest rate at some date (here numbered date 0) are determined by

the TE relations, using the average subjective expectations e0(n) at the stage n

at which the belief revision process is terminated.27 We may also refer to the entire

sequence of outcomes in periods t ≥ 0 implied by the TE relations if average subjective

expectations in each period are given by et(n) as representing a reflective equilibrium

of degree n. One should however only expect this entire sequence of outcomes to be

realized on the assumption that the same process of reflection would determine beliefs

and hence actions in each of the subsequent periods; this would make sense only if

one supposes that the assumptions used as inputs to the process of reflection do not

change in later periods in the light of additional observations, or that the process of

reflection is only undertaken once. More generally, one might suppose that at each

date the outcomes result from a process of reflection of the above type undertaken at

that date, starting from an initial conjecture that may have been modified relative

to the one used in previous periods; but here we consider only the beliefs resulting

from a one-time process of reflection, and how similar or not these should be to PFE

26It may be objected that we should not speak of “equilibrium” if there remains a discrepancy

between {e∗t (n)} and {et(n)}; but we use the term in the same way that Hicks and Grandmont refer

to a “temporary equilibrium” (even though the assumed expectations need not be model-consistent).

A reflective equilibrium is a temporary equilibrium in which the subjective expectations from which

decision rules are derived are not arbitrarily specified, but instead result from the process of reflection

just described.
27We could generalize the concept to consider possible TE outcomes resulting from distributions

of subjective expectations in which different members of the population have carried forward the

belief revision process to different degrees, so that there would more generally be a distribution of

values of n, rather than a single value as assumed in the discussion here. Note however that, as

discussed in section 2.4, the reflective equilibrium of degree n defined here can already be viewed

as one in which there is a distribution of different levels of reflection across the population, with n

indicating the mean level of reflection rather than a level common to all individuals.
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beliefs.

A reflective equilibrium of the kind defined here might alternatively be supposed to

arise from prior experience with similar shock/policy scenarios. One might suppose

that the first time such a scenario occurred, people had (on average) the “naive”

expectations specified by the sequence e(0), and that as a result the outcome was the

one implied by the TE relations (2.10) given these beliefs. The next time that people

realize that a similar shock and policy response are occurring, one might suppose

that (in light of the previous experience) average expectations e(1)28 would instead

be some convex combination of the previous expectations e(0) and what turned out

to be correct that time, the sequence e∗ = Ψ(e(0)). Hence the change in expectations

between the first occurrence of the scenario and the second, e(1) − e(0), will be

proportional to the discrepancy Ψ(e(0)) − e(0) Similarly, if on the third occasion

that the same scenario is expected to occur, average expectations e(2) are a convex

combination of average expectations e(1) on the second occasion and what turned

out to be correct that time, then the change e(2) − e(1) will be proportional to

Ψ(e(1))− e(1).

One obtains in this way an adjustment process for expectations that is essentially

a discrete version of the continuous process specified in (2.21). We could on this

ground be interested in whether the process (2.21), or a discretization of it, will

converge eventually to a perfect foresight equilibrium, even if we do not believe that

many people possess the structural knowledge reflected in the Ψ mapping. (In the

adaptive learning dynamics just described, it is the working of the economy that

computes Ψ(e) if average expectations are e; no one in the economy need have been

able to anticipate this through mental calculation.) However, our primary interest

in this paper is in the question of what should happen when an unusual, perhaps

wholly unprecedented, policy commitment is announced; and in such a case, our

concept of a reflective equilibrium is relevant only on the assumption that at least

part of the population can (at least approximately) calculate Ψ(e) on the basis of

their understanding of the economy. But even so, it is important to remember that

(2.21) simply indicates the rate of adjustment of average expectations; a reflective

equilibrium of degree n > 0 is still consistent with part of the population maintaining

the “naive” expectations that they held without any consideration of what the TE

28Here we use e(n) to mean average expectations when there have been n previous occurrences of

the scenario.
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relations should imply.

It should be evident that the proposed concept of reflective equilibrium will not

generally lead to a unique prediction as to how the economy should evolve as a re-

sult of a specific policy commitment; the reflective equilibrium outcome will depend

both on the initial expectations e(0) from which the process of reflection is assumed

to start, and on the stage n at which the process of reflection is assumed to termi-

nate. Nonetheless, if the dynamics (2.21) converge globally (or at least for a large

enough set of possible initial conditions) to a particular PFE, and furthermore con-

verge rapidly enough, then a quite specific prediction will be possible under fairly

robust assumptions. This is the case in which it would be justifiable to use the PFE

(the specific PFE that represents this limit of the process of belief revision) as a pre-

diction for what should happen under the policy commitment in question; for in this

case, a reflective equilibrium will be quite similar to this PFE under a wide range

of assumptions (both a wide range of assumptions about the initial beliefs e(0) and

a wide range of assumptions about the degree n at which the process of reflection

terminates).

We show below that there exist circumstances under which PFE analysis can

indeed be given a justification of this kind; in particular, we show in section 3 that

when policy is expected to conform to a Taylor rule, the belief revision dynamics

converge to a PFE, and more specifically to the FS-PFE defined in (2.15). This

provides not only a justification for the concept of a PFE, but a definite answer to

the question of which of the two-dimensional continuum of PFE solutions to (2.13)

should be viewed as the model’s prediction. However, in cases where the belief revision

dynamics do not converge, or converge only very slowly, we argue that there is little

reason to expect the outcome of a policy to be similar to the prediction of a PFE

analysis.

To be sure, in such cases, the concept of reflective equilibrium will not provide

a precise quantitative prediction, but only indicate a range of possibilities. But

this does not mean that the predictions of a PFE analysis should be considered

“as likely as anything else” to be correct. For even when the analysis of reflective

equilibrium suggests only a range of possibilities, they may all be quite different from

the conclusions that would be obtained from considering the PFE consistent with the

policy in question. We show below that this is true in the case of a commitment to

a fixed interest rate for a long period of time.
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2.4 Related Proposals

The idea that a perfect foresight equilibrium can be obtained as the limit of an itera-

tive process with a logic of the kind proposed above is the basis for an algorithm pro-

posed by Fair and Taylor (1983) for numerical solution for the rational-expectations

equilibrium (REE) of dynamic economic models. Essentially, their method begins

with an initial conjectured sequence e(0) of expectations, and computes an updated

sequence of expectations e(1) = Ψ(e(0)) by solving the model under the conjectured

expectations. This process can be repeated, resulting in a further updated sequence

e(2) = Ψ(e(1)), and so on; the process is continued until one finds that one has a

sequence of conjectured expectations that is close enough to being a fixed point of

the mapping.29 This is essentially a discrete version of the belief-revision dynamics

(2.21). An important difference, of course, is that for Fair and Taylor these dynamics

are simply a way for an econometrician to deduce the predictions of a model that he

wishes to estimate; a failure of the dynamics to converge,30 or to converge quickly

enough, may pose a problem for the econometrician’s ability to draw conclusions, but

is not viewed as affecting the validity of the assumption that the data are generated

in accordance with the REE of an appropriately parameterized model.

An algorithm of this kind is instead proposed as a representation of how equi-

librium is actually determined in the economy, as a consequence of the calculations

upon which people base their decisions, in the “calculation equilibrium” of Evans

and Ramey (1992, 1995, 1998), already mentioned in section 1. Like us, Evans and

29The Fair-Taylor algorithm is actually more complex than this. Because they are interested in

performing actual computations (with only a finite number of operations), they approximate the

forward path of the economy by a sequence that extends only to some finite horizon T . But this

raises the problem that it is only possible to solve a forward-looking model for endogenous variables

out to date T using conjectured expectations that extend farther into the future than date T , and one

cannot get such expectations by numerical solution of the model (under some previous conjecture

about expectations) if one only solves the model out to date T . Their “extended path” method

proposes a way to get around this problem; this complication is not needed in our exposition here,

as we define our updating operation on infinite sequences, even if actual mental operations would

have at best to approximate this.
30Fair and Taylor recognize that their algorithm need not converge. They offer a conjecture that

it “will converge in the class of [RE] models for which the uniqueness conditions hold” (p. 1179)

— that is, when the model has a unique forward-stable solution. In fact, that is just what we find

in the case of the NK model considered here; but this determinacy condition fails in the case of an

exogenous fixed path for the interest rate, as discussed in section 2.2 above.
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Ramey are interested not simply in whether this process would eventually converge

to a PFE, but in how quickly it converges, as they posit that the process should be

terminated after only a few steps owing to “calculation costs” (that they explicitly

model, unlike us). In addition to seeking to endogenize the finite degree of reflection,

their approach differs from ours in considering discrete iterations of the Φ mapping,

rather than a continuous belief revision process (2.21).

A related idea has also been proposed as an explanation of observed behavior in

laboratory experiments with games of full information, under the name of “level-k

thinking” (Stahl and Wilson, 1994, 1995; Nagel, 1995; Crawford et al., 2013). This

model begins by positing a “naive” form of behavior, requiring no strategic reasoning

on the basis of information supplied about others’ payoffs, which is taken to be the

behavior of “level-0” players. “Level-1” players instead use their understanding of

the game to calculate their best action on the assumption that the other players in

the game think like “level-0” players; “level-2” players calculate their best action on

the assumption that the other players think like “level-1” players, and so on.

Under a suitable assumption about the play of “level-0” players, the observed

play of many experimental subjects in multi-player games — when the subjects are

confronting a new situation (they have no experience playing the game) but have had

the rules explained to them (so that they possess the structural knowledge to calculate

the best response to a conjecture about others’ expectations) — is found to correspond

to one or another of these levels of reasoning (most commonly, levels 0, 1, 2 or 3).31

The empirical support for this type of reasoning suggests that one should only expect

an outcome similar to the Nash equilibrium prediction in cases where iteration of

the best-response mapping (the analog of our Ψ mapping above) converges relatively

quickly to the Nash equilibrium. (In fact, the concept has primarily been of interest

31Keynes (1936) famously asserted (with regard to the role of higher-order expectations in invest-

ment decisions) that few investors reason beyond “the third degree, where we devote our intelligences

to anticipating what average opinion expects the average opinion to be,” though “there are some,

I believe, who practice the fourth, fifth and higher degrees” [p. 156]. Arad and Rubinstein (2012)

report that even in the case of a fairly sophisticated population of experimental subjects, and a

game which makes iterated best-response reasoning relatively natural, few if any subjects exhibit a

level higher than 3. (In their preferred model of their experimental data, level-3 thinkers make up

43 percent of the sample, while the mean level of thinking is 2.2.) See Camerer et al. (2004) and

Crawford et al. (2013) for reviews of other empirical evidence as to the levels of thinking observed

in experimental games.
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because of cases in which level-k thinking allows outcomes that remain quite different

from Nash equilibrium play, for low values of k.)

Given the empirical support for level-k thinking in the experimental game theory

literature, as well as the way that belief revision is modeled by Evans and Ramey, it

may be wondered why we do not consider a discrete a sequence of belief revisions,

et(k) = Ψk(e(0)) (2.22)

for integral levels of reasoning k ≥ 0, instead of the continuous process (2.21). While

this would lead to conclusions somewhat like those that we obtain, we prefer the

continuous model of belief revision for several reasons. One is that we are concerned

with average beliefs about average beliefs about . . . , in an economy made up of very

many individuals reflecting individually about what to do. Even if we suppose that

each individual is a level-k thinker for some integral value of k, there is no reason to

assume that everyone in the economy should carry the process forward for exactly the

same number of stages. And a reflective equilibrium of degree n, as we have defined

it, is observationally equivalent to an economy made up of level-k thinkers, under a

particular population distribution of the levels of thinking.

The linear system (2.21) can be integrated forward from the given initial condition

e(0) to obtain

e(n) = exp[n(Ψ− I)] e(0) (2.23)

where I is the identity operator (mapping an infinite sequence e into itself) and the

exponential of a linear operator A is defined as32

exp[A] ≡
∞∑
k=0

Ak

k!
. (2.24)

It follows that we can write

e(n) =
∞∑
k=0

sk(n) e(k)

where

sk(n) ≡ e−n
nk

k!

32See, for example, Hirsch and Smale (1974), pp. 82-87.
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for each integer k ≥ 0, and e(k) refers to the “level-k” expectations defined in (2.22).

Moreover, for any n, the {sk(n)} are a sequence of positive weights that sum to 1,

corresponding to a Poisson distribution with parameter n.

Hence a reflective equilibrium of degree n involves the same average expectations,

and hence the same temporary equilibrium outcomes for output, inflation and interest

rates, as a model in which fraction sk(n) of the population is made up of level-k

thinkers, for each k ≥ 0. In this interpretation, the degree of reflection n indexes

a one-parameter family of possible distributions of “levels of thinking” in the sense

proposed in the “level-k” literature, and the continuous variable n indicates the mean

“level of thinking” in the population.33 However, our model does not require that

we assume that all (or any) members of the population have beliefs corresponding

exactly to one of those in the sequence (2.22); for example, we might suppose that

most (or all) people conjecture that the rest of the economy is made up of a non-

degenerate distribution of different levels of thinking, as proposed by Camerer et al.

(2004).34

Consideration of the continuous process (2.21) rather than a discrete sequence

of progressively higher levels of thinking defined by (2.22) also avoids a technical

problem with the latter progression as a way of modeling convergence to PFE. It

is possible for the mapping Ψ to be such that the sequence of progressively revised

beliefs {e(k)} defined by (2.22) will fail to converge as k is made large, owing to

the existence of a negative eigenvalue of absolute value greater than one, resulting

in explosive oscillations.35 Expectations of high inflation at one level of thinking

result in expectations of low inflation at the next level, which result in expectations

of still higher inflation at the following level, which result in expectations of still lower

33The use of a Poisson distribution to characterize the distribution of “levels of thinking” by a

single parameter has been proposed in the experimental game theory literature by Camerer et al.

(2004), though they also define the discrete “levels of thinking” in a different way than is standard

in the “level-k” literature.
34Note that the interpretation of (2.21) suggested above, in the text immediately following the

equation, is one in which at each stage n of the belief-revision process, not only is there a non-

degenerate distribution of degrees of reflection across the population, but most members of the

population have expectations that reflect an assumption that the beliefs of others involve a non-

degenerate distribution of degrees of reflection. We do not present a formal analysis of this “cognitive

hierarchy,” as we are here concerned solely with the aggregate dynamics predicted by our model.
35We discuss in the Appendix how this problem can arise, for certain numerical parameter values,

in the context of the model treated in this paper.
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inflation at the level after that . . . .

In our view, the possibility of oscillations of this kind should not constitute a

reason to find it unlikely that people would arrive at PFE beliefs even if able to carry

out a very long chain of reasoning about others’ likely beliefs. For the instability

indicated by the explosive sequence requires a very rigid and implausible kind of

reasoning: one must first entertain the belief that everyone else is exactly a level-9

thinker, and then pass from this to the conclusion that really everyone else should

be exactly a level-10 thinker, and so on, even though the extreme conjecture at

each stage of the reasoning has implications quite different from the one before.

Assuming instead a continuous revision of average beliefs (which may be interpreted as

a continuous shift in the population fractions that stop at different levels of thinking)

avoids this possibility — though as we shall see, it still allows for belief revision

dynamics that may fail to converge (for reasons that are less fragile).

Our continuous process of belief revision (2.21) is also closely related to the con-

cept of expectational stability (or “E-stability”) analyzed by Evans and Honkapohja

(2001). Evans and Honkapohja classify rational-expectations equilibria as E-stable or

not through an analysis of the properties of a mapping that associates with each of

a class of a possible “perceived laws of motion” (on the part of the decisionmakers in

some economic model) the “actual law of motion” for endogenous variables that will

result from the expectations implied by that perceived law of motion. The key to their

analysis is thus a mapping from a parametric specification of subjective beliefs to the

corresponding specification of beliefs that would be correct if people generally act on

the basis of the subjective beliefs, like our Ψ mapping. They then posit a differential

equation for the adjustment of subjective beliefs (specifically, of the parameters of

the “perceived law of motion”) similar to (2.21), and say that an REE (a fixed point

of the Ψ mapping) is “E-stable” if and only if the posited dynamics converge to it

starting from arbitrary initial beliefs. The analysis of E-stability is proposed as a

criterion to distinguish REE that could arise as the outcome of a learning process

from ones that one should not expect to arise.

