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Abstract

There is a long tradition in macroeconomics suggesting that market imperfections
may explain why economies repeatedly go through periods of booms and busts, with
booms sowing the seeds of the subsequent busts. This idea can be captured mathe-
matically as a limit cycle. For several reasons, limit cycles play almost no role in
modern quantitative business cycle analysis. In this paper we present both a gen-
eral structure and a particular model with the aim of giving new life to this mostly
dismissed view of fluctuations. We begin by showing why and when models with
strategic complementarities—which are quite common in macroeconomics—can give
rise to unique-equilibrium dynamics characterized by a limit cycle. We then develop
and estimate a fully-specified dynamic general equilibrium model that embeds a de-
mand complementarity to see whether the data favors a configuration supportive of a
limit cycle. Booms and busts arise endogenously in our setting because agents want
to concentrate their purchases of goods at times when purchases by others are high,
since in such situations unemployment is low and therefore taking on debt is perceived
as being less risky. A key feature of our approach is that we allow limit-cycle forces to
compete with exogenous disturbances in explaining the data. Our estimation results
indicate that US business cycle fluctuations in employment and output can be well
explained by endogenous demand-driven cycles buffeted by technological disturbances
that render those fluctuations irregular.
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Introduction

In most modern business cycle models, the underlying economic system is very stable. In

particular, in the absence of shocks, the variables in these systems tend to converge either

to a steady state or to a balanced growth path. In such frameworks, business cycles are

viewed as emerging from shocks—which could be either fundamental or non-fundamental—

that disturb an otherwise stable system. However, it is well known that this is not the only

framework that could give rise to business cycles. In particular, it may well be that economic

forces naturally produce cyclical phenomena; that is, in the absence of any shocks (including

shocks to agents’ beliefs) economic forces by themselves may favor recurrent periods of high

economic activity followed by periods of low economic activity. This sort of outcome will

arise, for example, if the underlying economic system generates a limit cycle.1 In such a

framework, irregular business cycles can emerge from these underlying regular forces when

combined with shocks that move the system away from an attracting orbit.

The idea of self-sustaining trade cycles, to use the terminology of the early years of

macroeconomics, can be found in the dynamic version of the Keynesian theory proposed by

Kalecki [1937], and more formally later on in the nonlinear versions of Samuelson’s [1939]

accelerator proposed by Kaldor [1940], Hicks [1950] and Goodwin [1951].2 In the 1970s and

1980s, a larger literature emerged that examined the conditions under which qualitatively and

quantitatively reasonable economic fluctuations might occur in purely deterministic settings

(see, e.g., Benhabib and Nishimura [1979] and [1985], Day [1982] and [1983], Grandmont

[1985], Boldrin and Montrucchio [1986], Day and Shafer [1987]; for surveys of the literature,

see Boldrin and Woodford [1990] and Scheinkman [1990]). By the early 1990s, however, the

interest in such models for understanding business cycle fluctuations greatly diminished and

became quite removed from the mainstream research agenda.3

1Informally, limit cycles are indefinitely repeating fluctuations that are capable of emerging in some
dynamic systems.

2An earlier mention of self-sustaining cycles as a model for economic fluctuations is found in Le Corbeiller
[1933] in the first volume of Econometrica.

3There are at least two strands of the macroeconomic literature that has productively continued to pursue
ideas related to limit cycles: a literature on innovation cycles and growth (see, for, example Shleifer [1986]
and Matsuyama [1999]), and a literature on endogenous credit cycles in an OLG setting (see, for example,
Azariadis and Smith [1998], Matsuyama [2007] and [2013], Myerson [2012] and Gu, Mattesini, Monnet, and
Wright [2013]).

1



There appear to be several key reasons why interest in limit cycles may have waned, each

of which are addressed in the present paper. First, the earlier literature on deterministic

fluctuations can be broadly sub-divided into two categories: models with and without op-

timizing, forward-looking agents.4 The latter category, which were generally more capable

of producing reasonable deterministic fluctuations than the former, likely fell out of favor as

macro in general moved toward more micro-founded models.

Second, in the category of models featuring optimizing forward-looking agents, the pri-

mary focus was on models with a neoclassical, competitive-equilibrium structure.5 Such

models were often found to require relatively extreme parameter values in order to gener-

ate deterministic fluctuations. For example, the Turnpike Theorem of Scheinkman [1976]

establishes that, under certain basic conditions met by these models and holding all other

parameters constant, for a sufficiently high discount factor—i.e., for agents that are “forward-

looking” enough—the steady state of the model is globally attractive, so that persistent

deterministic fluctuations cannot appear.6 While in principle this does not rule out deter-

ministic fluctuations completely, in practice the size of the discount factor needed to generate

them was often implausibly low. For example, in a survey of such models by Boldrin and

Woodford [1990], discount factors for several of the models they discuss were on the order of

0.3 or less.7 As the present paper illustrates, however, if one departs from the assumptions

of a neoclassical, competitive-equilibrium environment—for example, if there is a demand

externality—then a discount factor arbitrarily close to one can relatively easily support de-

4The first category includes, for example, Benhabib and Nishimura [1979] and [1985], and Boldrin and
Montrucchio [1986], while the latter includes, for example, the pre-1970s examples cited above, as well as
Day [1982] and [1983].

5While there are some exceptions, they are comparatively rare. Perhaps the clearest example is Ham-
mour [1989], chapter 1, which is focused on deterministic fluctuations in an environment of increasing returns.
Other exceptions include models in the search literature that are capable of generating deterministic fluc-
tuations, such as Diamond and Fudenberg [1989], Boldrin, Kiyotaki, and Wright [1993], Coles and Wright
[1998], Lagos and Wright [2003], Rocheteau and Wright [2013] and Gu, Mattesini, Monnet, and Wright
[2013]. Note however that these search papers were mainly concerned with characterizing the set of possible
equilibria for a particular model (which for some parameterizations included limit cycles), rather than being
focused on cycles directly.

6See the discussion in section 2.3 for further details.
7It is possible in principle to rationalize such low discount factors by choosing a longer period length for

the model. However, if households discount the future with a quarterly discount factor of 0.99 or greater—as
is frequently the case in the business-cycle literature—a factor of 0.3 would be associated with a period
length of 120+ quarters (30+ years). Since the minimum period length of a cycle is two periods, this would
generate cycles on the order of 60+ years, well outside of what is normally thought of as the business cycle.
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terministic fluctuations in equilibrium.

Third, models producing periodic cycles—that is, cycles which exactly repeat themselves

every k periods—are clearly at odds with the data, where such consistently regular cycles

cannot be found.8 This can be observed by looking at the spectrum of data generated by

such models, which will generally feature one or more large spikes at frequencies associated

with k-period cycles. Spectra estimated on macroeconomic data generally lack such spikes,9

which suggests much less regularity in real-world cycles. To address this issue, papers from

the earlier literature frequently sought to establish conditions under which such irregular

cycles could emerge in a purely deterministic setting via chaotic dynamics.10 While in a

number of cases this was found to be possible, the conditions are often more restrictive

than those required to generate simple periodic cycles. In contrast, rather than restricting

attention to a purely deterministic setting, this paper embeds a limit cycle mechanism into

a stochastic environment in which irregular fluctuations emerge as the interplay between

exogenous shocks and endogenous cycles.

Finally, being inherently non-linear, economic models that are capable of generating

deterministic fluctuations are often difficult to work with analytically beyond the very sim-

plest of settings, and quantitative results often require computationally-expensive solution

algorithms. Prior to relatively recent advances in computing technology, obtaining these

quantitative results may have been infeasible and, as a result, a number of potentially fruit-

ful areas of research—such as, for example, combining deterministic and stochastic cyclical

forces11—have gone largely unexplored.

In this paper, we re-examine the issue of limit cycles as a foundation to a theory of

business cycles by building on models with demand externalities. Our first goal is to show

that limit cycles tend to arise quite naturally in the presence of demand complementarities.

8In Boldrin and Woodford [1990], the authors mention private communication with Sir John Hicks in
which Hicks indicated that he lost interest in endogenous cycle models because actual business cycles were
far from being regular periodic motions.

9See Figure 5.
10Roughly, chaotic fluctuations appear in systems where the orbits emanating from two different initial

points typically cannot be made arbitrarily close by choosing those initial points sufficiently close together.
Chaotic systems “appear” random, despite being entirely deterministic.

11One notable paper that combines these forces is Benhabib and Nishimura [1989], who consider the
theoretical question of how such a combination would affect the joint probability distribution of the variables
of the system.
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In particular, we clarify why demand complementarities, when they relate to a good that

can be accumulated, are more likely to give rise to local instability and limit cycles than

to multiple equilibrium. To make this point, we first present a simple but fairly general

reduced-form setup. Our second goal is to present a particular but fully specified model

wherein limit cycles can arise as the result of demand complementarities stemming from

an interplay between unemployment risk and precautionary savings. We estimate a DSGE

version of this model to see how it chooses to explain features of the data.

The outline of the paper is as follows. In Section 1, we present a simple reduced-form

dynamic model to highlight what type of interactions between agents tends to give rise to

limit cycles. In particular, we show how and when demand complementarities can cause

the steady state of the system to become unstable and a limit cycle to appear around it

as part of a Hopf bifurcation,12,13 and further establish a simple condition under which this

limit cycle will be attractive. In Section 2, we introduce an optimization-based model which

incorporates unemployment risk that in turn causes agents’ consumption decisions to be

strategic complements as a result of precautionary behavior. The model builds on Beaudry,

Galizia, and Portier [2015]. We will show that this explicit model exhibits the main features

emphasized by the reduced-form model. Section 3 takes the model to the data to see whether

estimation will reveal the presence of a limit cycle. Since our estimation framework allows the

limit cycle to compete with exogenous disturbances in explaining the data, we will be able to

assess the extent to which it can reduce the reliance on exogenous disturbances in explaining

business cycle fluctuations. Finally, in the last section we offer concluding comments.

12Since our model is formulated in discrete time, the bifurcation we consider is more appropriately referred
to as a Neimark-Sacker (rather than Hopf) bifurcation. Nonetheless, we will typically follow convention in
applying the term “Hopf bifurcation” to both continuous and discrete environments.

13Informally, a Hopf bifurcation—which may occur in both continuous and discrete formulations—is cha-
racterized by a loss of stability in which the resulting limit cycle involves rotation around the steady state
in two-dimensional phase space. Discrete (but not continuous) systems may also produce limit cycles in a
one-dimensional setting via a “flip” bifurcation, in which case the system “jumps” back and forth over the
steady state. As discussed further in Section 1, for several reasons we will largely focus our discussion around
the dynamics associated with Hopf bifurcations.
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1 Demand Complementarities and Limit Cycles: A

Reduced-Form Model

In this section we present a simple reduced-form dynamic model aimed at illustrating how

and when limit cycles can emerge in an environment with demand complementarities. As

we show, the key mechanism that allows the model to generate limit cycles is the interplay

between the demand complementarities and the dynamic forces associated with the fact that

the good in the model can be accumulated. We begin with a reduced-form setup so as to

highlight the generality of this mechanism, regardless of the source of the precise micro-

foundations that drive agents’ interactions. In the next section we will present a structural

model that rationalizes this set-up, and in which this key mechanism emerges naturally.

In addition to establishing that the model can, under fairly general conditions, produce a

Hopf bifurcation associated with an attractive limit cycle, an important goal of the analysis

in this section is to show that this happens even when we restrict the strength of the demand

complementarities to be too weak to create static multiple equilibria. In fact, as we make

clear, the strength of the demand complementarities necessary for a limit cycle to appear in

this environment is always less than that needed to generate multiple equilibrium.

1.1 The Environment

Consider an environment with a large number N of agents indexed by i, where each agent

can accumulate a good Xit, which can be either physical capital or a durable consumption

good. The accumulation equation is given by

Xit+1 = (1− δ)Xit + Iit, 0 < δ < 1, (1)

where Iit is agents i’s investment in the good. Suppose initially that there are no interactions

between agents and that the decision rule for agent i’s investment is given simply by

Iit = α0 − α1Xit + α2Iit−1, (2)

where all parameters are strictly positive and 0 < α1 < 1, 0 < α2 < 1. In this decision rule,

the effect of Xit on investment is assumed to be negative so as to reflect some underlying
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decreasing returns to capital accumulation, while the effect of past investment is positive so

as to reflect sluggish response that may be due, for example, to adjustment costs.14

When all agents behave symmetrically, the aggregate dynamics of the economy are given

by the linear system:(
It
Xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)
︸ ︷︷ ︸

ML

(
It−1
Xt−1

)
+

(
α0

0

)
. (3)

The stability of this system is established in the following proposition.

Proposition 1. Both eigenvalues of the matrix ML lie strictly inside the unit circle. There-

fore, system (3) is stable.

All proofs are given in the appendix. According to Proposition 1, the dynamics are

extreme simple, with the system converging to its steady state for any starting values of

Xit = Xt and Iit−1 = It−1. We now add agent interactions to the model and study how is

the dynamics are affected.

1.2 Adding Interactions Between Agents

To generalize the previous setup in order to allow for interactions between individuals, we

modify the investment decision rule to

Iit = α0 − α1Xit + α2Iit−1 + F

(∑
Ijt
N

)
, (4)

while keeping the law of motion forX (equation (1)) unchanged. We assume that the function

F (·) is continuous and differentiable at least three times and that F (0) = 0. The function

F (·) captures how the actions of others, summarized by the average level of investment

It ≡
∑
Ijt/N , affect agent i’s investment decision Iit. For example, the function F (·) can

capture implicitly the price increase induced by the demand of others if F ′(·) < 0, or can

capture demand complementarities if F ′(·) > 0. In this formulation, we are assuming that

agents take the average actions in the economy as given, so that (4) can be interpreted as

agent i’s best-response rule to the average action.

14We focus here on a system with two state variables. We do this since we need a system with at least two
state variables for the possibility of a Hopf bifurcation to arise. It is our conjecture that limit cycles that
emerge from Hopf bifurcations are more likely to be relevant for business cycle analysis than those arising
from flip bifurcations (which can arise in one-dimensional systems).
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Figure 1: Best-Response Rule for Two Different Histories

It

Iit
Iit = It

αt

Iit = αt + F (It)

α′t

Iit = α′t + F (It)

Notes: This figure plots the best-response rule (equation (4)), Iit = αt + F (It), with αt ≡
α0 − α1

∑∞
j=0(1 − δ)τIit−1−j + α2Iit−1. The intercepts αt and α′t correspond to two different

histories of the model.
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Figure 1 illustrates this best-response rule for two different values of the intercept. Note

that in this diagram the intercept is given by αt = α0−α1

∑∞
j=0(1−δ)jIit−1−j+α2Iit−1, which

is a function of the history of the economy prior to date t. Thus, past investment decisions

determine the location of the best-response rule, which in turn determines the current level

of investment, which then feeds into the determination of the next period’s intercept, and so

on. In order to rule out static multiple equilibria—that is, multiple solutions for It for given

values of Iit−1 and Xit—we assume that F ′ (It) < 1.15 Thus, we are restricting attention

to cases where demand complementarities, if they are present, are never strong enough to

produce static multiple equilibrium.

