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Abstract

This paper considers search, trading and valuation in heterogeneous but intercon-
nected housing markets. We use a novel data set on housing search behavior to doc-
ument stylized facts on buyer search patterns. We then build a quantitative model of
the housing market in the San Francisco Bay Area. The model accounts for turnover,
inventory and search activity in a large number of market segments that are defined
based on the search pattern data. We use the model to infer the distribution of searcher
preferences as well as features of the matching technology. We find that buyer interest
as well as owner mobility differ substantially, even within narrow geographic areas. As
a result, liquidity discounts vary widely across market segments.

1 Introduction

While it is natural to think of housing as a search market, it is not obvious at what level of
aggregation market activity should be analyzed. Any individual property is considered by
a clientele of searchers with diverse but partially overlapping search ranges. For example,
some searchers simply care about affordable houses within some radius of their place of work.
Others require a certain minimum size to accommodate their families, or select more narrowly
to target certain school districts. The interaction of these different searchers determines
turnover, inventory and time on market within housing segments.

This paper considers search, trading and valuation in heterogeneous but interconnected
housing markets in the San Francisco Bay Area. We introduce a novel dataset on housing
search behavior to document stylized facts on search patterns within the Bay Area. We find
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that search ranges are typically defined by geography, but also by price and home size. When
we divide the Bay Area into segments based on observed search patterns, we find substantial
heterogeneity in market outcomes, such as time on market, even within zip codes. These
segments also differ by clientele; in particular, the typical searcher in a poor urban segment
searches more broadly.

We build a model of search with multiple segments that can be quantified with data on
search ranges as well as other market activity. We use the model to infer the distribution of
searcher preferences as well as the matching technology in the various segments. A key finding
is that more expensive neighborhoods are searched by larger clienteles (more searchers per
house) who also tend to move less often. This pattern explains why houses in these expensive
neighborhoods turn over more slowly but still sell more quickly once they do come on the
market. It also implies that houses in more expensive neighborhoods trade at lower liquidity
discounts – the present value of both search and transaction costs is lower in expensive
neighborhoods.

The real estate website Trulia.com allows searchers to set an alert that triggers an email
whenever a house with the searcher’s desired characteristics comes on the market. We
consider a large sample of such alerts to infer the distribution of search profiles in the Bay
Area. Housing search occurs predominantly along three dimensions: geography, price and
size, the latter captured by the number of bathrooms. Most searchers look for houses in
contiguous areas, though there is significant heterogeneity in the geographic breadth. In
particular, searchers who scan expensive urban areas tend to look at substantially more
inventory than searchers who look at less expensive or more suburban areas.

To analyze the effect of search behavior on market activity, we divide the Bay Area into
a set of 576 distinct segments along the dimensions suggested by the search profiles. We
then measure the cross section of turnover, inventory and time on market at the segment
level by matching search alert data to deeds records as well as MLS feeds. We find that at
least half of the variation in market activity occurs within zip codes, our finest geographic
unit. Moreover, the cross sectional means of inventory, turnover, and time on market are
all mutually positively correlated, both for our entire sample 2008-2011 and for individual
years. In particular, more expensive neighborhoods tend to have lower inventory, turnover
and time on market than cheaper neighborhoods.

Our model describes heterogeneous agent types who are subject to moving shocks; they
buy and sell houses in a set of market segments. An agent type is identified with a search
range - a subset of segments that he searches over in order to find a house. Agents are more
likely to match in those segments within their search range where inventory is higher. The
steady state equilibrium of the model delivers a mapping from the distribution of preferences
into the joint distribution of turnover, inventory, time on market and price by segment, as
well as the distribution of buyers by type.

When we quantify the model, each agent type corresponds to one of about 9000 search
ranges derived from the alert data. Each search range is a subset of our set of 576 Bay Area
segments and may reflect interest along the geography, quality and size dimensions. The
distribution of search ranges contains information on how many searchers are interested in
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a segment. We define popularity as the weighted number of types that are interested in
moving to a segment: a more popular segment has a larger clientele of agents searching over
it. Segments also differ in the arrival rate of moving shocks: in a less stable segment, moving
shocks occur less frequently.

The instability and popularity of segments can be identified from data on market activ-
ity. Indeed, in more popular segments we should see more searchers (and hence more email
alerts), higher turnover, lower inventory and lower time on market. Intuitively, a larger po-
tential buyer pool more quickly absorbs any houses that come on the market, thus increasing
turnover and leaving less inventory. In less stable segments, houses come on the market at a
faster rate, which also leads to more transactions and thus higher turnover. However, when
more houses are put up for sale there is higher inventory, leading to higher time on market.

The cross section of market activity depends not only on instability and popularity –
both average statistics at the segment level – but on the entire distribution of search ranges.
For example, if two market segments are more integrated in the sense that there is a larger
share of common buyers, then time on the market should be more similar – common buyers
have no reason to wait for inventory in only one of the two markets. The parameters we find
thus depend on how interconnected Bay Area segments are in our data.

The above intuition on identification guides our calibration strategy. We select the dis-
tribution of preferences to match the model implied distribution of search patterns, together
with moments of time on market and volume. The model is tractable enough to infer a high
dimensional parameter vector. According to our parameter values, expensive areas tend to
be more stable, agents there are less likely to move out. Moreover, expensive urban areas
tend to be less popular in the sense that there are at any point in time fewer buyers scanning
inventory.

We establish three sets of results. First, we document that the relationship between
inventory and buyer interest – the Beveridge curve – is positively sloped within cities and
negatively sloped across cities. The negative slope across cities is evidence against the
integration of housing markets at the city level. The positive slope within cities is consistent
with integration but could also be generated by differences in both instability and popularity
of segments within a city.

Second, we use the estimated parameters to infer liquidity discounts for houses in various
segments. These discounts are quantitatively large, between 10% and 40% of the frictionless
house value (defined as the present discounted value of future housing services by the house.)
The liquidity discounts are large in segments that are less stable, where houses turn over
more often. They are also large in illiquid segments, where houses take a long time to sell for
whatever reason. High turnover and high time on market increase the value of the trading
frictions that the current and future buyers face, which amount to the liquidity discount.

Finally, we illustrate the role of search patterns for the transmission of shocks with
comparative statics exercises. In particular, we ask how time on market and inventory
change if the supply of houses in a segment increases. The answer crucially depends on the
number of searchers and what other markets those searchers look at. For example, shocks to
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a downtown San Francisco zip code with many searchers who search broadly is transmitted
widely across the city. In contrast, shocks to a suburban zip code close to the San Francisco
city boundary has virtually no effect on the market in the city itself.

Related Literature

Our paper provides the first model in which potential buyers search for a house in different
segments of the market. Their search patterns may integrate different housing segments
and thereby create commonality among these markets. Alternatively, the search patterns
may lead to fully segmented housing markets that do not have common features. Our paper
contributes to a literature that has investigated the implications of search models for a single
market (e.g. Wheaton, 1990; Krainer, 2001; Caplin and Leahy, 2011; Novy-Marx, 2009; Ngai
and Tenreyro, 2009; Piazzesi and Schneider, 2009; Burnside et al., 2011)1

Landvoigt et al. (2012) develop an assignment model to study different housing segments.
Their model has implications for the relative volume of various segments, but not for overall
volume or the behavior of time on the market. Van Nieuwerburgh and Weill (2010) study the
predictions of a dynamic spacial model for the dispersion of wages and house prices across
U.S. metropolitan areas. Empirical studies (e.g. Poterba et al., 1991; Bayer et al., 2007;
Mian and Sufi, 2009) document the importance of determinants such as credit constraints,
demographics, or school quality in different housing markets.

More related to our paper, Genesove and Han (2012) document the number of homes that
actual buyers have visited on their house hunt, but without knowing the location or other
characteristics of these homes, which are key elements in our work. A number of papers have
considered how to divide housing markets into segments (Islam and Asami, 2009, survey the
literature). Most of these paper discuss how to split housing markets into mutually exclusive
segments based on similarity along a number of characteristics. Goodman and Thibodeau
(1998) define housing markets as geographical areas based on a consistent price of housing
per unit of housing services. Leishman (2001) argues that housing markets can be segmented
both spatially and structurally.

Perhaps the closest paper to ours is by Manning and Petrongolo (2011) who estimate a
search and matching model for local labor markets. While the study does not have data on
where unemployed workers look for jobs (as we have for home buyers), it uses their home
addresses, the addresses of job vacancies in their local area and puts more structure on how
workers compare jobs with different commuting times (e.g., workers are indifferent about
commuting within some radius.)

1Recent models of a single housing market with frictions other than search include Piazzesi and Schneider
(2012), Floetotto and Stroebel (2012), Favilukis et al. (2010) and Glover et al. (2011). Empirical analyses of
frictions in the real estate market include Glaeser and Gyourko (2003), Levitt and Syverson (2008), Garmaise
and Moskowitz (2004) and Stroebel (2012).
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2 Data Description

To conduct the empirical analysis, we combine a number of key datasets. The first dataset
contains the universe of ownership-changing deeds in the Bay Area counties (Alameda, Con-
tra Costa, Marin, San Benito, San Francisco, San Mateo and Santa Clara) between 1994
and 2011. The property to which the deeds relate is uniquely identified via the Assessor
Parcel Number (APN). The variables in this dataset that we use for this project include
property address, transaction date, transaction price, type of deed (e.g. Intra-Family Trans-
fer Deed, Warranty Deed, Foreclosure Deed), and the type of property (e.g. Apartment,
Single-Family Residence). We identify armslength transactions and foreclosure transactions
using information on the type of deed and transaction price.

The second dataset contains the universe of tax assessment records in the Bay Area
for the year 2009. Properties are again identified via their APN. This dataset includes
information on property characteristics such as construction year, owner-occupancy status,
lot size, building size, and the number of bedrooms and bathrooms.

The third dataset includes the universe of all property listings on one of the largest
U.S. online real estate search engine Trulia.com (24 million unique monthly users) between
October 2005 and December 2011. The key variables in this dataset that we use are the
listing date, listing price and the listing address. By using the address of properties to
match listings data to deeds data, we can construct a measure of the time on market for
each property that eventually sells. In addition, by combining listings data and sales data,
we can also construct a measure of the total inventory of houses listed for sale in a particular
housing market segment at a particular point in time. The construction of these measures
is discussed in more detail in section 4.3.