Our approach differs somewhat from theirs in that we prefer to map subjective

expectations into the expectations that would be correct if people acted upon the

subjective expectations, rather than mapping a subjective description of the process

generating the data into the description that would be correct if people’s forecasts

were based on the subjective description; but while we think that our approach
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has advantages,36 it makes little difference for the conclusions obtained. The more

important difference is that we parameterize beliefs in terms of sequences that describe

people’s beliefs about different horizons, instead of assuming that the dynamics can

be described by a Markov process with only a finite number of parameters. This

in turn means that our process is more easily interpreted as a process of prospective

calculation by decisionmakers before they observe what actually happens, rather than

a process of learning from experience. Except for this, our analysis of the convergence

of reflective equilibrium to a PFE poses essentially the same question as Evans and

Honkapohja consider when they determine whether such an equilibrium is E-stable.

Our convergence analysis is even more closely related to Guesnerie’s (1992, 2008)

consideration of the “eductive stability” of REE. Instead of assuming that only the

REE of a given model (including the specification of policy) is a relevant prediction

of the model, Guesnerie proposes that one should consider the entire set of outcomes

that are rationalizable, in the sense that the outcome could result from optimizing

behavior under some specification of expectations regarding the economy’s evolution,

which expectations are for outcomes that could result from optimizing behavior under

still other specifications of expectations, which other expectations are for outcomes

that could result from optimizing behavior, and so on.37 The question whether a given

outcome can be rationalized by progressively higher-order specifications of beliefs

belonging to some admissible set M is essentially a question whether the outcome

can be generated by beliefs that remain within the image of M under progressively

higher-order iterations of the mapping Ψ; hence the question of “eductive stability”

is essentially a question about whether the sequence defined by (2.22) converges to

a given PFE for all initial beliefs e(0) drawn from an admissible set. This in turn

is closely related to (though not identical to) the question of convergence of the

continuous process (2.21).

Like ours, Guesnerie’s analysis considers whether an REE should be the outcome

of a process of reflection based on knowledge of the model of the economy (including

a rule that specifies policy). The most important difference from our analysis is his

36We need only describe subjective beliefs in terms of the evolution of two variables per period,

the two summary measures of expectations that matter, rather than having to describe the evolution

of the three variables per period that matter for people’s decision problems.
37This line of analysis was originated by Phelps (1983). See Woodford (2013) for further discussion

of the proposal, and its application to an NK model of the kind assumed in this paper.
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consideration of belief specifications that result from repeated application of the Ψ

mapping, rather than from integration of the continuous process (2.21). As discussed

above, this discrete form of the belief revision process converges for a smaller range

of parameter values, making “eductive stability” more elusive. But we believe that

Guesnerie’s criterion admits too large a set of rationalizable outcomes: it does not

seem likely that people capable of a high level of reflection should expect a higher

rate of inflation than the PFE rate, if this is rationalizable only by a conjecture that

most other people are expecting a lower rate of inflation than PFE rate, which would

in turn be consistent with their rationality on the supposition that most of them

expect most other people to expect a higher rate than the PFE rate, and so on, with

the bias changing sign in a precisely choreographed way at each higher stage.38 Our

own proposed criterion implies in such a case that if the average level of reflection is

high enough, the economy’s evolution should not be too different from the FS-PFE

prediction.

3 Convergence of Reflective Equilibrium to

Perfect Foresight: The Case of a Taylor Rule

Here we show that under some circumstances, the PFE analysis (with a correct

equilibrium selection) can be justified as an approximation to a reflective equilibrium,

and that (for some parameter values) the degree of reflection required to approach

the PFE outcome need not even be too large. The case that we consider is that in

which monetary policy is expected to be specified by a Taylor-type rule of the form

(2.8), where the response coefficients φπ, φy are assumed to be constant over time,

though we allow a time-varying path for the intercept {ı̄t}. The allowance for time-

variation in the intercept allows us to analyze policy experiments in which there may

be a commitment to conduct a “looser” policy for a specified period of time, before

returning to the central bank’s normal reaction function; but here the temporary

loosening of policy is understood as a temporary reduction of the intercept (or a

temporary increase in the implicit inflation target), while the endogenous responses

38Guesnerie’s (2008) conclusion that the PFE is not eductively stable in the case of monetary

policy specified by a Taylor rule, except for a narrow range of possible parameter values, depends

on oscillating constructions of this kind.
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to variations in inflation in output remain the same. We further assume that these

endogenous responses satisfy (2.14), so that there is a unique bounded PFE solution

in the case of any bounded sequences {gt, ı̄t}, given by (2.15).39

We assume in this section that under the reflective equilibrium dynamics, the zero

lower bound never binds, so that it is in fact feasible for the central bank’s interest-rate

target to satisfy (2.8) at all times. This is not an “equilibrium selection” assumption,

since for each value of n, reflective equilibrium is uniquely defined. It is, however, an

assumption that both the disturbances to fundamentals {ωt} and subjective beliefs

{et(n)} involve small enough departures from the long-run steady state (the values

of the state variables around which we have log-linearized our model) for the interest

rate implied by the TE relations (including the policy specification (2.8)) to always

be non-negative.

This will be unproblematic in the case of small enough disturbances, and small

enough differences between initial expectations and those consistent with the long-run

steady state, if the belief-revision dynamics (2.21) remain forever bounded. (Since

the system is linear, the bound on the distance between beliefs and steady-state

beliefs will be proportional to the magnitude of the perturbations of fundamentals

and of initial beliefs, so that one can ensure any desired bound — in particular, one

that implies that the ZLB is never violated — by choosing a small enough bound on

those perturbations.) We show below that for the kind of policy considered in this

section, the belief-revision dynamics are indeed bounded for all n. Hence the analysis

in this section applies as long as the shock to the economy, the policy response to

it, and any associated shift in the initially conjectured expectations are all small

enough departures from the long-run steady state. We defer until the next section

consideration of the case in which a large shock causes the ZLB to constrain policy

for some period of time.

3.1 Exponentially Convergent Belief Sequences

Our results on the convergence of reflective equilibrium as the degree of reflection

increases depend on starting from an initial (“naive”) conjecture that is sufficiently

well-behaved as forecasts far into the future are considered. We shall say that a

39Note that any bounded sequence {gt} uniquely determines a bounded sequence {ρt}, given by

ρt = σ−1[gt − βgt+1].
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sequence {xt} defined for all t ≥ 0 “converges exponentially” if there exists a finite

date T̄ (possibly far in the future) such that for all t ≥ T̄ , the sequence is of the form

xt = x∞ +
K∑
k=1

akλ
t−T̄
k , (3.1)

where x∞ and the {ak} are a finite collection of real coefficients, and the {λk} are

real numbers satisfying |λk| < 1. This places no restrictions on the behavior of the

sequence over any finite time horizon, only that it converges to its long-run value in

a sufficiently regular way. We shall similarly say that a vector sequence such as {et}
converges exponentially if this is true of each of the individual sequences (elements

of the vector).

We shall consider only the case in which the initial belief sequence {et(0)} con-

verges exponentially. This amounts to an assumption that these “naive” beliefs are

of a sufficiently simple form, as respects what is anticipated about the very dis-

tant future. Note that the TE relations (2.9)–(2.10) imply that if the sequence of

fundamentals {ωt} converges exponentially, and a conjecture {et} regarding average

subjective expectations converges exponentially as well, then the correct expectations

{e∗t} implied by this conjecture also converge exponentially. Thus if people start from

an initial conjecture about others’ average expectations that converges exponentially,

they should be led by reflection to beliefs that also have this property. Thus the

operator Ψ maps exponentially convergent belief sequences into exponentially con-

verging belief sequences, and any finite number of iterations will similarly lead to

exponentially convergent beliefs.40 Hence our assumption of an initial conjecture

that converges exponentially does not preclude an initial conjecture that may reflect

some degree of sophistication; it might, for example, be based on the paths that en-

dogenous variables were observed to take on some previous occasion when there was

a shift in fundamentals described by series that converged exponentially.

40The conclusion requires that the sequence of fundamentals also converges exponentially, but this

is a relatively innocuous assumption. It will be satisfied, for example, if the shock (and associated

policy change) that create the situation that we wish to analyze have implications after some finite

horizon (possibly far in the future) that converge to long-run values with dynamics that can be

described by a stable autoregressive process with real roots.
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3.2 Reflection Dynamics

We now consider the adjustment of the sequence {et(n)} describing subjective beliefs

as the process of reflection specified by (2.21) proceeds (that is, as n increases),

assuming that fundamentals {ωt} converge exponentially and that the initial “naive”

conjecture {et(0)} converges exponentially as well. Then there exists a finite date T

after which all four sequences (both elements of {ωt} and both elements of {et(0)})
have the form (3.1). There is furthermore a finite set of growth factors {λk} such

that all four sequences can be written in the form (3.1) using the same values {λk}
for each of the series.

Thus all four sequences must belong to the linear space L, consisting of all se-

quences that take the form (3.1) for all t ≥ T̄ , where the value of T̄ , the value of K,

and the values {λk} are part of the definition of L. Note that L is a finite-dimensional

linear space (specifically, one of dimension T̄ +K + 1), the elements of which can be

parameterized by specifying {xt} for 0 ≤ t ≤ T̄ − 1, {ak} for 1 ≤ k ≤ K, and x∞. We

shall similarly let L2 ≡ L × L denote the linear space of vector sequences {et} such

that both elements are sequences in L.

The TE relations (2.9)–(2.10) imply that if both fundamentals {ωt} and a conjec-

ture {et} about average beliefs belong to L2, then the implied correct expectations

{e∗t} belong to L2 as well. The dynamics (2.21) then remain forever within the finite-

dimensional linear space L2 if one starts from an initial conjecture {et(0)} in L2.

Our study of the dynamics implied by (2.21) then reduces to the study of a linear

differential equation system on a finite-dimensional vector space, that we can write

in the form

ė(n) = V e(n) +W ω. (3.2)

Here e(n) and ω are vectors of length 2(T̄ + K + 1), that parameterize elements of

L2 (i.e., that specify the weights on 2(T̄ + K + 1) basis vectors for that space), and

V and W are square matrices of that same dimension.

We show in the Appendix that if the central bank’s reaction function satisfies the

Taylor Principle (2.14), each of the 2(T̄ + K + 1) eigenvalues of the matrix V has a

negative real part. This implies that V must be non-singular, and the system (3.2)

has a unique fixed point, given by

ePF ≡ −V −1W ω. (3.3)
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Any such fixed point must correspond to a PFE solution of the model, as defined in

section 2.2 above, though the converse is not true: only PFE solutions that belong to

the finite-dimensional space L2 will be fixed points of the reduced-dimension system

(2.21). The unique PFE of this kind corresponds to the FS-PFE defined by (2.15).

The general solution of the linear system of differential equations (3.2) can then

be written in the form

e(n) = ePF + exp(nV ) [e(0)− ePF ] (3.4)

for all n ≥ 0.41 Furthermore, the fact that each of the eigenvalues of V has a negative

real part implies that

lim
n→∞

exp(nV ) = 0,

a matrix that is zero in all its elements. This yields the following important conclu-

sion.

Proposition 1 Consider the case of a shock sequence {gt} that converges exponen-

tially, and let the forward path of policy be specified by a sequence of reaction functions

(2.8), where the coefficients (φπ, φx) are constant over time and satisfy (2.14), and

the sequence of perturbations {ı̄t} converges exponentially. Then in the case of any

initial conjecture {et(0)} regarding average expectations that converges exponentially,

the belief revision dynamics (2.21) converge as n grows without bound to the belief

sequence {ePFt } associated with the FS-PFE.

The implied reflective equilibrium paths for output, inflation and the nominal in-

terest rate similarly converge to the FS-PFE paths for these variables. This means

that for any ε > 0, there exists a finite n(ε) such that for any degree of reflection

n > n(ε), the reflective equilibrium value will be within a distance ε of the FS-PFE

prediction for each of the three variables and at all horizons t ≥ 0.

Further details of the proof are given in the Appendix.

This result has several implications. First, it shows how a PFE can arise through

a process of reflection of the kind proposed in section 2.3 above. But further, it

indicates that only one of the two-dimensional continuum of solutions to the difference

equations (2.13) represents a PFE that can be reached in this way, at least if we accept

the reasonableness of starting from an initial conjecture that is well-behaved in the

41See, for example, Hirsch and Smale (1974), pp. 89-97.
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sense assumed in the proposition.42 Thus it provides a justification for selecting the

FS-PFE as the relevant perfect-foresight prediction of the model, if by such an exercise

we understand the “perfect foresight” prediction to actually mean the limiting case

of a reflective equilibrium, in which the degree of reflection is unboundedly large.

Proposition 1 also shows that the proposal to use reflective equilibrium, as defined

above, as one’s prediction of what should happen under a given policy need not mean

that one cannot obtain predictions of any precision. In the case considered here, the

reflective equilibrium predictions are quite similar, for all sufficiently large values of n,

rather than depending on the precise value of n that is assumed. They are also similar

(in the case of a large enough degree of reflection) regardless of the initial conjecture

that is assumed, as long as the initial conjecture is not extremely distant from the

beliefs associated with the long-run steady state, and the initial conjecture regarding

beliefs about the distant future is well-behaved in the specified sense. Finally, in this

case where the concept of a reflective equilibrium with a relatively high degree of

reflection leads to a sharply-defined prediction, we see that the FS-PFE provides a

useful approximation to that prediction; the accuracy of this approximation should

be greater the greater the degree of reflection that one assumes.

These conclusions refer to the predictions obtained from the theory of reflective

equilibrium in the case that n is “large enough”; an obvious question is how large

n must be for reflective equilibrium to resemble the FS-PFE. The answer to this

will depend on parameter values; but at least in some cases, the required degree of

reflection may not be implausibly large. We illustrate this by considering a numerical

example.

Figure 1 considers an experiment in which the intercept ı̄t is lowered for 8 quarters

(periods t = 0 through 7 of the quarterly model), but is expected to return to its

normal level from quarter 8 onward. The policy to which the central bank returns in

the long run is specified in accordance with Taylor (1993): the implicit inflation target

π∗ is 2 percent per annum, and the reaction coefficients are φπ = 1.5, φy = 0.5/4.43

The model’s other structural parameters are those used by Denes et al. (2013),

42This includes, for example, the “naive” hypothesis that people’s expectations should be unaf-

fected by either the shock that has occurred or the resulting change in policy. This is the specific

initial hypothesis assumed in the numerical illustrations below.
43The division of φy by 4, relative to the value quoted by Taylor (1993), reflects the fact that

periods in our model are quarters, so that it and πt in (2.8) are quarterly rates rather than the

annual rates used in Taylor’s formula.
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to show that the ZLB can produce a contraction similar in magnitude to the U.S.

“Great Recession,” in the case of a shock to the path of {gt} of suitable magnitude

and persistence: α = 0.784, β = 0.997, σ−1 = 1.22, and ξ = 0.125.44 Among other

things, these imply a long-run steady-state value for the nominal interest rate of 3.23

percent per annum.45

We assume that ı̄t is reduced by 0.008 (in quarterly units) for the first 8 quarters;

this is the maximum size of policy shift (given the above parameters) for which the

ZLB does not bind in the reflective equilibria associated with any degree of reflection

n ≥ 0.46 In computing the reflective equilibria shown in Figure 1, we assume an initial

“naive” conjecture under which expectations continue to be those that are correct in

the steady state with 2 percent inflation. Finally, for simplicity we consider only a

pure temporary loosening of monetary policy, not motivated by any real disturbance

(so that gt = 0 for all t). Because our model is linear, we can separately compute the

perturbations of the steady-state paths of all variables implied by a pure monetary

policy shift (assuming no real disturbance and no change in the initial conjecture),

the perturbations implied by a real disturbance (assuming no change in monetary

policy and no change in the initial conjecture), and the perturbations implied by a

change in the initial conjecture (assuming no real disturbance or change in monetary

policy), and sum these to obtain the predicted effects of a scenario under which a

real disturbance provokes both a change in monetary policy and a shift in the initial

conjecture.47 In the figure, we isolate the pure effect of an announced loosening of

44We do not pretend to offer a quantitatively realistic analysis of alternative policies that should

have been available during the Great Recession; our goal in this paper is purely to explicate the

conditions under which perfect foresight analysis of monetary policy commitments makes a greater

or lesser amount of sense. The parameter values proposed by Denes et al. are of interest as a

case in which an expectation of remaining at the ZLB for several quarters has very substantial

effects — and in which, more generally, monetary policy anticipations have large effects — under a

rational-expectations analysis. It is in this sort of case that it matters most exactly how one models

expectation determination.
45This means that the intercept of the central-bank reaction function assumed in the long run

is smaller here than in Taylor (1993); we assume the value that (in our model) is consistent with

achievement of the 2 percent inflation target in the long-run steady state.
46As shown in Figure 1, the shock results in a zero nominal interest rate in each of the first 8

quarters, when n = 0. In quarter 7, the nominal interest rate is also zero for all n ≥ 0 (and also

in the FS-PFE), since the belief-revision dynamics do not change expectations regarding any of the

periods from t = 8 onward.
47Of course, in order for the ZLB not to bind in the reflective equilibria, one must bound the
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1 Change in constant Taylor Rule for fixed period

1.1 Evolution Expectations: Graph 1 together

Figure 1: Change in ω: T = 8, n = 0 − 4
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Figure 1: Reflective equilibrium outcomes for n = 0 through 4 (progressively darker

lines) compared with the FS-PFE solution (dash-dotted line), when the Taylor-rule

intercept is reduced for 8 quarters.

monetary policy, to last for a known length of time.