In what follows we consider only symmetric equilibria, so that we may henceforth drop

the subscript i. We make the additional assumption that α2 < α1/δ so that a steady state

necessarily exists and is unique, and let Is and Xs denote the steady state values of I and

X. Note that the condition α2 < α1/δ will always be satisfied when δ is sufficiently small,

since both α1 and α2 are strictly positive.

Our goal is to examine how the dynamics of the system (1) and (4) are affected by the

properties of the interaction effects, and especially what conditions on F (·) will give rise to

a Hopf bifurcation that is associated with the emergence of an attractive limit cycle.

1.3 The Local Dynamics of the Model with Interactions Between
Agents

We now consider the dynamics implied by the bivariate system (1) and (4). In order to

understand those dynamics, it is useful to first look at local dynamics in the neighborhood

of the steady state. The first-order approximation of this dynamic system is given by(
It
Xt

)
=

(
α2−α1

1−F ′(Is) −
α1(1−δ)
1−F ′(Is)

1 1− δ

)
︸ ︷︷ ︸

M

(
It−1
Xt−1

)
+

([
1− α2−α1

1−F ′(Is)

]
Is + α1(1−δ)

1−F ′(Is)X
s

0

)
. (5)

The eigenvalues of the matrix M are the solutions to the quadratic equation

Q(λ) = λ2 − Tλ+D = 0,

15Under the condition F ′ (It) < 1, the static equilibrium depicted in Figure 1 is generally viewed as stable
under a tâtonnement-type adjustment process. This stability property is not the focus of the current paper.
Instead we are interested in the explicit dynamics induced by the system (1) and (4).
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where T is the trace of M (and also the sum of its eigenvalues) and D is the determinant of

M (and also the product of its eigenvalues). The two eigenvalues are thus given by

λ, λ =
T

2
±

√(
T

2

)2

−D (6)

where

T ≡ α2 − α1

1− F ′(Is)
+ 1− δ (7)

and

D ≡ α2(1− δ)
1− F ′(Is)

. (8)

When F ′(Is) = 0, the model dynamics are locally the same as in the model without

demand complementarities, and in particular, as noted in Proposition 1, the roots of the

system lie inside the unit circle in this case. More generally, we may (locally) parameterize

F by F ′(Is) and ask what happens as F ′ varies.

Geometric analysis: It is informative to consider a geometric analysis of the location

of the two eigenvalues of the linearized system (5). This is done in Figure 2, which presents

the plane (T,D). A point in this plane is a pair (Trace, Determinant) of matrix M that

corresponds to a particular configuration of the model parameters (including F ′(Is)). We

have drawn three lines and a parabola in that plane. The line BC corresponds to D = 1,

the line AB to the equation Q(−1) = 0 (⇔ D = −T − 1) and the line AC to the equation

Q(1) = 0 (⇔ D = T − 1). On the perimeter of triangle ÂBC, at least one eigenvalue has a

modulus of one. We review in the appendix why both eigenvalues of the system are inside

the unit circle when (T,D) is inside ÂBC, while at least one eigenvalue is outside the unit

circle when (T,D) is outside ÂBC. Whether the eigenvalues are real or complex depends

on the sign of the discriminant of the equation Q(λ) = 0, which is given by ∆ ≡
(
T
2

)2 −D.

The parabola in Figure 2 corresponds to the equation ∆ = 0 (⇔ D = T 2/4). Above the

parabola, the eigenvalues are complex and conjugate, while on or below the parabola they

are real. The possible configurations of the local dynamics can then be easily characterized

by considering the location of (T,D) within this diagram.

Without any restrictions on F ′(Is), the steady state can be locally stable, unstable, or a

saddle, with either real or complex eigenvalues. Proposition 1 proves that when F ′(Is) = 0,
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the steady state values correspond to points E or E ′ (depending on the parameters) that

are inside ÂBC. Furthermore, it is easy to verify that D is always greater than zero, so that

the steady state must lie in the top part of ÂBC. As an example, in Figure 2 we have put

E and E ′ in the region of stability with complex eigenvalues.

As F ′(Is) varies, the eigenvalues of the system will vary, implying changes to the dynamic

behavior of I and X. From equations (7) and (8), assuming α1 6= α2,
16 we may obtain the

following relationship between the trace and determinant of matrix M :

D =
α2(1− δ)
α2 − α1

T − α2(1− δ)2

α2 − α1

. (9)

Therefore, when F ′(Is) varies, T and D move along the line (9) in (T,D)-space, which allows

for an easy characterization of the impact of F ′(Is) on the location of the eigenvalues, and

therefore also of the stability of the steady state. We need to systematically consider the two

cases α2 > α1 and α2 < α1, as the line (9) slopes positively in the former case and negatively

in the latter.

Let us consider first the strategic substitutability case where F ′(Is) is negative; that is,

where the investment decisions of others have a negative effect on one’s own decision. In

that case, it is clear from equations (7) and (8) that

lim
F ′(Is)→−∞

T = 1− δ

and

lim
F ′(Is)→−∞

D = 0

We will denote the point (1−δ, 0) by E1 on Figure 2. Note that E1 lies inside the “stability”

triangle ÂBC.

Let’s assume that the steady state without strategic interactions is E and α2 > α1. When

F ′(Is) goes from 0 to −∞, the point (T,D) moves from E to E1 along the line given by

equation (9). This movement corresponds to the half-line denoted (a) on Figure 2. As E

and E1 both belong to the interior of ÂBC, and because the interior of ÂBC is a convex

set, any point of the segment [E,E1] also belongs to the interior of triangle ÂBC. The

same argument applies if parameters are such that the steady state corresponds to E ′ and

α2 < α1, with the relevant half-line being (a′). Thus, the following proposition holds:

16The case where α1 = α2 is addressed in the appendix.
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Figure 2: Local Stability when F ′(Is) ∈ (−∞, 1)

T

D

A

CB

1 2-1-2

-1

1

1-δ

E1

E′

(a’)

(b’)

(b”) E

(a)

(b)

Saddle, real eigenvalues

Unstable, complex eigenvalues

Unstable, real eigenvalues

Stable, real eigenvalues

Stable, complex eigenvalues

Notes: This figure shows the plane (T,D), where T is the trace and D the determinant of matrix
M . The points E and E′ correspond to two possible configurations of the model without demand
externalities. According to Proposition 1, those points are inside the triangle of stability ÂBC.
They are arbitrarily placed in the zone where the two eigenvalues are complex. E and arrows
(a) and (b) correspond to the case where α2 > α1; E′ and arrows (a’), (b’) and (b”) to the
case where α2 < α1. The case α1 = α2 is investigated in the appendix.
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Proposition 2. As F ′(Is) varies from 0 to −∞, the eigenvalues of M always stay within

the complex unit circle, and therefore the system remains locally stable.

Proposition 2 indicates that, when the actions of others play the role of strategic substi-

tutes with one’s own action, the system always maintains stability. Since Walrasian settings

are typically characterized by strategic substitutability, this is one reason why dynamic Wal-

rasian environments are generally stable.

We now turn to exploring how the presence of strategic complementarities (i.e., when

F ′(Is) > 0) affects the dynamics of the system. In Figure 2, a rise in F ′(Is) beginning from

F ′(Is) = 0 corresponds to movement along the line given by equation (9), starting from

the point E or E ′ and in the opposite direction to E1. This movement is denoted by the

half-lines (b), (b’) or (b”) in Figure 2. It can also be easily verified that, as F ′(Is) gets

closer to one, (T,D) will necessarily cross the perimeter of triangle ÂBC, thereby causing

the steady state to change from being locally stable to being unstable. The location of the

crossing depends on parameters.

Consider first the case where α2 > α1, and assume that the steady state corresponds to

E on Figure 2. Under our earlier assumption that α2 < α1/δ (which helped guarantee a

unique steady state), it can be verified that the half line (b) will never cross line segment

AC, which is the line segment associated with the largest of two real eigenvalues being equal

to one. Thus, when α2 > α1, (b) must cross line segment BC; that is, the point at which

the system loses stability as F ′(Is) increases must be associated with complex eigenvalues.

Now consider the case where α2 < α1, and assume that the steady state corresponds to

E on Figure 2. In this case, (T,D) can cross the perimeter of triangle ÂBC under two

different possible configurations. If the slope of line (9) is sufficiently negative, it will cross

line segment BC, at which point the eigenvalues will be complex. This is the case drawn

in the figure as half line (b’). On the other hand, if the slope of line (9) is negative but

sufficiently flat, the point F ′(Is) = 0 will be associated with a point in (T,D)-space like E ′

rather that in E. In that case, as shown by half-line (b”) in Figure 2, as F ′(Is) increases

(T,D) will cross line segment AB, which is the line segment associated with the smaller of

two real eigenvalues being equal to negative one.
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1.4 Bifurcations and the Occurrence of Limit Cycles

Our graphical analysis of the previous subsection shows that the presence of demand com-

plementarities can change the qualitative dynamics of the system. In particular, if the

complementarities become strong enough the system will transition from being locally sta-

ble to being locally unstable. In the theory of dynamical systems, a change in local stability

when a parameter varies is referred to as a bifurcation. Bifurcations are of interest since

there is a close relationship between the nature of a bifurcation and the emergence of limit

cycles. We formalize the nature of possible bifurcations for our bivariate system (1) and (4)

in the following proposition.

Proposition 3. As F ′(Is) increases from zero towards one, the dynamic system given by

(1) and (4) will eventually become locally unstable. In particular:

− If α2 > α1/(2− δ)2, then a Hopf (Neimark-Sacker) bifurcation will occur.

− If α2 < α1/(2− δ)2, then a flip bifurcation will occur.

A flip bifurcation occurs with the appearance of an eigenvalue equal to negative one, and

a Hopf bifurcation with the appearance of two complex conjugate eigenvalues of modulus

one. The proof of Proposition 3 is given in the appendix, and involves establishing conditions

under which line (9) crosses line segment BC (for the Hopf bifurcation) or line segment AB

(for the flip bifurcation) as F ′(Is) increases from zero. In either case, the bifurcation that

occurs as F ′(Is) increases will be associated with the emergence of a limit cycle. In the

case of a flip bifurcation, the limit cycle that emerges close to the bifurcation point will be

of period two, i.e., will involve jumps back and forth over the steady state every period.

Such extreme fluctuations are unlikely to be very relevant for business cycle analysis.We

therefore henceforth focus on the more interesting case from our point of view, which is the

case where the system experiences a Hopf bifurcation. In this case, close to the bifurcation

point there will emerge around the steady state (in (X, I)-space) a unique isolated closed

invariant curve.17 Beginning from any point on this closed curve, the system will remain

17We have to this point side-stepped a minor technical issue, which is that, in discrete time, the bounded
non-convergent orbits appearing near a Hopf bifurcation will possess the basic qualitative features of a limit
cycle, but may never exactly repeat themselves and thus may not strictly speaking be limit cycles. For
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on it thereafter, neither converging to a single point nor diverging to infinity, but instead

rotating around the steady state along that curve indefinitely. Further, in contrast to the

flip bifurcation, the cycle that emerges near a Hopf bifurcation may be of any period length

and hence the resulting dynamics appear more promising for understanding business cycles.

The condition on α2 under which a Hopf bifurcation (rather than a flip bifurcation) will

arise according to Proposition 3 may, at first pass, look rather restrictive. In fact, as δ → 1

this condition approaches α2 ≥ α1, which necessitates a fairly large amount of sluggishness

in investment. However, if δ is small, the condition becomes significantly less restrictive.

For example, as δ → 0 the condition becomes α2 > α1/4, a simple lower bound on the

degree of sluggishness. Given these considerations, one could loosely re-state Proposition 2

as indicating that if depreciation is not too fast, and sluggishness not too small, then the

system will experience a Hopf bifurcation as F ′(Is) increases from 0 towards 1.18

Having established conditions under which a Hopf bifurcation emerges, we turn now to

the question of whether such a limit cycle is attractive; that is, whether the economy would

be expected to converge towards such an orbit given an arbitrary starting point. To use

language from the theory of dynamical systems, a bifurcation may be either supercritical or

subcritical. In a supercritical bifurcation, the limit cycle emerges on the “unstable” side of

the bifurcation and attracts nearby orbits, while in a subcritical bifurcation the limit cycle

emerges on the “stable” side of the bifurcation and repels nearby orbits.

The emergence of a limit cycle is mainly of interest to us if it is attractive, so that

departures from the steady state will approach the limit cycle over time. The conditions

governing whether a Hopf bifurcation is supercritical or subcritical are often hard to state.

However, in our setup, a simple sufficient condition can be given to ensure that the Hopf

bifurcation is supercritical. This is stated in Proposition 4, where we make use of the Wan

[1978] theorem.

example, in a bivariate discrete-time system characterized by rotation along the unit circle by θ radians per
period, if θ/π is irrational then the system will never return to the same point twice, despite the clear sense
in which the dynamics are cyclical. We will ignore this uninteresting technicality and apply the term “limit
cycle” broadly to also include the entire isolated closed invariant curve (e.g., the entire unit circle in the
example of this footnote) that emerges.

18Note also that it is precisely when δ is small that our earlier condition on α2 guaranteeing a unique
steady state (i.e., α2 < α1/δ) is also likely to be satisfied.
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Proposition 4. If F ′′′(Is) is sufficiently negative, then the Hopf bifurcation noted in Propo-

sition 3 will be supercritical.

The economics for why increasing F ′(Is) will cause the system to become unstable is

rather intuitive. A high value of F ′(Is) implies that an individual agent has a large incen-

tive to accumulate more capital at times when other agents increase their accumulation.

This leads to a feedback effect whereby any initial individual desire to have high current

investment—due to some combination of a low current capital stock (the decreasing returns

channel) and a high level of investment in the previous period (the sluggishness channel)—

becomes amplified in equilibrium through a multiplier-type mechanism. When this feedback

effect is strong enough, it will cause small initial deviations from the steady state to grow

over time, pushing the system away from the fixed point. As a result, the economy will tend

to go through repeated episodes of periods of high accumulation followed by periods of low

accumulation, even in the absence of any exogenous shocks. Such behavior contrasts sharply

with the steady flow of I over time that would be the natural point of rest of the system in

the absence of complementarities.