The final dataset includes information on the search behavior of Trulia.com users. Visitors
to Trulia.com can search for houses that are currently listed for sale or have recently been
sold by specifying a number of search criteria such as geography, price range, home size and
property type. After having refined their search criteria to fit their true preferences, users
then have the option to set an email alert, which informs every time a new house with their
preferred characteristics comes on the market. In addition, users can directly sign up for an
email alert, by imputing information into the search mask shown in Figure 1. We observe
a random subset of over 40,525 search alerts set by 24,125 unique Trulia users for the Bay
Area counties between March 2006 and April 2012. Of these about 98% request “for sale”
alerts, the remaining 2% request “sold” alerts.

3 Email Alerts

In this section we analyze the contents of the search queries in the email alerts set on
Trulia.com. This provides unique insights into the search behavior of home buyers in the
Bay Area, and is a rare instance in which search behavior is observable for an important
market with key search frictions. In later sections we use these email alerts to parametrize

5



Figure 1: Setting email alerts on Trulia.com

our distribution of buyers across different segments of the housing market.

Every search query contains at least one geographic restriction. Table 1 shows that
roughly a third of the queries does not specify any fields in addition to geography. The other
fields that are searched by regularly include listing price and the number of bathrooms. Just
under a third of queries specifies both price and the number of bathrooms, while another
third specifies just a price criterion. The remaining 5% of queries specifies just a bathroom
criterion in addition to the geographic restriction.

The other fields in Figure 1 are not often used. For example, only 1.3% of queries specifies
square footage while 2.7% of queries specifies the number of bedrooms. We talked to local
realtors who confirmed that the number of bathrooms is a commonly used filter to place
restrictions on the size of homes. Below, we will thus focus on geography, price and the
number of bathrooms as the important dimensions of housing search.

Table 1: Distribution of Alert Parameters

Price not specified Price specified Total

Baths not specified 13,019 13,777 26,796
Baths specified 1,848 11,881 13,729

Total 14,867 25,658 40,525

Note: This figure shows the distribution of which parameters are specified in addition to geography in
our query sample.
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3.1 Pooling Queries by Searcher

The unit of observation in our search dataset is an email alert, while the unit of economic
interest is the entire search range considered by a home buyer. It is possible for each searcher
to set more than one separate email alert covering different segments of the housing market,
the union of which would define the searcher’s total search set. In our email alert dataset, a
searcher is identified by a unique (scrambled) email address to which the alerts will be sent.
There are a total of 24,125 unique individuals setting search queries; this means that the
average searcher sets about 2 email alerts. Almost 70% of individuals only set one search
alert, and more than 90% of individuals set 3 or fewer alerts. Figure 2 shows a histogram
with the number of search queries by individual.

Figure 2: Histogram of the number of email alerts by searchers
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In some the following descriptive analysis of search behavior, we pool across all queries
set by the same searcher. For the geography dimension, which is discussed in section 3.2, this
pooling is straightforward: we first determine which geographies are covered by each query,
and then consider a searcher’s geographic range to be the union of all geographies covered
by at least one query of the searcher. For the analysis of the joint density of geography and
price dimension discussed in section 3.8 such pooling is more complicated. This is because a
searcher might search for houses in Palo Alto between $500,000 and $1 million in one query,
and in Mountain View between $400,000 and $700,00 in another. For the descriptive analysis
of searcher behavior, we will take the widest possible price range considered in the queries.
In the example above, we assume the searcher is interested in houses in Palo Alto and
Mountain View between $400,000 and $1 million. In section 4.2 we define housing market
segments that differ along a geography, price and home size dimension. These segments are
used for the subsequent calibration of the model. With these multi-dimensional segments
the pooling across different queries by the same searcher is much easier: we first determine
which segments are covered by each query and then pool all segments covered by any search
alert by a particular searcher to be part of that searchers search set.
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3.2 Geography

Each alert defines the desired search geography by selecting one or more city (e.g. Palo
Alto, Menlo Park, San Jose), zip code or neighborhood (e.g. the Mission district in San
Francisco). About 61% of alerts define the finest geographic dimension in terms of cities,
18% in terms of zip codes and the remaining 21% of alerts specify the finest geographic
dimension in terms of neighborhoods. Many queries may include geographies in terms of
cities, zip codes and neighborhoods in the same query. Figure 15 in Appendix A.1 shows a
number of cross tabulations of the geographic dimension of the alerts. For example, a total
of 1,108 alerts specify exactly one zip code and one city. 1,624 alerts specify more than 4
cities, while 2,406 alerts specify more than 4 neighborhoods.

In order to further analyze the geographic dimensions of our queries, we consider a zip
code as our common unit of geography. To implement this, we need to deal with alerts
that specify geography at a unit that might not perfectly overlap with zip codes. For alerts
that select listings at the city level, we assign all zip codes that are at least partially within
the range of the city to be covered by the search query (i.e. for a searcher who is looking
in Mountain View, we assign the query to cover the zip codes 94040, 94041 and 94043).
Neighborhoods and zip codes also do not line up perfectly, and so for each neighborhood we
again consider all zip codes that are at least partially within the neighborhood to be covered
by the search query (i.e. for a searcher who is looking in San Francisco’s Mission District,
we assign the query to cover zip codes 94103 and 94110). This provides us, for each search
alert, with a list of zip codes that are covered by that search alert. Using this method of
assigning queries to zip codes, the search alerts in our dataset cover a total of 233 unique
Bay Area zip codes. As discussed in section 3.1, we then pool across all queries set by the
same searcher. That is, we add all zip codes that are considered by at least one query of the
searcher to that person’s search set.

The frequency and cumulative frequency of number of zips selected by each searcher
are shown in Figure 3. 6,631 searchers (about 28%) consider exactly one zip code, 2,943
searchers consider exactly 2 zip codes. About 71% of searchers consider 10 zip codes or less.
In total, 2,478 searchers consider exactly 25 zip codes (these are alerts that only select San
Francisco as a city) and 1,026 searchers consider exactly 27 zip codes (these are alerts that
only select San Jose as a city). The maximum number of zip codes considered by a single
user is 199, arising from a searcher that selects 78 separate cities. The average number of
zip codes covered by a searcher is 9.24.

3.3 Geography Patterns - Distance

We next analyze patterns amongst zip codes that are jointly selected by agents within a
a search alert for those 72% of searchers that select more than one zip code. There are a
number of ways to analyze these queries. In a first analysis, we consider distances between
the zip codes selected by the same searcher. To do this, we begin by determining for each
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Figure 3: Distribution of Geography Specifications
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Note: This figure shows the frequency and cumulative distribution of the number of Bay Area zip codes
covered by the individuals setting search alerts in our datasets.

zip code the geographic and population-weighted zip code centroids.2 Amongst each set of
zip codes selected by a particular searcher, we compute the maximum and mean distance
between these zip code centroids. We consider 3 measures of distance: (i) the direct “as the
crow flies” geographic distance, (ii) the travel time by car between the zip code centroids
and (iii) the commuting time by public transport.3 Table 2 shows the distribution of these
measures across the 17,488 searchers that select more than one zip code.

The maximum distance between two geographic zip code centroids selected by the same
search query is 104 miles. This distance is generated from a searcher that select both
Petaluma and Los Gatos as cities (the bottom left panel of Figure 18 shows a map of all
zip codes selected by one of those searchers). The searcher with the smallest maximum
distance between two zip code centroids (just over half a mile) selects the zip codes 94111
and 94133, two zip codes in San Francisco’s Financial District (this geographic dimension
was actually selected by three different searchers). On average amongst searchers that select
more than one zip code, the maximum distance between two geographic centroids among the
zip codes selected is 9.8 miles. When considering the average distance between all zip code
centroids selected, this ranges from a minimum of 0.6 miles to a maximum of 72.9 miles across

2The geographic centroid of each zip code is provided by the U.S. census bureau. To determine the
population-weighted centroid of each zip code, we compute the average latitude and longitude of all census
blocks within that zip code, weighted by the population of each census block.

3Measures (ii) and (iii) are calculated using Google Maps, with an adjusted version of the traveltime.ado
file. Commuting times were computed for travel at 8am on Wednesday, March 20, 2013. A few zip code
centroids are inaccessible by public transport as calculated by Google. Public transport distances to those
zip code centroids were replaced by the 99th percentile of travel times between all zip code centroids for
which this was computable. This captures that these zip codes are not well connected to the public transport
network.

9



Table 2: Distribution of Distances across Search Alert Zip Codes

Geographic Zip Code Centroids

Min Bottom Decile Median Top Decile Max Mean

Max Geographic Distance 0.6 2.6 6.7 21.2 104.4 9.8
Mean Geographic Distance 0.6 1.8 3.3 9.0 72.9 4.8
Max Car Travel Time 4.0 10.5 21.0 38.5 147.5 23.3
Max Public Transport Time 12.0 40.0 80.5 354.5 558.0 152.8
Mean Public Transport Time 12.0 28.8 50.0 148.8 488.8 78.3

Population-Weighted Zip Code Centroids

Min Bottom Decile Median Top Decile Max Mean

Max Geographic Distance 0.5 2.3 6.8 21.1 103.3 9.7
Mean Geographic Distance 0.5 1.8 3.2 8.9 74.0 4.7
Max Car Travel Time 4.0 9.5 20.5 38.5 143.5 22.8
Max Public Transport Time 3.8 8.9 13.1 19.7 132.5 14.0
Mean Public Transport Time 10.5 40.5 79.0 375.0 573.5 140.1

Note: This figure shows the summary statistics across searchers who select more than one zip code (N =
17,488) of travel time and geographic distances between the centroids (geographic and population-weighted)
of all zip codes selected by that query. Travel times are measured in minutes. Geographic distances are
measured in miles.

searchers. Similar numbers obtain when considering distances between population-weighted
zip code centroids rather than between geographic zip code centroids.

Travel times, either by car or by public transport, allow us to measure commuting dis-
tances between zip code centroids selected by the same searchers (below we will also deter-
mine the “center” for each set of zip codes selected, to consider where people might want
to travel to). The average across searchers of the maximum travel time by car between any
zip code centroid selected by the same searcher is about 23 minutes. The 10th percentile is
11 minutes, the 90th percentile is 39 minutes. For travel by public transport, the average
maximum time between query zip codes is 2 hours and 32 minutes; the 10th percentile is 40
minutes, the 90th percentile is almost six hours. These results suggest that while, on aver-
age, zip codes selected by the same searcher are reasonably close together geographically and
in terms of commuting, there is significant heterogeneity in the geographic breadth covered
by different email alerts. This will have important implications when calibrating our search
model.