The three panels of the figure show the TE paths of output, inflation and the

nominal interest rate,48 in reflective equilibria corresponding to successively higher

cumulative impact of each of these three perturbations. For example, it will not be possible to loosen

policy (reduce the intercept of the policy reaction function) by as much as is assumed in Figure 1 if

a shock has occurred that also lowers gt. Indeed, a sufficiently sharp temporary reduction in gt may

require the intercept of the monetary policy reaction function to be raised in order for the ZLB not

to make implementation of the reaction function (2.8) infeasible.
48Here yt is measured in percentage points of deviation from the steady-state level of output:

for example, “2” means 2 percent higher than the steady-state level. The variables πt and it are

reported as annualized rates, and the units are again percentage points; thus “2” means two percent

per annum. Note that in this and all later figures, yt is reported as a log deviation from steady-state
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degrees of reflection. The lightest of the solid lines (most yellow, if viewed in color)

corresponds to n = 0; these are the outcomes that are expected to occur under

the “naive” conjecture about average expectations (namely, that these do not take

account of the policy shift at all), but taking account of the announced change in

the central bank’s behavior in the TE analysis under those expectations. (Thus the

n = 0 paths do not represent the naive beliefs, but rather the paths that it would

be correct to expect, if people on average hold the naive beliefs.) The relatively

aggressive reduction in the interest rate has some stimulative effect on output even

in the absence of any change in expectations, but this effect is the same in each of

the first 8 quarters; the effect of the loosening of policy is the same, regardless of the

number of additional quarters for which the loose policy will continue.

As n increases, the effects on output and inflation become greater in quarters zero

through 6; and the extent to which this is so is greater, the larger the number of

quarters for which the looser policy is expected to continue. There are no changes

in the expected paths from quarter 8 onward, as n increases; this is because we have

assumed reversion to the long-run steady-state policy in quarter 8, and the initial

“naive” conjecture already corresponds to a PFE from quarter 8 onward, so that

beliefs do not change as n increases.49 There are similarly no changes in the expected

outcomes in quarter 7, because quarter 7 expectations about later quarters do not

change, in the absence of any outcomes different from those expected in any of those

later quarters. However, the fact that outcomes are different in quarter 7 and earlier

than those anticipated under the “naive” expectations causes beliefs to be revised

in quarters 6 and earlier. As expectations shift toward expecting higher output and

inflation in one or more later periods, the TE levels of output and inflation in the

earlier quarters increase (and the nominal interest rate increases as well, through an

endogenous policy reaction). This effect is greater the larger the number of future

quarters about which expectations of output and inflation are revised upward.

The progressively darker solid lines in the figure plot the reflective equilibrium

outcomes for degrees of reflection n = 0, 0.4, 0.8, and so on up to n = 4.0. The FS-

PFE paths are also shown by dark dash-dotted lines. One sees from the figure that

output, as in the model equations, but πt and it in the figures are shown in absolute terms, not as

deviations from the steady-state values of these variables.
49Because the model is purely forward-looking, revisions of expectations about earlier periods

have no effects on equilibrium determination from period 8 onward.
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the reflective equilibrium paths converge to the FS-PFE solution as n increases, in

accordance with Proposition 1. Moreover, the convergence is relatively fast, for this

kind of policy experiment. Already when n = 2, the predicted reflective equilibrium

responses for both output and inflation differ from the PFE responses by less than

10 percent (in fact, by less than 7.5 percent) in any quarter. This means that if

the average member of the population is expected to be capable of iterating the Ψ

mapping at least twice,50 one should predict outcomes approximately the size of the

PFE outcomes. When n = 4, the reflective equilibrium output responses differ from

the PFE outcomes by only 1 percent or less, and except in quarter zero (when the

discrepancy is closer to 2 percent), the same is true of the inflation responses.

Higher degrees of reflection would only make the FS-PFE prediction even more

accurate. This provides a good example of the kind of situation in which, in our

view, a perfect foresight equilibrium analysis of the effects of a monetary policy

commitment can make sense. Note that is specifically the FS-PFE, rather than any

other solution to the difference equations (2.13), that provides a good approximation

to a reflective equilibrium (as long as n is not extremely low). This provides an answer

to the question raised by Cochrane (2011) about the justification of appealing to the

FS-PFE in monetary policy analysis.

3.3 Effects of a Policy Change Far in the Future

The paradox posed in section 1 involves arguments about the effects of an expectation

that policy will be changed permanently, rather than for only a few quarters as

in Figure 1, and questions about how much it can matter what is assumed about

policy extremely far in the future. Here we consider these issues in the case of the

class of policies discussed above, where (temporary or permanent) policy changes are

understood simply to involve changes in the intercept of the monetary policy reaction

50Here it is worth recalling that Arad and Rubinstein (2012) find that their subjects have a mean

“level of thinking” of 2.2. Camerer et al. (2004), however, conclude that “an average of 1.5 steps

[of iterated best response] fits data from many games” [p. 861]. It should be noted that these

experimental results relate to subjects’ play in one-shot games, where the strategic considerations

have been explained to the players, but they have no experience on the basis of which to calculate

their best action. One might expect that the realistic mean (effective) degree of reflection n will be

higher in cases where people have some degree of prior experience with the policy regime in question,

as discussed further in section 3.4.
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function.

For the sake of specificity, we consider the following special class of policy ex-

periments. Suppose that ı̄t is expected to take one value (̄ıSR) for all t < T, and

another value (̄ıLR) for all t ≥ T. (The policy experiment considered in Figure 1 is

one example of a policy in this class, with ı̄SR < 0, ı̄LR = 0, and T = 8. In this more

general discussion, we again assume that both ı̄SR and ı̄LR are high enough that the

ZLB never binds.) How does the effect of such a policy commitment vary depending

on the choice of the horizon T? In particular, should the effect be similar for all large

enough values of T?

As in the case considered in Figure 1, we consider the effects of a pure policy

change, assuming gt = 0 for all t and an initial “naive” conjecture in which average

expectations are consistent with the steady state in which the inflation target π∗ is

achieved at all times.51 Because our model is purely forward-looking, and ı̄t, gt, and

et(0) are each the same for all t ≥ T, it is easy to see that the belief-revision dynamics

(2.21) result in et(n) having the same value for all t ≥ T. Let this value be denoted

eLR(n). We see that it must evolve according to

ėLR = [M − I] eLR + m2 ı̄LR (3.5)

starting from the initial condition eLR(0) = 0, where m2 is the second column of the

matrix m in (2.10).

Let us suppose that the quantity on the left-hand side of (2.14) is not exactly

equal to 1;52 in this case we can show (see the Appendix) that M − I is non-singular.

The solution to (3.5) is then easily seen to be53

eLR(n) = [I − exp[n(M − I)]] ēPFLR (3.6)

for all n ≥ 0, where

ēPFLR ≡ [I −M ]−1m2 ı̄LR (3.7)

51As in the case discussed above, we can determine the effect of varying the length T of the policy

commitment in the case of a given real disturbance (represented by a sequence {gt}) by summing

the effect of the pure policy change (computed here as a function of T ) and the effect of the real

disturbance in the absence of any policy change (which will be independent of T ).
52Note that this condition is satisfied by generic reaction functions of the form (2.8) whether the

Taylor Principle is satisfied or not. Hence we do not discuss the knife-edge case in which M − I is

singular, though our methods can easily be applied to that case as well.
53See, for example, Hirsch and Smale (1974), p. 90.
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is the unique rest point of the dynamics (3.5).

Note that ēPFLR is also the stationary vector of average expectations associated with

the unique PFE steady state, in the case that the policy ı̄t = ı̄LR is expected to be

maintained forever. If the reaction coefficients (φπ, φy) satisfy the Taylor Principle

(2.14), then (as shown in the Appendix) both eigenvalues of M−I have negative real

part, and

lim
n→∞

exp[n(M − I)] = 0. (3.8)

It then follows from (3.6) that

lim
n→∞

eLR(n) = ēPFLR ,

so that the reflective equilibrium in any period t ≥ T converges to the PFE steady

state associated with the long-run policy (which is also the FS-PFE solution for this

policy). This is of course as we should expect from Proposition 1.

We turn now to the characterization of reflective equilibrium in periods t < T. The

forward-looking structure of the model similarly implies that the solution for et(n)

depends only on how many periods prior to period T the period t is, and not on the

dates of either t or T . If we adopt the alternative numbering scheme τ ≡ T − t (i.e.,

we number periods according to the number remaining until the shift to the long-run

policy), then the solution for eτ (n) for any τ ≥ 1 will be independent of T . Moreover,

in terms of this notation, the belief-revision dynamics (2.21) can be written in the

form

ėτ (n) = −eτ (n) +
τ−1∑
j=1

[ψjeτ−j(n) + ϕj2ı̄SR] +
∞∑
j=τ

[ψjeLR(n) + ϕj2ı̄LR]

for each τ ≥ 1, where ϕj2 is the second column of the matrix ϕj. These dynamics can

equivalently be written in the form

ėτ (n) = −eτ (n) + (I − Λ)
τ−1∑
j=1

Λj−1 [Meτ−j(n) + m2ı̄SR]

+ Λτ−1 [MeLR(n) + m2ı̄LR], (3.9)

and integrated forward from the initial conditions eτ (0) = 0 for all τ ≥ 1, using

solution (3.6) for eLR(n).
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We observe that for τ = 1, the linear differential equation (3.9) can be solved

uniquely for the function e1(n), given that eLR(n) is already known. Then the equa-

tion for τ = 2 can be solved uniquely for the function e2(n), given that e1(n) and

eLR(n) are already known; and proceeding recursively in this way, one can solve

uniquely for the {eτ (n)} for all values of τ up to any given bound T (corresponding

to the initial period t = 0). In this way, we obtain a unique solution for et(n) for all

t ≥ 0.

Note further that considering how et(n) changes (for any fixed t) as T is increased

is equivalent to considering how the solution to the system of differential equations

(3.9) changes for progressively larger values of τ . In particular, the behavior of et(n)

as T is made unboundedly large can be determined by calculating the behavior of the

solution to the system (3.9) as τ →∞. This yields the following simple result.

Proposition 2 Consider the case in which gt = 0 for all t, and let the forward path

of policy be specified by a sequence of reaction functions (2.8), where the coefficients

(φπ, φx) are constant over time and such that the left-hand side of (2.14) is non-zero,

and suppose that ı̄t = ı̄SR for all t < T while ı̄t = ı̄LR for all t ≥ T. Then if the initial

conjecture is given by et(0) = 0 for all t, the reflective equilibrium beliefs {et(n)} for

any degree of reflection n converge to a well-defined limiting value

eSR(n) ≡ lim
T→∞

et(n)

that is independent of t, and this limit is given by

eSR(n) = [I − exp[n(M − I)]] ēPFSR , (3.10)

where

ēPFSR ≡ [I −M ]−1m2 ı̄SR. (3.11)

The reflective equilibrium outcomes for output, inflation and the nominal interest rate

then converge as well as T is made large, to the values obtained by substituting the

beliefs eSR(n) into the TE relations (2.10) and the reaction function (2.8).

The proof is given in the Appendix. This result implies that our concept of re-

flective equilibrium, for any given degree of reflection n, has the intuitively appealing

property that a commitment to follow a given policy (a given intercept for the reaction
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function, or a given implicit inflation target) for a time horizon T has similar conse-

quences for all large enough values of T ; moreover, for any large enough value of T ,

the policy that is expected to be followed after date T has little effect on equilibrium

outcomes. Comparison of expressions (3.10)–(3.11) with (3.6)–(3.7) also shows that

the predicted outcomes in the case of any long enough horizon T for maintenance of

the “temporary” policy are close to the predicted outcomes (under a reflective equi-

librium with the same degree of reflection n) in the case that the policy is expected to

be permanent. In the case of policies in the class considered here, there is no relevant

difference between a commitment to a given reaction function for a long but finite

time and a commitment to follow the rule forever.

Next, we consider how the reflective equilibrium prediction in the case of a long

horizon T changes as the degree of reflection n increases. If the coefficients (φπ, φy)

satisfy the Taylor Principle (2.14), then (3.8) implies that as n is made large,

lim
n→∞

eSR(n) = ēPFSR .

Moreover, the beliefs ēPFSR defined in (3.11) are simply the steady-state PFE beliefs

(or FS-PFE beliefs) in the case of a permanent commitment to the reaction function

(2.8) with ı̄t = ı̄SR. Thus we obtain the following result.

Proposition 3 Suppose that in addition to the hypotheses of Proposition 2, the co-

efficients (φπ, φy) satisfy the Taylor Principle (2.14). Then the limits

lim
n→∞

lim
T→∞

et(n) = lim
n→∞

eSR(n) = ēPFSR

and

lim
T→∞

lim
n→∞

et(n) = lim
T→∞

ePFt = ēPFSR

are well-defined and equal to one another. Moreover, both are independent of t, and

equal to the FS-PFE expectations in the case of a permanent commitment to the

reaction function (2.8) with ı̄t = ı̄SR.

Proposition 3 identifies a case in which the thought experiment of considering the

PFE consistent with a permanent commitment to a given policy rule does not lead

to paradoxical conclusions. Not only does the question have a unique, well-behaved

answer (if one selects the FS-PFE solution, as is conventional in the NK literature),

but this answer provides a good approximation to the reflective equilibrium outcome
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1.2 Evolution Expectations: Graph 2

Figure 2: Change in ω: T = 200, n = 0 − 20
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Figure 2: Reflective equilibrium outcomes for n = 0 through 20 (progressively darker

lines) compared with the FS-PFE solution (dash-dotted line), when the Taylor-rule

intercept is reduced for 200 quarters.

in the case of any large enough degree of reflection n and any long enough horizon T

for maintenance of the policy.

Figure 2 provides a numerical illustration of these results. The policy experiment

is the same as in Figure 1, as are the assumed numerical parameter values, except

that in Figure 2 the commitment to the intercept ı̄ < 0 is expected to last for 50

years. (This is not forever, but it should already be evident from the figure that

further increases in the length of the commitment will make little difference in the

predicted outcomes over the first decade or two of the commitment to looser policy;

consideration of a finite value of T makes it still possible to show how the reflective

equilibrium outcomes change for smaller values of τ , so that the results for all values of
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T of 50 years or less can be shown in a single figure.) Again the reflective equilibrium

paths are shown for progressively higher values of n.54 The figure shows not only

the convergence of the reflective equilibrium outcomes for all three variables as T is

made large, for each of the possible values of n, but also the convergence of reflective

equilibrium to the FS-PFE predictions, for each of the possible values of τ (and hence

for each possible value of T ). Not only is eτ (n) close to ePFτ for all large enough n in

the case of any single value of τ , but there exists a value of n for which eτ (n) is close

to ePFτ for all τ (and hence for all possible commitment lengths T ).

While a calculation of the FS-PFE implied by a permanent commitment to a

Taylor rule clearly represents a meaningful limiting case, one can not necessarily con-

clude that it should provide a good quantitative prediction about the effects of a

policy change that is expected to be long-lasting. Figure 2 shows that (for the pa-

rameter values assumed) the FS-PFE provides a good approximation to the reflective

equilibrium outcome if the degree of reflection is on the order of n = 20 (or even

higher values that are not shown); but this would involve a degree of reflection that

seems fairly unrealistic, if it is taken to represent a purely prospective calculation on

the part of people who have learned about an announced policy change, but not yet

had occasion to observe what actually happens under the new regime. If the degree

of reflection equals only n = 2,55 for example, then if the commitment is to change

policy for only two years (as in Figure 1), the reflective equilibrium outcomes are not

too different from the FS-PFE predictions; but when the new policy is expected to

last for decades (as in Figure 2), the predicted outcomes are quite different, even if

the responses to the policy change under reflective equilibrium have the same sign as

the FS-PFE predictions. (The output increase predicted by the reflective equilibrium

is many times larger than the FS-PFE prediction, while the inflation increase is only

a fraction of the FS-PFE prediction.)

