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Abstract

We consider a time-varying parameter vector autoregressive model with stochastic
volatility and mixture innovations to study the empirical relevance of the Lucas cri-
tique for the postwar U.S. economy. The model allows blocks of parameters to change
at endogenously-estimated points of time. Contrary to the Lucas critique, there are
large changes at certain points of time in the parameters associated with monetary
policy that do not correspond to changes in “reduced-form” parameters for inflation
or the unemployment rate. However, the structure of the U.S. economy has evolved
considerably over the postwar period, with an apparent reduction in the late 1980s
in the impact of monetary policy shocks on inflation, though not on the unemploy-
ment rate. Related, we find changes in the Phillips Curve trade-off between inflation
and cyclical unemployment (measured as the deviation from the time-varying steady-
state unemployment rate implied by the model) in the 1970s and especially since the
mid-1990s.
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1 Introduction

“[T]he question of whether a particular model is structural is an empirical, not theoretical,

one.” – Lucas and Sargent (1981)

The U.S. economy has experienced large shifts in monetary policy regimes since World

War II, as discussed by Lucas (1976) and Sargent (1999), amongst many others. There-

fore, econometric models designed to study this phenomenon should allow for time-varying

parameters. In addition, a substantial decline in the volatility of exogenous shocks, often

referred to as “the Great Moderation”, has occurred since mid-1980s. Together, these struc-

tural changes imply that a conventional time-invariant vector autoregressive (VAR) model

is inadequate for the postwar U.S. data.

In order to integrate time-varying parameters and stochastic volatility of exogenous

shocks into an econometric framework, most of the literature has focused on two differ-

ent approaches: Markov-switching (MS) models and time-varying parameter (TVP) mod-

els. MS-VAR models assume that the economy switches between a few (possibly recurrent)

regimes abruptly and the magnitude of change across regimes can be large (see, for example,

Sims and Zha, 2006). By contrast, TVP-VAR models assume gradual changes (every period

of time corresponds to a distinct regime) in conditional mean parameters and the variance-

covariance matrix of exogenous shocks (see, for example, Cogley and Sargent (2001, 2005),

Primiceri (2005), and Cogley et al. (2010)).

Koop et al. (2009) bridge the two approaches in the literature by extending the stochas-

tic volatility TVP-VAR model proposed by Primiceri (2005) to a framework with mix-

ture innovations. They do so by introducing independent binary latent variables Kt =

(k1t, k2t, k3t) , t = 1, 2, · · · , n for each block of parameters (3 blocks: conditional mean pa-

rameters (k1t), variances (k2t) and covariances (k3t) of exogenous shocks) that allow data to

determine the occurrence of break in each block independently in each period of time, such

that Prob(kjt = 1) = pj and Prob(kjt = 0) = 1− pj, j = 1, 2, 3,∀t and corresponding hierar-

chical priors on pj, where pj ∼ Beta(λ1j, λ2j). This framework forces the conditional mean

parameters to change or stay at previous values all together by construction.1 However,

principal component analysis of the variance-covariance matrix governing the magnitude

of shifts in the TVP-VAR parameters conducted by Cogley and Sargent (2005), and also

suggested by Sargent (1999), implies that conditional mean parameters change in a highly

structured way. Specifically, they argue that the structure of these changes could be due

1This framework nests the MS-VAR and TVP-VAR models through different prior beliefs on pj . A pair
of small λ1j and large λ2j a priori implies infrequent changes, as in the MS-VAR model, while large λ1j and
small λ2j implies frequent changes, as in the TVP-VAR model.
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to cross-equation restrictions associated with a representative agent’s optimization problem,

although imposing these cross-equation restrictions on estimated reduced-form parameters is

far from straightforward. Meanwhile, if some reduced-form parameters vary more frequently

and more strongly, whilst others are approximately time-invariant, then estimation of a stan-

dard TVP-VAR model will tend to overstate variation in some parameters and understate

variation in others, which could distort our understanding of the structural evolution of the

U.S. economy.

In this paper, we extend Koop et al.’s (2009) analysis to allow for structural changes

at different times in subgroups of the VAR parameters, including different blocks of the

conditional mean parameters. Because changes in block j of parameters is controlled by a

Bernoulli distributed latent variable kjt with Prob(kjt = 1) = pj, the posterior density of

pj reflects the frequency of occurrence of breaks in block j. Then, if the true model is the

stochastic volatility TVP-VAR model, as in Primiceri (2005), the data will push the pj’s to 1.

Otherwise, if the true model is a MS-VAR model, the pj’s will be much smaller than 1, with

differences in the pj’s suggesting different economic forces driving the structural changes.