3.4 Geographic Patterns - Contiguity

A second aspect of the geographic dimension selected by home searchers is whether or not
they are contiguous, that is, whether it is possible to drive from each zip code in the search
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set to all other zip codes without ever leaving a zip code in the search set. As described in
Appendix A.2, we allow travel across one of the six bridges across the San Francisco Bay to
provide contiguity between two zip codes either side of the bridge. We then analyze whether
or not the zip codes selected by a particular searcher are part of a contiguous set of zip codes.
Figures 17 and 18 in the appendix shows examples of contiguous and non-contiguous search
sets selected by Bay Area home buyers. To analyze the contiguity of zip codes selected by
the same searcher more systematically we again focus on those home buyers that search
in more than one zip code. Table 3 shows summary statistics for contiguity measures for
searchers that select a certain number of zip codes. In total, 82% of all searchers select
contiguous geographies. The maximum number of distinct contiguous segments selected
by an individual searcher is 10, while on average a query selects 1.24 distinct contiguous
segments. Out of searchers that select only two zip codes, only 9% select two non-adjacent
zip codes. The increase in the share of contiguous queries for the group with 21-30 zip codes
selected can be explained by the prevalence of searches for “San Francisco” and “San Jose”
in that category.

Table 3: Contiguity Analysis – Summary Statistics

Contiguous Segments
Number of Zips Covered Share contiguous Mean Max Total Number

2 91% 1.09 2 2,927
3 83% 1.18 3 1,761
4 91% 1.10 3 2,248
5 67% 1.37 4 844
6-10 71% 1.38 5 2,612
11-20 74% 1.38 8 2,071
21-30 91% 1.13 10 4,213
30+ 48% 1.94 9 798

Total 82% 1.24 10 17,474

Note: This figure shows summary statistics for contiguity measures across queries that select different
number of zip codes.

3.5 Geographic Patterns - Circularity

As a third way of evaluating the geographic dimension of housing search patterns we consider
to what degree the searcher pursues a strategy of selecting a central point (such as the
location of a job, or a good school), and then searches in a circular fashion around that central
spot. We proceed in a number of steps. First, for each searcher we find the geographic center
of his search set - this takes the average longitude and the average latitude of all (geographic)
zip code centroids selected by that searcher. Figure 4 plots these centers. Most of the search
set centroids focus either on downtown San Francisco, Silicon Valley, San Jose and Berkeley.
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Figure 4: Location - Query Center
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Note: This figure shows the geographic centers of all search alerts that select more than 1 zip code.

We next determine the maximum distance from a zip code centroid in the search set to
this center. On average, this maximum distance is 3.95 miles. The 10th percentile is 1.31
miles and the 90th percentile is 12.78 miles. We then consider all zip codes in the Bay Area
to see which ones are at least as close as the furthest zip code in the search set to the search
set center. We next check how many of those zip codes are actually part of the search set.
Figure 5 illustrates this procedure.

We then analyze the degree of “circularity” of the geographic dimension more system-
atically. Again, we focus on the subset of searchers who select at least two zip codes. On
average, 47% of all searchers cover every single zip code centroid that falls within the maxi-
mum distance between the geographic search set center and the furthest zip code centroid.
Unsurprisingly, this figure is highest, at 83%, for queries that only cover two zip codes, and
declines for queries that cover more zip codes. In addition, for search sets with a larger
maximum distance between the furthest zip code covered and the search set center, the pro-
portion of searches that cover all zip codes within this maximum distance from the center
declines. The searcher covers 78% of all zip codes centroids that are as close or closer to the
search set centroid as the farthest covered zip code centroid. Even for the relatively small
set of non-contiguous queries, this figure is about 33%.

A key conclusion from the analysis of the geographic dimension of email alerts is that
most home searchers in the for the Bay Area search across zip codes with similar accessibility
to a particular location (which usually corresponds with to job centers), creating a contiguous
set of zip codes considered. However, there is significant and important heterogeneity in how
geographically broad the searches are: While about 28% of searchers only consider a single
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Figure 5: Explanation of Circularity Test

Note: This figure shows two examples of the circularity analysis. All zip codes that are part of the search
set are shown in blue. The geographic center of each search set is given in green. The circle is centered
around this geographic center and has radius equal to the furthest distance of any zip code centroid in the
search set to the search set center. All zip codes whose center lies within the circle (and who are thus at
least as close as the furthest zip code center in the search set) are shaded.

zip code, the 10% most broad search sets cover zip codes that are more than 20 miles apart
and can take several hours to travel between by public transport. In addition, there is a
sizable number of searchers that select non-contiguous zip codes, sometimes reasonably far
apart. Searchers setting such broad queries are going to play an important role in providing
a force that equalizes time on market between different Bay Area geographies.

3.6 Price Ranges

The second key dimension regularly selected by home searchers is the listing price. Re-
stricting the price dimension allows households to select homes of differential quality within
the same geographic segment. As we discuss below, homes of different qualities (which are
listed at different prices) are likely to be part of different housing market segments. At the
searcher level about 63% of all searchers specify a price dimension in at least one of their
queries (Table 1 showed that about 61% of all search alerts specified a price dimension).
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When selecting a price, 7,856 (51%) of searchers specify both an upper and a lower bound
of a price range, 7,166 (46.5%) specify only an upper bound, while 386 (2.5%) only select a
lower bound. The top panel of Figure 6 shows the distribution of minimum and maximum
prices selected in the email alerts. Notice that most minimum and maximum prices are set
at multiples of $50, 000, with particularly pronounced peaks at multiples of $100, 000.

In addition to the heterogeneity across search alerts in the breadth of geography selected,
there also appears to be significant heterogeneity in the breadth of the price ranges selected
by different searchers. Amongst those individuals that set both an upper and a lower bound,
the 10th percentile of queries selects a price range of $100,000, the median a price range
of $300,000 and the 90th percentile a price range of $1.13 million. The bottom left panel
of Figure 6 shows the distribution of price ranges, both for those agents that select an
upper and a lower bound, as well as for those agents that only select an upper bound. In
the bottom right panel we also analyze how the breadth of the price range varies with the
price segment considered. We bin the price range midprice into 10 groups. The price range
considered increases monotonically with the midpoint of the price range. We also consider
the hypothesis whether people set the price ranges by considering the price they are willing
to pay, and search that price plus/minus a fixed percentage. To do this, we find the ratio
of the price range to the mid-point of the price range. This is shown in the bar chart of the
bottom right panel of Figure 6.

3.7 Number of Bathrooms

As described above, the third dimension that is regularly populated in the email alerts is a
constraint on the number of bathrooms. This appears to be a home searcher’s most popular
way of selecting homes of a certain size. Figure 7 shows the distribution of bathroom cutoffs
selected for the Bay Area. 68% of all bathroom limits are set a value of 2, most of them as
a lower bound. This setting primarily excludes 1 and 2 bedroom apartments and very small
houses.

3.8 Interaction of Geography, Price Range and Bathrooms

In the previous sections we showed that while there are clear patterns in the way that
people search for homes across the geographic and home quality and size dimension, there
was significant heterogeneity in how broad the searches were on the price and geography
dimension. In this section we analyze the interaction of the breadth of the different search
dimensions. The results are show in Table 4.

Those search searchers that specify a price restriction cover an average of 10.3 zip codes,
while searchers that do not specify a price restriction only cover 7.3 alerts on average.
Amongst those search sets that cover more than one zip code, the average maximum ge-
ographic distance between zip code centroids is 7.9 miles for those that do not set a price
restriction, and 1.06 miles for those that do. The searches with price restrictions also have
bigger maximum commuting times. This suggests that searchers trade off between being
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Figure 6: Price Cutoff Analysis
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Note: This figure shows a histogram in steps of $10,000 of the minimum and maximum listing price
parameters selected by home searchers in their email alerts. The bottom left panel of this figure shows the
distribution of price ranges across queries both for queries that only select a price upper bound as well as for
those queries that select an upper bound and a lower bound. The bottom right panel shows statistics only
for those alerts that select an upper and a lower bound. The line chart shows the average price range by for
different groups of mid prices, the bar chart shows the average of the price range as a share of the mid price.
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Figure 7: Bathrooms Cutoffs Selected
0

2
,0

0
0

4
,0

0
0

6
,0

0
0

F
re

q
u
e
n
c
y

0 1 2 3 4 5
Minimum Baths Specified

0
2
,0

0
0

4
,0

0
0

6
,0

0
0

F
re

q
u
e
n
c
y

1 2 3 4 5
Maximum Baths Specified

Note: This figure shows a histogram in steps of 0.5 of the minimum and maximum bathroom parameters
selected by home searchers in their email alerts.

Table 4: Geography, Price and Bath Parameter Interaction

No Price Price No Bath Bath
Mean N Mean N Mean N Mean N

# Zips Covered 7.3 8,725 10.3 15,400 8.8 15,716 10.0 8,409
Max Dist. (Mil) 7.9 5,375 10.6 12,113 8.9 10,899 11.1 6,589
Max Car (Min) 20.8 5,375 24.5 12,113 22.5 10,899 24.7 6,589

Max Public Trans. (Min) 75.8 5,375 92.4 12,113 82.1 10,899 95.9 6,589
Is Continguous 54% 8,725 62% 15,400 59% 15,716 60% 8,409

Note: This Table shows summary statistics across queries that cross-tabulate moments across different
search parameters.

more selective on the geography that they are willing to consider and being more selective
on the price they are willing to pay. A similar tradeoff can be detected between being more
specific on home size (selecting a certain number of bathrooms) and being more selective on
the geography considered (i.e. selecting fewer zip codes).

3.9 Representativeness of Queries

There are a number of reasons why we believe that Trulia search queries do indeed provide a
reasonable approximation of overall housing market search behavior. Firstly, the internet has
become the most important tool in the home buying process, with over 90% of homebuyers
using the internet in their home search process (National Association of Realtors, 2013). For
35% of home buyers, looking online is the first step taken in the home purchase process. The
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fraction of people who found the home they end up purchasing on the internet is the same
as the fraction who found that home through real estate agents. This is not just within the
younger age group: 86% of home buyers between the ages of 45 and 65 go online to search
for a home. The median age of homebuyers using the internet is 42, the median income
is $83,700 (National Association of Realtors, 2011). This is only slightly younger than the
median of all home buyers (which is 45) and slightly wealthier (the median income of all
home buyers was $80,900). In addition to showing that online real estate search is almost
universal, this suggests that the online real estate audience is generally rather representative
of the overall population of home buyers. Trulia, with approximately 24 million unique
monthly visitors (71% of whom report to plan to purchase in the next 6 months), has similar
demographics to those of the overall online home search audience (Trulia, 2013).