This illustrates a general point: in judging the practical relevance of the PFE

prediction, it matters not only whether reflective equilibrium should converge to the

PFE as n is made large enough, but also how quickly such convergence should occur.

The speed of convergence is not too great an issue in the case of a commitment to a

54Again, the movement from lighter to darker lines corresponds to increasing n. The lines shown

in the figure correspond to the values n = 0, 2, 4, and so on up to n = 20.
55In the figure, this is the line for which the output response is largest, while the inflation and

interest-rate responses are the second-lowest.
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new policy to be maintained for only a few quarters, when the new policy is a Taylor

rule, and when the temporary policy is to be followed by a reversion to a policy

regime that the public already understands well on the basis of past experience (the

experiment considered in Figure 1). It is a bigger issue, however, in the case of a

commitment to a new permanent (or at any rate long-lasting) regime that differs

non-trivially from past policy (for example, adoption of a new inflation target that

is announced as a permanent change), even when both the old and the new policies

conform to the Taylor principle. And, as we show in the next section, it is a still

larger issue in the case of a temporary regime under which the Taylor principle is not

expected to be satisfied, as in the case of a commitment to a fixed interest rate for a

significant period of time.

3.4 The Fisher Equation and Long-Lasting Shifts in Policy

We can now address a question posed in the title of our paper: what should happen

if people come to expect (whether as a result of a central-bank announcement, or on

the basis of experience) that a “loose” monetary policy will be maintained for several

more years? Should such a shift in understanding of the outlook for future policy be

inflationary, or can it be deflationary? If policy is expected to follow a Taylor rule,

and “looser policy” means a lower intercept in that rule (and thus a lower nominal

interest rate for any given outcomes for inflation and output, but not necessarily a

lower nominal interest given the endogenous effects on inflation and output), then we

can answer the question using the results above.

Our results show that in our model, an expectation that the reaction-function

intercept will be kept lower than usual for the next several years should lead to

higher inflation and output, regardless of the degree of reflection, and regardless of

the length of time for which the looser policy is expected to be maintained. (In this

respect, the FS-PFE solution gives the correct answer, at least as regards the sign

of the effects.) If the loosening of policy is expected to be sufficiently transitory

(though it may last for some years), as in Figure 1, then the policy change will be

associated with a temporarily lower nominal interest rate, regardless of the degree of

reflection. But if the shift in the policy rule is expected to last for a sufficiently long

(though possibly finite) period of time, the higher inflation rate and output will be

associated with a higher nominal interest rate, despite the reduction in the intercept
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of the central bank’s reaction function, except in the case of a degree of reflection

that is very low. (Figure 2 shows that when n = 2 or greater, even a commitment

to maintain looser policy for five years results in a higher nominal interest rate than

the steady-state level that would represent the reflective equilibrium in the absence

of a policy change.56 Longer commitments would result in even greater increases in

the nominal interest rate.)

In the case of a permanent increase in the inflation target, the FS-PFE prediction

is that the nominal interest rate should increase one-for-one with the increase in

inflation (which increases by exactly the increase in the target); the relationship

between the permanent change in the inflation rate and the permanent change in the

level of nominal interest rates satisfies the Fisher equation. In the case of a reflective

equilibrium with only a finite degree of reflection n, the Fisher equation need not be

satisfied (it depends on expectations being correct, at least on average), though it

will hold approximately, if n is large. But even for modest values of n, a permanent

increase in the inflation target, which permanently raises inflation, is likely to be

associated with an increase, rather than a decrease, in nominal interest rates.

These results do not involve any discontinuity in the predicted effects of a policy

change as one passes from the case of a long-lasting (but still temporary) change to

the case of a permanent change in policy; Figure 2 shows how the predicted effects

on output, inflation and the nominal interest rate all vary continuously as τ increases

(and hence as T increases, for a fixed value of t). Nor do they involve any failure of

the conventional expectation that reducing the intercept of the interest-rate reaction

function represents a more expansionary (and more inflationary) policy, regardless of

the length of time that the policy shift is expected to last. They do, however, indicate

that the change in the nominal interest rate is not necessarily a good measure of the

degree to which policy is loosened, as a shift down in the reaction function may

be associated with an increase in the nominal interest rate. Indeed, this is almost

certainly what should be observed, in the case of a sufficiently long-lasting change in

policy.

Rather than supposing that the degree of reflection n is fixed, as in our formal

analysis above, it is plausible to suppose that in the case of a long-lasting shift in

policy, average expectations at the time of the initial announcement of the novel

56The effect of a commitment that lasts for T = 20 quarters can be read off from the figure by

observing the predictions for quarter 180, which corresponds to τ = 20.
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policy will correspond to a relatively low value of n, but that over time the value

of n should increase. The reason is not simply that people would have more time

to think through the implications of the new policy regime, but (more importantly)

that observation of economic outcomes under the new regime should lead people to

adjust their expectations in the same direction as is implied by an increase in n.57

Consider, for simplicity, the case of a permanent shift in the intercept ı̄LR, and

suppose that the initial conjecture e(0) is that expectations do not change at all

(et(0) = 0 for all t). The reflective equilibrium for some low value of n involves

et(n) = eLR(n) for all t, where eLR(n) is defined in (3.6). This will imply constant

levels of output, inflation and the nominal interest rate corresponding to that value

of n (the values that can be read off from the extreme left points of the responses

shown in Figure 2). But, given these constant levels of output, inflation and interest

rates, the correct expectations e∗t (n) will also be the same for all t, but different from

average expectations eLR(n). And observing actual output, inflation and interest rates

for even a few periods should indicate the direction in which outcomes under the new

regime are different from those that have been expected on average.

If we suppose that as a result, people’s expectations (at least on average) should

shift in the direction of the discrepancy — specifically, that et continues to be the

same for all future dates t, but that the constant value changes in proportion to the

constant difference

e∗(n) − eLR(n) = [M − I] eLR + m2 ı̄LR

— then the new time-invariant value for et should correspond to eLR(n) for a some-

what higher value of n, given that the evolution of eLR(n) in response to increases in

n is given by (3.5). But in subsequent periods, observation of the outcomes resulting

from expectations eLR(n) with this higher value of n should lead expectations to be

57In the experimental game theory literature, it is often observed that when subjects get to play

a given game repeatedly, observed play deviates much less from the Nash equilibrium prediction

after a few repetitions (see, e.g., Nagel, 1995). In the games in question, this is what the theory of

reflective equilibrium would predict, with a fixed initial conjecture, if the average level of reflection

n were to increase on each repetition. However, it could also occur without any increase in the

average level of reflection, if one supposes that the initial conjecture changes on each repetition,

being determined by average behavior on the previous instance; this is essentially the interpretation

of her data proposed by Nagel. Stahl (1996) interprets the same data in terms of an alternative

learning model, in which there is an increase over time in players’ “level of thinking.”
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revised in a way that corresponds to a still higher value of n, and so on indefinitely

if the new regime continues without further changes.

In this way, one might expect to observe over time, not the reflective equilibrium

(as defined above) corresponding to a single value of n, but rather a progression from

lower to steadily higher values of n. If the initial level of reflection when the policy

shift is announced is quite low, then even a permanent reduction in the reaction-

function intercept might initially be associated with a decrease, rather than an in-

crease, in the nominal interest rate (as shown, for example, in Figure 2 for the case

n = 0). However, observation of the outcomes produced by the new policy (which

differ from average expectations) should cause n to increase; and at first, this should

result in increases in output, inflation and the nominal interest rate required by the

new reaction function (as shown in Figure 2 by the difference between the responses

for n = 2 compared to those for n = 0).

As n increases still further (as it should with sufficient experience of the new

policy), the output effect of the policy change should decrease, while inflation and

the nominal interest rate continue to increase (as shown in Figure 2 by the movement

from n = 2 to the cases n = 4, n = 6, and so on). Hence such a permanent shift

in policy could be associated with an initial decrease in the nominal interest rate,

though the nominal interest rate should eventually (and permanently) be increased.

The policy shift should increase both output and inflation, but if the effective degree

of reflection increases with experience, one would observe a much stronger output

effect in the beginning, while the eventual effect would be a permanent increase in

inflation and the nominal interest rate while most of the output effect would prove

temporary.58

Thus a permanent (or long-lasting) “loosening” of policy, in the sense of a reduc-

tion of the reaction-function intercept, need not mean permanently lower nominal

interest rates. (Indeed, if the change in policy is immediately understood to be per-

manent, and a sufficiently large part of the population engages in a sufficient degree

of reflection, the period for which the nominal interest rate is reduced might not be

very long.) But this doesn’t mean that a central bank couldn’t decide to maintain

58If one further supposes that the automatic rate of price increase π∗ between occasions on which

prices are re-optimized would eventually increase in the case of a permanently higher inflation rate,

then the output effect would eventually disappear altogether. This is not seen in Figure 2 even as

T →∞ and n→∞, because of the assumption of indexation at the fixed rate π∗.
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a lower nominal interest-rate target for many years, and that it could not credibly

announce an intention to do so. However, such a policy (or such an understanding of

policy) is not equivalent to any particular degree of adjustment of the intercept of a

Taylor-type rule, and our results above need not apply. We turn next to an analysis

of reflective equilibrium in this alternative case.

4 Consequences of a Temporarily Fixed Nominal

Interest Rate

We now consider the case in which it comes to be understood (either as a result of

a shock, or a policy announcement) that the nominal interest rate will be fixed at

some level ı̄SR up to some date T , while it will again be determined by the “normal”

central bank reaction function from date T onward. (The latter policy is assumed

to be a rule of the form (2.8), in which the response coefficients satisfy the Taylor

Principle (2.14), and the intercept is consistent with the inflation target π∗.) There

are various reasons for interest in this case. First, a real disturbance may create a

situation in which the interest rate prescribed by the Taylor rule violates the ZLB

for some time; in such a case, it may be reasonable to suppose that the central bank

will set the nominal interest rate at the lowest possible rate, regardless of the exact

outcomes for output and inflation, as long as the situation persists, but return to

implementation of its normal reaction function once this is feasible. And second, a

central bank may commit itself to maintain the nominal interest rate at its lower

bound for a specific period of time, even if this is lower than the rate that the Taylor

rule would prescribe. The “date-based forward guidance” provided by several central

banks in the aftermath of the global financial crisis arguably involved commitments

of this kind; and while no explicit promises were made about how policy would be

conducted beyond the horizons in question, one might suppose that people would

expect the central bank to revert to its usual approach to policy once there ceased

to be any explicit commitment to behave otherwise. We are interested in the extent

to which such a temporary change in policy should have effects similar or different

from the effects of a temporary shift in the intercept of the monetary policy reaction

function, analyzed above.

We are interested in two kinds of questions about the effects of such policies. One
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is what the effect should be of changing ı̄SR, taking the horizon T as given (perhaps

by the expected persistence of an exogenous real disturbance). While there might

seem to be no room to vary the short-run level of the interest rate, if we imagine a

case in which it is already at the ZLB, it would even in that case always be possible to

commit to a higher (though still fixed) interest-rate target, and some have suggested

that (at least when the situation of being constrained by the ZLB persists for a long

enough time) it might actually be expansionary to do so. A second question is the

effect of changing T, the length of time that the interest rate is held fixed, taking as

given the time path of the real disturbance. To what extent can a commitment to

keep the interest rate low for a longer time substitute for an ability to cut rates more

sharply right away (which may be infeasible due to the ZLB)?

4.1 Convergence to Perfect-Foresight Equilibrium

We first consider whether reflective equilibrium converges to a PFE again in this

case, as n grows, and if so to which of the possible PFE paths. The question of

equilibrium selection is of particular interest in this policy experiment, since here,

unlike the case considered in section 3, the “backward stability” selection criterion

proposed by Cochrane (2015a) would imply a different solution than the conventional

“forward stability” (or local determinacy) criterion.59

Because of the forward-looking character of our model, the determination of re-

flective equilibrium from period T onward depends only on the specification of policy

from period T onward. Since we again assume a reaction function that satisfies the

Taylor Principle over this period, the results of section 3 continue to apply; specifi-

cally, Proposition 1 implies that in the case of any initial conjecture that converges

exponentially, reflective equilibrium outcomes will converge to the unique FS-PFE

outcomes as n increases. If we suppose that gt = 0 for all t ≥ T , this means that the

reflective equilibrium outcomes for all t ≥ T will converge to the steady state con-

sistent with the inflation target π∗. Note that this simple result already tells us that

reflective equilibrium cannot generally converge to the “backward stable” solution

proposed by Cochrane (2015a), as this does not generally imply that the long-run

steady state is reached from date T onward. Instead, if reflective equilibrium con-

verges to any PFE, it can only converge to the FS-PFE, which does imply steady-state

59See the discussion of this point by Cochrane (2015a), sec. 4.1.
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outcomes from date T onward in the case just discussed.

The analysis of convergence prior to date T requires an extension of our previous

result, because now we assume that the response coefficients (φπ, φy) differ before

and after date T . Nonetheless, as shown in the Appendix, the methods used to prove

Proposition 1 can be extended to establish convergence in this case as well.

Proposition 4 Consider the case of a shock sequence {gt} that converges exponen-

tially, and let the forward path of policy be specified by a fixed interest rate ı̄SR for all

0 ≤ t < T, but by a reaction function of the form (2.8) for all t ≥ T, where the coeffi-

cients (φπ, φx) of the latter function satisfy (2.14), and the intercept is consistent with

the inflation target π∗. Then in the case of any initial conjecture {et(0)} regarding

average expectations that converges exponentially, the belief revision dynamics (2.21)

converge as n grows without bound to the belief sequence {ePFt } associated with the

FS-PFE.

The implied reflective equilibrium paths for output, inflation and the nominal in-

terest rate similarly converge to the FS-PFE paths for these variables. This means

that for any ε > 0, there exists a finite n(ε) such that for any degree of reflection

n > n(ε), the reflective equilibrium value will be within a distance ε of the FS-PFE

prediction for each of the three variables and at all horizons t ≥ 0.

Figure 3 provides a numerical illustration of this result. The model parameters are

as in the previous numerical examples, and for simplicity we again show the effects

of a pure shift in monetary policy, assuming gt = 0 for all t and an initial conjecture

under which et(0) = 0 for all t. As in Figure 1, it is again assumed that monetary

policy is expected to depart from the “normal” Taylor rule for 8 quarters, and then

to revert to the “normal” reaction function thereafter. The only difference is that in

Figure 3 it is assumed that the nominal interest rate is fixed at zero for the first 8

quarters.

For the case n = 0 (the lightest of the lines in the figure), the responses are

identical to those in Figure 1: the two shifts in monetary policy have been chosen to

lower the nominal interest rate to the same extent (i.e., to zero), in the absence of

any change in average expectations. For higher values of n, the effects of the policy

change are qualitatively similar to those in Figure 1, but not exactly the same: the

output and inflation increases are somewhat larger when the interest rate is expected
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1.3 Fixed interest rate example: 8 Q

Figure 3: Change to fixed interest rate: T = 8, n = 0 − 4
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Figure 3: Reflective equilibrium outcomes for n = 0 through 4 compared with the

FS-PFE solution, when the nominal interest rate is fixed for 8 quarters.

to remain fixed, because now there is no expectation of endogenous interest-rate

increases in subsequent periods in response to the increases in output and inflation.

Because these stronger effects depend on reflection about what should happen in

the future, given what is understood about future monetary policy, they are larger

the greater the degree of reflection, and strongest under the assumption of perfect

foresight. (They are also larger the longer the time for which the interest rate is

expected to remain fixed, as this increases the degree to which reflection about the

effects of future policy matters.) This means that in the case of a temporarily fixed

interest rate, the difference between the PFE predictions and those obtained from a

given finite degree of reflection is greater than that obtained in the case of a temporary

shift in the Taylor-rule intercept.
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In Figure 3, as in Figure 1, an average degree of reflection of n = 4 results in

TE outcomes that are similar to the PFE predictions. But the reflective equilibrium

outcomes when n = 2 are not as close to the PFE outcomes as they are in Figure

1, especially in the first quarters (when the anomalous policy is still expected to last

for more than a year). In quarter zero, the output response when n = 2 is 14 percent

smaller than the PFE prediction, and the inflation response is 10 percent smaller;

and even when n = 4, the output and inflation responses are both about 3 percent

smaller than the PFE predictions (whereas output differs by less than 1 percent in

Figure 1, and inflation by less than 2 percent). Moreover, these discrepancies rapidly

become much larger if the interest rate is expected to be fixed for an even longer

period of time.