The requirement that F ′′′(Is) be sufficiently negative for the emergence of an attrac-

tive limit cycle can also be related to economic forces. If the best-response function, F , is

positively sloped near the steady state and F ′′′(Is) is negative, then it will take an S-shaped

form.19 Note that Figure 1 was drawn with these features. The intuition for why an S-shaped

best-response function favors the emergence of an attractive limit cycle can be understood as

follows. As noted above, when the system is locally unstable, the demand complementarities

are strong enough near the steady state that any perturbation from that point will tend

to induce outward “explosive” forces. If the best-response function is S-shaped, however,

then as the system moves away from the steady state the demand complementarities will

eventually fade out (i.e., F ′(I) eventually falls), so that the explosive forces that are in play

near the steady state are gradually replaced with inward “stabilizing” ones. As long as

F ′′′(Is) is sufficiently negative, these stabilizing forces will emerge quickly enough, and an

attractive limit cycle will appear at the boundary between the inner explosiveness region

19A parametric example of such an S-shaped function is the sigmoid function F (x) = 1
1+e−x for x on the

real line.
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and the outer stability region. Such a configuration for F is the one we have assumed when

drawing Figure 1.

If instead the best-response function has F ′′′(Is) > 0, then instead of dying out, the

demand complementarities would tend to grow in strength as the system moves away from

the steady state,20 so that inward stabilizing forces do not appear. In this case, when F ′(Is)

is large enough for the system to become unstable, the Wan [1978] theorem implies the

presence of a subcritical Hopf bifurcation in which a repulsive limit cycle appears just before

the system becomes unstable.21

The general insight we take away from the Wan [1978] theorem regarding Hopf bifurca-

tions is that attractive limit cycles are likely to emerge in our setting if demand compleme-

natrities are strong and create instability near the steady state, but tend to die out as one

moves away from the steady state. We may refer to such a setting as one with strong local

demand complementarities. In an economic environment, it is quite reasonable to expect

that positive demand externalities are likely to die out if activity gets very large. For exam-

ple, if investment demand becomes sufficient large, some resource constraints are likely to

become binding, causing strategic substitutability to emerge in place of complementarities.

Similarly, physical constraints, such as a non-negativity restrictions on investment and cap-

ital or Inada conditions implying that the marginal productivity of capital tends to infinity

at zero are reasonable considerations in economic environments that will limit systems from

diverging to zero or to negative activity. Such forces will in general favor the emergence of

attractive limit cycles in the presence of demand complementarities.

20A parametric example of such a function is the logit function, which is the reciprocal of the sigmoid,

and takes the form g(y) = log
(

y
1−y

)
for y ∈ (0, 1).

21Note that subcriticality of a bifurcation does not necessarily imply global explosiveness on the unstable
side of the bifurcation, nor does it rule out the emergence of an attractive limit cycle in that region. Rather,
the results of this section (including those based on Wan [1978]) are inherently about the local behavior of the
system, where “local” in this case means “to a third-order Taylor approximation on some sufficiently small
neighborhood of the steady state”. Conclusions about the global behavior of the system cannot in general
be inferred from these local results. In particular, subcriticality only implies that if an attractive limit cycle
does emerge on the unstable side, then it must involve terms higher than third order. For example, if we
impose the additional assumptions that limI→0 F (I) =∞ and limI→Ī F (I) = −∞ for some Ī ∈ (0,∞), then
the system never becomes explosive, even if the Hopf bifurcation of Proposition 4 is subcritical.
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2 Unemployment Risk and Precautionary Saving as a

Source of Demand Complementarities

In this section we present a model with unemployment risk and precautionary savings, where

equilibrium behavior will exhibit the main features emphasized in our reduced-form model.

The model builds on Beaudry, Galizia, and Portier [2015]. Before presenting the model’s

formal structure, we first discuss its main components informally in order to help motivate

the setup and assumptions.

Our aim is to choose a setup that captures a common notion of demand complementarities

that is often associated with macroeconomic fluctuations.22 In effect, we want to capture the

idea that agents may be hesitant to make large purchases when unemployment is high because

they fear becoming unemployed. Thus, we require the model to feature unemployment risk

that cannot be fully insured. Simultaneously, we want to allow for the possibility of a

feedback effect whereby unemployment can be high in part because agents are holding back

on their purchases out of fear of becoming unemployed. This feedback effect will be the

source of the demand complementarity in the model. While in general multiple equilibria

could arise if this effect is strong enough, we will focus on situations where this is not the

case, i.e., where the equilibrium is unique. Finally, we want to explore an environment where

the emergence of limit cycles does not rely on the conduct of monetary policy, since we view

boom-bust phenomena as being ubiquitous across monetary regimes. To achieve all of these

goals, we consider a flexible-price environment where agents can buy goods using credit, but

where not all trades are coordinated in centralized markets. In particular, this will allow

agents to buy goods even if they are unsure whether they will manage to sell their labor

during the period. Meanwhile, the unemployment risk and precautionary behavior in the

model come from the assumption that some segments of the labor market are characterized

22The model of this section shares key features with the long tradition of macro models emphasizing
strategic complementarities, aggregate demand externalities and multipliers, such as Diamond [1982] and
Cooper and John [1988], though we do not emphasize multiple equilibria. Unemployment risk and its effects
on consumption decisions is at the core of the model. The empirical relevance of precautionary saving in the
presence of unemployment risk has been documented by many, including Carroll [1992], Carroll and Dunn
[1997], Carroll, Sommer, and Slacalek [2012] and Alan, Crossley, and Low [2012]. Recently, there have been
several papers that explore the role of unemployment risk and precautionary saving in business cycle models;
see, for example, Challe and Ragot [2013], Heathcote and Perri [2012], Ravn and Sterk [2012] and den Haan,
Rendahl, and Riegler [2014].

17



by search frictions. As a result, ex-ante identical agents will have heterogeneous outcomes in

terms of debt due to the fact that their labor income will have an idiosyncratic component.

Since we want to avoid the complications associated with full-fledged heterogeneous-agent

models (i.e., where we would need to track the distribution of debt across periods), we will

adopt a sequence-of-markets approach wherein costly debt can be incurred in a first sub-

period and then repaid in a second sub-period. This will allow us to maintain many of the

attractive analytical features of a representative-agent setup while simultaneously allowing

for sufficient heterogeneity in employment outcomes to create a role for precautionary saving,

and for a path for this precautionary saving to feed back in to unemployment risk. The

desire to coordinate activity will arise in the model as a result of agents having an incentive

to purchase higher levels of goods when others’ purchases are high, since unemployment

would be low and therefore buying on credit less risky. Because these goods will be partially

durable, however, any boom driven by purchases will eventually come to an end since, at

some point, the rising stock of durables will cause the marginal utility of new purchases to

fall enough that agents stop buying. These two forces—one favoring the bunching of durable

purchases and the other limiting booms by the diminishing marginal utility of goods—will

allow for the emergence of limit cycles. Note that the model is highly stylized and omits

many elements known to be relevant for business cycle analysis. For example, the model

abstracts from the accumulation of productive capital and focuses only on consumer capital.

Despite these omissions, we will use the model as a description of the functioning of the

aggregate economy.

2.1 The Environment

Time is discrete. There is a [0, 1] continuum of households indexed by j who live forever

with discount factor β ∈ (0, 1). At the beginning of time, households are endowed with the

same level of durable goods Xj0 = X0. Each period is divided into morning and afternoon

sub-periods.23 Agents consume goods and supply labor in both sub-periods, with preferences

23As will become clear, the alternation of decentralized mornings and centralized afternoons will be useful
in obtaining a degenerate distribution of wealth at the end of each period, which helps in solving the model.
In a monetary model, Lagos and Wright [2005] use a similar assumption to obtain a degenerate distribution
of money holdings. See also Rocheteau and Wright [2005], and more recently Kaplan and Menzio [2014].
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given by U(cj)−ν(`j)+Ũ(c̃j)−ν̃(˜̀j), where cj and `j ∈
[
0, ¯̀
]

(respectively, c̃j and ˜̀j ∈ [0, ˜̀̄ ])
are consumption and labor in the morning (respectively, in the afternoon). Intertemporal

preferences are therefore given by

∞∑
t=0

βt
[
U(cjt)− ν(`jt) + Ũ(c̃jt)− ν̃(˜̀jt)]. (10)

The afternoon good is chosen to be the numéraire.

Mornings: In the morning, households can purchase consumption goods and search for

employment. We will refer to this good as the morning good, and it will be at least partially

durable. There is no money in this economy, but there is credit. When the household

buys morning goods, its bank account is debited, and when (and if) it receives employment

income its bank account is credited. As we shall see, households will in general end the first

sub-period with a non-zero bank account balance. In order to limit the state space of the

system, we assume that households must balance their asset positions in the afternoon by

repaying any outstanding debts or receiving a payment for any surplus.24 These payments

are made in terms of the afternoon good, which is the numéraire in this economy.

U is assumed to be strictly increasing and strictly concave, while the dis-utility of work

function ν is assumed to be strictly increasing and strictly convex, with ν(0) = 0. Households

accumulate a stock of the morning good, which they can either consume or trade. This stock

evolves according to

Xjt+1 = (1− δ) (Xjt + γejt) , (11)

where Xjt is the stock brought into morning t and ejt is quantity of morning-good purchases

in morning t. For simplicity, we assume that a constant fraction γ ∈ (0, 1] of these purchases

are durable.25 δ ∈ (0, 1] is the depreciation rate.

Trade in the morning good is subject to a coordination problem because of frictions in

the labor market. At the beginning of the morning sub-period, the household splits up

24This assumption, together with the symmetric initial endowment of durable goods and the fact that
morning purchases are not employment-state-contingent (see below), will imply that all households exit the
period-t afternoon with the same levels of both durable goods and financial assets (although they are in
general heterogeneous at the end of the morning period). This degeneracy in the wealth distribution makes
the analysis much more tractable.

25In the quantitative exercise below, we will interpret “durables” as including conventional durable goods
as well as residential investment.
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responsibilities between two members. The first member, called the buyer, goes to the goods

market to make purchases. The second member searches for employment opportunities in

the labor market. The goods market functions in a Walrasian fashion, with both buyers

and firms taking the price of the good pt (in units of the afternoon good) as given. The

morning market for labor is subject to a matching friction, with sellers of labor searching for

employers and employers searching for labor. The important assumption is that buyers do

not know, when choosing how much to buy, whether the worker member of the household

has secured a match. This assumption implies that buyers make purchase decisions in the

presence of unemployment risk.

There is a large set of potential firms in the economy who can decide to search for workers

in view of supplying the morning good to the market. Each firm can hire one worker and

has access to a decreasing-returns-to-scale production function F (`t), where `t is the number

of hours supplied by the worker in a match.26 In order to match with a worker, a firm is

required to post a vacancy at fixed cost Φ in terms of the morning good, so that the net

production of a firm hiring `t hours of labor is F (`t)−Φ. Firms search for workers and, upon

finding a worker, they jointly negotiate the terms of trade—which consists of a wage and a

level of worked hours, (wt, `t)—according to some protocol that we assume to be a model

primitive, following Gu, Mattesini, Monnet, and Wright [2013]. In our baseline estimation

of this model, we will assume Nash bargaining as the bargaining protocol. However, in the

next subsection, we will assume a simpler bargaining protocol as to clarify intuition.

The labor market operates as follows. All workers are assumed to search for employment.

Letting Nt represent the number of firms searching for workers, the number of matches Mt

is then given by the constant-returns-to-scale matching function M(·), with Mt = M(Nt, 1).

Note that Mt is also the employment rate, so that ut = 1 −Mt is the unemployment rate.

The resource constraint for the morning good is then given by∫ 1

0

(cjt −Xjt)dj = MtF (`t)−NtΦ,

where the left-hand side is total net purchases of consumption goods and the right-hand side

26We also assume that F is such that both F ′ (`t) `t and [F (`t)− F ′ (`t) `t] are strictly increasing functions
of `t, and that F (0) = 0. These properties are exhibited, for example, by the Cobb-Douglas function
F (`t) = A`αt .
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is the total available supply after subtracting firms’ vacancy-posting costs. Firms enter the

market up to the point where expected profits are zero. This condition can be written as27

Mt

Nt

[
F (`t)−

wt
pt
`t

]
= Φ. (12)

At the end of the morning, a household’s individual state is summarized by its net

financial asset position, ajt (in units of the afternoon good), which is given by ajt =

wt`jt − pt (cjt −Xjt) if the worker was employed, and ajt = −pt (cjt −Xjt) if the worker

was unemployed.

Afternoons: The afternoon market is set up so as to allow households to pay back any

debt incurred in the morning market. In fact, the afternoon economy will be modeled in such

a way that if there were no frictions in the morning then there would be no trade between

agents in the afternoon. In particular, we assume that Ũ(·) is increasing and strictly concave

in c̃jt, but assume that the dis-utility of work is linear in the afternoon, i.e.,

ν̃(˜̀jt) = v˜̀jt.
To ensure that taking on debt is potentially risky (which will induce precautionary savings),

we assume that, in the afternoon, households can produce a good for their own consumption

using one unit of labor to produce one unit of goods. However, in order to produce goods

in the afternoon that can be transferred to others in order to satisfy debts incurred in the

morning, a household must supply 1 + τ units of labor, τ > 0. The parameter τ will

play an important role in the analysis since it controls the perceived risk associated with

accumulating debt in the morning sub-period.

Since a household’s financial asset position ajt is pre-determined when entering the af-

ternoon sub-period, decisions for c̃jt and ˜̀jt will satisfy

v = Ũ ′(˜̀jt + ajt),

c̃jt =

{˜̀
jt + ajt if ajt ≥ 0,˜̀
jt + (1 + τ) ajt if ajt < 0.

27We assume that searching firms pool their ex-post profits and losses so that they each make exactly zero
profits in equilibrium, regardless of whether or not they are matched with a worker.
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Letting V (ajt) denote the afternoon-period utility (Ũ(c̃j) − ν̃(˜̀j)) associated with entering

the afternoon with financial assets ajt, it is easy to check that V is given (up to a constant)

by

V (ajt) =

{
vajt if ajt ≥ 0,

(1 + τ) vajt if ajt < 0.