3.10 Stability of Search Patterns

For the purpose of calibrating our search model, we interpret the observed search sets as
representative of the set of houses considered by that particular searcher. An important
question (for example, for the interpretation of comparative statics exercises based on the
model) is whether these search sets are invariant to changes in market conditions. For
example, one might worry that during periods with high market activity with many homes
listed, searchers narrow the range of houses that they consider to a subset of their previous
search set. To test whether this is the case, we analyze whether average search parameters
change alongside the strong seasonality of the housing market. Figure 3.10 shows that
both volume and search activity exhibit seasonal movements, with more activity during the
summer months.

0.06
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0.08

0.09

0.1

0.11

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total Volume New Search Alerts Set

Figure 8: Seasonality of the Housing Market – share of annual total transactions and annual
total search listings set in each month of the year.

To test whether search parameters adjust to this market activity, we test whether the geo-

17



graphic range considered during the summer months is narrower than in the winter months.
In each panel of Figure 9 we show a scatter-plot between the share of total volume in a
month, and a particular search dimension. In particular, we include (clockwise from top-
left) the average distance between geographic zip code centroids, the average commuting
time by public transport between geographic zip code centroids, the share of searches that
yield contiguous search sets and the share of searches that include a price dimension. We
can see that none of these dimensions exhibit any meaningful seasonality, which makes us
confident in our interpretation of search parameters ares time-invariant preference sets.

Figure 9: Non-Seasonality of Search Parameters
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Note: This figure shows the correlation of search parameters with the share of annual volume in a
particular month on the horizonal axis.

4 Model setup

The model describes a small open economy, such as the San Francisco Bay Area. Time is
continuous and the horizon is infinite. Agents live forever and discount the future using the
riskless rate r.

Segments, search ranges and clienteles
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Let H denote a finite set of market segments. The data counterpart of a model segment
is a homogenous set of houses defined by location, size and quality (for example, all houses in
Berkeley with 2 or more bathrooms that cost less than $400K). The details of the construction
of these segments are described in section 4.2. The measure µH on H counts the number of
houses in each segment. We normalize the total number of houses in the economy to one:

µ̄H =
∑
h∈H

µH(h) = 1.

Let Θ denote a finite set of agent types. Agents have quasilinear utility over two goods:
numeraire (“cash”) and housing services. Agents own at most one house. When an agent
moves into a house, he obtains housing services v (h) > 0 until the house falls out of favor,
which happens at the rate η (h). After the house falls out of favor, the agent no longer
receives housing services from that particular house. The agent can then put the house on
the market in order to sell it and subsequently search for a new favorite house. We assume
that the search for a new house is costless, whereas putting the a house on the market in
segment h involves costs c(h) per period.

Agent type θ is identified by a search range, a subset H̃(θ) ∈ H of market segments that
he is interested in. The data counterpart of a search range is a search pattern derived from
our Trulia search alert data – it will typically span multiple segments. Search ranges are
part of the description of preferences – an agent will never move into a house outside H̃(θ).
We use a measure µΘ on Θ to count the number of agents of each type. The total number
of agents is

µ̄Θ =
∑
θ∈Θ

µΘ(θ) > 1.

Since there are more agents than houses and agents own at most one house, some agents
are always searching. The idea is that these µ̄Θ − 1 agents stay in hotels or rent while they
search for a house to buy.

Our search query data tell us for each type θ and segment h whether θ is interested in h or
not. The resulting ”who-searches-where”-matrix allows us to measure the interconnectedness
of segments. We define the clientele of segment h as the set of all agents who are interested
in segment h

Θ̃ (h) :=
{
θ ∈ Θ : h ∈ H̃ (θ)

}
.

It is helpful to consider two extremes. The market is fully segmented if every segment is
searched by a single type who is interested only in that segment. In contrast, the market is
fully integrated if there is only one type who searches all segments.

We can combine search query data and inventory data to look at the inventory that a
given type θ is interested in. Let µS (h) denote the number of houses for sale in segment h.
The inventory scanned by type θ is then

J (θ) :=
∑

h∈H̃(θ)

µS (h) (1)

19



The clientele of the typical segment h consists of multiple types scanning different inventories.
Those inventories partly overlap, at least because everyone scans µS (h) .

Matching

Matching in the housing market involves searchers scanning inventory, identifying suit-
able properties and making contact with sellers. We capture this process by a random
matching technology. We make two key assumptions. First, we assume that searchers flow
into segments within their search range in proportion to segment inventory. This assumption
is natural if searchers are equally likely to find their favorite house anywhere in their search
range. Formally, let µ̃B (θ) denote the number of buyers of type θ. We define the number of
buyers in segment h as

µB (h) =
∑
θ∈Θ̃(h)

µS (h)

J (θ)
µ̃B (θ) (2)

For the given segment h, buyers can belong to any type in the clientele Θ̃ (h). If a type
θ searches only segment h, then J (θ) = µS (h) and all buyers µ̃B (θ) of type θ are in fact
buyers in h. If segments have roughly the same inventory, searchers are equally likely to be
buyers in any of the segments in their search range. More generally, the more inventory is
available in h relatively to other segments in type θ’s search range, the larger the share of
type θ buyers who flow into h.

Our second assumption is the presence of a matching function. The match rate in segment
h is given by

m (h) = m̃
(
µB (h) , µS (h) , h

)
,

where m̃ is increasing in the number of buyers and sellers and with m̃
(
0, µS, h

)
= m̃

(
µB, 0, h

)
=

0. At this point, we do not make further assumptions on the functional form of the function
m̃. What is important is that it is allowed to depend on the segment h directly (that is,
other than through the number of buyers and inventory). For example, the process of scan-
ning inventory could be faster in a segment because the properties are more standardized,
or because more open houses are available to view properties.

Once a buyer and seller have been matched, the seller makes a take-it-or-leave-it offer.4

If the buyer rejects the offer, the seller keeps the house and the buyer continues searching.
If the buyer accepts the offer, the seller starts to search, whereas the buyer moves into the
house and begins to receive utility v (h).

Equilibrium

In equilibrium, agents make optimal decisions taking as given the distribution of others’
decisions. In particular, owners decide whether or not to put their houses on the market,
sellers choose price offers and buyers choose whether or not to accept those offers. In what
follows, we focus on steady state equilibria in which (i) owners put their house on the market

4This assumption on the bargaining protocol is sufficient to ensure that agents find the strategies optimal,
which we discuss below.
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if and only if their house fell out of favor, so that the owners do not receive housing services
from it, and (ii) all offers are accepted.

Since the model has a fixed number of agents and houses, the steady state distributions
of agent states can be studied independently of the prices and value functions. We need
notation for the number of agents who are in different states. Let µH (h; θ) denote the
number of type θ agents who are homeowners in segment h, and let µS (h; θ) denote the
number of type θ agents whose house is listed in segment h. Finally, let µ̃B (θ) the number
of type θ agents who are currently searching to buy a house. In steady state, all these
numbers are constant. We now derive a set of equations to determine these numbers.

Since µS (h; θ) must be constant in steady state, the number of houses newly put on the
market by type θ agents in segment h must equal the number of houses sold by type θ agents
in segment h:

η (h)
(
µH (h; θ)− µS (h; θ)

)
=
µS (h; θ)

µS (h)
m̃
(
µB (h) , µS (h) , h

)
(3)

The left-hand side shows houses coming on the market, given by the rate that houses fall
out of favor multiplied by the number of houses by owners of type θ not on the market. The
right-hand side shows houses for sale by owners of type θ that are matched with buyers and
thus leave the inventory, given by the share of type θ seller in segment h multiplied by the
match rate.

Since the number µH (h; θ) of houses that are put on the market by owners θ is also
constant over time, the share of houses sold by type θ agents in segment h must equal the
share of houses bought by type θ agents in market h (both as a fraction ot total volume.)

µS (h; θ)

µS (h)
=
µS (h)

J (θ)

µ̃B (θ)

µB (h)
. (4)

On the right hand, the share of type θ buyers in segment h equals the number of type θ
buyers that flow to h in proportion to inventory, as in (2), divided by the total number of
buyers in segment h.

The number of agents and the number of houses must add up to their respective totals:

µH (h) =
∑
θ∈Θ̃(h)

µH (h; θ) ,

µΘ (θ) = µ̃B (θ) +
∑

h∈H̃(θ)

µH (h; θ) . (5)

Equations (2), (3), (4) and (5) jointly determine the unknown numbers µH (h; θ), µS (h; θ),
µB (h) and µ̃B (θ), a system of #H + #Θ (1 + 2#H) equations in as many unknowns.

4.1 Understanding the cross section of observables

The model identifies three forces that determine market activity and prices in the cross
section: the rates η (h) at which houses fall out of favor, the distribution of search ranges
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H̃ (θ) and the number of agents µΘ(θ) of type θ, and the segment-specific effects on match
rates summarized by m̃ (., ., h). These forces correspond, roughly, to differences in supply,
demand and market frictions, respectively. We now develop some intuition for how these
exogenous forces drive the cross section of observables in equilibrium.

Observables

Given a measure of housing stock, we define the inventory share in a segment as the
share of all houses for sale I (h) = µS (h) /µH (h). Similarly, the turnover rate in a segment
is defined as V (h) = m (h) /µH (h). In a steady state equilibrium, the average time a house
is on the market is given by

T (h) =
µS(h)

m (h)
=

I (h)

V (h)
. (6)

It follows that a measure of inventory share can be recovered from measures of turnover and
time on the market.

The model also suggests a simple way to measure buyer interest at the segment level.
Indeed, the inventory scanned by a searcher J (θ) can be measured using data on inventory
together with alert data. Since the alerts are a sample of buyers, we also have a measure
of the relative (but not the absolute) frequency of a search profile H̃ (θ) in the total buyer
pool:

β (θ) :=
µ̃B (θ)

µ̄Θ − 1
.

Given our knowledge of β (θ) , µS (h) and J (a) , we observe the number of buyers µB (h) at
the segment level up to a constant. We can therefore define a directly observable measure
of relative buyer interest in a segment as

D (h) =
µB (h)

µH (h) (µ̄Θ − 1)
. (7)

Here we normalize by the segment housing stock in order to take out segment scale. The
measure of buyer interest can be directly computed from data; the only assumption from the
model used is that searcher flow to segments in proportion to inventory as in equation (2).