4.2 Very Long Periods with a Fixed Nominal Interest Rate

Much recent criticism of the implications of standard New Keynesian models regard-

ing the effects of “forward guidance” have focused on the implications of such models

(when solved under the assumption of perfect foresight or rational expectations) if

one assumes that the nominal interest rate would be fixed for several years.60 It

should be noted that no central banks have actually experimented with date-based

forward guidance that referred to dates more than about two years in the future;

and while the period in which the U.S. federal funds rate target has remained at its

lower bound has (as of the time of writing) lasted for more than six years, there was

little reason for anyone to expect it to remain at this level for so long when the lower

bound was reached at the end of 2008. Nonetheless, as discussed in section 1, thought

experiments involving long-lasting periods at the ZLB remain useful for clarifying the

theoretical coherence of proposed solution concepts.

If one assumes a date T many years in the future, the FS-PFE predicted effects

on both output and inflation rapidly become extremely large. However, the effects

predicted by reflective equilibrium with some modest (though positive) degree of

reflection n do not grow in the same way, so that the PFE prediction rapidly becomes

a worse and worse approximation to what one should expect in a reflective equilibrium

with a modest level of n, if the horizon T is very long. Figure 4 illustrates this, in

60See, for example, Del Negro et al. (2013), Chung (2015), McKay et al. (2015), and Cochrane

(2015a).
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Figure 4: Change to fixed interest rate: T = 60, n = 0 − 4
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Figure 4: Reflective equilibrium outcomes for n = 0 through 4 compared with the

FS-PFE solution, when the nominal interest rate is fixed for 15 years.

the case of the same model calibration as used in previous figures, by considering a

(certainly unrealistic) situation in which the nominal interest rate is expected to be

fixed for 15 years.61

According to the log-linearized model, an expectation of remaining at the ZLB

for such a long time would, under the FS-PFE analysis, imply extremely large effects

in the initial quarter: log output higher than its steady-state level by 4.36 (output

78 times its steady-state level), and an inflation rate of 442 percent.62 Of course,

such extreme predictions make it foolish to believe the assumptions made in this

calculation (even given the assumption about policy): log-linearization of the model

cannot be expected to yield even a roughly accurate result in the case of such a

61The third panel of the figure is omitted, since the expected path of the nominal interest rate

is independent of the degree of reflection, as in Figure 3. Note also that now only the degrees of

reflection n = 0, 1, 2, 3, 4 are shown in the figure, in order to allow the successive lines to be clearly

distinguished from one another.
62Note that here, as in previous figures, πt is reported as a conventional annualized rate, so that

“πt = 100” means that the price level will be twice as high (100 percent greater) after a year, while

“yt = 100” means that the log of output exceeds its steady-state value by 1.00, so that output is

2.72 times its steady-state level.
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massive departure from steady-state conditions, nor do even the assumptions of the

exact NK model — such as the assumption that the fraction 1 − α of firms that

do not reconsider their prices during the quarter simply supply whatever demand

they receive at those prices — make sense under such extreme circumstances. We

mention them only to point out that even granting the validity of our log-linearized

model for purposes of such an exercise, the FS-PFE predictions are not at all a close

approximation to the reflective equilibrium predictions.

Even if we assume n = 4 (a rather high average degree of reflection), the predicted

increase in log output in quarter zero is instead only 1.11 (output 3 times its steady-

state level), while the inflation rate is predicted to increase only to 31.5 percent per

annum. If we assume a more modest degree of reflection, n = 2, the predicted increase

in log output is only 0.53 (output 1.7 times its steady-state level), and inflation is

predicted to increase only to 10.6 percent. This is still quite a large increase in output

(large enough to make one doubt the realism of using the model for such an analysis),

but these results are not close to the shocking predictions of the FS-PFE analysis.

The FS-PFE predictions of the log-linearized model become even more extreme

if a longer period at the ZLB is contemplated: both the predicted effects on output

and inflation grow without bound (and quite rapidly) as T is increased. For the kind

of situation described in Proposition 4, but with gt = 0 for all t, the FS-PFE paths

for inflation and output are found by solving (2.13) for all t < T, working backward

from the terminal condition xT = 0 (which represents the unique FS-PFE given the

specification for policy from date T onward). One obtains

xτ = −
τ−1∑
j=0

Bjb ı̄SR (4.1)

for all τ ≥ 1, where τ ≡ T − t is again the number of periods remaining until policy

is expected to revert to the Taylor rule, and the matrix B and vector b are the ones

corresponding to policy response coefficients φπ = φy = 0. We show in the Appendix

that in this case the matrix B has an eigenvalue µ2 > 1, and that the left eigenvector

e′2 associated with this eigenvalue satisfies e′2b 6= 0. It follows that the solution (4.1)

contains a component that grows as µτ2 as τ is made larger (which is to say, as T is

made larger, for any value of t). Thus both elements of xt grow exponentially as T is

increased.63

63Note further that the elements of xt are the logarithm of output and the continuously com-
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Cochrane (2015a) objects to the FS-PFE as a solution concept on this ground,

noting that it is implausible to suppose that changes in the specification of policy

only very far in the future (say, a commitment to maintain the low interest rate for

1001 quarters instead of for only 1000 quarters) should have any significant effect

on current economic outcomes. But this unpalatable feature of the FS-PFE is not a

property of our concept of reflective equilibrium, assuming a fixed degree of reflection

n as the length of the policy commitment is increased. Methods similar to those used

to establish Proposition 2 also allow us to show the following.

Proposition 5 Consider the case in which gt = 0 for all t, and let the forward path

of policy be specified as in Proposition 4.Then if the initial conjecture is given by

et(0) = 0 for all t, the reflective equilibrium beliefs {et(n)} for any degree of reflection

n converge to a well-defined limiting value

eSR(n) ≡ lim
T→∞

et(n)

that is independent of n, and this limit is again given by (3.10), where ēPFSR is again

defined in (3.11). The reflective equilibrium outcomes for output, inflation and the

nominal interest rate then converge as well as T is made large, to the values obtained

by substituting the beliefs eSR(n) into the TE relations (2.10) and the reaction function

(2.8).

The proof is given in the Appendix. The result is similar to the one stated in Propo-

sition 2.64 There is one important difference, however: in the present case, the sta-

tionary expectations ēPFSR no longer correspond to a unique FS-PFE associated with

permanent maintenance of the interest rate it = ı̄SR. (There is no unique FS-PFE

under such a policy; instead, as discussed in section 2.2, there is a continuum of PFE

that all converge asymptotically to the steady state in which expectations are given

by ēPFSR .)

pounded rate of inflation; these quantities must both be exponentiated to obtain the level of output

and the factor by which prices increase relative to the previous year’s prices. Thus even if the ele-

ments of xt only grew linearly with T , output and the conventional measure of inflation would both

grow exponentially. Instead, here the latter quantities grow as the exponential of an exponential.
64Note that Proposition 2, as stated earlier, did not require that the reaction function coefficients

satisfy (2.14); it would apply, in particular, to the case φπ = φy = 0, corresponding to fixed interest

rates before and after date T . The only difference here is that Proposition 5 establishes a similar

result even when the response coefficients prior to date T differ from those from date T onward.
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Thus if we consider the reflective equilibrium associated with any given finite

degree of reflection n, we find that equilibrium outcomes are essentially the same for

any long enough horizon T . Moreover, for any long enough T , reflective equilibrium

outcomes are nearly constant over time, and close to the constant outcomes that

occur under a reflective equilibrium of the same degree in the case of a permanent

commitment to the fixed interest rate it = ı̄SR. (This last observation follows from

a comparison of (3.10)–(3.11) with (3.6)–(3.7), where the latter equations define the

reflective equilibrium of degree n in the case of a permanent commitment to a given

reaction function.) Thus there is no material difference, as far as reflective equilibrium

is concerned, between commitment to a fixed interest rate for a long but finite time

and a commitment to fix the interest rate permanently.

This attractive feature of reflective equilibrium does not, however, mean that it

leads to predictions similar to those of Cochrane’s (2015a) “backward stable” PFE

solution. In those cases where the degree of reflection n is large enough for the

reflective equilibrium to correspond nearly to a PFE (as, for example, in the case

that n = 4 or larger, for the parameter values and policy experiment considered in

Figure 3), the PFE that it approximates is the FS-PFE (uniquely defined in the case

of a finite-length interest-rate peg), and not the backward-stable PFE. These solutions

are in fact quite different — not only in the case of large values of T , but even when

T is very short.65 It is thus important to note that one need not accept Cochrane’s

solution concept as a sensible one, in order to avoid the unpalatable prediction of

explosive behavior as T is made large.

65They imply quite different equilibrium responses even when T is arbitrarily short: in a

continuous-time version of the model, they would imply different responses even in the limit as

the continuous length of time T is made infinitesimally small (which is possible because under the

“backward stable” solution, outcomes after date T depend on the policy pursued before that date).

This is one of the especially unattractive features of the “backward stable solution” as a solution

concept: it implies that pegging the interest rate at different levels should lead to different equilib-

rium outcomes over a period of years, even when the pegs in question are to last for only one second!

The concept of a reflective equilibrium for some given degree of reflection n avoids this undesirable

prediction, while also yielding predictions that converge as T is made unboundedly large.
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4.3 The Paradox Explained

We can now explain the error in the reasoning sketched in the introduction. It is true

that under the assumption of a permanent interest-rate peg, the only forward-stable

PFE are ones that converge asymptotically to an inflation rate determined by the

Fisher equation and the interest-rate target (and thus, lower by one percentage point

for every one percent reduction in the interest rate). But for most possible initial

conjectures (as starting points for the process of belief revision proposed above),

none of these perfect foresight equilibria correspond, even approximately, to reflective

equilibria — even to reflective equilibria for some very high degree of reflection n.

Nor is this because in such cases high-n reflective equilibria correspond to some other

kind of PFE; instead, one generally finds that the belief-revision dynamics fail to

converge to any PFE as n increases, in the case of a permanent interest-rate peg.

This failure of convergence can be illustrated using results already presented

above. In the case of a policy under which it = ı̄LR forever, if we further assume

that gt = 0 for all t and start from an initial conjecture under which et = 0 for

all t, then the belief-revision dynamics are given by (3.5) for all t, where M in this

equation is now the matrix corresponding to response coefficients φπ = φy = 0, and

we now have et(n) = eLR(n) for all t.66 The solution for general n is again given by

(3.6), where ēPFLR is again defined by (3.7). However, whereas in the Taylor-rule case

considered in section 3, this solution implied that eLR(n) → ēPFLR as n → ∞, this is

no longer true in the case of an interest-rate peg. When φπ = φy = 0, we show in

the Appendix that the matrix M − I has a positive real eigenvalue. This in turn

means that the elements of the matrix exp[n(M − I)] grow explosively as n is made

large, and eLR(n) diverges from ēPFLR , rather than converging to it. Nor does eLR(n)

approach any PFE: the distance between eLR(n) and e∗LR(n) also grows explosively

as n increases.

It similarly follows (using Proposition 5) that the nearly-stationary outcomes ob-

tained in the case of any long enough finite-length interest-rate peg under a fixed

degree of reflection n do not converge to any limit as n is made large. Thus neither

of the double limits

lim
n→∞

lim
T→∞

et(n) = lim
n→∞

eSR(n)

66The case considered now is of the same kind as was considered in deriving (3.5), except that we

now set T = 0, and assume φπ = φy = 0.
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or

lim
T→∞

lim
n→∞

et(n) = lim
T→∞

ePFt

is well-defined in the case of a temporary interest-rate peg.67 It is true (for any finite

length of peg) that a high enough degree of reflection leads to an outcome indis-

tinguishable from a forward-stable PFE; and it is also true (for any finite degree of

reflection) that a long enough finite-length peg leads to reflective equilibrium out-

comes that are indistinguishable from those under a permanent peg. But it does not

follow from these observations that a long enough peg together with a high enough

degree of reflection must lead to anything similar to a forward-stable PFE associated

with a permanent interest-rate peg. It is the failure to recognize this that leads to

paradoxical conclusions in the argument sketched in the introduction.

4.4 Consequences of Maintaining a Low Interest Rate for

Longer

Consideration of the possible PFE in the case of a permanently fixed interest rate

thus need not provides a correct conclusion as to the likely effects of a commitment

to maintain the nominal interest rate at a low level for a longer time than that for

which the zero lower bound prevents a central bank from implementing its normal

reaction function. In fact, one can easily show that for any given degree of reflection,

commitment to keep the nominal interest rate at a low level for a longer period of

time is necessarily both expansionary and inflationary, at least in the case where (at

the future horizon at which one is lengthening the commitment to fixed-interest-rate

policy) neither exogenous disturbances nor the assumed initial conjecture are sources

of deflationary pressures.

Proposition 6 For a given shock sequence {gt} and a given initial conjecture {et(0)},
consider monetary policies of the kind described in Proposition 4, with ı̄SR < 0 (that

is, an initial fixed interest rate at a level lower than the steady-state nominal interest

rate associated with the long-run inflation target π∗). Suppose also that gt = 0 and

67Note that ēPFSR , the common limit given in Proposition 3, is still well-defined in this case. But

eSR(n) no longer converges to it as n is made large, nor does ePFt converge to it as T is made

large. Failure of the “Taylor Principle” invalidates both of those convergence results, relied upon in

Proposition 3.
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Figure 5: Change to fixed interest rate: Increasing T , PFE, n = 4 and
n = 0.5
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Each line represents a different end date of the policy, from T = 8 (yellow) until T = 14 (blue). The first
graph shows the PFE, the second n = 4 and the third n = 0.5.
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Figure 5: Output responses if the interest rate is fixed at zero for T quarters, where T

takes values between 8 and 14. Panel (a): PFE; panel (b): n = 4; panel (c): n = 0.5.

et(0) = 0 for all t ≥ T.68 Then for any fixed ı̄SR and fixed level of reflection n > 0,

increasing the length of the commitment from T to T ′ > T increases both inflation

and output in the reflective equilibrium, in all periods 0 ≤ t < T ′, while it has no

effect on either variable from date T ′ onward.

The proof is given in the Appendix.

Figure 5 illustrates the effect indicated in Proposition 6, for the case of a pure

shift in monetary policy (that is, one in which gt = 0 and et(0) = 0 for all t).

68In fact, it should be evident from the proof given in the Appendix that it suffices that gt ≥ 0

and et(0) ≥ 0 for all t ≥ T. What matters for the proof is that there not be factors tending to reduce

output or inflation, apart from the effects of monetary policy, that are anticipated to affect periods

beyond date T .
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Model parameters are as in the earlier numerical examples, and as in Figures 3 and

4, ı̄SR is set at the lowest rate allowed by the zero lower bound. In each panel,

the equilibrium paths for output are compared in the case of alternative values of

T , ranging from 8 quarters up to 14 quarters. The successive panels indicate the

outcomes under different degrees of reflection: in panel (a), the FS-PFE outcomes

are shown (corresponding to the limit as n → ∞, given Proposition 4); in panel

(b), the reflective equilibrium outcomes for the case n = 4; and in panel (c), the

corresponding outcomes if instead n = 0.5.

One sees that with each successive increase in the length of time for which the

low interest rate is to be maintained, output is increased, in each of the periods in

which the interest rate is fixed; this is true regardless of the assumed value of n.69

(Inflation is similarly increased, though we do not show the corresponding responses

for inflation.) In the case of a high enough degree of reflection (such as the case n = 4,

shown in the figure), the reflective equilibrium outcomes are similar to the FS-PFE

outcomes. But even when the degree of reflection is much lower, the outcomes qual-

itatively resemble those predicted by the FS-PFE analysis, even if the quantitative

magnitude of the effects is quite different.

The quantitative effects can, however, be quite different from those implied by

the FS-PFE analysis; they are particularly different in the case of long periods with a

fixed interest rate. Indeed, while the FS-PFE analysis implies that the effects of any

contractionary shock, no matter how severe, can necessarily be completely counter-

acted by a sufficiently long-lasting commitment to a low interest rate (albeit one that

remains non-negative) — and in fact, that a sufficiently long-lasting commitment can

produce an inflationary boom of arbitrary size — it is possible, under the reflective

equilibrium analysis, to find (if the degree of reflection is small enough) that even a

promise to keep the interest rate permanently at zero would be insufficient to prevent

output and inflation from both falling below their target values. Proposition 5 implies

that there will be only a finite amount of stimulus provided even by a permanent

interest-rate peg, and this need not be enough to prevent output and inflation from

falling in response to a disturbance.