This approach is related to Inoue and Rossi (2011), who allow for a structural break at an

unknown break date in subgroups of VAR parameters. However, our model is more flexible

in that it allows for multiple shifts in different blocks of parameters.

Building on Koop et al.’s (2009) modeling strategy, our paper makes three contribu-

tions: First, because we explicitly divide the VAR parameters into “policy” and “non-policy”

blocks, the frequency of changes in “non-policy” blocks relative to that of policy block can

be used to test the empirical relevance of Lucas (1976) critique, which states that a shift in

systematic policy should induce a change in the “reduced-form” parameters describing the

correlations between all of the macroeconomic variables affected by policy. This is different

than simulation-based approaches to testing the Lucas critique often considered in the lit-

erature; see, for example, Estrella and Fuhrer (2003), Linde (2001), Rudebusch (2005) and

Lubik and Surico (2010). Our approach reveals the extent to which the Lucas critique is

empirically relevant for the time-varying VAR parameters, including the variances of VAR

error terms. We find that Lucas critique is often not relevant. Second, based on standard

short-run restrictions, we identify monetary policy shocks and study their effects on inflation

and unemployment over time. Our findings can be compared with those in Primiceri (2005)

and Koop et al. (2009), who find that there is no statistically significant shift in the effects of

monetary policy after World War II, and Kuttner and Mosser (2002) and Boivin and Gian-

noni (2006), who find that the effects of monetary policy on the U.S. economy has weakened

since 1980s. Based on our model, we find that the effects of monetary policy on inflation

have only changed at the 3-9 quarter horizon, while the effects of the unemployment rate
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have not changed. Third, we estimate the natural rate of unemployment as the time-varying

steady-state of the unemployment rate, as in Phelps (1994) and King and Morley (2007).

Based on the estimated natural rate, we test for the existence of a Phillips curve trade-off

between inflation and cyclical unemployment. We find strong evidence supporting the ex-

istence of this short-run trade-off. However, the short-run trade-off has weakened since the

late 1970s and has even disappeared since the mid-1990s.

The rest of this paper is organized as follows. Section 2 presents our model. Section

3 describes the data and elicitation of priors. Section 4 considers model comparisons and

robustness analysis. Section 5 presents the test for the empirical relevance of Lucas critique.

Section 6 reports the results on the evolution of impulse response functions for a monetary

policy shock on inflation and the unemployment rate. Section 7 considers the natural rate

of unemployment and the short-run trade-off between inflation and cyclical unemployment.

Section 8 concludes.

2 Model

One of the contributions of this paper is to allow for structural variations in blocks of VAR

parameters by linking them to latent variables Kt’s in the manner of Koop et al. (2009).

As a byproduct, we propose a new approach to testing the empirical relevance of Lucas

critique that does not rely on simulations from a dynamic stochastic general equilibrium

(DSGE) model. We study two intuitive and plausible, although informal and atheoretic,

ways of imposing structural changes in reduced-form VAR parameters: (1) by equations; (2)

by variables. The details of the model structure are given in the next two subsections.

2.1 A Stochastic Volatility TVP-VAR Model and Identification of

a Monetary Policy Shock

The reduced-form TVP-VAR of order p can be cast in the following form:

yt = X ′tθt + µt, µt ∼ iid. N(0,Ωt)

Xt = In ⊗
[
1, y′t−1, · · · , y′t−p

]
,

where “ ⊗ ” denotes the Kronecker product, yt is an n × 1 vector including the current

observations of endogenous variables, Xt is an m×n matrix including intercepts and lagged

variables, θt stacks time-varying reduced-form VAR coefficients and Ωt is the time-varying

variance-covariance matrix of the error term µt. In this paper, yt includes inflation, the
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unemployment rate and a short-term interest rate, so n = 3 and m = 21 because we set

p = 2 to keep the dimension of parameter space manageable and be consistent with much of

the existing literature.2

To identify the monetary policy shock, a structural VAR representation is recovered

based on a triangular identification scheme–i.e., we place endogenous variables in the order

of yt = [πt ut it]
′, where πt, ut, it are inflation, the unemployment rate and the short-term

interest rate, respectively. This order of endogenous variables assumes that inflation and

unemployment respond to monetary policy shock with at least one-period lag.3 Structural

shocks εt, t = 1, 2, · · · , T, are identified through Cholesky decomposition of the variance-

covariance matrix of the reduced-form error terms as follows:

AtΩtA
′
t = ΣtΣ

′
t, A−1t Σtεt = µt, εt = Σtεt, εt ∼ iid.N(0, I3)

At =

 1 0 0

a21,t 1 0

a31,t a32,t 1


3×3

, Σt =

 σ11,t 0 0

0 σ22,t 0

0 0 σ33,t


3×3

Note that εt = [επt εut εit]
′, where the three elements represent fundamental shocks to

inflation, unemployment, and monetary policy, respectively. Then, the reduced-form time-

varying VAR model can be rewritten as

yt = X ′tθt + A−1t εt, εt ∼ iid.N(0,ΣtΣ
′
t)