Perfect segmentation

The mapping from parameters to observables depends on the nature of the search pat-
terns. For example, parameters that are “local” to segment h, such as the rate at which
houses come on the market there, will matter less for local inventory and time on the market
if segment h is more integrated with similar segments. To provide some intuition on the
role of integration and its interaction with other forces, we first consider the extreme case of
perfect segmentation.

Suppose there are exactly as many types as segments and each type scans exactly one
segment. We use the label θ = h for the type scanning segment h and otherwise drop θ
arguments. From (3), equilibrium inventories are determined segment by segment by

η (h)
(
µH (h)− µS (h)

)
= m̃

(
µΘ (h)− µH (h) , µS (h) , h

)
. (8)
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The left-hand side is the rate at which houses come on the market in segment h. It is
strictly decreasing in inventory: higher inventory means that fewer agents are living in their
favorite house and thus fewer houses can come on the market each instant. The right-hand
side describes the rate at which houses are sold. It is strictly increasing in inventory: higher
inventory means that buyers are more likely to be matched with a house. It follows that
there is a unique equilibrium level of inventory µS – if inventory is too low, then too many
houses come on the market whereas if inventory is too high, then too many houses are sold.

Consider how segments differ in the cross section. If we divide by µH (h), the right side
of equation (8) shows the steady state turnover rate; time on market is given by T (h) =
µS (h) /m (h). If houses come on the market more quickly (higher η(h)), then turnover
increases together with inventory and time on the market. In contrast, if there are more
buyers for the same number of houses (higher µΘ(h)), then turnover also increases, but
inventory and time on the market decline. Intuitively, an increase in either demand or
supply increases volume. The difference is that an increase in supply also make the market
clear more slowly so inventory is higher.

Perfect integration

Consider now the opposite polar case of perfect integration: all segments are exclusively
scanned by a single type. Both the number of buyers and the number of sellers are then pro-
portional to inventory µS (h). In other words, the ”queue length” µB (h) /µS (h) is equated
across segments. According to equation (2), the buyers µB(h) in segment h are the fraction
of total buyers µ̄Θ− 1 that flow into segment h; it is determined by the share of inventory in
the overall inventory, µS(h)/

∑
h∈H µ

S(h). Equilibrium inventories again adjust equate the
flow of houses coming on the market to the volume of sales:

η (h)
(
µH (h)− µS (h)

)
= m̃

(
µS (h)

(
µ̄Θ − 1

)∑
h∈H µ

S (h)
, µS (h) , h

)
(9)

The effect of an increase in η (h) in segment h is qualitatively similar to the case of full
segmentation: turnover and inventory will both increase. However, the effect on inventory
will typically be weaker because more searchers flow into h as more houses come on the
market there. In other words, an increase in supply endogenously gives rise to an offsetting
increase in demand. If the matching function does not depend on the segment but has
constant returns in µB and µS, then time on the market is also equated across segments.
More generally, segment-specific frictions that affect the speed of matching would lead to
differences in time on market even in a fully integrated area.

Equation (9) suggests that we can learn about the importance of integration by looking at
a scatter plot of inventory share I (h) and our buyer-interest measure D (h). If all segments
are perfectly integrated, then all points (D (h) , I (h)) must lie on a straight line with a
positive slope. More generally, suppose that not all segments are perfectly integrated, but
there is a subset of perfectly integrated segments that do not share common buyers with any
other segment. The points for that subset should then be on a straight line.
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While upward sloping pieces of a (D (h) , I (h)) are indicative of integration, the latter
cannot be inferred from segment level data alone. Indeed, any cross section of buyer interest
and inventory at the segment level they could in principle also be generated by a perfectly
segmented economy. For example, (8), an increase in η (h) increases I (h), leaving D (h)
unchanged. An increase in the number of buyers µΘ (h) increases D (h) and decreases I (h).
A perfectly segmented economy in which, for reasons exogenous to the model, houses come
on the market more quickly in areas in which there are more buyers can thus also generate
an upward sloping line in the (D (h) , I (h)) plane.

4.2 Defining segments

The ideal way to define market segments from data would be to consider the partition of the
universe of Bay Area houses that is implied by joining all our search queries. Any division
of houses into segment would then be motivated by the preferences of at least one searcher.
Moreover, the preferences of any one searcher could be expressed exactly through a subset
of the set of all segments. The problem with the ideal approach is sample size: the number
of houses per segment and the number of searchers per search range would be too small to
accurately measure moments such as time on the market, inventory and buyer interest.

Our approach is essentially to work towards the ideal partition, but subject to the con-
straint that segments must be sufficiently large in terms of volume and housing stock. This
leads us to a set H of 576 segments as well as a set Θ of 9091 search ranges that can each
be represented as a subset of H. We provide a detailed description of the algorithm in the
Appendix. In what follows we only sketch the main steps.

We start from our earlier result that people search mostly according to (i) quality, by
specifying price ranges (ii) geography, specifying zip code as the finest unit and (iii) size, by
specifying the number of bathrooms, typically either ”up to 2” or ”more than 2” bathrooms.
Facts (ii) and (iii) lead us to first divide the Bay Area by zip code and then divide each zip
code into size categories.

To accommodate search according to quality, we further divide – zip code by zip code –
each size group into four price groups. Here we start from a set of candidate price cutoffs:
$200K, $300K, $400K, $500K, $750K and $1mn.5 We then select three cutoffs from these
candidates that are most often close to price cutoffs appearing in our email alerts. The idea
is that the resulting set of segments is close to the ideal partition implied by the alerts. In
particular, high prices zip codes will typically have higher cutoffs than lower priced zip codes.

At this point, we have divided each zip code into eight size-price groups. It is possible,
however, that some of the groups are too small to provide accurate measures of segment level
moments. Our criteria here is that a segment must have enough number of transactions as
well as a sufficiently large housing stock. If this is not the case, we merge candidate segments

5We convert all prices in 2010 dollars using zip code level repeat sales price indices. This allows us to
compare alerts set at different points in time as well as measure moments such as monthly volume in a
segment by pooling transactions over time.
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to form a larger joint segment. As a result, some zip codes that have very thin housing
markets might have very few segments.

Given a final set of segments H, we express the distribution of search patterns derived
from alerts as a distribution of subsets of H. For each raw search pattern, we consider the
range specified along the dimensions quality, size and geography, ignoring other dimensions.
We then determine the set of segments that is approximately covered by the specified range.
Some detail is lost at this step: the number of distinct patterns drops from about 30K to
about 9K.

We can also calculate, for each segments, average monthly volume and time on the market
for each segment from our deeds and listings data, based on data for the period 2008-2012.
In addition, we use 2010 ACS data to compute housing stock by segment. Combining these
numbers, we obtain the key data moments for the analysis to follow, the inventory share
I (h) , buyers per house D (h) and turnover V (h) .

4.3 Segment level facts

For each segment and month, we determine (1) the median sales price, (2) the total volume
of transactions, (3) the average time on market for houses sold in that month and (4) the
total inventory of listings per segment and month. For each month, price by segment is
determined by finding the median observed transaction price in each segment. Volume for
month is constructed by calculating the total number of transactions in each segment. We
normalize volume in a segment by dividing it by the total stock of residential housing in
the segment in 2009, as determined from the tax assessment records. Time on market for
each property is calculated by measuring the time period between the initial listing date and
the final sale. We then calculate the average time on market for all properties sold in that
particular month.

Table 5 shows summary statistics for our key time series variables. The average segment
had a transaction volume of about 0.34 percent of the housing stock transacting each month.
The average across our segments in terms of the median sales price was about $615,000. The
average segment had about 3 percent of the total housing stock listed for sale, and houses
that eventually sell would be on the market for about 5 months.

There is substantial heterogeneity across segments. The standard deviations of the vari-
ables in Table 5 across segments are between roughly one half and two thirds of their means.
There are segments in which median house prices are below $100k, while others have median
house prices that are 30 times as high. In some segments, houses sit on the market for almost
a year, while houses in other segments sell in a month. Volume and inventory can be low in
some segments, and 100 times higher in other segments.

Table 5 also illustrates that aggregation to the zip code or city omits a large fraction
of this heterogeneity at the segment level. A regression of house prices in each segment on
house prices in the zip code (and a constant) has an R2 of 49%. This R2 drops further to
1% when we use median prices in the city. The R2s in the regressions on time on market,
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volume and inventory at the zip code are also around 50%, while R2s drop to 8-16% at the
city level. These statistics stress the importance of working with disaggregated data – half
of the variation in these market variables is lost when we use data aggregated in zip codes,
and more than 84% is lost at the city level.

Table 5: Market Activity in Segments

House Time Turnover Inventory Buyer
Price on Market Share Interest

(Dollars) (months) (percent) (percent)

Mean 614,891 4.77 0.34 2.97 1.04
Std.Dev. 412,756 1.45 0.20 1.99 0.92

Min 79,839 1.53 0.01 0.31 0.03
Max 2,480,551 11.27 1.75 15.59 8.61

% Zip Code 0.49 0.40 0.49 0.48
% City 0.01 0.16 0.16 0.08

Cross Sectional Regressions on Zip Code Price and Segment−Zip Code Price

Zip code Price −1.24 −0.0018 −0.0155 0.35
(t-stat) (−13.6) (−9.2) (−9.1) (5.5)

Segment-Zip Price −1.55 −0.0014 −0.0143 −0.68
(t-stat) (−12.3) (−8.5) (−9.2) (−9.8)
R2 0.43 0.30 0.26 0.22

Cross Sectional Regressions on Segment Price with Zip Code Fixed Effects

Segment −1.16 −0.003 −0.0146 −0.80
(t-stat) (−15.5) (−9.5) (−10.9) (−16.7)
R2 0.71 0.61 0.62 0.67

Note: This Table shows summary statistics of the market activity in housing segments. The ”% Zip Code”
(or ”% City”) is the R2 of a cross sectional regression of the segment level variable on a constant and its
zip code (or city level) mean. The ‘Cross Sectional Regressions on Zip Code Price and Segment−Zip Code
Price’ run the segment level variable on a constant, the zip code house price and the difference between
the house price in the segment and the price in the zip code. The ‘Cross Sectional Regressions on Segment
Price and Zip Code Fixed Effects’ run the segment level variable on a constant, the house price in the
segment and zip code fixed effects. The table reports t-statistics in brackets.

Figure 10 illustrates these cross sectional facts on a map of the Bay Area. The dots in
the map represent the individual segments. Since there can be multiple segments within a
zip code, we plot the segment-dots in a zip code in a circle. The cheapest segment in the zip
code is on top of the circle and house prices increase going clockwise around the circle.