69Except, of course, in the limiting case n = 0. When n = 0, as illustrated in Figure 3, the effects

on output and inflation are independent of the number of remaining periods for which the interest

rate is expected to be fixed, as expectations regarding future policy have no influence.
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Figure 7: Effect of increasing period under fixed interest rate at ZLB,
n = 0.1
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5

Figure 6: Output and inflation responses in a reflective equilibrium with n = 0.1,

when ρt is reduced for 8 quarters, and the interest rate is kept at zero for a period of

length T . Darker lines indicate progressively longer periods T (to infinity).

Figure 6 illustrates this possibility. The model parameters are the same as in the

previous numerical illustrations, but we now consider a real disturbance that lowers

the discount rate ρt by 5 percentage points per quarter, and that lasts for 8 quarters.

(The discount rate returns to its low normal value again in quarter 8.) This is a

“Great Depression” magnitude of disturbance: as shown in the figure, in the absence

of any commitment to depart from the normal reaction function after quarter 8 (the

time at which it becomes possible again to implement a standard Taylor rule), this

disturbance causes output to contract by more than 30 percent. The figure shows

the responses of output and inflation to this shock, under a variety of assumptions

about the length of time T for which it is announced that the nominal interest rate

will be held at its lower bound, after which the central bank will revert to its normal

(Taylor-rule) reaction function. In each case, the outcomes shown are for a reflective

equilibrium in which the degree of reflection is only n = 0.1.70

70This is quite a low level of reflection, but is chosen to illustrate our point.
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The lightest lines correspond to the case T = 8 quarters: that is, the interest

rate will remain at the lower bound only for as long as the Taylor rule would require

an even lower rate than that (which cannot be implemented). Progressively darker

lines indicate the effects of progressively longer commitments; the lines shown are

for periods of 50 years, 100 years, 150 years and so on. The final dash-dotted line

indicates the effect of a commitment to keep the interest rate permanently at the

zero lower bound. In accordance with Proposition 6, each lengthening of the com-

mitment increases both output and inflation; but, in accordance with Proposition 5,

the outcomes associated with all long enough commitments converge to the outcomes

predicted in the case of a permanent commitment. In this example (involving a very

low, though positive, degree of reflection), even the permanent commitment is insuffi-

cient to prevent both output and inflation from falling below their target values in the

quarter of the shock (quarter zero), though the long-lasting low-interest-rate regimes

result in very substantial output booms, and persistently above-target inflation, later

on (that last for decades).

Thus while our reflective equilibrium analysis confirms the result of PFE anal-

yses using the conventional (FS-PFE) equilibrium selection, according to which a

commitment to keep the interest rate at its lower bound for a longer time should

be expansionary, it also indicates that — given that it is realistic to assume that

people would truncate the belief-revision process at some finite level of reflection,

and quite possibly at a relatively low one — rational-expectations analyses almost

certainly overstate the magnitude of stimulus that one can expect to obtain from

such commitments, even when understood and believed by all individuals. This can

be added to the varied list of reasons that other authors have proposed for doubting

that forward guidance should be as extraordinarily powerful as rational-expectations

analyses using highly forward-looking NK models sometimes suggest.71 While our

analysis still implies that commitments of this kind should provide a potentially pow-

erful tool, of particular usefulness when a central bank is constrained by the zero

lower bound, it increases the possible scope for using other tools, such as fiscal policy,

under such circumstances as well.

71Again see Del Negro et al. (2013), Chung (2015), and McKay et al. (2015).
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5 Conclusion

Is there, then, reason to fear that a commitment to keep nominal interest rates low

for a longer period of time will be deflationary, rather than inflationary? There is one

way in which such an outcome could easily occur, and that is if the announcement

of the policy change were taken to reveal negative information (previously known

only to the central bank) about the outlook for economic fundamentals, rather than

representing a pure change in policy intentions of the kind analyzed above.72 This

may well have been a problem with the way in which “date-based forward guidance”

was used by the U.S. Federal Reserve during the period 2011-12, as discussed by

Woodford (2012); but it is not an inherent problem with announcing a change in

future policy intentions, only with a particular way of explaining what has changed.

The idea that a commitment to keep nominal interest rates low for a longer time

should be deflationary, even when understood to represent a pure change in monetary

policy — simply because the only rational-expectations equilibria in which nominal

interest rates remain forever low involve deflation — is instead mistaken, in our view.

If people believe the central bank’s statements about its future policy intentions, and

believe that it will indeed succeed in maintaining a low nominal interest rate, it does

not follow that they must expect a deflationary equilibrium; this does not follow,

even if we suppose that they reason about the economy’s likely future path using a

correct model of how inflation and aggregate output are determined.

If their reasoning occurs through a process of reflection of the kind modeled in this

paper, then an increase in the expected length of time for which the nominal interest

rate is expected to remain at some effective lower bound should result in expectations

of higher income and higher inflation, regardless of the degree of reflection (as long

as n > 0); and according to our model of temporary equilibrium resulting from

optimizing spending and pricing decisions, such a change in expectations should result

in higher output and inflation. This outcome may or may not approximate the

outcome associated with a perfect foresight equilibrium, depending on the degree of

reflection; in the case of a commitment to keep the nominal interest rate low for a long

enough period, it almost certainly will not resemble any PFE, even approximately.

This is why it is important to explicitly model the process of belief revision as a

72For further discussion of the way in which the revelation of central-bank information by an-

nounced policy decisions can result in perverse effects, see Garćıa-Schmidt (2015).
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result of further reflection, rather than simply assuming that the PFE must yield a

correct prediction. Some macroeconomists may find the proposed alternative solution

concept (reflective equilibrium for some finite degree of reflection n) unappealing, on

the ground that it yields a less definite prediction than the assumption of perfect

foresight (or rational expectations) equilibrium. But while it is true that our con-

clusions about the effects of a given policy commitment depend both on the exact

choice of an initial conjecture and on exactly how far one supposes that people should

continue the belief-revision process, this does not mean that we are unable to draw

any conclusions of relevance to policy deliberations. Our conclusions as to the signs

of the effects just mentioned are independent of those details of the specification of

the reflective equilibrium. Hence it is possible to obtain conclusions of a useful degree

of specificity even when one has little ground for insisting on a single precise model

of expectation formation.

It should also be noted that while our concept of reflective equilibrium can yield

quite various predictions (for differing assumptions about the initial conjecture and

the degree of reflection) under some circumstances, because the belief-revision dy-

namics diverge (or converge quite slowly), under other circumstances much tighter

predictions are obtained, because of relatively rapid convergence of the belief-revision

dynamics. It can then be a goal of policy design to choose a policy with the property

that the belief-revision dynamics should converge reliably, leading to less uncertainty

about the outcome that should be expected under the policy.

In the case of a central bank that finds itself seeking additional demand stimulus

when it has already cut its short-term nominal interest rate instrument to its effective

lower bound, a commitment to maintain the instrument at the lower bound for a

long time that can be announced in advance, regardless of how economic conditions

develop, is not an ideal policy response, according to this criterion. Such a policy

should be expected to be stimulative, according to the analysis in this paper; but the

exact degree of stimulus is difficult to predict. It may not be possible to choose a

length of time for which to commit to the ultra-low interest rate that does not run

simultaneously the risk of being too short to be effective, if the degree of reflection n

is too low, and the opposite risk of being wildly inflationary, if the degree of reflection

n is too high.

But one could achieve a less uncertain outcome, according to the reflective equi-

librium analysis, by committing to maintain a low nominal interest rate until some
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macroeconomic target is reached, such as the price-level target proposed by Eggerts-

son and Woodford (2003), or the nominal-GDP target path proposed by Woodford

(2012).73 In the case that people carry the belief-revision process forward to a high

degree, they should expect interest rates to be raised relatively soon, under such a

commitment; but if instead they truncate the process at a relatively low degree of

reflection, they should expected interest rates to remain low for much longer. In

either case, belief that the central bank is serious about the policy should change

expectations in a way that results in a substantial, but not extravagant, increase in

current aggregate demand.

Thus even though the approach proposed here leads to a set of possible predictions

in the case of a given policy specification rather than a point prediction, this does

not mean that the approach yields no conclusions that are useful for policy design.

Instead, insisting on the use of perfect foresight equilibrium analysis simply because

it yields a more precise prediction may lead to large errors. One is reminded of the

dictum of the British logician Carveth Read:74 “It is better to be vaguely right than

exactly wrong.”

73This alternative to date-based forward guidance would also have the advantage of being less

likely to be misunderstood as revealing negative central-bank information about fundamentals, as

discussed by Woodford (2012).
74Read (1920), p. 351. The aphorism is often mis-attributed to John Maynard Keynes.
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APPENDIX

A Matrices of Coefficients and their Properties

A.1 Temporary Equilibrium Solution

The system of three equations given in the text can be solved to obtain

xt = Cet + cωt (A.1)

where we define the vectors

xt =

[
yt
πt

]
, et =

[
e1,t

e2,t

]
, ωt =

[
gt
ı̄t

]
,

and the matrices

C = 1
∆

[
1 −σφπ(1− α)β
κ (1 + σφy)(1− α)β

]
, c = 1

∆

[
1 −σ
κ −κσ

]
,

and use the shorthand notation ∆ ≡ 1 + σφy + σκφπ ≥ 1. (This last inequality, that
allows us to divide by ∆, holds under the sign restrictions maintained in the text.)
Given this solution for xt, the solution for the nominal interest rate is obtained by
substituting the solutions for inflation and output into the reaction function (2.8).

This solution also allows us to solve for the summary variables at that decision-
makers need to forecast, resulting in

at = Met +mωt

where we define

M = 1
∆

[
1+σκ−β∆

1−β
σβ(1−α)(1+σφy−φπ)

1−β
κ

(1−α)(1−αβ)

β(1+σφy−α∆)

1−αβ

]
, m = 1

∆

[
1+σκ−β∆

1−β −σ(1+σκ)
1−β

κ
(1−α)(1−αβ)

− σκ
(1−α)(1−αβ)

]
.

A.2 Perfect Foresight Equilibrium Dynamics

It follows from the discussion in the text (citing Woodford, 2003, chap. 4) that the
PFE dynamics can be written in the form

xt = B xt+1 + b (ρt − ı̄t) (A.2)

where we define

B = 1
∆

[
1 σ(1− βφπ)
κ σκ+ β(1 + σφy)

]
, b = 1

∆

[
σ
σκ

]
.
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Alternatively, we can characterize PFE dynamics by the requirement that et must
equal e∗t for all t. From (2.20) it follows that a sequence of vectors of expectations
{et} constitute PFE expectations if and only if

et = e∗t =
∞∑
j=1

ψjet+j +
∞∑
j=1

ϕjωt+j

= ψ1et+1 + ϕ1ωt+1 + Λ et+1

= (I − Λ)M et+1 + (I − Λ)mωt+1 + Λ et+1

= [(I − Λ)M + Λ] et+1 + (I − Λ)mωt+1 (A.3)

for all t ≥ 0.
The dynamics implied by (A.3) are in fact equivalent to those implied by (A.2).

Using (A.1) together with (A.3) implies that the PFE dynamics of output and infla-
tion must satisfy

xt = C [(I − Λ)M + Λ] et+1 + C(I − Λ)mωt+1 + c ωt

= C [(I − Λ)M + Λ]C−1 [xt+1 − cωt+1] + C(I − Λ)mωt+1 + c ωt.

But this relation is in fact equivalent to (A.2), given that our definitions above imply
that

C [(I − Λ)M + Λ]C−1 = B, (A.4)

C (I − Λ)m = Bc + b · [−βσ−1 0],

c = b · [σ−1 − 1].

A.3 Properties of the Matrix M

A number of results turn on the eigenvalues of the matrix

M − I =
1

∆

[
−σφy+σκφπ−σκ

1−β
(1−α)σβ(1+σφy−φπ)

1−β
κ

(1−α)(1−αβ)

β(1+σφy)−∆

1−αβ

]
.

We first note that the determinant of the matrix is given by

Det(M − I) =
σκ

∆(1− β)(1− αβ)

(
φπ +

(1− β)

κ
φy − 1

)
.

Under our sign assumptions, the factor pre-multiplying the factor in parentheses
is necessarily positive. Hence the determinant is non-zero (and the matrix is non-
singular) if

φπ +
(1− β)

κ
φy − 1 6= 0. (A.5)
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(In this case the steady-state vector of expectations (3.7) is well-defined, as asserted
in the text.)

For any 2× 2 real matrix A, both eigenvalues have negative real part if and only
if Det[A] > 0 and Tr[A] < 0.75 From the result above, the first of these conditions
is satisfied if the left-hand side of (A.5) is positive, which is to say, if the Taylor
Principle (2.14) is satisfied. The trace of M − I is given by

Tr(M − I) = − 1

∆

(
σ(φy + κφπ − κ)

1− β +
σκφπ + (1− β)(1 + σφy)

1− αβ

)
.

The second term inside the parentheses is necessarily positive under our sign as-
sumptions, and the first term is positive as well if the Taylor Principle is satisfied,
since

φy + κφπ − κ = κ

(
φπ +

φy
κ
− 1

)
> κ

(
φπ +

φy(1− β)

κ
− 1

)
> 0. (A.6)

Hence the Taylor Principle is a sufficient condition for Tr[M − I] < 0. It follows
that (given our other sign assumptions) the Taylor Principle is both necessary and
sufficient for both eigenvalues of M − I to have negative real part.

If instead the left-hand side of (A.5) is negative, Det[M − I] < 0, and as a
consequence the matrix must have two real eigenvalues of opposite sign.76 Thus one
eigenvalue is positive in this case, as asserted in the text. Note that this is the case
that obtains if φπ = φy = 0.

A.4 A Further Implication of the Taylor Principle

We are also interested in the eigenvalues of the related matrix A(λ)M − I, where for
an arbitrary real number −1 ≤ λ ≤ 1, we define

A(λ) ≡
(

λ(1−δ1)
1−λδ1 0

0 λ(1−δ2)
1−λδ2

)
.

(Note that in the limiting case λ = 1, this reduces to the matrix M−I, just discussed.)
In the case that the Taylor principle (2.14) is satisfied, we can show that for any
−1 ≤ λ ≤ 1, both eigenvalues of A(λ)M − I have negative real part. This follows
again from a consideration of the determinant and trace of the matrix (generalizing
the above discussion).

75See, for example, Hirsch and Smale (1974), p. 96.
76Again see Hirsch and Smale (1974), p. 96.
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Since

A(λ)M − I =
1

∆

[
−∆−λ(1+σκ)

1−βλ −σ(1−α)β(φπ−1−σφy)λ

1−βλ
κλ

(1−α)(1−αβλ)
−∆−βλ(1+σφy)

1−αβλ

]
,

we have

Det(A(λ)M − I) =
∆− λ(β(1 + σφy) + 1 + σκ) + βλ2

∆(1− βλ)(1− αβλ)
.

Note that under our sign assumptions, the denominator is necessarily positive. The
numerator defines a function g(λ), a convex function (a parabola) with the properties

g′(1) = (β − 1)− βσφy − κσ < 0

and

g(1) = κσ

(
φπ +

(1− β)

κ
φy − 1

)
,

so that g(1) > 0 if and only if the Taylor Principle is satisfied. Hence the function
g(λ) > 0 for all λ ≤ 1, with the consequence that Det[A(λ)M−I] > 0 for all |λ| ≤ 1,
if and only if the Taylor Principle is satisfied.

The trace of the matrix is given by

Tr(A(λ)M − I) = − 1

∆

(
∆− λ(1 + σκ)

1− βλ +
∆− βλ(1 + σφy)

1− αβλ

)
.

The denominators of both terms inside the parentheses are positive for all |λ| ≤ 1,
and we necessarily have ∆ > 0 under our sign assumptions as well. The numerator
of the first term inside the parentheses is also positive, since

∆− λ(1 + σκ) = σ [κφπ + φy − κ] + (1− λ)(1 + σκ) ≥ σ [κφπ + φy − κ] > 0

if the Taylor Principle is satisfied, again using (A.6). And the numerator of the second
term inside the parentheses is positive as well, since

∆− βλ(1 + σφy) = (1− βλ)(1 + σφy) + κσφπ > 0

under our sign assumptions. Thus the Taylor Principle is also a sufficient condition
for Tr[A(λ)M − I] < 0 for all |λ| ≤ 1.

It then follows that the Taylor Principle is necessary and sufficient for both eigen-
values of the matrix A(λ)M − I to have negative real part, in the case of any |λ| < 1.
We use this result in the proof of Proposition 1.
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A.5 Properties of the Matrix B

Necessary and sufficient conditions for both eigenvalues of a 2× 2 matrix B to have
modulus less than 1 are that (i) DetB < 1; (ii) DetB + TrB > −1; and (iii)
DetB − TrB > −1. In the case of the matrix B defined above, we observe that

∆ DetB = β, (A.7)

∆ TrB = 1 + κσ + β(1 + σφy).