This function V (·) is piecewise linear and concave, with a kink at a = 0.28 Here, the marginal

value of financial assets is given by v when assets are positive and (1 + τ) v when assets

are negative. Since buyers in general face unemployment risk when making their purchase

decisions, the wedge between the marginal value of assets when in deficit and that when in

surplus generates self-insurance behavior. In particular, a fall in the employment rate causes

buyers to reduce their purchases, since they fear ending up in the unemployment state with

debt that is costly to serve. This mechanism is central to the strategic complementarity

that emerges in the model, which in turn is necessary to generate local instability and limit-

cycle dynamics. The strength of this mechanism is governed to a large extent by τ , which

parameterizes agents’ aversion to debt.

In order to repay creditors, households exiting the morning in debt are forced to work

more than non-indebted households in the afternoon, with all financial asset positions being

fully resolved (i.e., reset to zero) by the end of the afternoon sub-period. Meanwhile, since

the durables-accumulation decision was made in the morning prior to realization of the

idiosyncratic labor market status of the households, and since all households are assumed to

have a symmetric initial endowment of durables Xj0 = X0, in equilibrium they will all exit

period t with the same level of durables Xjt+1 = Xt+1. Thus, despite heterogeneity in labor

market outcomes, the distribution of both financial and capital assets at the end of every

period will be degenerate.

Intertemporal Equilibrium: Substituting V (a) from above into the objective function

(10), the buyer’s problem is to choose paths for Xjt+1 and ejt to maximize

∞∑
t=0

βt
{
U (Xjt + ejt) + (1− ut) [−ν (`jt) + v (wt`jt − ptejt)] + ut(1 + τ)v(−ptejt)

}
(13)

28As noted in Beaudry, Galizia, and Portier [2015], what matters here is that the marginal value of financial
assets be smaller in surplus than in deficit.
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subject to the accumulation equation (11). Meanwhile, if the worker finds a match, his labor

supply decision is given by the `jt that maximizes −ν (`jt) + v (wt`jt − ptejt).

A symmetric intertemporal equilibrium for this economy is then given by sequences of

relative prices of goods pt, wage rates wt, morning good purchases et, labor supplied in

matches `t, vacancy postings Nt, the stock of durables Xt+1, and unemployment rates ut

such that:

1. {et} and {Xt+1} maximize the buyer’s objective function (13) subject to the accumu-

lation equation (11), taking prices, wages, the unemployment rate and `t as given;

2. The within-a-match terms of trade (wt, `t) are jointly set by the firm and the worker

according to some exogenous protocol, taking et and prices as given;

3. The goods market clears, i.e., et = (1− ut)F (`)−NtΦ;

4. Firms’ entry decisions are such that the zero-profit condition (12) holds; and

5. Jobs are created according to the matching function, i.e., 1− ut = M(Nt, 1).

2.2 Understanding the Period-t Equilibrium in the Myopic Case

In order to most clearly highlight the nature of the demand complementarity in the model,

it is useful to temporarily focus on the myopic case where β = 0. In this case, we simply

have a repeated sequence of static decisions by households, with the only linkage between

periods being the inherited stock of durable goods Xt. To further ease the presentation of

the forces at play, we make two assumptions. First, the matching function takes the form

Mt = min{Nt, 1}; that is, the number of matches in the economy is given by the short

side of the market. Second, the determination of the wage and hours worked within a firm-

worker pair is done efficiently though a type of Walrasian bargaining process similar in spirit

to that in Lucas and Prescott [1974]; that is, given a match, the wage and hours worked

are determined so as to equate the demand for labor by the firm to the supply of labor

by the worker.29 As a result, in equilibrium workers will be paid their marginal products

29We make this assumption here for analytical convenience. In the quantitative model of section 3, we
replace this assumption by the more standard one of Nash bargaining. In Beaudry, Galizia, and Portier
[2015] it is shown that the demand complementarity we exploit here is robust to alternative bargaining
protocols.
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(pF ′ (`t) = wt), and further wt will be equal to a worker’s marginal dis-utility of work. It is

easy to verify that this bargaining outcome lies within the bargaining set between the firm

and the worker.

Letting et denote the average level of morning purchases in the economy, one may show

that household j’s optimal consumption-choice decision can be expressed as30

U ′ (Xt + ejt) = p (et) v [1 + τu (et)] ≡ r(et), (14)

where p (·) and u (·) are the price of consumption goods and the unemployment rate, re-

spectively, expressed as functions of aggregate purchases. The left-hand side of (14) is

household j’s marginal utility of consumption. The right-hand side captures buyer j’s ex-

pected marginal-utility cost of funds, that we denote r(et). When the economy is at full

employment (u (et) = 0), this is simply equal to the price p (et) of morning goods in terms

of afternoon ones, times the marginal value v of those afternoon goods when assets are non-

negative. When there is unemployment, however, the buyer faces some positive probability

of ending up in the negative-asset state, which is associated with a higher marginal value of

assets (i.e., (1 + τ) v). As a result, the expected marginal-utility cost of funds is higher and,

all else equal, household j would choose a lower level of purchases.

A period-t equilibrium for this economy is given by a solution to (14) with the additional

restriction that ejt = et. To understand how the equilibrium is affected by the initial level of

durables Xt, note the following properties of the equilibrium functions p (·) and u (·). First,

one may show that 1 − u (et) = min {et/e?, 1}, where e? is output (net of vacancy-posting

costs) produced per firm when there is a positive level of unemployment.31 Second, one may

show that p (·) is a continuous function of et, with p′ (et) = 0 for et < e?, and p′ (et) > 0 for

et > e?.32 The consequences of these two properties for the marginal-utility cost of funds

(i.e., the right-hand side of (14)) are illustrated by the curve labeled “cost of funds” in

30See Beaudry, Galizia, and Portier [2015].
31When there is unemployment, the “min” matching function and the firm’s zero-profit condition together

imply F (`t) − F ′ (`t) ` = Φ. Since Φ is a constant, conditional on there being unemployment this implies
that `t = `?, where `? solves this zero-profit equation. Output net of vacancy costs is then e? ≡ F (`?)− Φ.

32Combining the household’s labor supply condition and the firm’s labor demand condition, one may
obtain pt = ν′ (`t) / [vF ′ (`t)]. As pointed out in footnote 31, when et < e? we have `t = `?, so that
pt = p? ≡ ν′ (`?) / [vF ′ (`?)]. Further, once the economy achieves full employment, a rise in output must
come through the intensive margin of labor (i.e., through a rise in `t), which causes p (·) to be increasing in
et on et > e?.
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panel (a) of Figure 3. For et sufficiently small, the curve is downward-sloping: as e rises,

output is increased along the extensive labor margin, lowering the unemployment rate and

making purchases feel less expensive to households. Once e reaches the full-employment level

e?, however, additional increases in output come via the intensive labor margin, which is

associated with a rising price and thus an increased cost of funds.

Figure 3: Period t Equilibrium Determination in the Myopic Model

(a) Unemployment regime (b) Full-employment regime

e1t e
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∆Xt
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cost of
funds r(et)
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e1te2te?
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U ′(Xt + et)

The two regimes—unemployment and full-employment—are associated with different

equilibrium properties depending on different levels of the inherited Xt.
33 Panel (a) of Figure

3 shows the case for the unemployment regime. With low Xt, the economy is in equilibrium

at the level e1t of purchases, which occurs at the intersection of the cost-of-funds curve and

the solid marginal-utility function U ′ (Xt + et). In such a situation, if the inherited stock of

durables is increased by an amount ∆Xt, the marginal-utility function shifts to the left by

∆X units, as represented by the dashed curve in the figure. We see that the equilibrium

level of purchases is smaller as a result of the higher level of Xt, and furthermore that it has

33As shown in Beaudry, Galizia, and Portier [2015], if debt aversion τ is sufficiently large there may be
more than one equilibrium. While this is an interesting theoretical possibility, the evidence obtained from the
quantitative exercise of section 3, gives no indication that multiple equilibrium are of concern. We therefore
restrict attention throughout this paper to the case where the equilibrium is unique, i.e., where τ is not too
large.
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fallen by more than ∆Xt (so that total consumption ct = Xt + et is lower). This amplified

response is due to the strategic complementarity that exists in the unemployment regime:

a rise in the inherited stock of durables causes households to reduce their demand for new

goods which, via an extensive labor-margin adjustment, increases the unemployment rate

ut, which in turn raises the cost of funds, causing households to reduce purchases further,

further lowering the employment rate, etc. In contrast, panel (b) of Figure 3 shows the same

experiment but beginning from the full-employment regime. In this case, we again see that

a higher Xt is associated with a fall in equilibrium purchases, but now the fall is by less

than ∆Xt (so that total consumption rises). This damped response occurs as a result of the

strategic substitutability that exists when the economy is at full employment: a rise in the

inherited stock of durables causes households to reduce their demand for new goods which,

via an intensive labor margin adjustment, lowers hours-per-worker, which lowers the price

p, in turn lowering the cost of funds and causing households to increase their purchases.

The sensitivity of purchases to the initial level of Xt in the unemployment regime comes

from the presence of strategic complementarity, and the corresponding insensitivity in the

full-employment regime comes from strategic substitutability. This will play a crucial part

in generating limit cycles. Note also that the sensitivity of et to Xt in the unemployment

regime is increasing in the steepness of the slope of the cost-of-funds schedule in that regime.

Since this steepness in turn depends positively on the debt aversion parameter τ , we see that

τ controls the degree of strategic complementarity in the unemployment regime.

In order to see the link between the current model and our previous reduced-form model,

Figure 4 illustrates the relationship between the household’s decision ejt and the decision

by other households et. In effect, inverting the U ′ function in (14), one can express the

expenditure ejt of household j as a function of aggregate expenditure et and the stock of

durable goods Xt as follows:

ejt = U ′−1(r(et))−Xt (15)

As can be seen, Figure 4 has similarities with Figure 1 of the reduced-form model, and in

particular features a regime of strategic complementarity and a regime of strategic substi-

tutability, with the vertical location of household j’s optimal-expenditure (i.e., best-response)

function depending on the history of the economy. Two best-response functions are plotted
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in the figure. In the lower one—which captures a situation where Xt is high—purchases of

goods play the role of strategic complements. In the higher one—which captures a situation

where Xt is low—purchases play the role of strategic substitutes. Note also that as long

as debt aversion τ is not too large, then the best-response function in Figure 4 necessarily

crosses the 45-degree line only once, implying that the equilibrium is unique.

It is easy to verify that this myopic economy can exhibit limit cycles, with periods of

high purchases followed by periods of low purchases. In particular, using the logic presented

in Section 1, it can be verified that, as long as δ is sufficiently low (so that the steady state is

in the unemployment regime), increasing the degree of complementarity by increasing debt

aversion τ will eventually cause this system to become locally unstable. However, the system

nevertheless remains globally stable, since once Xt becomes too small the economy reaches

full employment, while once Xt becomes too large it reaches zero employment.34 In either

case, the strong local demand complementarities in effect at the steady state are replaced

with complementarities, thereby preventing the system from exploding.

2.3 Understanding the Intertemporal Equilibrium When Agents
Are Forward-Looking

In the previous subsection we saw that, when β = 0, the actions of individual agents will be

strategic complements when X is high and strategic substitutes when X is low. While the

myopic case is useful for building intuition and relating the current structural model with

the reduced-form model of Section 1, of more general interest is whether limit cycles may

occur in the current setting for an arbitrary β. It is not immediately obvious that this should

hold, and indeed, as a “Turnpike Theorem” (due to Scheinkman [1976]) below highlights, in

a class of models widely used in the literature, limit cycles cannot occur for β sufficiently

close to one (holding all else constant).35

34The fact that the non-negativity constraint on employment binds in some periods when the steady state
is locally unstable is due to several stark assumptions made in this section for expositional purposes only.
In the quantitative exercise below we will relax these assumptions, allowing for the presence of endogenous
forces that prevent employment from falling to zero.

35See also Brock and Scheinkman [1976] and McKenzie [1976]. It is important to understand the meaning
and scope of the turnpike theorem. That theorem highlights a trade-off between the level of discounting
and the “curvature” of preferences plus technology. With the preferences and technology commonly used in
quantitative macroeconomics, curvature is in general low enough so that a low β is needed for limit cycles to
occur. Nevertheless, as shown by Benhabib and Rustichini [1990], for any positive discount rate there exists
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Figure 4: Equilibrium Determination for Two Different Histories

et

ejt
ejt = et

U ′−1(r(0))−Xt

U ′−1(r(et))−Xt

U ′−1(r(0))−Xt

U ′−1(r(et))−Xt

Notes: This figure plots the optimal spending of household j as a function of total spending,
ejt = U ′−1(r(et))−Xt (equation (15)). The intercepts correspond to two different histories of
the model, Xt = (1− δ)(Xt−1 + γet−1) =

∑∞
1 (1− δ)jγet−j.
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In particular, consider a general deterministic dynamic economy with date-t state vector

zt ∈ Rn. LetW (zt, zt+1) denote the period-t return function when the current state is zt and

the subsequent period’s state is zt+1.
36 The following theorem characterizes the solution to

the problem of maximizing lifetime utility
∑
βtW (zt, zt+1), where β is the discount factor.

Turnpike Theorem (Scheinkman [1976]) If W is concave, then there exists a β̄ < 1

such that if β̄ ≤ β ≤ 1 then the steady state is unique and globally stable.37

The key property that ensures global stability in this theorem is the assumption that

W is concave. Since, all else equal, fluctuations are payoff-decreasing when W is concave,

if β is sufficiently close to one it is in general optimal to take temporarily costly action in

the present in order to avoid permanent fluctuations in the future. This in turn results in

global convergence to the steady state, so that limit cycles cannot occur. Concavity of W

is a property that holds in a wide variety of economic models that have become standard

in the literature, including many popular quantitative models of the business cycle. As we

shall see, however, in the unemployment-risk model discussed above, concavity of W may

be violated, in which case global stability may not obtain.

As a first step in establishing the potential for limit cycles in the unemployment-risk

model, the following proposition verifies that our model satisfies a key condition needed for

the existence of a stable limit cycle, non-explosiveness.

Proposition 5. Given any initial endowment of durables X0, lim supt→∞ |Xt| <∞.

Proposition 5 ensures that in the limit the system either exhibits deterministic fluctua-

tions (such as a limit cycle) or converges to a fixed point. The following proposition estab-

lishes that, in contrast to models for which the Turnpike Theorem applies, local instability

is possible in this model for an arbitrarily high discount factor.

a large family of standard Cobb-Douglas technologies with three sectors which have optimal growth paths of
persistent cycles. Such an example economy is presented in Benhabib and Nishimura [1998]. More generally,
Boldrin and Montrucchio [1986] have shown that any differentiable difference equation corresponds to the
policy function of some well-behaved concave dynamic program with a sufficiently large discount rate.