The left panel shows that inventory is low (light blue) in expensive areas. These include
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the downtown area of San Francisco, with a few northeast segments that have somewhat more
inventory (darker blue), Berkeley (the light blue area across the Bay) and much of Silicon
Valley (between San Francisco and San Jose). Inventory is higher in the cheaper areas, such
as San Jose, the East Bay around Oakland, and the Sacramento Delta in the northeast of
the map. Table 5 confirms this visual impression with the cross sectional regressions, where
the coefficient of inventory on zip code house prices is negative.

The map also reveals variation within zip codes. In most circles, the top dot is darker
indicating that inventory in the cheapest segment within zip codes is higher. Table 5 confirms
this pattern with the negative coefficient on the house price in a segment, whether we control
for zip code price or for zip code fixed effects.

The right panel shows buyer interest for the various Bay Area segments. Buyer interest
is high in expensive areas – downtown San Francisco, in Marin (across the Golden Gate
Bridge), Berkeley, and Silicon Valley. Interestingly, buyer interest within zip codes is highest
for the cheapest segment. Indeed, the regression of buyer interest on house prices in the zip
code and the segment has a positive coefficient on the zip code house price; buyer interest in
more expensive zip codes is higher. But the coefficient on the difference between the segment
price and the zip price is negative, which means that buyer interest for the cheaper houses
within zip code is higher.

5 The cross section of housing markets

We now describe how we infer the parameters η and µΘ as well as features of the matching
function m̃ from market activity data. The goal is to assess the relative importance of the
three forces – supply, buyer interest and market frictions – in accounting for the cross section
of housing markets.

Exact identification of parameters

We assume a matching function such that the model can exactly match numbers on (i)
the cross sections of turnover V (h) and inventory I (h) by segment and (ii) for each search
range H̃ (θ), the share β (θ) of the total number of searchers scanning that range (iii) the
average time spent searching, T b. This requires that the direct effect of the segment on the
match rate is sufficiently flexible.6

As long as the matching function is such that we can match moments (i)-(iii), inference
about the parameters η and µΘ is independent of the exact shape of m̃. From the system of
equations that determines the equilibrium, we have that, for each set of observables I, V, β̃

6For example, we could start from a matching function m̂
(
µB , µS

)
that depends on the number of buyers

µB (h) and inventory µS (h) and then add a segment-specific proportional factor, i.e.

m̃
(
µB , µS , h

)
= m̄ (h) m̂(µB , µS , h).
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Inventory Share Buyer Interest

Figure 10: Map of the Inventory Share and Buyer Interest. Left panel shows the distribution
of inventory share I(h). Right panel shows buyer interest D(h). Colors move from light blue
(low values) to pink (high values). The cheapest segment in the zip code is on top of the
circle and house prices increase going clockwise around the circle.

and T b, there is a unique set of parameters η and µΘ as well as (endogenous) buyer matching
probabilities

αB (h) :=
m̃
(
µB (h) , µS(h

)
, h)

µB (h)
. (10)

Moreover, the parameters µΘ (θ) and the observable moments I (h), together with the
observable exogenous housing stocks µH (h) , imply unique numbers of buyers and sellers
µB (h) and µS (h) , respectively. As a result, if we knew the functional form of the matching
function, we could back out the relevant parameters from (10). For now, we simply report
the properties of supply, buyer interest and frictions in terms of η (h)’s, µΘ (θ)’s and αB (h)’s,
respectively. Numbers for V (h) , I (h) and β̃ (θ) come directly from segment level transaction
and listing data as well as search pattern data. We set the target for the average search time
to 6 months.

Instability

The rate at which owners put houses on the market can be inferred from inventory and
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turnover alone, independently of the distribution of search patterns. Indeed, in steady state,
dividing (3) by the segment housing stock µH (h), the share of houses that come on the
market per unit of time in a segment must equal the turnover rate

η (h) (1− I (h)) = V (h) .

The share 1 − I (h) of the segment housing stock that is not currently for sale is typically
close to one. As a result, the rates η closely tracks turnover in the cross section. We refer to
a segment with higher η as more unstable, since homeowners move more often.

While on average monthly turnover rates, and hence η (h)’s are small, the differences in
η(h)’s by segment are substantial. For example, the 25th percentile, η (h) = 0.0021 whereas
at the 75th percentile η (h) = 0.0042. In unstable segments houses come on the market at
more than double the rate than in stable segments. Since η tracks turnover, we also know
from the previous section that it is strongly negatively correlated with price. In other words,
cheaper segments tend to be less stable. The left panel of Figure 11 maps instability by
segment (light blue represents a lower η, pink represents higher η) - this confirms that more
expensive areas are more stable.

In our model, instability captures the mobility of the population of a segment. It is
natural to ask whether the backed out parameters η (h) comove with demographic variables
that are related to the frequency of moving. Table 6 shows that instability is highly correlated
with the fractions of households in various age groups. To establish this fact, we proceed in
two steps. We first run regressions of η(h) on zip code fixed effects. Second, we correlate the
zip code fixed effects with demographic variables as reported in the American Community
Survey. The results show that the percentage of older households is negatively correlated
with η(h). In other words, areas with a larger fraction of older households are more stable.
Similarly, zip codes with higher unemployment rates and lower median income are more
unstable.

Popularity

The distribution of buyer types contains information on how popular the segment is, in
the sense that many searchers are interested in it. We would like to summarize popularity
at the segment level, while taking into account that a searcher who scans a bigger housing
stock is less interested in a particular segment within that stock. We thus split agents who
scan multiple segments in proportion to the housing stock in those segments. We then define
popularity as the weighted number of interested agents per house:

δ (h) =
∑
θ∈Θ̃(h)

µΘ (θ)∑
h∈H̃(θ) µ

H (h)
.

If the market is perfectly segmented, then δ (h) = µΘ (h) /µH (h), where µΘ (h) is the
number of types who uniquely search segment h. In this case, every δ (h) is larger than
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Instability Popularity

Figure 11: Map of Instability and Popularity. This figure shows the distribution of instability,
η(h), in the left panel, and popularity, δ(h), in the right panel. Colors move from light blue
(low values) to pink (high values). The cheapest segment in the zip code is on top of the
circle and house prices increase going clockwise around the circle.

one – some agents must be searching in equilibrium in every segment because volume is
positive. Differences in δ (h) across segments reflect differences in local interest per house.
In contrast, if the market is perfectly integrated, then the δ (h) s reflect the preferences of
a single searcher. We will have δ (h) =

∑
µΘ (θ). We thus again obtain a number larger

than one for all h. Table 6 shows that those segments with a higher income and a lower
unemployment rate are more popular and hence attract more interest from buyers. There is
only a weak correlation of popularity with the age composition of the households. The right
panel of Figure 11 shows the geographic distribution of popularity: Light blue segments are
less popular, pink segments are more popular.

5.1 Equilibrium prices

Since sellers make a take-it-or-leave offers, they charge a price equal to the buyers’ continu-
ation utility. Denote by V F (h; θ) the utility of a type θ agent who obtains housing services
from a house in segment h. At the equilibrium actions, the Bellman equations of that agent
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Table 6: Correlations between Estimated Model Parameters and Demographics

Instability Popularity Buyer Match Rate

Unemployment 0.48 −0.36 0.60
Median Income −0.29 0.22 −0.47
Fraction of Households Aged

15-24 years 0.42 −0.15
25-34 years 0.42 0.01
35-44 years 0.38 0.01
45-54 years 0.23 −0.12
55-59 years −0.18 −0.05
60-64 years −0.42 0.16
65-74 years −0.46 0.16
75-84 years −0.38 −0.06

above 85 years −0.32 −0.05

Note: This table reports correlations between demographic characteristics at the zip code level with the
fitted values from a regression of the segment variables indicated on top (instability η(h), popularity, buyer
match rate) on zip code fixed effects.

as well as that of a seller are

rV F (h; θ) = v (h) + η (h)
(
V S (h; θ)− V F (h; θ)

)
,

rV S (h; θ) =
m (h)

µS (h)

(
p (h) (1− c)− V S (h; θ)

)
,

where p (h) is the price of houses in segment h. We can combine these equation and solve
for the price

p (h) =
v (h)

r
− η (h)

r +m (h) /µS (h) + η (h)

v (h) + c

r
(11)

The first term is the present value of a permanent flow of housing services. This price
obtains if houses never fall out of favor (η = 0) or if the market is frictionless in the sense
that matching is infinitely fast (m/µS → ∞). More generally, the price incorporates a
liquidity premium – the second term – that reflects foregone utility flow during search as
well as the cost of search itself. The liquidity premium is larger if houses fall out of favor
more quickly (η higher) and if it is more difficult to sell a house in the sense that time on
market µS (h) /m (h) is longer.

5.2 Beveridge curves within and across cities

Figure 12
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Figure 12: Beverage curves within and across cities.

5.3 Liquidity discounts

We now ask how market frictions identified by our estimation affect the dispersion of house
prices across segments. The price formula (11) shows how the price is determined as the
difference between a “fundamental” price v(h)/r and a liquidity discount that capitalizes the
present value of search and transaction costs. The latter are segment-specific: the popularity
and instability properties of a segment derived above affect both the average time on the
market (and hence search costs) as well as turnover (and hence the frequency at which
transaction costs arise). What is as yet missing to evaluate the formula is a measure of
fundamental value.

To estimate both fundamental value we can use the cross section of median prices together
with our estimation results. In particular, for each cross section of prices and parameter
vector, we can back out from (11) the vector of mean utility values v(h) such that the model
exactly matches the cross section of transaction prices. We postulate a real interest rate of
2% and set the transaction cost such that the average sale costs 6% of the resale value of
the house, a standard number in the literature.
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The results are summarized in Figure 13. The left hand panel plots median price against
the liquidity discount, stated as a percentage of price. The right hand panel shows the
geographic distribution of liquidity discounts. There are two notable results here. First,
liquidity discounts are large – they can be up to 40% of the sales prices. Second, liquidity
discounts differ widely by segment, oftentimes within the same zip code. In poor segments
with high volume and high time on market, both search and transaction costs are high; as
a result, prices are significantly lower than they would be in a frictionless market. In rich
segments discounts are still significant, but they are considerably smaller.

Liquidity discounts

Piazzesi, Schneider, Stroebel () Segmented Housing Search NBER Summer Institute 2013 29 / 33

Figure 13: Liquidity Discounts. Left panel: mean zip code price vs zip code liquidity discount
as a percentage of mean price; color coding reflects liquidity discount. Right panel: zip codes
colored by same code as in right panel.