Xt = I3 ⊗
[
1 y′t−1 y

′
t−2
]
, (1)

2.2 Mixture Innovations for Time-Varying Parameters and the

Variance-Covariance Matrix

The law of motion for the time-varying parameters θt is a driftless random walk, following

much of the literature on TVP-VAR models, but with more flexible mixture innovations:

θt = θt−1 +Ktξt, ξt ∼ iid. N(0, Q), (2)

2A trivariate VAR model like ours is quite common in the literature; see, for example, Rotemberg and
Woodford (1997), Cogley and Sargent (2001, 2005), Primiceri (2005) and Koop et al. (2009).

3It is well recognized that the order of variables in the recursive identification scheme matters given
correlation between the reduced-form errors. However, our results for a monetary policy shock are robust to
swapping the order of inflation and the unemployment rate.

5



where Q is positive definite and Kt is a diagonal matrix whose diagonal elements are latent

variables kit, i = 1, 2, 3, 4, taking on the value of 1 if a change in the corresponding coefficients

and 0 otherwise. We consider two types of restrictions on θt. In the first case, slopes in the

same equation move together, while in the second case slopes on the same variables move

together.4 In both cases, the intercepts vary together to capture any changes in the long-run

levels of inflation, the unemployment rate, and the nominal interest rate. The controlling ma-

trix Kt in the two cases is denoted by K
(1)
t = diag{K(1)

1t , K
(1)
2t , K

(1)
3t , K

(1)
4t , K

(1)
2t , K

(1)
3t , K

(1)
4t }

(by equations) and K
(2)
t = diag{K(2)

1t , K
(2)
2t , K

(2)
2t , K

(2)
2t , K

(2)
2t , K

(2)
2t , K

(2)
2t } (by variables),

respectively, where

K
(1)
1t = K

(2)
1t =

 k1t 0 0

0 k1t 0

0 0 k1t

 , K
(1)
2t =

 k2t 0 0

0 k2t 0

0 0 k2t

 , K
(1)
3t =

 k3t 0 0

0 k3t 0

0 0 k3t

 ,

K
(1)
4t =

 k4t 0 0

0 k4t 0

0 0 k4t

 , K
(2)
2t =

 k2t 0 0

0 k3t 0

0 0 k4t

 .
In terms of the variance-covariance matrix for the VAR errors, let αt be a vector collecting

the non-diagonal and non-zero elements in At and σt be a vector collecting the diagonal

elements in Σt. Then the evolution of elements in αt and σt is as follows:

αt = αt−1 + k5tηt, ηt ∼ iid. N(0, S), (3)

lnσt = lnσt−1 + k6tζt, ζt ∼ iid. N(0,W ), (4)

where S,W are positive definite and S is block diagonal in which each block is corresponding

to parameters in different equations and similarly, kjt = 1, j = 5, 6, if a change in the subset

of parameters occurs and kjt = 0, j = 5, 6, otherwise.

We assume that all of the innovation blocks in the dynamic system are uncorrelated

contemporaneously and at all lags and leads—i.e., they are jointly normally distributed with

4Cogley and Sargent (2005) conduct a simple principal components analysis and find that the parameters
in the inflation equation receive substantially higher loadings compared to the rest of the parameters–
i.e., the variations in the reduced-form VAR parameters are highly structured. As demonstrated in Sargent
(1999), the structured variation can be derived from the cross-equation restrictions associated with an agent’s
optimization problem. However, it is not so clear-cut how to impose the relevant cross-equation restrictions in
practice. Thus, from an empirical perspective, we investigate different ways of allowing subsets of parameters
to change at the same time and let the data speak as to which categorization best fits the historical experience.
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the following variance-covariance matrix V as:

V = V ar



εt

ξt

ηt

ζt


 =


I3 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W

 .

Estimation of parameters in this framework relies on Markov Chain Monte Carlo (MCMC)

methods. In particular, under the assumption that the kjt’s are independent of one another,

contemporaneously and at all lags and leads, Kt, k5t, k6t can be drawn based on the reduced

conditional sampling algorithm proposed in Gerlach et al. (2000), without conditioning on

the state vector θt. This greatly improves the efficiency of the sampler when Kt and θt are

highly correlated.5 Then, following Primiceri (2005), we adapt methods in Carter and Kohn

(1994) and Kim et al. (1998) to draw state vectors θt, αt and lnσt from three Gaussian

linear state-space systems separately. See the detailed MCMC procedures in the technical

appendix.