36Note that, in this formulation, W implicitly incorporates any constraints and static-equilibrium out-
comes, so that W (zt, zt+1) is the equilibrium period-t return conditional on the current and next-period
state being zt and zt+1, respectively.

37For a proof and more formal statement of the theorem, see Scheinkman [1976] Theorem 3.
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Proposition 6. There exists parameter values and functional forms such that, for some

β̄ < 1, if β̄ ≤ β < 1 then the (unique) steady state is locally unstable.

In combination with Proposition 5, Proposition 6 confirms that there are parameter

values and functional forms for which the model will generate deterministic fluctuations

even if β is arbitrarily close to one. The reasons for the failure of the Turnpike Theorem to

hold for this model can be clarified as follows. Suppose the steady state of the model is in

the unemployment regime, and let W (Xt, Xt+1) be a period-t return function such that the

solution to the problem

max
{Xt+1}

∞∑
t=0

βtW (Xt, Xt+1) (16)

implements the equilibrium of the model in a neighborhood of this steady state.38 If it

turns out that W is concave, then the Turnpike Theorem implies that the model cannot

generate limit-cycle dynamics. The following proposition establishes that in factW may not

be concave.

Proposition 7. There exists parameter values and functional forms such that, in the neigh-

borhood of an unemployment-regime steady state, W is not concave.

Intuitively, non-concavity of W can arise as a result of a “bunching” mechanism in the

model: when unemployment risk is low—that is, when other agents are purchasing lots of

goods—it is a good time for an individual agent to purchase goods. Similarly, when other

agents are purchasing few goods, it is a bad time for an individual agent to buy goods. If

sufficiently strong, this bunching mechanism—which arises precisely because of the strate-

gic complementarity in the model—tends to create periods of high durables accumulation

alternating with periods of low durables accumulation.

The final proposition of this section clarifies the importance of the debt aversion param-

eter τ in controlling the strength of this bunching mechanism, and therefore in influencing

whether or not the economy will be able to generate limit-cycle dynamics.

Proposition 8. For τ sufficiently close to zero, the steady state is stable.

Proposition 8 thus confirms that, if τ is not sufficiently large, the degree of strategic

complementarity is too small to produce an unstable steady state.

38An example of such a W is found in the proof of Proposition 7.
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3 Estimating a DSGE Model That May Involve Limit

Cycles

This section presents a quantitative exploration into limit cycles. In particular, we will

estimate an augmented version of the dynamic model discussed above where we also allow

for exogenous disturbances, so as to force limit cycles to compete with exogenous driving

forces in explaining business-cycle properties of the data. Our main goals will be to examine

whether the estimation procedure chooses parameter values that support limit cycles, and

to examine the extent to which the reliance on exogenous driving forces is reduced if a limit

cycle is present. We first present the data properties we aim to match before describing the

extended DSGE model and the estimation results.

3.1 Data

One of the main criticisms of limit cycles as an explanation of macroeconomic fluctuations

relates to the fact that business cycles are quite irregular in length, duration, and depth,

while limit cycles tend to be quite regular. In order to quantify the degree of irregularity

in a macroeconomic data series, it is helpful to look at its spectrum,39 which offers a simple

visual way of examining whether the cyclical properties of the series are regular or irregular.

If cycles are very regular, this will show up in the spectrum as one or more large peaks at

particular periodicities. In contrast, if the cycle is very irregular, the spectrum will have

weight across a large range of frequencies.

In order to review the extent of irregularity in business cycles, we start by looking at

the behavior of hours worked (per capita) in the economy. This is a useful macroeconomic

variable to examine for our purposes since it is not too far from being stationary. Nonetheless,

because of demographic changes and changes in female labor market attachment, hours

worked per capita do exhibit some low-frequency movements that are unrelated to business

cycles. To eliminate these low-frequency movements, we use a band-pass filter to remove

fluctuations associated with periods longer than 20 years (80 quarters).40 Panel (a) of Figure

39As is well know, any stationary data series can be written as the sum of orthogonal sine waves of different
frequencies. The spectrum is the function giving the variance of the corresponding sine wave for a particular
frequency, and can thus be viewed as a decomposition of the variance of the series by frequency.

40Note however that we do not remove any of the high-frequency fluctuations in the data.
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5 displays the resulting times series for US hours over the period 1960-2012. Several things

emerge from the plot. First, visual inspection reveals that the series corresponds closely to

the standard timing of business cycles, with NBER-dated recessions (shaded areas) being

associated with important falls in hours worked. Second, it is interesting to see that, with the

exception of the 1970s, a typical cycle in hours is quite long. For example, since the beginning

of the 1980s, one observes three cycles, each of length close to 40 quarters, while the principal

cycle in the 1960s is of a similar length. This observation is echoed in panel (b) of Figure 5,

where we plot the spectrum of our hours series.41 As could be expected from inspecting plot

(a), the spectrum does not put all of its mass at a few periodicities—which would have been a

sign of near-perfect regularity—but it does place substantial weight at periodicities between

30 and 50 quarters, with a peak at around 40 quarters. This is interesting, since business

cycles are commonly defined as fluctuations between 8 and 32 quarters (shown as the light

gray zone superimposed on the figure). However, to the extent that we believe it reflects

business cycle forces, the behavior of this filtered hours series suggests that periodicities

relevant for business cycle analysis should to be extended to include slightly lower-frequency

movements corresponding to fluctuations from 32 to 60 quarters (shown as the dark gray

zone superimposed on the figure).42

The hours series presented in panel (a) of Figure 5 will be the target series we seek

to explain with our model. In particular, we will estimate the model parameters so as to

replicate the spectrum for hours as shown in panel (b). Using the estimated model, we can

then evaluate how well it matches the data in other dimensions. Of particular interest to us

will be to see how well it simultaneously explains the spectrum of output and the coherence

between output and hours. In panel (c) of Figure 5 we report the spectrum for output after

applying the same band-pass filter used to de-trend hours. As can be seen, the spectrum

for output resembles that for hours, with substantial weight being placed on frequencies

that are lower than traditionally associated with business cycles. Finally, panel (d) of the

figure reports the coherence between output and hours, which provides information about

41The figure displays the spectral density of hours for periodicities between 4 and 80 quarters in length,
after first using the band-pass filter that removes cycles with periods longer than 80 quarters.

42See Comin and Gertler [2006] and Pancrazi [2015] for similar observations. Note also that these basic
properties of the hours spectrum are robust to increases in the upper limit of the band-pass filter from our
baseline level of 80 quarters up to as much as 150 quarters.
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how co-movements between output and hours behave at different frequencies.43 The result

displayed in panel (d) of Figure 5 shows that hours and output are highly correlated at all

periods between 8 and 80 quarters.

3.2 The Extended DSGE Model

The dynamic model with unemployment risk presented in Section 2 was constructed with an

eye toward analytical tractability. As a result, that model lacks features that are known to

be helpful in quantitatively matching the data, and includes several others that, while not

central to the key mechanisms, turn out to be overly restrictive in a quantitative setting.

Since the main purpose of the exercise in this section is quantitative in nature, we make

adjustments to the model designed to increase flexibility in that regard.

First, as mentioned earlier, dynamic systems with a single state variable often have

difficulty producing deterministic fluctuations with the basic qualitative properties that we

observe in macroeconomic aggregates. In particular, such fluctuations tend to be erratic, with

the system often jumping back and forth from one side of the steady state to the other every

few periods or less. Thus, if the unemployment-risk model is to have a reasonable chance of

replicating key features of the data, it will require the addition of at least one other state

variable. Further, as experience with the reduced-form model of Section 1 suggests, this state

variable should be capable of inducing some degree of sluggishness.44 To this end, we will

assume that the household exhibits internal habit-formation in consumption of the morning

good, ct,
45 so that its period utility for morning consumption is now given by

U (ct − hct−1) .

Here, h ∈ [0, 1) is a parameter controlling the degree of habit persistence.

43Coherence is analogous to a regression R2, giving the proportion of the variance of one series that can be
linearly predicted by another at each periodicity. A coherence of one would thus indicate that two series are
perfectly correlated at that periodicity, while a coherence of zero would indicate that they are orthogonal.

44Recall that in our reduced-form model, the parameter that controls sluggishness (α2), needed to be
sufficiently high for the system to undergo a Hopf bifurcation instead of a flip bifurcation.

45Consumption habit introduces sluggishness into the model while maintaining tractability and keeping
the model as close as possible to the baseline version presented in Section 2. There are nonetheless a number
of alternative means of introducing sluggishness (e.g., adjustment costs in investment or employment) that
could be used instead and that would be capable delivering similar qualitative dynamics.
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Figure 5: Data, spectral density and coherence

(a) Filtered hours (b) Spectrum of hours
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Notes: Hours Worked series is the log of BLS nonfarm hours worked divided by population,
detrended with a band-pass filter to remove fluctuations with periods greater than 80 quarters.
In panel (a), shaded areas are NBER-dated recessions. The sample runs from 1960Q1 to
2012Q4. Output is GDP and is also detrended with the same band-pass filter. Raw spectrum
in obtained as the squared modulus of the discrete Fourier transform of the data series (scaled so
that the integral with respect to angular frequency over the interval [−π, π] equals the variance
of the series). Spectrum is kernel-smoothed raw spectrum. Kernel is a Hamming window with
bandwidth parameter 11. Raw coherence at a periodicity p is given by |sL,x (p)|2 / [sL (p) sx (p)],
where sL is the spectrum of hours, sx is the spectrum of the other series, and sL,x is the cross-
spectrum. Coherence was then kernel-smoothed using a Hamming window with bandwidth
parameter 51.
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Second, we relax two simplifying assumptions made earlier; namely, the assumption of a

“min” matching function (introduced in subsection 2.2), and the assumption of homogeneous

firms. With those two assumptions in place, we obtained a simple dichotomy featuring

an unemployment regime in which all output adjustments occur along the extensive labor

margin (number of workers), and a full-employment regime in which all adjustments occur

along the intensive margin (hours per worker). In order to relax this stark dichotomy, we

now return to a more general form for the matching function, and also allow firms to be

somewhat heterogeneous. We model the latter as heterogeneity in firms’ vacancy-posting

costs, so that instead of assuming that all firms have cost Φ, we assume that the N -th firm

has vacancy cost Φ (N) ≥ 0, where Φ (·) is a non-decreasing function. These two assumptions

together will in general create the possibility of both extensive and intensive labor margin

adjustments occurring simultaneously.46

Third, as discussed earlier and in contrast to what is observed in the data, purely deter-

ministic models of economic fluctuations tend to yield cycles of a constant length. This can

be observed either as a very regular pattern in a plot of time series data generated from the

model, or as one or more large spikes in the spectrum estimated from that data.47 One of the

key contributions of this paper is to allow limit-cycle forces to compete with—and possibly

complement—exogenous disturbances in explaining the data. To this end, we also include

in the model an exogenous random TFP process, θ̃t, which multiplies firms’ production

functions so that output is given by θ̃tF (`t).
48

Fourth, we make the more standard assumption that within-a-match terms of trade

(wt, `t) are set according to Nash bargaining.49 In this case, hours worked are set efficiently

46Note that the functional forms chosen for the matching and vacancy-cost functions (discussed below)
will nest the baseline cases of “min” matching and constant vacancy cost. Since the parameters of these
functions will be estimated, the data will thus ultimately choose the degree to which the simple dichotomy
is relaxed.

47One may show that the spectrum associated with any limit cycle is infinitely high at a countable number
of points (i.e., a countable sum of Dirac delta functions), and zero everywhere else.

48For convenience, in order to retain certain analytical properties that are helpful in a computational
setting, we assume that firms’ vacancy costs and the production of the afternoon good also fluctuate with
this TFP process. Output, vacancy costs, and afternoon-period utility are thus given by θ̃tF (·), θ̃tΦ (·), and
θ̃−1
t V (·), respectively.

49Neither our qualitative nor our quantitative results are sensitive to the choice of Nash versus Walrasian
bargaining. See Beaudry, Galizia, and Portier [2015] for further discussion of the qualitative results. See
Galizia [2014] for quantitative results under the assumption of Walrasian bargaining.
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with the marginal product of labor being equalized to the marginal dis-utility of labor.

Wages are then set to split the match surplus according to a Nash bargaining protocol,

where parameter ξ is the bargaining strength of the worker.

3.3 Functional Forms, Calibration and Estimation

Our choice of functional forms is as follows. Production is assumed to be of the Cobb-Douglas

form

θ̃tF (`) = θ̃t`
α.

Utility over consumption net of habit is assumed to be of the form

U (C) = aC − b

2
C2,

We choose a quadratic formulation for preferences since this greatly simplifies certain com-

putational issues. The dis-utility of labor in the morning market is taken to be of the form

ν (`) =
ν1

1 + ω
`1+ω.

The matching function is assumed to be of the CES form50

M (N) =
(
1 +N−χ

)− 1
χ

where χ > 0 is a parameter. Note that this function nests the Cobb-Douglas matching

function as χ → 0 and the “min” matching function as χ → ∞. The vacancy cost of the

N -th firm is assumed to be given by

Φ (N) = Φ̄G

(
log (N)− log

(
N̄
)

σN

)

where G is the standard normal CDF and N̄ , σN and Φ̄ are parameters. Note that this

function nests the constant function Φ(N) = Φ̄ as N̄ → 0. Finally, we assume that the TFP

process is given simply by

θt ≡ log
(
θ̃t

)
= ρθt−1 + εt, εt ∼ N

(
0,
( σ

100

)2)
.

50This matching function was proposed by den Haan, Ramey, and Watson [2000].

36



Several of the model parameters are calibrated to common values in the literature. In

particular, we set α = 2/3 so to have a reasonable amount of decreasing returns to hours

worked. The inverse Frisch elasticity is set at the widely used level ω = 1. As the period

length is a quarter, we set the depreciation rate and discount factor at standard values of

δ = 0.025 and β = 0.99, respectively, and normalize the maximum vacancy cost and marginal

dis-utility of afternoon labor to Φ̄ = 1 and v = 1, respectively. We also calibrate the Nash

bargaining share of the worker to ξ = 0.5.51 Finally, the fraction of purchases entering

the durables stock was calibrated at γ = 0.192, which is the average ratio of durables to

total consumption in the National Income and Product Accounts data.52 The remaining

parameters were estimated.

Solving the model for a particular parameterization was done using the parameterized

expectations (PE) approach.53 Given this solution, a large data set (T = 100, 000 periods in

length) was simulated and, after taking logs of the resulting hours series and detrending it

with the same band-pass filter as used for the data, the spectrum of log-hours was estimated.