From these facts we observe that our general sign assumptions imply that

∆ DetB < ∆,

∆ (DetB + TrB + 1) > 0.

Thus (since ∆ is positive) conditions (i) and (ii) from the previous paragraph neces-
sarily hold. We also find that

∆ (DetB − TrB + 1) = κσ

[
φπ +

(
1− β
κ

)
φy − 1

]
,

from which it follows that condition (iii) is also satisfied if and only if the quantity
in the square brackets is positive. Thus we conclude that both eigenvalues of B have
modulus less than 1 if and only if the Taylor Principle (2.14) is satisfied.

In the case that the Taylor Principle is violated (as in the case of a fixed interest
rate, in which case φπ = φy = 0), since DetB = µ1µ2 and TrB = µ1 + µ2, where
(µ1, µ2) are the two eigenvalues of B, the fact that condition (iii) fails to hold implies
that

(µ1 − 1)(µ2 − 1) < 0. (A.8)

This condition is inconsistent with the eigenvalues being a pair of complex conjugates,
so in this case there must be two real eigenvalues. Condition (A.8) further implies that
one must be greater than 1, while the other is less than 1. Condition (A.7) implies that
DetB > 0, which requires that the two real eigenvalues both be non-zero and of the
same sign; hence both must be positive. Thus when the Taylor Principle is violated
(i.e., the quantity in (A.5) is negative), there are two real eigenvalues satisfying

0 < µ1 < 1 < µ2,

as asserted in section 2.2.
We further note that in this case, e′2, the (real) left eigenvector associated with

eigenvalue µ2, must be such that e′2b 6= 0 (a result that is relied upon in section 4.2).
The vector v′2 6= 0 must satisfy

e′2 [B − µ2I] = 0
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to be a left eigenvector. The first column of this relation implies that (1− µ2)e2,1 +
κe2,2 = 0, where we use the notation e2,j for the jth element of eigenvector e′2. Since
κ > 0 and µ2 > 1, this requires that e2,1 and e2,2 must both be non-zero and have the
same sign. But since both elements of b have the same sign, this implies that e′2b 6= 0.

Finally, we note that whenever (A.5) holds, regardless of the sign, the eigenvalues
must satisfy

(µ1 − 1)(µ2 − 1) 6= 0,

so that B has no eigenvalue equal exactly to 1. This means that the matrix B − I
must be non-singular, which is the condition needed for existence of unique steady-
state levels of output and inflation consistent with a PFE. In the case of constant
fundamentals ωt = ω̄ for all t, the unique steady-state solution to (A.2) is then given
by xt = x̄ for all t, where

x̄ ≡ (I −B)−1 b [(1− β)σ−1ḡ − ı̄]. (A.9)

Note that condition (A.5) is also the condition under which M−I is non-singular,
as shown above. Moreover, since I − Λ is non-singular, M − I is non-singular if and
only if (I −Λ)(M − I) = [(I −Λ)M + Λ] − I is non-singular. This is the condition
under which equation (A.3) has a unique steady-state solution, in which et = ē for
all t, with

ē ≡ (I −M)−1mω̄.

This solution for steady-state PFE expectations is consistent with (A.9) because of
the identities linking the M and B matrices noted above.

A.6 Convergence of the PFE Dynamics

As noted in the text in section 2.2, in the case that φπ = φy = 0, there exists a
continuum of PFE solutions that remain bounded for all t, described by equations
(2.16) for alternative values of the coefficient χ. Here we show that if after some finite
date T , both ı̄t and ρt take constant values, then each of this continuum of solutions
has the property that

lim
t→∞

πt = πLR, lim
y→∞

yt = yLR,

where the limiting values are independent of χ and are given by (2.17). Moreover, the
limiting values to which the PFE dynamics converge correspond to the PFE steady
state (A.9).
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If ı̄t = ı̄LR and ρt = ρLR for all t ≥ T, then for any t ≥ T, (2.16) takes the form

xt = v1(e′1b)
ρLR − ı̄LR

1− µ1

− v2(e′2b)

{
t−T∑
j=1

µ−j2 · (ρLR − ı̄LR) +
t∑

j=t+1−T

µ−j2 (ρt−j − ı̄t−j)
}

+ χ v2µ
−t
2

=

[
v1(e′1b)

1− µ1

− v2(e′2b)

µ2 − 1
(1− µT−t2 )

]
· (ρLR − ı̄LR) + C v2µ

−t
2 + χ v2µ

−t
2

where

C ≡
T−1∑
s=0

µs2(ρs − ı̄s)

has a value independent of t. Given that 0 < µ−1
2 < 1, we see immediately from this

that xt converges to

xLR ≡
[
v1(e′1b)

1− µ1

+
v2(e′2b)

µ2 − 1

]
· (ρLR − ı̄LR)

as t→∞. This limiting vector is independent of the value of χ.
Finally, we note that

(I −B)xLR = (I −B)

[
v1(e′1b)

1− µ1

− v2(e′2b)

µ2 − 1

]
· (ρLR − ı̄LR)

=

[
(1− µ1)v1(e′1b)

1− µ1

− (1− µ2)v2(e′2b)

µ2 − 1

]
· (ρLR − ı̄LR)

= [v1(e′1b) + v2(e′2b)] · (ρLR − ı̄LR)

= b · (ρLR − ı̄LR),

so that xLR is just the vector of steady-state values defined in (A.9). Our definitions
of B and b above further imply that when φπ = φy = 0,

(I −B)−1 b =

[
−1−β

κ

−1

]
,

so that (A.9) implies the values given in (2.17).

B Proofs of Propositions

B.1 Proof of Proposition 1

As discussed in the text, under the hypotheses of the proposition, there must exist a
date T̄ such that the fundamental disturbances {ωt} can be written in the form

ωt = ω∞ +
K∑
k=1

aω,kλ
t−T̄
k
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for all t ≥ T̄ , and the initial conjecture can also be written in the form

et(0) = e∞(0) +
K∑
k=1

ae,k(0)λt−T̄k

for all t ≥ T̄ , where |λk| < 1 for all k = 1, . . . , K. (There is no loss of generality
in using the same date T̄ and the same finite set of convergence rates {λk} in both
expressions.) With a driving process and initial condition of this special form, the
solution to the system of differential equations (2.21) will be of the form

et(n) = e∞(n) +
K∑
k=1

ae,k(n)λt−T̄k

for all t ≥ T̄ , for each n ≥ 0. We then need simply determine the evolution as n
increases of the finite set of values et(n) for 0 ≤ t ≤ T −1, together with the finite set
of coefficients e∞(n) and ae,k(n). This is a set of 2(T̄ +K + 1) functions of n, which
we write as the vector-valued function e(n) in the text.

In the case of any belief sequences and disturbances of the form assumed in the
above paragraph, it follows from (2.20) that the implied correct beliefs will be of the
form

e∗t (n) = e∗∞(n) +
K∑
k=1

a∗e,k(n)λt−T̄k

for all t ≥ T̄ , where
e∗∞(n) = M e∞(n) + mω∞,

and
a∗e,k(n) = A(λk) [M ae,k(n) + maω,k]

for each k = 1, . . . , K. We further observe that for any t < T̄ ,

e∗t (n) =
T̄−t−1∑
j=1

[ψjet+j(n) + ϕjωt+j] + ΛT̄−t−1 [Me∞(n) + mω∞]

+
K∑
k=1

λ−1
k ΛT̄−t−1A(λk) [Mae,k(n) + maω,k].

Thus the sequence {e∗t (n)} can also be summarized by a set of 2(T̄ +K+1) functions
of n, and each of these is a linear function of the elements of the vectors e(n) and ω.

It then follows that the dynamics (2.21) can be written in the more compact form

ė(n) = V e(n) +W ω, (B.10)
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where the elements of the matrices V and W are given by the coefficients of the
equations in the previous paragraph. Suppose that we order the elements of e(n) as
follows: the first two elements are the elements of e0, the next two elements are the
elements of e1, and so on, through the elements of eT̄−1; the next two elements are
the elements of ae,1, the two elements after that are the elements of ae,2, and so on,
through the elements of ae,K ; and the final two elements are the elements of e∞. Then
we observe that the matrix V is of the form

V =

[
V11 V12

0 V22

]
, (B.11)

where the first 2T̄ rows are partitioned from the last 2(K + 1) rows, and the columns
are similarly partitioned.

Moreover, the block V11 of the matrix is of the block upper-triangular form

V11 =


−I v12 · · · v1,T̄−1 v1,T̄

0 −I · · · v2,T̄−1 v2,T̄
...

...
. . .

...
...

0 0 · · · −I vT̄−1,T̄

0 0 · · · 0 −I

 , (B.12)

where now each block of the matrix is 2 × 2. Furthermore, when V22 is similarly
partitioned into 2× 2 blocks, it takes the block-diagonal form

V22 =


A(λ1)M − I · · · 0 0

...
. . .

...
...

0 · · · A(λK)M − I 0
0 · · · 0 M − I

 . (B.13)

These results allow us to determine the eigenvalues of V . The block-triangular
form (B.11) implies that the eigenvalues of V consist of the 2T̄ eigenvalues of V11

and the 2(K + 1) eigenalues of V22 (the two diagonal blocks). Similarly, the block-
triangular form (B.12) implies that the eigenvalues of V11 consist of the eigenvalues
of the diagonal blocks (each of which is −I), which means that the eigenvalue -
1 is repeated 2T̄ times. Finally, the block-diagonal form (B.13) implies that the
eigenvalues of V22 consist of the eigenvalues of the diagonal blocks: the two eigenvalues
of A(λk)M − I, for each k = 1, . . . , K, and the two eigenvalues of M − I.

Using the results in section A.3, it follows from the hypothesis that the reaction
function coefficients satisfy (2.14) and the hypothesis that |λk| < 1 for each k that
all of the eigenvalues of M − I and of each of the matrices A(λk)M − I have negative
real part. Since all of the other eigenvalues of V are equal to -1, all 2(T̄ + K + 1)
eigenvalues of V have negative real part. This implies that V is non-singular, so that
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there is a unique rest point for the dynamics (B.10), defined by (3.3) in the text. It
also implies that the dynamics (B.10) converge asymptotically to that rest point as n
goes to infinity, for any initial condition e(0) (Hirsch and Smale, 1974, pp. 90-95).77

The rest point to which e(n) converges is easily seen to correspond to the unique
PFE that belongs to the same linear space L2. Beliefs in L2 constitute a PFE if
and only if e∗ = e. From our characterization above of e∗, this is equivalent to the
requirement that V e + W = 0, which holds if and only if e = ePF , the unique rest
point of the system (B.10).

Finally, the paths of output and inflation in any reflective equilibrium are given
by (A.1), given the solution for {et(n)}. Using (2.8), one obtains a similar linear
equation for the nominal interest rate each period. It then follows that for any t, the
reflective equilibrium values for yt, πt, and it converge to the FS-PFE values as n is
made large. Furthermore, the complete sequences of values for these three variables
for any value of n depend on only the finite number of elements of the vector e(n), in
such a way that for any ε > 0, there exists an ε̃ > 0 such that it is guaranteed that
each of the variables yt, πt, and it are within distance ε of their FS-PFE values for
all t as long as |e(n) − ePF | < ε̃. The convergence of e(n) to ePF then implies the
existence of a finite n(ε) for which the latter condition is satisfied, regardless of how
small ε̃ needs to be. This proves the proposition.

B.2 Comparison with a Discrete Model of Belief Revision

Here we note that the convergence result in Proposition 1 would not hold with the
same generality were we instead to assume a discrete model of belief revision in which,
instead of the continuous model of belief revision (2.21), we iterate the mapping

et(N + 1) = e∗t (N) (B.14)

for N = 0, 1, 2, . . . , where for each N , {e∗t (N)} is the sequence of correct beliefs
implied by average expectations specified by the sequence {et(N)}. As with the con-
tinuous model, we might take as given some “naive” initial conjecture, and then
consider how it evolves as a result of further iterations of the mapping. And as with
the continuous model, if the process converges to a fixed point, such a fixed point
must correspond to PFE beliefs.

77Of course, it is important to recognize that this result only establishes convergence for initial
conjectures that belong to the linear space L2. The result also only establishes convergence under
the assumption that the linear dynamics (B.10) apply at all times; this depends on assuming that
the reaction function (2.8) can be implemented at all times, which requires that the zero lower
bound never bind. Thus we only establish convergence for all those initial conjectures such that the
dynamics implied by (2.21) never cause the zero lower bound to bind. There is however a large set
of initial conditions for which this is true, given that the unconstrained dynamics are asymptotically
convergent.
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Figure 4: Change Discrete Updating, 200 Quarters,N=0-4
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Figure 7: Reflective equilibrium outcomes for N = 0 through 4 (progressively darker
lines) when the Taylor-rule intercept is reduced for 200 quarters, as in Figure 2; but
a discrete process of iterative belief revision is assumed.

However, the conditions for convergence of the discrete process, while related to
the conditions under which the continuous process converges, are more stringent.
Convergence need not obtain under the conditions hypothesized in Proposition 1, as
the following numerical example illustrates. In Figure 7, the same policy experiment
is considered as in Figure 2, namely, the intercept of the Taylor rule is expected to be
lowered for 200 quarters, after which it is expected to return to the level consistent
with the inflation target π∗. All model parameters are also the same as in Figure 2,
and the initial conjecture is assumed to be et(0) = 0 for all t, also as in the Figure 2.
However, in Figure 7 the iterative model of belief revision (B.14) is assumed, whereas
the continuous model (2.21) is assumed in Figure 2.

The figure plots the implied TE dynamics of output and inflation for iterations
N = 0, 1, 2, 3, and 4. The belief-revision dynamics are seen to be explosive. The first
revision of the initial conjecture (which takes account of the fact that it is predictable
that if people maintain the initial beliefs, consistent with the unperturbed steady
state, the temporary policy will lead to higher inflation and output) raises both
output and inflation further. But anticipation of these effects (and the associated
increase in the interest rate that they must provoke) should actually lead output and
inflation to be lower in stage N = 2. Anticipation of the N = 2 outcomes (which
imply an even deeper cut in the interest rate) then leads output and inflation to
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be high again in stage N = 3, and to an even greater extent than in stage N = 1.
Anticipating of this then leads output and inflation to be low again in stage N = 4, to
an even greater extent than in stage N = 2. The oscillations continue, growing larger
and larger, as N is increased; but as the figure shows, the predicted expectations are
already very extreme after only four iterations of the belief updating mapping.

It is not accidental that the unstable dynamics of belief revision in this case are
oscillatory. In terms of the compact notation introduced in the proof of Proposition 1
(under the assumption of exponentially convergent fundamentals and average beliefs),
the discrete model of belief revision (B.14) replaces the continuous dynamics (B.16)
by the discrete process

e(N + 1) = (I + V ) e(N) +W ω. (B.15)

This process is unstable if not all eigenvalues of I + V are of modulus less than 1.
Since the eigenvalues of I + V are equal to 1 + µi, where µi is an eigenvalue of V ,
and we have shown above that all eigenvalues of V have negative real part, I + V
cannot have a real eigenvalue greater than 1. It can, however, have a real eigenvalue
with modulus greater than 1, if V has a real eigenvalue that is less than -2. This is
the case shown in Figure 7, in which a large negative eigenvalue results in explosive
oscillations.

We feel, however, that the kind of unstable process of belief revision illustrated
by Figure 7 is unrealistic, as it is requires that at each stage in the reasoning, one
must conjecture that everyone else should reason in one precise way, even though that
assumed reasoning changes dramatically from each stage in the process of reflection
to the next. The continuous process of belief revision proposed in the text avoids
making such an implausible assumption.

B.3 Proof of Proposition 2

It has already been shown in the text that under the assumptions of the proposition,
we have et(n) = eLR(n) for all t ≥ T, where eLR(n) is given by (3.6). It has also been
shown that for any τ ≥ 1, the solution for eτ (n), where τ ≡ T − t is the number
of periods remaining until the regime change, is independent of T . The functions
{eτ (n)} further satisfy the system of differential equations

ėτ (n) = −eτ (n) + (I − Λ)
τ−1∑
j=1

Λj−1 [Meτ−j(n) + m2ı̄SR]

+ Λτ−1 [MeLR(n) + m2ı̄LR] (B.16)

derived in the text, together with the initial conditions eτ (0) = 0 for all τ ≥ 1.
(Equation (B.16) repeats equation (3.9) from the text.)
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We wish to calculate the behavior of the solution to this system as τ →∞ for an
arbitrary value of n. It is convenient to use the method of z-transforms (Jury, 1964).
For any n, let the z-transform of the sequence {eτ (n)} for τ ≥ 1 be defined as the
function

Xn(z) ≡
∞∑
τ=1

eτ (n) z1−τ . (B.17)

Here Xn(z) is a vector-valued function; each element is a function of the complex
number z, defined for complex numbers |z| > 1/ρ, where ρ is the minimum of the
radii of the convergence of the two series.