3 Data and Priors

3.1 Data

As discussed above, we use a small three-variable VAR to study the evolution of U.S. mone-

tary policy, measured by short-term nominal interest rate (federal funds rate, averaged from

daily rates, series ID: FEDFUNDS), and its impacts on inflation (seasonally adjusted com-

pounded annual rate of change of Personal Consumption Expenditures, series ID: PCECTPI)

and the unemployment rate (seasonally adjusted civilian unemployment rate, all workers over

16, series ID: UNRATE).6 The series are quarterly and run from 1954:Q3 to 2007:Q4.

5Even though it might be desirable to explicitly model correlations between the kjt’s, this would bring a
huge cost in terms of increasing the computation burden, making implementation extremely difficult. In any
event, any dependence in the timing of changes across different parameter blocks should be evident from ex
post correlations in the posterior estimates of changes in the different parameters.

6All of the data series were downloaded from FRED managed by Federal Reserve Bank of St. Louis
at http://research.stlouisfed.org/fred2/. The results are robust to different measurements of inflation and
short-term interest rates, for example, GDP deflator and 3-month treasury bill rate. Personal Consumption
Expenditures (PCE) is used because it has been, at least in recent years, the Fed’s preferred measure of the
cost of living. When 3-month treasury bill rate is employed instead of federal funds rate, an unemployment
puzzle (i.e., a contraction monetary policy associated with a decline in unemployment rate) appears, as in
Primiceri (2005) and Koop et al. (2009). Therefore, we take the federal funds rate (FFR) which is directly
under control of the Fed as the monetary policy instrument. Another potential concern is that the FFR
might be less representative as a policy instrument from 1979 to 1982 during which the Fed was officially
framed its policy in terms of monetary aggregates. But Cook (1989) argues that even in that episode the
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Figure 1: Sample 20th-order Autocorrelation Functions for All of the Parameters

We execute 70, 000 replications of the Gibbs sampler, with the first 20, 000 draws, known

as the “burn-in”, discarded to allow for convergence to the ergodic distribution. Every 10th

draw is saved from the remaining 50,000 draws to economize the storage space. Therefore,

Bayesian inferences are carried out based on 5,000 draws from the posterior distribution.

Convergence diagnostics are conducted by inspecting sample ACFs and recursive means of

all of the parameters. As shown in Figure 1, sample 20th-order ACFs for all of the parameters

(including hyperparameters) are well below or slightly over 0.2 implying that the posterior

draws mix well and the convergence check is satisfactory.

3.2 Priors

Priors for state vectors and hyperparameters are calibrated following Primiceri (2005) and

Koop et al. (2009), with a few minor modifications. Data for the first ten years of the sample

(42 observations, 1954:Q3 − 1964:Q4) are employed to calibrate the priors. Specifically,

a time-invariant VAR model is estimated using conditional MLE, which produces point

estimates for VAR coefficients, θ̂0 and its corresponding variances V (θ̂0). Estimates of the

variance-covariance matrix of VAR error terms, Ω̂0, are obtained as well and α̂0, σ̂0 is derived

from decomposing Ω̂0. The variance of α̂0, V (α̂0), is obtained by simulation from a Wishart

FFR serves as a satisfactory policy indicator. Hence, it seems appropriate to treat the FFR as the policy
instrument across the whole sample.
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distribution with scatter matrix Ω̂0 and degree of freedom = 40, and we set the variance of

ln(σ̂0) to 10I3 which is large in log-scale, implying a small weight is put on the prior. As for

the hyperparameters Q, S =

[
S1 0

0 S2

]
, W , the priors are inverse-Wishart distributions.

In order to put as least weight as possible on prior beliefs, the degree of freedom corresponding

to each inverse-Wishart distribution is set to the minimum plausible value dim(Q) + 1 =

22, dim(S1) + 1 = 2, dim(S2) + 1 = 3, dim(W ) + 1 = 4, respectively. In summary, the

priors are as follows:

θ0 ∼ N(θ̂0, 4V (θ̂0)),

α0 ∼ N(α̂0, 4V (α̂0)),

lnσ0 ∼ N(ln σ̂0, 10I3),

Q ∼ IW (40k2QV (θ̂0), 22),

S1 ∼ IW (2k2SV (α̂1,0), 2),

S2 ∼ IW (3k2SV (α̂2,0), 3),

W ∼ IW (4k2QI3, 4),

where kQ = kW = 0.01, kS = 0.1 and α̂1,0, α̂2,0 correspond to each block of α̂0.
7