The non-calibrated parameters were then estimated so as to minimize the average squared

difference between the model spectrum and the spectrum estimated from the data. Further

details of the solution and estimation procedure are presented in Appendix C.

Estimated parameter values are reported in Table 1. Several things can be noted from

the estimation results. The first interesting result is that the estimated TFP process is

close to the process that can be obtained directly from measured productivity data. For

example, using John Fernald’s [2014] measure of business-sector labor productivity growth

over the sample period (1960Q1-2012Q4),54 after cumulating, linearly detrending, and fitting

an AR(1) process, one obtains a persistence estimate of 0.974 and an innovation standard

deviation of 0.713%, yielding an unconditional productivity standard deviation of 3.16%.55

51When also included in the set of estimated parameters, the value of ξ obtained was close to the value
used to initialize the estimation algorithm, suggesting that this parameter is not identified.

52As noted above, we include the conceptually-similar residential investment under the heading of
“durables”. The figure of 0.192 is obtained from NIPA data as the average of (Durable goods + Residential
investment)/(Consumption + Residential investment) over the sample period 1960Q1-2012Q4.

53See, for example, den Haan and Marcet [1990] and Marcet and Marshall [1994]. Details can be found in
Appendix C.

54Available at http://www.frbsf.org/economic-research/economists/jfernald/quarterly_tfp.

xls.
55Similar values are obtained when using Fernald’s TFP or utilization-adjusted TFP measures instead of
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The corresponding parameters estimated for the unemployment-risk model, meanwhile, are

ρ = 0.967 and σ = 0.614, respectively, which yields an unconditional standard deviation of

2.42%. The fact that the model only features a single shock, and that the variance of that

shock in the model is, if anything, smaller than its data counterpart is a feature we will

return to.

The other parameter with a clear comparator in the data or literature is habit persistence,

which is estimated here to be h = 0.75, well within the range of standard estimates obtained

elsewhere. For example, Smets and Wouters [2007] report a 90% confidence interval for habit

of (0.64, 0.78), while Justiniano, Primiceri, and Tambalotti [2010] report a 90% confidence

interval of (0.72, 0.84).

Table 1: Parameter Values

Parameter Value Description

a 11.857 Marginal utility of consumption, intercept
b 2.618 Marginal utility of consumption, slope
h 0.753 Habit persistence
ν1 12.065 Labor dis-utility scaling factor
τ 0.146 Debt aversion
A 2.935 Constant productivity factor
χ 92.299 Complementarity in matching function
N̄ 0.892 Mean parameter, fixed cost function
σN 0.012 Dispersion parameter, fixed cost function
ρ 0.967 Persistence of TFP
σ 0.614 100 × s.d. of innnovation to TFP

Calibrated Parameters
α 0.667 Labor share
ω 1 Inverse Frisch elasticity
δ 0.025 Depreciation of durables
β 0.99 Discount factor
Φ̄ 1 Maximum firm vacancy cost
γ 0.192 Fraction of purchases entering durables stock
ξ 0.5 Worker share in Nash bargaining

The remaining parameters in Table 1 are composed mainly of scale parameters, and

parameters for which few if any precedents exist. The debt aversion parameter τ , which

labor productivity.
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drives the strength of the household’s desire to reduce spending in response to a rise in

unemployment risk, falls into the latter category. Given its central role in the model, however,

it deserves some comment. If interpreted narrowly as a one-period financial premium on

debt vis-à-vis saving, the estimate of τ = 0.146, or 14.6%, exceeds typical borrowing-lending

spreads. However, we believe this view is overly restrictive, and in particular we interpret

the parameter τ as capturing in a reduced-form way all of the factors that may lead agents

to perceive taking on debt as risky.56

3.4 Main Results

To illustrate the deterministic mechanisms, we first report results obtained when shutting

down the estimated TFP shock (i.e., setting σ = 0).57 Panel (a) of Figure 6 plots a sim-

ulated 212-quarter sample58 of log-hours generated from the deterministic version of the

model, where hours are given by Lt = (1−ut)`t. Two key properties should be noted. First,

estimation of the model has yielded a set of parameters that generate deterministic cyclical

behavior, and these cycles are of a reasonable length (approximately 32 quarters). The diffi-

culty that some earlier models had in generating cycles of quantitatively reasonable lengths

may have been one of the factors leading to limited interest in using such a framework for

understanding business cycles. However, as this exercise demonstrates, reasonable-length

endogenous cycles can be generated in our framework relatively easily precisely because it

possesses the three key features we highlighted in Section 1: diminishing returns to capital

accumulation, sluggishness, and strong local demand complementarities. Second, notwith-

standing the reasonable cycle length, it is clear when comparing the simulated data in Figure

56As has been well documented, households appear to exhibit a considerable degree of risk-aversion, well
beyond what can be produced using time-separable preferences with a reasonable degree of intertemporal
substitutability. This has led to the adoption of more flexible preference specifications (e.g., the specification
proposed by Epstein and Zin [1989]) in which risk attitude is parameterized separately from intertemporal
substitutability. The parameter τ in our model can be similarly viewed as a way of directly parameterizing
household attitudes toward the risks associated with taking on debt in the presence of uncertainty about
employment outcomes.

57In particular, we first obtained the PE coefficients from the full stochastic model. The simulation results
for the deterministic model were then generated using these stochastic PE coefficients, but feeding in a
constant value θt = 0 for the TFP process. In other words, agents in the deterministic model implicitly
behave as though they live in the stochastic world. As a result, any differences between the deterministic
and the stochastic results in this section are due exclusively to differences in the realized sequence of TFP
shocks, rather than differences in, say, agents’ beliefs about the underlying data-generating process.

58This is equal to the length of the sample period of the data.
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6 to the actual data in Figure 5 that the fluctuations in the deterministic unemployment-risk

model are far too regular when compared to the data.59

Figure 6: Deterministic Model

(a) Sample of Simulated Hours Worked (b) Spectrum of Hours Worked
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Notes: Panel (a) shows 212-quarter simulated sample (same size as data set) of band-pass
filtered log(hours worked) (where hours are computed as Lt = (1 − ut)`t) generated from the
deterministic model. Initial simulated series was 252 quarters long, with first and last 20
quarters discarded after band-pass filtering. Details for computation of model spectrum in
panel (b) can be found in Appendix C.

These properties of the deterministic version of our estimated model—i.e., a highly regular

32-quarter cycle—can also be seen clearly in the frequency domain. Panel (b) of Figure 6

plots the spectrum for the deterministic version (dashed line), along with the spectrum for

the data (solid line) for comparison.60 Consistent with the pattern in the time domain,

the spectrum exhibits a peak at around 32 quarters. Further, the regularity of the cycle is

manifested as a large spike in the spectrum. In contrast, the spectrum estimated from the

data is much flatter.

59While successive cycles are close to symmetric in panel (a) of Figure 6, they are clearly not exactly
identical. As discussed in footnote 17, this is an artifact of the discrete-time formulation of the model. In a
continuous-time formulation, each cycle would be exactly identical to the last.

60Note that the model was not re-estimated after shutting down the TFP shock. As such, there may be
alternative parameterizations of the deterministic model that are better able to match the spectrum in the
data.
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Re-introducing the estimated TFP shock into the model, we see a markedly different

picture in both the time and frequency domains. Panel (a) of Figure 7 plots a 212-quarter

arbitrary sample of log-hours generated from the stochastic model. While clear cyclical

patterns are evident in the figure, it is immediately obvious that the inclusion of the TFP

shock results in fluctuations that are significantly less regular than those generated in the

deterministic model, appearing qualitatively quite similar to the fluctuations found in Figure

5 for actual data. This is confirmed by the spectrum, which is plotted in panel (b) of Figure 7

alongside the data spectrum. Also plotted is a point-wise 90% simulated confidence interval

from the model for data sets of the same length as the data (i.e., 212 quarters).61 The

stochastic model clearly matches the data quite well in this dimension, including possessing

a peak near 40 quarters and, as compared to the deterministic model, lacking any large

spike. The good fit of the model can also be seen by looking at the auto-covariance function

(ACF) of hours, i.e., Cov (Lt, Lt−k), where k is the lag (in quarters). Panel (a) of Figure

8 plots the result for the first 40 lags for both the data and model, along with point-wise

90% confidence intervals. As the figure shows, the curves lie nearly on top of one another,

indicating that the model matches the data very well in this dimension also.62

To verify that the good fit of the spectrum is not driven by the choice of filter, Figure 9

plots the data and model spectra for hours under four alternative filtering choices.63 Panels

(a)-(c) present results for three alternative band-pass filters with different upper bounds (100,

60, and 40 quarters, respectively), while panel (d) plots spectra using a Hodrick-Prescott

filter with parameter 1600. As the figure shows, the model fits the data very well in all cases.

Next, it should be emphasized that the exogenous shock process in this model primarily

accelerates and decelerates the endogenous cyclical dynamics, causing significant random

fluctuations in the length of the cycle while only modestly affecting its amplitude. For

example, in the deterministic version of the model the standard deviation of log-hours is

0.024, while in the stochastic model it is 0.033, implying that almost three quarters of the

61That is, if the model were the true data-generating process, then at each periodicity the spectrum
estimated from the data would lie inside the confidence interval 90% of the time.

62Note that the ACF is simply the inverse Fourier transform of the spectrum. Since the spectra of the
model and data are similar, we would expect the ACFs to be similar as well, a property clearly verified in
Figure 8.

63Note that the model spectra were obtained using the baseline model parameters as reported in Table 1.
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Figure 7: Stochastic Model

(a) Sample of Simulated Hours Worked (b) Spectrum of Hours Worked
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Note: Panel (a) shows 212-quarter simulated sample (same size as data set) of band-pass
filtered log(hours worked) (where hours are computed as Lt = (1 − ut)`t) generated from the
stochastic model. Initial simulated series was 252 quarters long, with first and last 20 quarters
discarded after band-pass filtering. Details for computation of model spectrum in panel (b)
can be found in Appendix C. Dotted lines show a pointwise 90% confidence interval for the
spectrum that would be estimated from a model-generated data set of the same length as the
actual data set (i.e., 212 quarters).
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Figure 8: Autocovariance: Hours Worked (L) and Output (y)
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Notes: Figure shows autocovariances of BP(2,80)-filtered hours and output in the data and
stochastic model. k is the lag in quarters. Data series for output is the log of nominal
GDP, deflated by population and the GDP deflator. Output in the model is the sum of
wage earnings and firm profits, which is equal to total production net of vacancy costs, i.e.,

θ̃t

[
(1− ut)F (`t)−

∫ Nt
0 Φ (x) dx

]
, where Nt is the number of firm entrants at date t. Dotted

lines show pointwise 90% confidence intervals for the autocovariance functions that would be
estimated from a model-generated data set of the same length as the actual data set (i.e., 212
quarters).
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Figure 9: Spectrum: Hours Worked (Alternative Filters)
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Notes: Each panel plots corresponding data (solid) and model (dashed) spectrum using the re-
ported filter instead of the baseline BP(2,80) filter. Dotted lines show pointwise 90% confidence
intervals for the spectrum that would be estimated from a model-generated data set of the same
length as the actual data set (i.e., 212 quarters).
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standard deviation of hours is due to deterministic mechanisms. Further, if this TFP process

were the only shock process operating in, for example, the widely-cited model of Smets and

Wouters [2007], it would generate a standard deviation of log-hours of only 0.006. This again

suggests the more general point that, if one is willing to consider the class of models capable

of generating deterministic fluctuations, then a parsimonious set of shocks with moderate

volatility can potentially yield qualitatively and quantitatively reasonable fluctuations.

As a final exercise in this section, it is worth further comparing the above results to those

of Smets and Wouters [2007]. Their model has received much attention in the literature for

its ability to fit well a number of key macroeconomic data series. Panel (a) of Figure 10

shows the spectrum for hours worked as generated by the Smets and Wouters [2007] model

at the reported median posterior parameter values. As suggested by the relatively close fit,

their model also matches patterns in the hours data reasonably well.

More insight into the drivers of fluctuations in the Smets and Wouters [2007] model can

be obtained by looking at a spectral variance decomposition; that is, by decomposing the

total variance at each individual periodicity into the portions that are attributable to each

of the shocks in that model. Panel (b) of Figure 10 presents such a decomposition. It is clear

from the figure that, in the range of periodicities responsible for the bulk of the variance

of hours, the two mark-up shocks (price and wage) in the Smets and Wouters [2007] model

account for by far the largest portion. In fact, the proportion of the total hours variance

that is explained by the mark-up shocks rises monotonically with periodicity, explaining

around a third of the variance of hours by the 24-quarter periodicity and over half by the

36-quarter periodicity.64 In contrast, the unemployment-risk model presented here is equally

capable of matching the spectrum in hours, but does so with only a reasonably-sized TFP

shock. Thus, in effect, the role played by exogenous mark-up shocks in Smets and Wouters

[2007] is replaced in our model by an endogenous demand cycle that emerges naturally in

our environment as a result of a sufficiently strong incentive (because of a positive feedback

mechanism from demand to unemployment risk) for agents to coordinate their purchase

decisions.

64The importance of the mark-up shocks is not exclusive to hours within the Smets and Wouters [2007]
model. For example, as reported in that paper, at a 40-quarter horizon the mark-up shocks together account
for over half of the forecast-error variance (FEV) of output and over 80% of the FEV of inflation.
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Figure 10: Hours Worked in Smets-Wouters (SW)

(a) Data and SW Spectrum (b) Decomposition of spectrum (SW)
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Notes: Data spectrum is as in Figure 5. Spectrum for Smets-Wouters (SW) obtained by
simulating 10,000 data sets of the same size as the actual data series. For each simulation,
the data was de-trended and the spectrum estimated using the same procedures as for the actual
data. A point-wise average was taken across all simulated spectra. Because the hours series
used by SW for their estimation differs somewhat from the series used here, for purposes of
comparability, in panel (a) the SW spectrum was scaled by a constant so that the total variance
is the same as in the data. Panel (b) shows portion of variance at each periodicity attributable
to each of the following shock groupings: “Mark-up” – price and wage mark-up shocks; “Bond
Premium” – bond premium shock; “Technology” – TFP and investment-specific technology
shocks; “Monetary policy” – monetary policy shock; “Gov’t spending” – government spending
shock.
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3.5 Additional Results

To this point, we have focused on the fit of the model with respect to the target series,

hours worked. In this subsection, we evaluate how well the model performs in several other

dimensions that were not directly targeted.