Differentiating (B.17) with respect to n, and substituting (B.16) for ėτ (n) in the
resulting equation, we obtain an evolution equation for the z-transform:

Ẋn(z) = −
∞∑
τ=1

eτ (n)z1−τ + (I − Λ)
∞∑
j=0

Λjz−j

[
M

∞∑
τ=1

eτ (n)z−τ + m2ı̄SR

∞∑
τ=1

z−τ

]

+
∞∑
j=0

Λjz−j [M eLR(n) + m2ı̄LR]

= −Xn(z) + (I − Λ)(I − Λz−1)−1
[
z−1M Xn(z) + (z − 1)−1m2ı̄SR

]
+ (I − Λz−1)−1 [MeLR(n) + m2ı̄LR] , (B.18)

which holds for any n > 0 and any z in the region of convergence. We note that the
right-hand side of (B.18) is well-defined for all |z| > 1.

The z-transform of the initial condition is simply X0(z) = 0 for all z. Thus we
wish to find functions {Xn(z)} for all n ≥ 0, each defined on the region |z| > 1, that
satisfy (B.18) for all n and all |z| > 1, together with the initial condition X0(z) = 0
for all z. If we can find such a solution, then for any n we can find the implied
sequence {et(n)} by inverse z-transformation of the function Xn(z).

We note that the dynamics of Xn(z) implied by (B.18) is independent for each
value of z. (This is the advantage of z-transformation of the original system of
equations (B.16).) Thus for each value of z such that |z| > 1, we have an independent
first-order ordinary differential equation to solve for Xn(z), with the single initial
condition X0(z) = 0. This equation has a closed-form solution for each z, given by

Xn(z) = (1− z−1)−1 [I − exp(n(M − I))] (I −M)−1 ·m2ı̄LR

+ (z − 1)−1 [I − exp(−nΦ(z))] Φ(z)−1 (I − Λ)(I − Λz−1)−1

·m2(̄ıSR − ı̄LR) (B.19)

for all n ≥ 0, where

Φ(z) ≡ I − (I − Λ)(I − Λz−1)−1z−1M.

86



Note also that the expression on the right-hand side of (B.19) is an analytic function
of z everywhere in the complex plane outside the unit circle, and can be expressed
as a sum of powers of z−1 that converges everywhere in that region. Such a series
expansion of Xn(z) for any n allows us to recover the series of coefficients {eτ (n)}
associated with the reflective equilibrium with degree of reflection n.

For any value of n ≥ 0, we are interested in computing

eSR(n) ≡ lim
T→∞

et(n) = lim
τ→∞

eτ (n).

The final value theorem for z-transforms78 implies that

lim
τ→∞

eτ (n) = lim
z→1

(z − 1)Xn(z)

if the limit on the right-hand side exists. In the case of the solution (B.19), we observe
that the limit is well-defined, and equal to

lim
z→1

(z − 1)Xn(z) = [I − exp(n(M − I))] (I −M)−1m2ı̄SR.

Hence for any t and any n, et(n) converges to a well-defined (finite) limit as T is
made large, and the limit is the one given in the statement of the proposition.

B.4 Proof of Proposition 3

The result that
lim
T→∞

et(n) = eSR(n)

for all t and n follows from Proposition 2. If in addition, the Taylor Principle (2.14) is
satisfied, then as shown in section A.3 above, both eigenvalues of M−I have negative
real part. From this (3.8) follows; substituting of this into (3.10) yields

lim
n→∞

eSR(n) = ēPFSR ,

where ēPFSR is defined in (3.11). This establishes the first double limit in the statement
of the proposition.

The result that
lim
n→∞

et(n) = ePFt

for all t follows from Proposition 1. Establishing the second double limit thus requires
us to consider how ePFt changes as T is made large.

As discussed in section A.2 above, the FS-PFE dynamics {ePFt } satisfy equation
(A.3) for all t. Under the kind of regime assumed in this proposition (with ωt equal

78See, for example, Jury (1964), p. 6.
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to a constant vector ω̄ for all t ≥ T ), the FS-PFE (obtained by “solving forward”
the difference equation) involves a constant vector of expectations, ePFt = ēPFLR for all
t ≥ T − 1, where

ēPFLR ≡ [I −M ]−1m2ı̄LR

is the same as the vector defined in (3.7).
For periods t < T − 1, one must instead solve the difference equation backward

from the terminal condition ePFT−1 = ēPFLR . We thus obtain a difference equation of the
form

eτ = [(I − Λ)M + Λ] eτ−1 + (I − Λ)m2ı̄SR (B.20)

for all τ ≥ 2, with initial condition e1 = ēPFLR . The asymptotic behavior of these
dynamics as τ is made large depends on the eigenvalues of the matrix

(I − Λ)M + Λ = C−1BC, (B.21)

which must be the same as the eigenvalues of B. (Note that (B.21) follows from
(A.4).)

Under the hypothesis that the response coefficients satisfy the Taylor Principle
(2.14), both eigenvalues of B are inside the unit circle. It then follows that the
dynamics (B.20) converge as τ → ∞ to the steady-state vector of expectations ēPFSR
defined in (3.11). We thus conclude that

lim
T→∞

ePFt = ēPFSR

for any t. This establishes the second double limit.

B.5 Proof of Proposition 4

The proof of this proposition follows exactly the same lines as the proof of Proposition
1. While the definition of the matrices of coefficients V and W must be modified, it
continues to be possible to write the belief revision dynamics in the compact form
(B.10), for an appropriate definition of these matrices. (This depends on the fact
that we have chosen T̄ ≥ T, so that the coefficients of the monetary policy reaction
function do not change over time during periods t ≥ T̄ . Variation over time in the
reaction function coefficients does not prevent us from writing the dynamics in the
compact form, as long as it occurs only prior to date T̄ ; and our method of analysis
requires only that T̄ be finite.)

Moreover, it continues to be the case that V will have the block-triangular form
indicated in equations (B.11)–(B.13). In equation (B.13), the matrix M is defined
using the coefficients (φπ, φy) that apply after date T , and thus that satisfy the Taylor
Principle (2.14), according to the hypotheses of the proposition. The eigenvalues of V
again consist of -1 (repeated 2T̄ times); the eigenvalues of A(λk)M, for k = 1, . . . , K,
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and the eigenvalues of M . Because M is defined using coefficients that satisfy the
Taylor Principle, we again find that all of the eigenvalues of M and of A(λk)M
have negative real part. Hence all of the eigenvalues of V have negative real part.
This again implies that the dynamics (B.10) are asymptotically stable, and the fixed
point to which they converge again corresponds to the FS-PFE expectations. This
establishes the proposition.

Note that this result depends on the hypothesis that from date T onward, mon-
etary policy is determined by a reaction function with coefficients that satisfy the
Taylor Principle. If we assumed instead (as in the case emphasized in Cochrane,
2015a) that after date T , policy again consists of a fixed interest rate, but one that
is consistent with the long-run inflation target (i.e., ı̄LR = 0), the belief-revision dy-
namics would not converge. (See the discussion in section 4.3 of the text of the case
in which an interest-rate peg differs temporarily from the long-run interest-rate peg.)

If the interest rate is also fixed after date T (albeit at some level ı̄LR 6= ı̄SR), the
belief-revision dynamics can again be written in the compact form (B.10), and the
matrix V will again have the form (B.11)–(B.13). But in this case, the matrix M in
(B.13) would be defined using the response coefficients φπ = φy = 0, so that the
Taylor Principle is violated. It then follows from our results above that M will have
a positive real eigenvalue. (By continuity, one can show that A(λk)M will also have
a positive real eigenvalue for all values of λk near enough to 1.) Hence V will have
at least one (and possibly several) eigenvalues with positive real part, and the belief-
revision dynamics (B.10) will be explosive in the case of almost all initial conjectures
(even restricting our attention to conjectures within the specified finite-dimensional
family).

B.6 Proof of Proposition 5

The proof of this proposition follows similar lines as the proof of Proposition 2. In
general, the characterization of reflective equilibrium is more complex when the mon-
etary policy response coefficients are not time-invariant, as in the situation considered
here. However, in the case hypothesized in the proposition, gt = 0 and from period
T onward, monetary policy is consistent with constant inflation at the rate π∗. Un-
der these circumstances, and initial conjecture under which et = 0 for all t ≥ T
implies correct beliefs e∗t = 0 for all t ≥ T as well. Hence under the belief-revision
dynamics, the conjectured beliefs are never revised, and et(n) = 0 for all degrees of
reflection n ≥ 0, and any t ≥ T. This result would be the same if we were to assume
a fixed interest rate for all t ≥ T (that is, if we were to assume response coefficients
φπ = φy = 0 after date T , just like we do for dates prior to T ), but a fixed interest
rate ı̄t = 0 for all t ≥ T (that is, the fixed interest rate consistent with the steady
state with inflation rate π∗).

Thus the reflective equilibrium is the same (in this very special case) as if we
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assumed a fixed interest rate in all periods (and thus the same response coefficients
in all periods), but ı̄t = ı̄SR for t < T while ı̄t = 0 for t ≥ T.79 And the latter is a case
to which Proposition 2 applies. (Note that Proposition 2 requires no assumptions
about the response coefficients except that they are constant over time, and that
they satisfy (A.5). Hence the case in which φπ = φy = 0 in all periods is consistent
with the hypotheses of that proposition.)

Proposition 2 can then be used to show that the reflective equilibrium beliefs
{et(n)} for any degree of reflection n converge to a well-defined limiting value eSR(n),
which is given by (3.10)–(3.11). This establishes the proposition.

B.7 Proof of Proposition 6

Let {e1
t} be the sequence of expectations in a reflective equilibrium when the date of

the regime change is T , and {e2
t} be the expectations in the equilibrium corresponding

to the same degree of reflection n when the date of the regime change is T ′ > T.
Similarly, let {a1

t} and {a2
t} be the evolution of the vectors of summary variables that

decisionmakers need to forecast in the two equilibria, and {e∗1t } and {e∗2t } the implied
sequences of correct forecasts in the two equilibria. We similarly use the notation
M (i),m(i), C(i), c(i) to refer to the matrices M,m,C, and c respectively, defined using
the monetary policy response coefficients associated with regime i (for i = 1, 2).80

Let us first consider the predictions regarding reflective equilibrium in periods
t ≥ T ′. Under both of the assumptions about policy, policy is expected to be the
same at all dates t ≥ T ′. Since it is assumed that we start from the same initial
conjecture {et(0)} in both cases, and the model is purely forward-looking, it follows
that the belief-revision dynamics will also be the same for all t ≥ T ′ in both cases.
Hence we obtain the same sequences {et(n)} in both cases, for all t ≥ T ′; and since the
outcomes for output and inflation are then given by (A.1), these are the same for all
t ≥ T ′ as well. Moreover, it is easily shown that under our assumptions, the common
solution is one in which et(n) = 0 for all t ≥ T ′, and correspondingly xt(n) = 0 for
all t ≥ T ′.

Moreover, since outcomes for output and inflation are the same for all t ≥ T ′ in
the two cases, it follows that the sequences of correct forecasts {e∗t} are the same in
both cases for all t ≥ T ′− 1. (Note that the correct forecasts in period T ′− 1 depend
only on the equilibrium outcomes in period T ′ and later.) Hence the belief-revision

79Note that these two different specifications of monetary policy would not lead to the same
reflective equilibrium expectations, under most assumptions about the real shocks or about the
initial conjecture; see the discussion at the end of the proof of Proposition 4. Here we get the same
result only because we assume gt = 0 (exactly) for all t ≥ T and an initial conjecture under which
et(0) = 0 (exactly) for all t ≥ T.

80By “regime 1” we mean the Taylor rule (the regime in place in periods T ≤ t < T ′ under policy
1); by “regime 2” we mean the interest-rate peg at ı̄SR.
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dynamics for period T ′ − 1 will also be the same in both cases, and we obtain the
same vector eT ′−1(n) for all n; and again the common beliefs are eT ′−1(n) = 0.

Let us next consider reflective equilibrium in periods T ≤ t ≤ T ′ − 1. Suppose
that for some such t and some n, e2

t ≥ e1
t ≥ 0 (in both components). Then

a2
t − a1

t = M (2) (e2 − e1
t ) + [M (2) −M (1)] e1

t |+ m
(2)
2 ı̄SR.

Moreover, we observe from the above definitions of M and m that M (2) is positive
in all elements; M (2) −M (1) is positive in all elements; and m

(2)
2 is negative in both

elements. Under the hypotheses that e2
t ≥ e1

t ≥ 0 and ı̄SR < 0, it follows that
a2
t − a1

t >> 0, where we use the symbol >> to indicate that the first vector is
greater in both elements.

Now suppose that for some n, e2
t ≥ e1

t ≥ 0 for all T ≤ t ≤ T ′ − 1. It follows from
our conclusions above that these inequalities then must hold for all t ≥ T. It also
follows from the argument in the paragraph above that we must have a2

t >> a1
t for all

T ≤ t ≤ T ′ − 1, along with a2
t = a1

t for all t ≥ T ′. This implies that e∗2t (n) >> e∗1t (n)
for all T ≤ t < T ′ − 1, while e∗2t (n) = e∗1t (n) for t = T ′ − 1.

The fact that e∗2t (n) = e∗1t (n) for t = T ′−1 means that the belief-revision dynamics
for period T ′− 1 will again be the same in both cases, and we obtain the same vector
eT ′−1(n) for all n; and again the common beliefs are eT ′−1(n) = 0. For periods T ≤
t < T ′−1, we continue to have e∗1t (n) = 0 for all n, for the same reason as in the case
of periods t ≥ T ′. But now the fact that we start from the common initial conjecture
e2
t (0) = e1

t (0) = 0 implies that e∗2t (0) >> e∗1t (0) = 0 and hence ė2
t (0) >> ė1

t (0) = 0.
This implies that for small enough n > 0, we will have e2

t (n) >> e1
t (n) = 0 for all

T ≤ t < T ′ − 1.
Moreover, for any n, as long as we continue to have e2

t (n) ≥ e1
t (n) = 0 for all

t ≥ T, we will continue to have e∗2t (n) >> e∗1t (n) = 0 for all T ≤ t < T ′−1. Since the
belief-revision dynamics (2.21) imply that for any n > 0, et(n) is an average of et(0)
and the vectors e∗t (ñ) for values 0 ≤ ñ < n, as long as we have had e∗2t (ñ) >> 0 for
all 0 ≤ ñ < n, we will necessarily have e2

t (n) >> 0. Thus we conclude by induction
that e2

t (n) >> e1
t (n) = 0 for all n > 0, and any T ≤ t < T ′ − 1.

The associated reflective equilibrium outcomes are given by (A.1) in each case.
This implies that

x2
t − x1

t = C(2) (e2 − e1
t ) + [C(2) − C(1)] e1

t |+ c
(2)
2 ı̄SR.

Note furthermore that all elements of C(2) are non-negative, with at least one positive
element in each row; that all elements of C(2)−C(1) are positive; and that all elements
of c

(2)
2 are negative. Then the fact that e2

t (n) ≥ e1
t (n) = 0 for all T ≤ t ≤ T ′ − 1 and

ı̄SR < 0 implies that x2
t >> x1

t for all T ≤ t ≤ T ′ − 1.
Finally, let us consider reflective equilibrium in periods 0 ≤ t < T. In these

periods, the monetary policy is expected to be the same in both cases (the fixed
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interest rate). Suppose that for some such t and some n, e2
t ≥ e1

t . Then

a2
t − a1

t = M (2) (e2 − e1
t ) ≥ 0,

because all elements of M (2) are positive. Since we have already concluded above
that a2

t >> a1
t for all T ≤ t ≤ T ′ − 1, and that a2

t = a1
t for all t ≥ T ′, this implies

that e∗2t >> e∗1t for all 0 ≤ t < T.
We can then use an inductive argument, as above, to show that e2

t (n) >> e1
t (n)

for any n > 0, and any 0 ≤ t < T. It follows from this that

x2
t − x1

t = C(2) (e2 − e1
t ) >> 0

for any n > 0, and any 0 ≤ t < T, given that all elements of C(2) are non-negative,
with at least one positive element in each row. This establishes the proposition.
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