To complete the model, hierarchical priors for Kt, k5t and k6t need to be specified. We

adopt a Bernoulli distribution Ber(pj) with

Prob(kjt = 1) = pj, j = 1, 2, · · · , 6, (5)

where pj is the probability of a parameter change occurring at time t for kjt. The prior for

pj is a Beta distribution Beta(λ1j, λ2j), j = 1, 2, · · · , 6, which forms a conjugate prior with

a Bernoulli distribution. The values of λ1j and λ2j reflect prior beliefs about the frequency

of parameter changes in the model. Small values of λ1j and large values of λ2j imply a

“structural break” (SB) model with few changes in the parameters (e.g., λ1j = 0.01, λ2j = 10

for all j, would imply E(pj) = 0.001, sd(pj) = 0.01). Large values of λ1j and small values

of λ2j approaches the standard stochastic volatility TVP model in Primiceri (2005) (e.g.,

λ1j = 1, λ2j = 0.01 for all j, would imply E(pj) = 0.99, sd(pj) = 0.08). For our benchmark

model, we set λ1j = λ2j = 1 for all j, such that E(pj) = 0.5, sd(pj) = 0.29, meaning that a

priori we believe the occurrence of a change in each period occurs with a 50% chance. We

also consider SB and TVP versions of the models in which priors for the pj’s are extremely

tight, as suggested above. In general, we combine these priors with those for state vectors

7See Primiceri (2005) for a full discussion of the reasons behind these values of kQ, kS , kW .
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θt, αt, σt and hyperparameters Q,S,W . Meanwhile, Bayesian inferences in the benchmark

models with K
(1)
t or K

(2)
t rely on diffuse priors that let data speak as much as possible.

Comparisons of model fit are investigated in the next section.

4 Model Fit and Robustness Analysis

Table 1 reports on the fit of the benchmark model, the SB model, and the TVP model

using posterior means of pj’s and the expected value of log-likelihood function as described

in Carlin and Louis (2000), rather than marginal likelihoods that are sensitive to priors and

difficult to calculate, especially in this setting of models with extremely high-dimensional

parameter space. The label BEQ stands for the benchmark model varying with respect to

equations, whereas BVA denotes the benchmark model varying with respect to variables.

SBEQ, SBVA, TVPEQ and TVPVA are analogous labels for the versions of the model with

strong priors on the pj’s.

The first result that stands out in Table 1 is that the BEQ model with structural variations

in intercepts and slopes in different equations receives strongest support based on the ex-

pected log-likelihood E(logL|Y ).8 In accordance with Primiceri (2005), Cogley and Sargent

(2005), and Koop et al. (2009), the probabilities of parameter change for the BEQ model sug-

gest that the volatility of error terms has changed frequently over time with E(p6|Y ) = 0.9713

(standard deviation 0.0241). However, the slopes in unemployment equation are relatively

stable with E(p3|Y ) = 0.2844 (standard deviation 0.0546), which is substantially smaller

than the probabilities of parameter change in other blocks. This implies that, on average, a

change occurs in the slopes in the unemployment equation every 4 quarters, whereas inter-

cepts and slopes in inflation and interest rate equations are expected to change every one or

two quarters. These results provide strong evidence for the idea that changes in reduced-form

VAR parameters are highly structured.

Second, we find that, even when extremely tight priors on pj’s are considered with the SB

and TVP versions of the model, the information in the data is so strong that it pushes poste-

rior inferences much of the distance towards the results for the benchmark model. This can be

treated as robustness analysis for our modeling strategy. For example, in the SBEQ model,

the parameters of Beta(λ1j, λ2j) priors on pj’s are set to λ1j = 0.01, λ2j = 10, j = 1, 2, · · · , 6,

and E(pj) = 0.001, sd(pj) = 0.01 which means that on average a break is expected to hap-

pen once every 1000 quarters a priori. Nevertheless, the posterior mean values of pj’s show

8The measure of the expected log-likelihood is obtained by averaging the log-likelihood from the state-
space model (1) and (2) based on each draw of αT , σT , Q, S,W,KT , kT5 , k

T
6 , λ, where (and hereafter) xT =

(x1, x2, · · · , xT ).
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Table 1: Model comparison

Models E(p1|Y ) E(p2|Y ) E(p3|Y ) E(p4|Y ) E(p5|Y ) E(p6|Y ) E(logL|Y )
BEQ 0.9386 0.9026 0.2844 0.4866 0.6717 0.9713 3733.5