Panel (a) of Figure 11 compares the spectrum of output for the data and the stochastic

model. As shown in the figure, the model spectrum matches the data reasonably well,

though it is somewhat too large (indicating too much output variance in the model), and

the average periodicity is somewhat too low. Panel (d) of Figure 8, meanwhile, plots the

ACF for output, which confirms the first observation: the variance of output in the model

(i.e., the autocovariance at lag k = 0) is slightly larger than in the data. Notwithstanding

this, however, the spectrum and ACF for output in the data lie well within 90% confidence

intervals for the model, suggesting a relatively good overall fit.

Next, panel (b) of Figure 11 plots the coherence between hours and output for the data

and for the stochastic model. In the data (solid line in the figure), we see that at the lowest

periodicities hours and output are modestly correlated, with coherence around 0.4-0.5. As

the periodicity rises, the coherence initially increases relatively rapidly, reaching a peak of

0.87 at around 13 quarters. Over this range, as indicated by the dashed line in the figure the

model coherence matches the data very well. Beyond the 13-quarter periodicity, however,

the data and model begin to diverge somewhat. The data coherence largely flattens out,

with a gradual downward slope, reaching 0.82 at the 80-quarter periodicity. The model

coherence, meanwhile, rises somewhat over this range. Notwithstanding this discrepancy,

the basic qualitative properties of the relationship between hours and output in the data—

namely, moderate correlation at higher frequencies but significant correlation at medium-to-

low frequencies (including the range of frequencies in which the bulk of variation occurs)—are

well-captured by the model.

While coherence measures the strength of the relationship between two series at a given

periodicity, it provides no information about the sign of this relationship or whether one

series tends to lead the other. To address how well the model fits in these dimensions, panels

(b) and (c) of Figure 8 plot the cross-covariance function (CCF) for hours and output. Two
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Figure 11: Spectrum: Output (Data and Stochastic Model)
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Notes: Data series for output is the log of nominal GDP, deflated by population and the
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business employment divided by population. Data series for hours-per-worker is the log of
nonfarm business hours divided by nonfarm business employment. All series were detrended
using a BP(2,80) filter using the same procedure as with hours worked. Output in the model
is the sum of wage earnings and firm profits, which is equal to total production net of vacancy

costs, i.e., θ̃t

[
(1− ut)F (`t)−

∫ Nt
0 Φ (x) dx

]
, where Nt is the number of firm entrants at date

t. Spectrum for data and model computed as with hours. Raw coherence at a periodicity p
is given by |sL,y (p)|2 / [sL (p) sy (p)], where sL is the spectrum of hours, sy is the spectrum of
output, and sL,y is the cross-spectrum. Coherence was then kernel-smoothed using a Hamming
window with bandwidth parameter 51. In panels (a) and (b), dotted lines show pointwise 90%
confidence intervals for the spectrum and coherence, respectively, that would be estimated from
a model-generated data set of the same length as the actual data set (i.e., 212 quarters).
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things should be noted from these plots. First, hours and output are positively correlated

in both the model and data. Second, in the model hours and output are in phase (i.e., the

peak of the CCF occurs at a lag of k = 0), while in the data the peak occurs at the point

where output leads hours by one quarter. Nonetheless, the CCF is close to flat in the data

between its peak and k = 0,65 suggesting that any lead of output is weak at best. Further,

as suggested by the reported 90% confidence intervals, over all the cross-covariance between

output and hours is well-captured by the model.

Finally, while we have established that the model does a good job of matching patterns in

total hours, consider the model’s implications for its two component parts, the employment

rate, 1 − ut, and hours-per-worker, `t. Panel (c) of Figure 11 shows spectra for the data

and stochastic model for these two series.66 From the figure, we see that the spectrum of

the employment rate from the model matches fairly well the one from the data, and in

particular the employment rate exhibits an overall level of volatility that is close to the

volatility in the data. Thus, this model addresses one of the frequent criticisms of many

models of unemployment in the literature, which is that they generate too little employment

volatility.67 On the other hand, the model does a relatively poor job of matching behavior

in hours-per-worker. In particular, while the basic pattern of the model spectrum is close

to that in the data, the model spectrum is in most places too small, especially beyond the

lowest periodicities. This suggests that the model features too little in the way of movements

along the intensive labor margin.68

Conclusion

Business cycle analysis is currently dominated by the pure impulse-propagation framework,

whereby macroeconomic fluctuations are entirely explained as the results of exogenous shocks

65The peak of the data CCF is only 0.28% greater than it is at k = 0.
66Data series for the employment rate is the log of the BLS’s index of nonfarm business employment

divided by population. Data series for hours-per-worker is the log of nonfarm business hours divided by
nonfarm business employment. Both series were de-trended using a BP(2,80) filter using the same procedure
as with hours worked.

67See for example Shimer [2005].
68As Figure 11 shows, extensive-margin fluctuations are an order of magnitude larger than intensive-margin

fluctuations in both the model and the data. As a result, even though the model does not capture well the
intensive-margin fluctuations, this has little impact on the fit of total hours, which is driven primarily by
extensive-margin fluctuations.
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perturbing an otherwise stable system. In this paper we have presented theory and evidence

that give support to a broader perspective which includes limit cycles forces as an element

inherent to fluctuations. In particular, according to this alternative view, business cycles

should be thought as arising from the interplay of two different classes of forces. On the

one hand, there are endogenous cyclical forces (driven by complementarities) that favor the

bunching of economic activity, which in turn causes the economy to be naturally unstable,

so that it would undergo boom and bust cycles even in the absence of any disturbances.

On the other hand, there are also exogenous forces that interact with the natural cycle of

the economy to create irregularity in the business cycle, whereby each cycle is different from

the preceding one. In this framework, endogenous cyclical forces do not live in a vacuum

but are instead constantly being upset by exogenous disturbances. The exogenous forces

continue to play an important role in generating business cycles, but their role is slightly

changed: instead of explaining the totality of business cycle fluctuations, much of the effect

of exogenous disturbances is to accelerate or decelerate the equilibrium tendency of the

economy to cycle.

We have proceeded in two steps to make our case in support of incorporating limit cycle

ideas into mainstream business cycle analysis. First, we presented a simple reduced-form

model with accumulation, sluggishness and agent interactions. Using this framework, we

showed how the presence of strategic complementarities can give rise to a Hopf bifurcation

not as a knife-edge case, but quite generically when demand complementarities are present

locally. In addition, we showed that the strength of strategic complementarities that is

needed to produce a limit cycle is less than what is needed to generate multiple equilibrium.

Second, we presented a fully specified stochastic dynamic general equilibrium model. In this

structural model, unemployment risk and precautionary savings interact to create a demand

complementarity that is operative near the economy’s steady state. Agents’ decisions to

purchase goods are strategic complements in the model because when others are purchasing

goods it is less risky to buy on credit, since the risk of unemployment is low. We allowed

fluctuations in the model to be driven by both exogenous disturbances and an endogenous

limit cycle. We then estimated the model to fit the spectral density of hours worked. Based on

the estimated parameters, we found that the system would exhibit a limit cycle in the absence
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of any shocks. However, we also found that exogenous shocks played an important role in

making observed fluctuations in the model sufficiently irregular to match the properties of

the data. In this sense, our empirical analysis suggests that macroeconomic fluctuations may

be understood as the result of both forces, with limit cycles playing a central role. One of

the attractive features of the model is that, as we show, it is able to quantitatively replicate

business cycle phenomena with only a single, moderately volatile shock precisely because of

the underlying presence of a limit cycle.
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Appendix

A Proofs of Section 1

A.1 Proposition 1

The two eigenvalues of matrix ML are the solution the equation

Q(λ) = λ2 − Tλ+D = 0, (A.1)

where T is the trace of the ML matrix (and also the sum of its eigenvalues) and D is the
determinant of the ML matrix (and also the product of its eigenvalues). The two eigenvalues
are therefore given by

λ, λ =
T

2
±

√(
T

2

)2

−D (6)

where
T = α2 − α1 + (1− δ) (A.2)

and
D = α2(1− δ). (A.3)

From (A.3), we have that λλ ∈ (0, 1). Therefore, if the eigenvalues are complex, then their
modulus is between zero and one, and thus they are both inside the unit circle. If the two
eigenvalues are real, then they have the same sign and at least one of them is less than one
in absolute value. From (A.2), we have that λ + λ ∈ (−1, 2). Therefore, if the eigenvalues
are both negative, then they are both inside the unit circle. If they are both positive, let λ
be the larger eigenvalue, and suppose λ ≥ 1. Given that λλ < 1, we have λ < 1

λ
and thus

λ+λ = T < 2 implies that λ+ 1
λ
< 2, which in turn implies (1−λ)2 < 0. This is not possible

and hence we must have λ < 1. Since λ is the largest of two real positive eigenvalues, both
eigenvalues must lie inside the unit circle.

A.2 Proposition 2

With demand complementarities, the trace and determinant of matrix M are given by

T =
α2 − α1

1− F ′(Is)
+ (1− δ) (A.4)

and

D =
α2(1− δ)
1− F ′(Is)

. (A.5)

From equations (A.4) and (A.5), we have the following relationship between T and D:

D =
α2(1− δ)
α2 − α1

T − α2(1− δ)2

α2 − α1

. (A.6)

Therefore, when F ′(Is) varies, T and D move along the line (A.6) in the plane (T,D).

We have shown that when F ′(Is) = 0, (T,D) belongs to the triangle ÂBC, meaning that
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both eigenvalues of M are inside the unit circle. This corresponds to point E or point E ′

(depending of the configuration of parameters) in Figure 2.
When F ′(Is) → −∞, we have D → 0 and T → 1 − δ, which corresponds to point E1

in Figure 2. As this point is inside the triangle ÂBC, both eigenvalues are inside the unit
circle. When F ′(Is) goes from 0 to −∞, (T,D) moves along the segment [E,E1] or [E ′, E1].

Because both belong to ÂBC and because the interior of triangle ÂBC is a convex set, both
eigenvalues of matrix M stay inside the unit circle when F ′(Is) goes from 0 to −∞.

A.3 Proposition 3

A flip bifurcation occurs with the appearance of an eigenvalue equal to -1, and a Hopf
bifurcation with the appearance of two complex conjugate eigenvalues of modulus 1. From
(A.5) and (A.4), we see that when F ′(Is) tends to 1 from below, D tends to +∞ and T
tends to ±∞ depending on the sign of α2 − α1. Therefore, starting either from point E or

E ′ (for which F ′(Is) = 0), (T,D) will eventually exit the triangle ÂBC. At the point where

the half-line along (A.6) starting from E (or E ′) crosses ÂBC, at least on eigenvalue will
have a modulus one.

Consider first the case α2 < α1. In this case, the line (A.6) has a negative slope, and
will cross either segment AB ((a) in the figure) or segment BC ((b) in the figure). In case
(a), we will have a flip bifurcation since the eigenvalues will be real and one of them equal

to -1 when crossing the triangle ÂBC. In case (b), we will have a Hopf bifurcation since the

eigenvalues will be complex and will both have modulus 1 when crossing ÂBC. We will be
in case (b) when D = 1 and T > −2. D = 1 implies F ′(Is) = 1 − α2(1 − δ). Plugging this
into the expression for T , the condition T > −2 becomes 1 − δ + α2−α1

α2(1−δ) > −2 which can
be simplified to α2 >

α1

(2−δ)2 . Therefore, if α2 <
α1

(2−δ)2 , we have a flip bifurcation, while if
α1 > α2 >

α1

(2−δ)2 , we have a Hopf bifurcation.

Consider next the case α2 > α1. In this case, the line (A.6) has a positive slope, and
could potentially cross either segment AC or segment BC . If it crosses the segment BC,

the eigenvalues will be complex with modulus 1 when crossing ÂBC, so that we will have
a Hopf bifurcation. We will be in this case when D = 1 and T < 2. D = 1 implies
F ′(Is) = 1−α2(1− δ). Plugging this into the expression of T , the condition T < 2 becomes
1− δ + α2−α1

α2(1−δ) < 2 which can be simplified to α2 <
α1

δ2
. Therefore, if α1 < α2 <

α1

δ2
, we will

have a Hopf bifurcation. If α2 >
α1

δ2
, then as we increase F ′ we would cross the segment AC.

However, this possibility is ruled out by our assumption that α2 >
α1

δ
, which was imposed

to guarantee a unique steady state.
Finally, in the case α1 = α2, we always have T = 1 − δ, so that D increases with

F ′(Is) along a vertical line that necessarily crosses the segment BC, so that we have a Hopf
bifurcation. Putting all of these results together gives the conditions stated in Proposition
3.

A.4 Proposition 4

For this proposition, we make use of Wan’s [1978] theorem and of the formulation given by
Wikan [2013] (See Kuznetsov [1998] for a comprehensive exposition of bifurcation theory).
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For symmetric allocations, our non-linear dynamical system is given by(
It − F (It)

Xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)(
It−1
Xt−1

)
+

(
α0

0

)
. (A.7)

To study the stability of the limit cycle in case this system goes through a Hopf bifurcation,
we need to write the system in the following “standard form”(

y1t
y2t

)
=

(
cos θ − sin θ
sin θ cos θ

)(
y1t−1
y2t−1

)
+

(
f(y2t−1, y2t−1)
g(y1t−1, y2t−1)

)
, (A.8)

where y1 and y2 are (invertible) functions of I and X. Let µ be the bifurcation parameter
(µ = F ′(Is) in our case) and µ0 the value for which the Hopf bifurcation occurs. Define

d =
d|λ(µ0)|

dµ

and

a = −Re

(
(1− 2λ)λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(λξ21),

where

ξ20 ≡
1

8
[(f11 − f22 + 2g12) + i(g11 − g22 − 2f12)] ,

ξ11 ≡
1

4
[(f11 + f22) + i(g11 + g22)] ,

ξ02 ≡
1

8
[(f11 − f22 − 2g12) + i(g11 − g22 + 2f12)] ,

ξ21 ≡
1

16
[(f111 + f122 + g112 + g222) + i(g111 + g122 − f112 − f222)] .