5.4 Comparative statics

Figure 14 shows how the steady state equilibrium changes if the supply of houses in a zipcode
is increased by one percent of the existing housing stock in one zipcode only. Formally, we
recompute the steady state using the same parameters as above, but we increase µH (h)
by one percent in one particular segment h. All panels are maps of only the tip of the
San Francisco peninsula. The left two panels assume that the hypothetical change in the
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housing stock occurs in zipcode 94102 in downtown San Francisco, marked by a pin. The
leftmost panel shows the change in time on market, and the second panel shows the change
in inventory. Changes increase from blue to pink.

The result is that a change in 94102 has spillover effects: it increases time on market
and inventory all over San Francisco as well as in the suburbs. This is because a large share
of searchers scan all these segments jointly. In contrast, the two panels on the right show
panels assume that the housing stock increases in the suburb of Daly City (zipcode 94015),
again marked with a pin. Here the spillover effects are confined to neighboring zipcodes to
the south and west. Remarkably, essentially nothing happens to the north, in the city of
San Francisco itself. These results show that search patterns introduce asymmetries in the
transmission of shocks.

Figure 14: Responses to one-percent increases in the housing supply.

Note: Panels 1 and 2: responses in time on market and inventory, respectively. The responses are to
a one-percent increase in the housing supply in downtown San Francisco (zipcode 94102, marked by a
pin). Panels 3 and 4: responses in time on market and inventory, respectively. The responses are to a
one-percent increase in the housing supply in the suburb of Daly City (zipcode 94015).
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A Data Appendix

A.1 Geographic Specifications in the Queries

Figure 15: Distribution of Geography Specifications

Number of Cities 0 1 2 3 4 5+ Total

0 5,654 5,796 211 130 84 239 12,114

1 23,833 1,108 63 28 8 39 25,079

2 616 46 12 8 7 15 704

3 469 39 5 3 9 12 537

4 428 22 5 3 4 5 467

5+ 1,431 104 28 14 10 37 1,624

Total 32,431 7,115 324 186 122 347 40,525

Number of Cities 0 1 2 3 4 5+ Total

0 5,749 3,533 216 227 220 2169 12,114

1 23,631 1,306 23 19 11 89 25,079

2 524 107 17 10 5 41 704

3 418 87 8 5 1 18 537

4 358 84 4 4 3 14 467

5+ 1,149 340 30 18 12 75 1,624

Total 31,829 5,457 298 283 252 2406 40,525

Number of Zip Codes 0 1 2 3 4 5+ Total

0 24,690 4,799 259 249 224 2210 32,431

1 6,431 462 23 23 21 155 7,115

2 247 53 11 5 3 5 324

3 130 40 2 1 2 11 186

4 90 23 1 2 0 6 122

5+ 241 80 2 3 2 19 347

Total 31,829 5,457 298 283 252 2406 40,525

Number of Zip Codes

Number of Neighborhoods

Number of Neighborhoods

Note: This figure shows the distribution of geographic search parameters selected in our sample.

A.2 Constructing Contiguity Measures

To analyze whether all zip codes are contiguous, one challenge is provided by the San Fran-

cisco Bay. The location of this body of water means that two zip codes with non-adjacent

borders should sometimes be considered as contiguous, since they are connected by a bridge

such as the Golden Gate Bridge. Figure 16 illustrates this. Zip codes 94129 and 94965

should be considered contiguous, since they can be traveled between via the Golden Gate

Bridge. To take the connectivity provided by bridges into account, we manually adjust the
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ESRI shape files to link zip codes on either side of the Golden Gate Bridge, the Bay Bridge,

the Richmond-San Rafael Bridge, the Dumbarton Bridge and the San Mateo Bridge. In ad-

dition, there is a further complication in that the bridgehead locations are sometimes in zip

codes that have essentially no housing stock, and are thus never selected in search queries.

For example, 94129 primarily covers the Presidio, a recreational park, that contains only 271

housing units. Similarly, 94130 covers Treasure Island in the middle of the SF Bay, again,

with only a small housing stock. These zip codes are very rarely selected by search queries,

which would suggest, for example, 94105 and 94607 would not be connected. This challenge

is addressed by manually merging zip codes 94129 and 94130 with the Golden Gate and Bay

bridge respectively. This ensure, for example, that 94118 and 94955 are connected even if

94129 was not selected.

Figure 16: Bridge Adjustments - Contiguity Analysis

Note: This figure shows how we deal with bridges in the Bay Area for the contiguity analysis.

In the following we provide examples of contiguous and non-contiguous search sets. The

top left panel of Figure 18 shows all the zip codes covered by a searcher that searched

for homes in Berkeley, Fremont, Hayward, Oakland and San Leandro. This is a relatively

broad set, covering most of the East Bay. The top right panel shows a contiguous set of

jointly searched zip codes, with connectivity derived through the Golden Gate Bridge. The

searcher queried homes in cities north of the Golden Gate Bridge (Corte Madera, Larkspur,

Mill Valley, Ross, Kentfield, San Anselmo, Sausalito and Tiburon), but also added zip codes

94123 and 94115. The bottom left panel shows the zip codes covered by a searcher that
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Figure 17: Sample Contiguous Queries

Note: This figure shows a sample of contiguous search sets. The zip codes selected by the searcher are
circled in red. Zip code centroids of contiguous zip codes are connected.

selected a number of San Francisco neighborhoods. The final contiguous search set (bottom

right panel) was generated by a searcher that selected a significant number of South Bay

cities.7 These are all locations with reasonable commuting distance to the tech jobs in the

Silicon Valley. Notice how the addition of Newark adds zip code 94550 on the East Bay,

which is connected to the South Bay via the Dumbarton Bridge. Not all email alerts generate

sets of zip codes that are contiguous. In Figure 18 we show four actual non-contiguous search

sets. The top left panel shows the zip codes covered by a searcher that selects the cities of

Cupertino, Fremont, Los Gatos, Novato, Petaluma and San Rafael. This generates three

7Atherton, Belmont, Burlingame, El Granada, Emerald Hills, Foster City, Half Moon Bay, Hillsborough,
La Honda, Los Altos Hills, Los Altos, Menlo Park, Millbrae, Mountain View, Newark, Palo Alto, Portola
Valley, Redwood City, San Carlos, San Mateo, Sunnyvale, Woodside.
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Figure 18: Sample Non-Contiguous Queries

Note: This figure shows a sample of non-contiguous search sets. The zip codes selected by the searcher
are circled in red. Zip code centroids of contiguous zip codes are connected.

contiguous set of zip codes, rather than one large, contiguous set. The zip codes in the

bottom right belong to a searcher that selected zip code 94109 and the neighborhoods Nob

Hill, Noe Valley and Pacific Heights. Again, this selection generates more than one set of

contiguous zip codes.

A.3 Segment Construction

This section describes the process of arriving at the set of 576 distinct housing market

segments for the San Francisco Bay Area. As before, we select the geographic dimension of

segments to be a zip code. Since we will compute average price, volume, time on market and
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inventory for each segment, we restrict ourselves to zip codes with at least 800 armslength

housing transactions between 1994 and 2012. This leaves us with 191 zip codes with sufficient

observations to construct these measures.

We next consider how to further split these zip codes into segments based on a qual-

ity (price) and size dimension. Importantly, we will need to observe the total housing

stock in each segment in order to appropriately normalize moments such as turnover and

inventory. The residential assessment records do contain information on the universe of

the housing stock. However, as a result of Proposition 13, the assessed property values

in California do not correspond to true market value, and it is thus not adequate to di-

vide the total zip code housing stock into different price segments based on this assessed

value.8 To measure the housing stock in different price segments we use the U.S. Cen-

sus Bureau’s 2011 American Community Survey 5-year estimates, which report the total

number of owner-occupied housing units per zip code for a number of price bins. We com-

bine a number of these bins to construct the total number of housing units in each of

the following price bins: < $200k, $200k−$300k, $300k−$400k, $400k−$500k, $500k−$750k,

$750k−$1m, > $1m. These bins provide the basis for selecting price cut-offs to delineate

quality segments within a zip code. One complication is that the price boundaries are re-

ported as an average for the sample years 2006-2010. Since we want segment price cut-offs

to capture within zip code time-invariant quality segments, we need to adjust for average

market price changes of the same-quality house over time. To do this, we adjust all prices

and price boundaries to correspond to 2010 house prices.9

Not all zip codes have an equal distribution of houses in each price (quality) bin. For

example, Palo Alto has very few homes valued at less than $200,000, while Fremont has very

few million-dollar homes. Since we want to avoid cutting a zip code into too many quality

segments with essentially no housing stock to allow us measure segment-specific moments

such as time on market, we next determine a set of three price cut-offs for each zip code by

which to split that zip code. To determine which of the seven census price bin cut-offs should

8Allocating homes that we observe transacting into segments based on value is much easier, since this
can be done on the basis of the actual transaction value, which is reported in the deeds records.

9This is necessary, because the Census Bureau only adjusts the reported values for multi-year survey
periods by CPI inflation, not by asset price changes. This means that a $100,000 house surveyed in 2006
will be of different quality to a $100,000 house surveyed in 2010. We choose the price that a particular
house would fetch in 2010 as our measure of that home’s underlying quality. To transform the housing stock
by price bin reported in the ACS into a housing stock by 2010 “quality” segment, we first construct zip
code specific annual repeat sales price indices. This allows us to find the average house price changes by zip
code for each year between 2006 and 2010 to the year 2010. We then calculate the average of these 5 price
changes to determine the factor by which to adjust the boundaries for the price bins provided in the ACS
data. Adjusting price boundaries by a zip code price index that looks at changes in median prices over time
generates very similar adjustments.
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constitute segment cut-offs, we use information from the search queries. This proceeds in

two steps: First we change the price parameters set in the email alerts to account for the fact

that we observe queries from the entire 2006 - 2012 period. This adjusts the price parameters

in each alert by the market price movements of homes in that zip code between the time

the query was set and the year 2010.10 Second, we determine which set of three ACS cutoffs

is most similar to the distribution of actual price boundaries selected in search queries that

cover a particular zip code. For each possible combination of three (adjusted) price cut-offs

from the list of ACS cut-offs, we calculate for every email alert the minimum of the absolute

distance from each of the (adjusted) search alert price restrictions to the closest cut-off.11

We select the set of segment price cut-offs that minimizes the average of this value across all

queries that cover a particular zip code. This ensures, for example, that if there are many

queries that include a high limit such as $1 million, $1 million is likely to also be a segment

boundary.