(0.0278)∗ (0.0330) (0.0546) (0.0588) (0.2295) (0.0241)
BVA 0.8162 0.8604 0.4494 0.6686 0.6755 0.9700 1877.6

(0.0382) (0.0319) (0.0604) (0.0434) (0.2392) (0.0247)
TVPEQ 0.9990 0.9992 0.5041 0.9979 0.9991 0.9997 1261.1

(0.0068) (0.0079) (0.1862) (0.0173) (0.0076) (0.0025)
TVPVA 0.9996 0.9993 0.7487 0.9948 0.9986 0.9997 1334.2

(0.0052) (0.0070) (0.2281) (0.0244) (0.0125) (0.0023)
SBEQ 0.6847 0.5998 0.3951 0.5105 0.0955 0.8370 2275.4

(0.0481) (0.0605) (0.0487) (0.0473) (0.0870) (0.0417)
SBVA 0.6984 0.5611 0.3496 0.8010 0.0962 0.7996 2190.7

(0.0392) (0.0406) (0.0387) (0.0345) (0.0875) (0.0486)
∗Standard deviations are listed in parentheses.

that E(p1|Y ) = 0.6847, E(p2|Y ) = 0.5998, E(p3|Y ) = 0.3951, E(p4|Y ) = 0.5105, E(p5|Y ) =

0.0955, E(p6|Y ) = 0.8370 with standard deviations 0.0481, 0.0605, 0.0487, 0.0473, 0.0870

and 0.0417, respectively. Except for the block of contemporaneous cross-equation impacts

of structural shocks, αt, the posterior expected values of pj’s suggest that the parameter

blocks are changing approximately every one or two quarters, which strongly rejects our

prior belief that few breaks occur over time. On the other hand, in the TVPEQ model, λ1j

and λ2j are set to 1 and 0.01, respectively. So a priori E(pj) = 0.99 with standard devi-

ation 0.08 favors a time-varying parameter with stochastic volatility model. However, the

posterior mean values of p1 up to p6 are 0.9990, 0.9992, 0.5041, 0.9979, 0.9991 and 0.9997,

respectively. The probability of observing a break in the slopes in unemployment equation

at every time period declines substantially from 0.9900 to 0.5041 with standard deviation

0.1862 which significantly deviates from the prior belief. This suggests that the slopes in the

unemployment rate equation is more stable than the other blocks in the model and supports

the idea of highly structured changes in the reduced-form VAR parameters.

In summary, our BEQ model receives the strongest support from the data. Hereafter,

the empirical results about the evolution of US economy are based on this model.

5 Testing the Lucas Critique

Ever since Lucas’s (1976) seminal paper, it has been widely-recognized by macroeconomists

that reduced-form econometric models could be inappropriate for policy analysis if there are
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changes in parameters describing policy. However, a relatively large literature—see Fevero

and Hendry (1992), Estrella and Fuhrer (2003), Linde (2001) and Rudebusch (2005), among

others—casts doubt on the empirical relevance of Lucas critique by considering Chow tests

and superexogeneity tests. In a recent paper, Lubik and Surico (2010) find that, by taking

stochastic volatility in the reduced-form errors into account, one cannot reject the empirical

relevance of Lucas critique. Specifically, a shift in policy rule has a great impact not only on

reduced-form conditional mean parameters, but also on the variances of reduced-form error

terms. They criticize the Chow and superexogeneity tests employed in Fevero and Hendry

(1992), Estrella and Fuhrer (2003) and Rudebusch (2005), and others for implicitly assuming

homoskedasticity of the reduced-form error terms, undermining the power of the tests.9

Existing approaches for testing the Lucas critique typically rely on simulating data from

a specified DSGE model as if the model were the “true” data generating process (DGP) of

the macro variables of interest. By contrast, we make no assumption that the metaphors

involved in a given modeling approach are literally true when testing the Lucas critique.

Instead, our approach lets the data speak as to whether “policy” block and “non-policy”

block parameters change at the same time.

Ideally, we would like to be able to directly identify changes in the parameters for a

structural policy equation. However, our approach only allows us to consider changes in

blocks of conditional mean parameters for the reduced-form VAR model.10 But this is

less of a problem than it may at first appear because a shift in parameters for the structural

policy equation should induce a shift in the parameters for the reduced-form policy equation.

Then, if the Lucas critique holds, the shift in the policy parameters should also induce a

shift in the parameters of the reduced-form equations for the non-policy variables, at least

for variables affected by monetary policy. It is true that a simultaneous shift in the reduced-

form parameters for the policy and non-policy equations could instead be due to a change

in non-policy structural parameters, as suggested by Inoue and Rossi (2011). But a shift in

9Another potential issue is the low power of the superexogeneity test in small samples, as discussed in
Linde (2001) and Collard et al.(2001).