According to Wan [1978], the Hopf bifurcation is supercritical if d > 0 and a < 0.
We first write (A.7) in the standard form (A.8). Denoting it = It− Is and xt = Xt−Xs

and F̂ (it) = F (it + Is), and recalling that F (Is) = F̂ (0) = 0, we can rewrite (A.7) as(
it − F̂ (it)

xt

)
=

(
α2 − α1 −α1(1− δ)

1 1− δ

)(
it−1
xt−1

)
. (A.9)

Define H(it) = it− F̂ (it). Under the restriction F ′(·) < 1, H is a strictly increasing function,
and is therefore invertible. Denote G(·) ≡ H−1(·). Adding and subtracting to the right-hand
side of the first equation of (A.9) a first order approximation of G around zero, we obtain(

it − F̂ (it)
xt

)
=

(
α2−α1

1−F ′(Is) −
α1(1−δ)
1−F ′(Is)

1 1− δ

)
︸ ︷︷ ︸

M

(
it−1
xt−1

)
+

(
m(it−1, xt−1)

0

)
, (A.10)

with

m(it−1, xt−1) ≡ G
(
α1(1− δ)xt−1 + (α2 − α1)it−1

)
+

α1(1− δ)
1− F ′(Is)

xt−1 −
α2 − α1

1− F ′(Is)
it−1.
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The eigenvalues of M are the solution of the equation

Q(λ) = λ2 − Tλ+D = 0,

where T is the trace of the M matrix and D its determinant, with T = α2−α1

1−F ′(Is) + (1− δ) and

D = α2(1−δ)
1−F ′(Is) . At the Hopf bifurcation, D = 1 and the two eigenvalues are λ = cos θ± i sin θ,

where θ is the angle between the vector
(
T/2,

√
D − (T/2)2

)
and the positive x-axis. Let λ

be the eigenvalue with positive imaginary part and λ its conjugate, and let Λ and C be the
two matrices

Λ ≡
(
λ 0

0 λ

)
and

C ≡
(

cos θ − sin θ
sin θ cos θ

)
.

By construction, λ and λ are the eigenvalues of C. We introduce matrices

VC ≡
(

sin θ sin θ
−i sin θ i sin θ

)
and

VM ≡
(
λ+ δ − 1 λ+ δ − 1

1 1

)
whose columns are eigenvectors of C and M , respectively, and are thus such that C =
VCΛV −1C and M = VMΛV −1M . We therefore have C = VCΛV −1C = VCV

−1
M MVMV

−1
C = BMB−1

with

B ≡ VCV
−1
M =

(
0 sin θ
−1 cos θ − (1− δ)

)
.

Let us make the change of variables (y1t, y2t)
′ = B × (it, xt)

′ to obtain the “standard form”
of (A.7) (

y1t
y2t

)
=

(
cos θ − sin θ
sin θ cos θ

)(
y1t−1
y2t−1

)
+

(
f(y2t−1, y2t−1)
g(y1t−1, y2t−1)

)
, (A.8)

with

f(y2t−1, y2t−1) = 0,

g(y1t−1, y2t−1) = −G
( γ1

sin θ
y1t−1 − γ2y2t−1

)
+

1

1− F ′(Is)

( γ1
sin θ

y1t−1 − γ2y2t−1
)

and γ1 ≡ −α2(1− δ) + (α2 − α1) cos θ, γ2 ≡ α2 − α1.

We can now check the conditions for the Hopf bifurcation to be supercritical, namely

d =
d|λ(µ0)|

dµ
> 0
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and

a = −Re

(
(1− 2λ)λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re(λξ21) < 0.

With µ ≡ F ′(Is) as the bifurcation parameter, we have |λ| = det(M) = α2(1−δ)
1−µ , so that

d =
d|λ|
dµ

=
(1− µ) + α2(1− δ)

(1− µ)2
> 0,

as µ = F ′(Is) < 1.
Consider now the expression for a. As G(I) is the reciprocal function of I − F (I), we

have

G′′′ =
F ′′′(1− F ′)2 + 2F ′′2(1− F ′)

(1− F ′)4
,

with F ′ < 1. This shows that G′′′ is an increasing function of F ′′′. When F ′′′ becomes large
in absolute terms and negative, so does G′′′. In the expression for a, the first three terms,

−Re
(

(1−2λ)λ2

1−λ ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2, are not functions of F ′′′, while the last term is

Re(λξ21) =
α2(1− δ)

16

(
γ21

sin2 θ
+ γ22

)
G′′′

= κG′′′,

with κ > 0. If F ′′′ is sufficiently negative, then so will be G′′′, and therefore Re(λξ21) and a.

Therefore, d > 0 and under the condition F ′′′ << 0, we have a < 0, in which case by
Wan’s [1978] theorem the limit cycle is supercritical.

B Proofs of Section 2

B.1 Proposition 5

Recall that Xt+1 = (1− δ) (Xt + et). Since et ≥ 0, if lim supt→∞ |Xt| = ∞ then we must
have lim supt→∞Xt =∞. Suppose then that

lim sup
t→∞

Xt =∞.

Since δ ∈ (0, 1], this necessarily implies that lim supt→∞ et =∞. But et is bounded above by
the level of output, the maximum feasible level of which occurs when φt = 1 and `t = ¯̀, in
which case total output is given by F

(
¯̀
)
<∞. Thus we clearly cannot have lim supt→∞ et =

∞, and thus we cannot have lim supt→∞ |Xt| =∞.
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B.2 Proposition 6

The proof proceeds by example, showing that, for the case where γ = 1 and U (c) = ac− b
2
c2,

there exists parameter values and functional forms such that for β close enough to one the
steady state is unstable.

With γ = 1 and U (c) = ac − b
2
c2, we may characterize the evolution of this system by

the conditions

a− b (Xt + et) = vp (et) [1 + τu (et)]− β (1− δ) vp (et+1) [1 + τu (et+1)] , (B.11)

Xt+1 = (1− δ) (Xt + et) , (B.12)

where p (·) and u (·) are defined in the main text. For a given state Xt and a given anticipated
level of et+1, a sufficient condition to ensure that (B.11) has a unique solution is given by

b > vp∗
τ

e∗
≡ b0, (B.13)

where e∗ is output per firm (net of vacancy costs) when the economy is in the unemployment
regime and p∗ is the price in the unemployment regime, as described in section 2.2 (see
footnote 32 regarding p∗). We henceforth assume that (B.13) holds.

Next, the steady-state level of e is given by the solution ē to

a− b

δ
ē = [1− β (1− δ)] vp (ē) [1 + τu (ē)] ,

with the steady-state level of X then given by

X̄ =
1− δ
δ

ē.

Note that a sufficient condition for the steady state to be unique is given by

b > δ [1− β (1− δ)] b0,

which is clearly implied by (B.13).
Next, note that, for any e ∈ (0, e∗) (i.e., in the unemployment regime), the level of a that

implements ē = e is given by

b

δ
e+ [1− β (1− δ)] vp∗

(
1 + τ − τ e

e∗

)
.

Note also that ē is continuous in β. Thus, choose some ē1 ∈ (0, e∗), and let a = a1, where a1
is the value of a that would implement ē = ē1 when β = 1, i.e.,

a1 ≡
b

δ
ē1 + δvp∗

(
1 + τ − τ ē1

e∗

)
Thus, if β = 1 the steady state is in the unemployment regime by construction, and by
continuity of ē in β the steady state is also necessarily in the unemployment regime for β
sufficiently close to one. This implies the existence of a β < 1 such that the steady state is

61



in the unemployment regime when β > β. Assume henceforth that β ∈
(
β, 1
)

and note that
this implies that p′ (ē) = 0 and φ′ (ē) = 1/e∗.

Next, linearizing equations (B.12)-(B.13) around this steady state and solving, we may
obtain in matrix form(

X̂t+1

êt+1

)
=

(
1− δ 1− δ
− b
β(1−δ)b0 −

b−b0
β(1−δ)b0

)(
X̂t

êt

)
≡ A

(
X̂t

êt

)
.

Thus, the steady state is locally stable if and only if at least one of the two eigenvalues of A
lies inside the complex unit circle. These eigenvalues are given by

λi =

[
1− δ − b−b0

β(1−δ)b0

]
±
√[

1− δ − b−b0
β(1−δ)b0

]2
− 4β−1

2
.

Note that λ1λ2 = β−1 > 1, so that if the eigenvalues are complex then both must lie outside
the unit circle. Suppose

b =
[
1 + q (1− δ)2

]
b0 (B.14)

for some q > 0, and note that as long as δ < 1, which I henceforth assume, such a value of b
satisfies (B.13). One may then show that the eigenvalues are complex as long as

(1− δ)2 (β − q)2 < 4β.

Clearly, for β close enough to q this condition necessarily holds, and thus, if q is close enough
to one (e.g., if q = 1), then for β arbitrarily close to one the eigenvalues are complex and
therefore outside the unit circle, in which case the steady state is unstable.

B.3 Proposition 7

Let

V (et;Xt) ≡ U (Xt + et)− vp∗
[
(1 + τ) et −

1

2
τ
e2t
e∗

]
,

where e∗ is output per firm (net of vacancy costs) when the economy is in the unemployment
regime and p∗ is the price in the unemployment regime, as described in section 2.2 (see
footnote 32 regarding p∗). It can be verified that maximizing

∞∑
t=0

βtV (et;Xt)

subject to (11) implements the de-centralized equilibrium outcome in the neighborhood of
an unemployment-regime steady state. Thus, using

W (Xt, Xt+1) ≡ V
(

1

γ (1− δ)
Xt+1 −

1

γ
Xt;Xt

)
in problem (16) satisfies the desired properties. Next, we may obtain

W11

(
X̄, X̄

)
=

(1− γ)2

γ2
U ′′
(
X̄ + ē

)
+

1

γ2
vp∗τ

e∗
.
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Thus, W11

(
X̄, X̄

)
> 0 if

vp∗τ

e∗
> − (1− γ)2 U ′′

(
X̄ + ē

)
.

This condition can clearly hold for certain parameter values (e.g., for γ sufficiently close to
one), in which case W is not concave.

C Solution and Estimation

C.1 Solution

To solve the model for a given parameterization, letting ẽt ≡ et/θ̃t equilibrium in the economy
is characterized by the following equations:

a− b
(
Xt + θ̃tẽt − hct−1

)
+ (1− δ) γλt = θ̃−1t

ν1
αA

[` (ẽt)]
ω+1−α [1 + τu (ẽt)] + µt, (C.15)

µt = Et
{
βh
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)]}
, (C.16)

λt = Et
{
β
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)
+ (1− δ)λt+1 − µt+1

]}
, (C.17)

ct = Xt + θ̃tẽt, (C.18)

Xt+1 = (1− δ)
(
Xt + γθ̃tẽt

)
. (C.19)

Here, u (ẽ) and ` (ẽ) are the equlibrium levels of the unemployment rate and hours-per-worker
conditional on total purchases ẽ, and are given by

u (ẽ) ≡


1− 1

2

(
n0 +

√
n2
0 + 4η ẽ

ẽ∗

)
if 0 < ẽ ≤ ē,

1− ẽ
ẽ∗

if ē < ẽ < e∗,

0 if ẽ ≥ e∗,

` (ẽ) ≡



[
2ẽ

αA
(
n0+
√
n2
0+4η ẽ

ẽ∗

)
] 1
α

if 0 < ẽ ≤ ē,(
e∗

αA

) 1
α if ē < ẽ < e∗,(

ẽ
αA

) 1
α if ẽ ≥ e∗,

where e∗ ≡ α
1−αΦ̄ and ē ≡ (n0 + η) e∗. Meanwhile, µt and λt are the Lagrange multipliers on

the definition of consumption and the durables accumulation equations ((C.18) and (C.19)),
respectively.

Conditional on the state variables Xt, ct−1 and θt, and on values of the Lagrange multipli-
ers µt and λt, equation (C.15) can be solved for ẽt. To obtain values of µt and λt, we employ
the method of parameterized expectations as follows. Let Yt ≡

(
Xt − X̄, ct−1 − c̄, θt

)′
denote

the vector of state variables (expressed as deviations from steady state). The expectations
in equations (C.16) and (C.17) are assumed to be functions only of Yt, i.e.,

Et
{
βh
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)]}
= gµ (Yt) ,

63



Et
{
β
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)
+ (1− δ)λt+1 − µt+1

]}
= gλ (Yt) .

We parameterize the functions gj (·) by assuming that they are well-approximated by N -

th-degree multivariate polynomials in the state variables. In particular, let Y
(N)
t denote the

vector whose first element is 1 and whose remaining elements are obtained by collecting all
multivariate polynomial terms in Yt (e.g., Xt, ct−1, θt, X

2
t , Xtct−1, Xtθt, c

2
t , ctθt, etc.) up to

degree N . We assume that
gj (Yt) = Θ′jY

(N)
t ,

where Θj is a vector of coefficients on the polynomial terms. Thus, given Θµ, Θλ and the
state Yt, µt and λt are obtained as

µt = Θ′jY
(N)
t ,

λt = Θ′jY
(N)
t .

These values and values for the state variables can be plugged into (C.15) to yield a solution
for ẽt, which can then be replaced in (C.18) and (C.19) to obtain values for the subsequent
period’s state. In practice, we use N = 2.69

To obtain Θµ and Θλ, we proceed iteratively as follows. Begin with some initial guesses
Θµ,0 and Θλ,0,

70 and generate a sample of length T = 100, 000 of the exogenous process

θt. Next, given Θµ,i and Θλ,i, assume that gj (Yt) = Θ′j,iY
(N)
t and simulate the path of the

economy for T periods. Given this simulated path, let Y(N) denote the matrix whose t-th
row is given by Y

(N)′
t , and construct T -vectors g̃µ and g̃λ, the t-th elements of which are

given respectively by

βh
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)]
and

β
[
a− b

(
Xt+1 + θ̃t+1ẽt+1 − hct

)
+ (1− δ)λt+1 − µt+1

]
,

i.e., the terms inside the conditional-expectation operators in equations (C.16) and (C.17).
Then update the guesses of Θj via

Θj,i+1 =
(
Y(N)′Y(N)

)−1
Y(N)′g̃j

and iterate until convergence.

C.2 Estimation

As discussed in section 3.3, estimation was done by searching for parameters to minimize
S2, the average squared difference between the model spectrum and the spectrum estimated
from the data.

69We experimented with larger values of N and found that it resulted in a substantial increase in compu-
tational time without significantly affecting the results.

70In practice, we set the first elements of Θµ,0 and Θλ,0 to the steady-state values µ̄ and λ̄, respectively,
and the remaining elements to zero. This corresponds to an initial belief that the gj ’s are constant and equal
to their steady-state levels.
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To obtain S2 given a solution to the model for a parameterization, T = 100, 000 periods
of data were simulated. This simulated sample was then subdivided into Nsim = 1, 000
overlapping subsamples. For each subsample, the log of hours was band-pass filtered, after
which 20 quarters from either end of the subsample were removed, leaving a series of the
same length as the actual data sample. The spectrum was then estimated on each individual
subsample in the same way as for the actual data, and the results then averaged across all
subsamples to yield the spectrum for the model.
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