To determine the total housing stock in each price by zip code segment, one additional

adjustment is necessary. Since the ACS reports the total number of owner-occupied housing

units, while we also observe market activity for non owner-occupied units, we need to adjust

the ACS-reported housing stock for each price bin by the corresponding homeownership

rate. To do this, we use data from all observed armslength ownership-changing transactions

between 1994 and 2010 as reported in our deeds records. We first adjust the observed

transaction price with the zip code level repeat sales price index, to assign each house for

which we observe a transaction to one of our 2010 price (quality) bins. For each of these

properties we also observe from the assessor data whether they were owner-occupied in 2010.

This allows us to calculate the average homeonwerhisp rate for each price segment within a

zip code, and adjust the ACS-reported stock accordingly.12

The other search dimension regularly specified in the email alerts, and that we hence

10This ensures that the homes selected by each query correspond to our 2010 quality segment definition.
Imagine that prices fell by 50% on average between 2006 and 2010. This adjustment means that a query set
in 2006 that restricts price to be between $500,000 and $800,000 will search for homes in the same quality
segment as a query set in 2010 that restricts price to a $250,000 - $400,000 range.

11For example, imagine testings how good the the boundaries 100k, 300k and 1m fit for a particular zip
code. A query with an upper bound of 500k has the closest absolute distance to a cut-off of min{|500 −
100|, |500−300|, |500−1000|} = 200. A query with an upper bound of 750k has the closest absolute distance
to a cut-off of 250. A query with a lower bound of 300k and an upper bound of 600k has the closest absolute
distance to a cut-off of 0. For each possible set of price cut-offs, we calculate for every query the smallest
absolute distance of a query limit to a cut-off, and then find the average across all search alerts.

12For example, the 2010 adjusted segment price cutoffs for zip code 94002 are $379,079, $710,775 and
$947,699. This splits the zip code into 4 price buckets. The homeownerhip rate is much higher in the
higher bucket (95%) than in the lowest bucket (65%). This shows the need to have a price-bucket specific
adjustment for the homeownership rate to arrive at the correct segment housing stock.
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wanted to incorporate in our segment definition, is the number of bathrooms as a measure of

the size of a house conditional on its location and quality. Since section 3.7 showed that the

vast majority of constraints on the number of bathrooms selected homes with either more or

fewer than two bathrooms, we further divide each zip code by price bucket group into two

segments: homes with less than two bathrooms, and homes with at least two bathrooms.

Unfortunately the ACS does not provide a cross-tabulation of the housing stock by home

value and the number of bathrooms. To split the housing stock in each price and zip code

segment into the two groups by home size, we apply a similar method as above to control for

homeownership rate. We use the zip code level repeat sales price index to assign each home

transacted between 1994 and 2010 to a 2010 price (quality) bin. For these homes we observe

the number of bathrooms from the assessor records. This allows us to calculate the average

number of bathrooms for transacted homes in each zip code by price segment. We use this

share to split the total housing stock in those segments into two bathroom size groups.

The approach described above splits each zip code into eight initial segments along three

price cutoffs and one size cutoff. For each of these segments, we have an estimate of the

total housing stock. Since we need to measure specific moments such as the average time on

market with some precision, we need to ensure that each segment is sufficiently large, and

has a housing stock of at least 1,000 units. If this is not the case the segment is merged with

a neighboring segment until all remaining segments have a housing stock of sufficient size.

For price segments where either of the two size subsegments have a stock of less than 1,000,

we merge the two size segments. We then begin with the lowest price segment, see whether

it has a stock of less than 1,000, and merge it with the next higher price segment. This

procedure generates 576 segments. Figure 19 shows how many segments each zip code is

being split into. 25 zip codes are not split up further into segments. 48 zip codes are split into

two segments, 58 zip codes are split into 3 segments. 418 segments only have a geography

and price limitation, and include homes of all sizes falling into those price categories. The

right panel of figure 19 shows the distribution of housing stock across segments. On average,

segments have a stock of 2,717, with a median value of 2,271. The largest segment has a

housing stock of 11,178.

A.4 Assigning segments to search alerts

As a next step, to analyze segments in terms of their search clientele we need to analyze each

query and determine which segments are covered by that query. In section 3.2 we describe

how we determine which zip codes are covered by each query. In this section we describe how
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Figure 19: Segment Overview

25

48

58

31

21

4 4

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

N
u

m
b

e
r 

o
f 

Z
ip

 C
o

d
e

s

Number of Segments per Zip Code

0
.0

0
0
1

.0
0
0
2

.0
0
0
3

.0
0
0
4

D
e
n
s
it
y

0 5000 10000
Segment Size

Distribution of Segment Size

we deal with the price and bathroom dimensions to determine the set of segments covered

by each query. The challenge is that price ranges selected by queries will usually not overlap

perfectly with the price cutoffs of the individual segments. For those queries that specify a

price dimension, we assign a query to cover a particular segmented in one of three cases:

1. When the query completely covers the segment (that is, when the query lower bound

is below the segment cutoff and the query upper bound is above the segment cutoff).

2. When the segment is open-ended (e.g. $1 million +), and the upper bound of the

query exceeds the lower bound (in this case, all queries with an upper bound in excess

of $1 million).

3. For queries that partially cover a non-open ended segment, we determine the share

of the segment price range covered by the query. For example, for a segment $300k

- $500k, the query 0-$250k covers 25%, the query $300k - $700k covers 50% of the

segment. We assign all queries that cover at least 50% of the price range of a segment

to cover that segment.

To deal with the bathroom dimensions, we let a query cover a segment unless it is explicitly

excluded. For example, queries that want at least two bathrooms will not cover the < 2

bathroom segments and vice versa.

We argued above that it was hard to pool across different alerts set by the same individual,

since alerts differed along a number of key dimensions including geography, home size and

home quality. The housing market segments constructed above allow us to pool all segments

8



selected by the same searcher. In particular, we begin by determining the subset of the

segments that are covered by each individual search alert. This process described in more

detail in Appendix A.4. After pooling all segments covered by at least one email alert set

by each searcher, we arrive at a total of 9,091 unique search profiles. A total of 7,366 search

profiles are selected by only a single user. Another 622 search profiles are selected twice. A

total of 338 search profiles are selected more than 10 times each, with the two most commonly

selected search profile showing up 1,017 and 416 times. Figure 20 shows the distribution of

how often each search profile is selected. We also analyze the total housing stock covered

by each searcher. We find that the average (median) searcher covers a total stock of 57,483

(33,807) housing units.

Figure 20: Number of Searchers per Unique Profile
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Note: This figure shows how often each of the 9,090 individual search profiles is selected.

A.5 Construction of Segment Moments

Our model links the characteristics of search patterns to segment specific moments such as

price, volume, time on market and inventory. In this section we describe how we construct

these moments at the segment level. We begin by identifying a set of armslength transactions,

which are defined as transactions in which both buyer and seller act in their best economic

interest. This ensures that transaction prices reflect the market value (and hence the qual-

ity) of the property. We include all deeds that are one of the following: “Grant Deed,”
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“Condominium Deed,” “Individual Deed,” “Warranty Deed,” “Joint Tenancy Deed,” “Spe-

cial Warranty Deed,” “Limited Warranty Deed” and “Corporation Deed.” This excludes,

for example, intra-family transfers. We drop all observations that are not a Main Deed or

only transfer partial interest in a property (see Stroebel (2012) for details on this process of

identifying armslength transactions).

We can then calculate the total number of transactions per segment between 2008 and

2011, and and use this to construct annual volume averages. In order to allocate houses to

particular segments, we adjust transaction prices for houses sold in years other than 2010

by the same price index we used to adjust listing price boundaries (see appendix A.3). We

arrive at our measure of Volume Share by dividing the annual transaction volume by the

segment housing stock. Inventory levels are first constructed at the monthly level. To do

this we use the dataset on all home listings on Trulia.com, beginning in January 2006. We

assign each listed property to a segment using its location, size and adjusted listing price.

Each month we add all newly listed properties in a segment to the inventory observed in the

previous month. In addition, all listings that result in a sale as observed in the deeds data

get removed from the inventory. We then construct the average of these monthly inventory

levels for the period 2008-2011.13 Inventory Shares are determined by dividing inventory

levels in a segment by the total housing stock in the segment. We also construct a second

inventory measure, “cold inventory”, which is the fraction of the housing stock that is listed,

and has been on the market for more than 30 days. In constructing inventory measures,

one empirical challenge is that we do not observe when listings that do not result in a sale

get removed from the market. We remove all listings for which we do not observe a sale

from the inventory 270 days after the initial listings (as a reference point, note that the 90th

percentile of time on market for houses that do eventually get sold is about 190 days). Of

course, if a house sells that was listed for more than 270 days, we record that as a sale. A

second challenge in measuring inventory levels arises from the fact that Trulia’s coverage of

listings is not 100% (for example, there are properties that are “for sale by owner” and hence

do not show up in MLS feeds), and has increased over the time period we consider. However,

we do have the universe of all transactions - this allows to construct, for every segment, a

measure of how many homes we observe transacting over the sample period without having

13Many properties that are sold as REO resales (i.e. mortgage lenders selling properties that are acquired
through a foreclosure) do not get listed through an MLS, and hence do not show up in Trulia’s listing
database. We thus need to construct REO resale inventory in a different way. In the deeds data we observe
when a foreclosure occurs, since a foreclosure involves an ownership transfer to the bank. For those REO
properties that do show up in the listings data, we calculate the median time between the foreclosure and
the listing, which is 20 days. We henceforth add every foreclosed property to the inventory 20 days after we
observe the foreclosure, and remove it when we observe an REO resale.
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previously observed a listing. We can then scale our measure of inventory by the “share sale

without listing” measure for that particular segment.

To calculate the average time on market, we match home listings in the listings database

with final transactions from the deeds database.14 We find segment-specific measures of time

on market by averaging the time on market across all transactions that sold between 2008

and 2011. We also calculate the average time on market conditional on the time on market

exceeding 30 days, which will be used in our stock-flow model of the matching process.

Finally, we calculate the share of “hot sales”, i.e. transactions that are recorded within 30

days of the initial listing.

14In the very few instances when the listing price and the final sales price would suggest a different segment
membership for a particular house – i.e. cases where the house is close to being at a segment boundary and
sells for a price different to the listing price, we allocate the house to the segment suggested by the sales
price, not the listing price.
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