10Although we need to consider changes in conditional mean parameters for the reduced-form VAR model,
our approach does allow for identification of shifts in the structural shock variances and the contemporaneous
cross-equation impact of the structural shocks on the observables. Also, it should be noted that we would
be able to directly identify changes in the structural policy equation if our identification of monetary policy
shocks involved placing the interest rate first rather than last in the causal ordering. This would correspond
to the idea that policy only responds to inflation and the unemployment rate with a lag, which could be
justified based on data availability issues. We note that the impulse responses for a policy shock for this
alternative ordering are qualitatively similar to those for the standard ordering employed in our analysis.
Also, the results for the Lucas critique tests are similar for this alternative identification (the fact there are
any differences being due to the fact that the ordering matters for the identification of the structural shock
variances and the contemporaneous cross-equation impact of the structural shocks on observables, which are
linked to k5 and k6, respectively).
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Table 2: Posterior median values of fractions of kit = kjt, i, j = 1, 2, · · · , 6, i 6= j

kit = kjt, i 6= j k2 k3 k4 k5 k6
k1 0.8605 0.2733 0.5000 0.6919 0.9244

(0.0286)∗ (0.0504) (0.0422) (0.2042) (0.0279)
k2 – 0.3256 0.5000 0.6744 0.8895

– (0.0385) (0.0355) (0.1879) (0.0300)
k3 – – 0.4942 0.4128 0.2849

– – (0.0343) (0.1093) (0.0429)
k4 – – – 0.5000 0.4884

– – – (0.0423) (0.0459)
k5 – – – – 0.7035

– – – – (0.2196)
∗Standard deviations are listed in parentheses.

the reduced-form policy parameters without a corresponding shift in the reduced-form non-

policy parameters should only occur if the Lucas critique does not hold (again, assuming

policy impacts the relevant variable). It is this possibility that we consider in our empirical

analysis.

Table 2 reports on the timing of breaks across parameter blocks. The reduced-form

intercepts (controlled by k1), reduced-form slopes in the inflation equation (controlled by

k2), reduced-form slopes in the interest rate equation (controlled by k4), contemporaneous

cross-equation impacts of structural shocks (controlled by k5), and standard deviations of

structural shocks (controlled by k6) co-move frequently with the probability of co-movement

varying from 49% to as high as 92%. By contrast, the relationship between the reduced-form

slopes in the unemployment equation (controlled by k3) and other parameter blocks suggests

much less pairwise dependence, with co-movement varying between 27% and 49%. It should

be noted that this relatively weak pairwise dependence between k3 and ki, i 6= 3 is not the

result of the unemployment rate being unrelated to the interest rate or inflation. As discussed

in the next section, monetary policy shocks have significant effects on the unemployment rate

throughout the sample period. So, if the Lucas critique holds, the reduced-form parameters

should all move together.

As an even more direct way to look at co-movement related to changes in policy pa-

rameters, Table 3 reports on shifts in blocks of parameters conditional on a change in slope

parameters for the interest rate equation. The results initially suggest support for Lucas

critique for the behaviour of inflation and the variance-covariance matrix (consistent with

Lubik and Surico, 2010), although, again, not for the behaviour of the unemployment rate.

Specifically, given a change in slope parameters for the interest rate equation, there is more
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Table 3: Test of the Lucas critique: Posterior probabilities of changes in parameter blocks
conditional on shift in slope parameters in the interest rate equation

Probability 95% Credible Interval
Infa 0.9236b [0.9175, 0.9315]

Unem 0.2530 [0.2424, 0.2925]
NP 0.9356 [0.9309, 0.9474]

VarErr 0.9924 [0.9920, 0.9951]

(a). Inf: slopes in inflation equation; Unem: slopes in unemployment equation; NP: non-policy
block; VarErr: variances of reduced-form error terms. (b). Probability: posterior medians.

than a 90% probability of a change in the other parameters, except for the slopes in the

unemployment rate equation, which only have a 25% conditional probability of change.

However, looking back at Table 1, it is clear that certain parameters almost always change.

For example, the structural shock variances appear to change about 97% of the time. So

whenever the interest rate slope parameters change 48% of the time, we would expect a high

conditional probability that the variance-covariance matrix changes too. But the question

remains as to whether the parameter changes are related to each other.

To answer the question of whether simultaneous parameter changes are coincidental, we

calculate the correlation between changes in policy parameters and non-policy parameter

blocks conditional on a change in slope parameters for the interest rate equation. Table 4

reports posterior inferences for these correlations. Most of the correlations are essentially

zero. That is, even if policy and non-policy parameters change at the same time, they

do not change together in a systematic fashion. Thus, the evidence argues against the

Lucas critique. Nonetheless, there are some significant correlations, suggesting that the

zero correlations are not merely the consequence of the modeling assumption of independent

switching in different blocks of parameters. For example, the most statistically significant

correlation is corr(∆β
i

it,∆β
u

it) = −0.1968, which suggests that an increase in interest rate

smoothing has a weak negative association with the impact of the interest rate on the

unemployment rate. Other small, but possibly non-zero correlations suggest that a smaller

weight for policy on the unemployment rate corresponds to a smaller impact of the interest

rate on the unemployment rate corr(∆β
i

ut,∆β
u

it) = −0.1292 and a larger trade-off between

the unemployment rate and inflation corr(∆β
i

ut,∆β
π

ut) = −0.1922. Also, a larger weight for

policy responses on inflation correspond to a larger trade-off between the unemployment rate

and inflation corr(∆β
i

πt,∆β
π

ut) = −0.1777 and less persistent inflation corr(∆β
i

πt,∆β
π

πt) =

−0.1146. But these small correlations are a far cry from the idea inherent in the Lucas

critique that changes in the transmission mechanism of monetary policy, changes in the
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Table 4: Contemporaneous cross correlations between changes in policy parameters and
non-policy parameters conditional on shift in slope parameters in the interest rate equation

Non-Policy Policy Block

Block ∆β
i

πt ∆β
i

ut ∆β
i

it ∆a31,t ∆a32,t
∆β

π

πt -0.1146 -0.0652 0.0612 0.0007 -0.0009
(0.1009)∗ (0.0984) (0.1001) (0.0766) (0.0770)

∆β
π

ut -0.1777 -0.1922 -0.0960 0.0004 0.0008
(0.0996) (0.0977) (0.1002) (0.0759) (0.0780)

∆β
π

it -0.0248 -0.0855 -0.0132 -0.0008 0.0005
(0.0999) (0.0971) (0.0979) (0.0766) (0.0775)

∆β
u

πt -0.0078 -0.0268 -0.0814 0.0006 0.0001
(0.0796) (0.0786) (0.0781) (0.0766) (0.0767)

∆β
u

ut -0.0162 -0.0294 -0.0381 -0.0012 0.0005
(0.0787) (0.0786) (0.0794) (0.0759) (0.0762)

∆β
u

it -0.0575 -0.1292 -0.1968 0.0010 0.0001
(0.0787) (0.0793) (0.0801) (0.0766) (0.0761)

∆a21,t -0.0003 0.0018 0.0033 0.0007 0.0022
(0.0774) (0.0780) (0.0781) (0.1051) (0.1058)

∗Standard deviations are listed in parentheses. ∆ is the difference operator. β
π
it, β

u
πt and β

i
ut are

sums of slopes on the interest rate in the inflation equation, slopes on inflation in the unemployment

rate equation, and slopes on the unemployment rate in the interest rate equation, respectively. The

other β’s are analogous.

slope of the Phillips curve, or changes in the persistence of inflation are driven primarily by

changes in the policy regime.

6 Evolution of Impulse Responses

There is considerable academic debate about whether monetary policy is responsible for

stabilizing the US economy since the mid-1980s, a phenomenon known as the “Great Mod-

eration”. One way to investigate the potential sources of the decline in volatility is to consider

changes in the responses of macroeconomic variables to monetary policy shocks over time.

Along these lines, Primiceri (2005) and Koop et al. (2009) find no evidence for a major role

played by monetary policy because they find that impulse responses for inflation and the

unemployment rate to a monetary policy shock do not change significantly over time. How-

ever, Kuttner and Mosser (2002) and Boivin and Giannoni (2006) find that the impact of

monetary policy on output and inflation appears somewhat weaker in recent years compared
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to before 1980s.11

Figures 2-4 plot the evolution of impulse responses for inflation, the unemployment rate,

and the interest rate to a 1 percent monetary policy shock at selected dates: 1975Q1, 1981Q3,

1996Q1 and 2006Q3.12 The estimated magnitude of the responses of inflation, the unem-

ployment rate, and the interest rate is generally smaller since 1980s. However, the differences

from the 1975Q1 responses are not statistically significant except for the responses of inflation

at the 3-9 quarter horizon.

Our results are at odds with Primiceri (2005), Koop et al. (2009) and Boivin and Gi-

annoni (2006).13 Boivin and Giannoni (2006) study time-invariant VAR models of inflation,

output, and the interest rate for two subsamples 1959:Q1 - 1979:Q3 and 1979:Q4 - 2002:Q2

and compare impulse responses evaluated from subsamples based on the recursive identifi-

cation scheme. However, they only show point estimates of the impulse responses without

conducting a rigorous statistical test of whether impulse responses have actually changed

across subsamples. As for Primiceri (2005) and Koop et al. (2009), their modeling strategy

is quite similar to ours. Thus, it is fairly easy to determine the source of the different results.

Specifically, every structural parameter is a mapping from the reduced-form VAR parameters

given a particular identification scheme. Then, the impulse responses are functions of the

structural parameters. Therefore, if the reduced-form VAR parameter estimates are mislead-

ing due to model misspecification, the impulse response functions will be contaminated as

well. As discussed in Sections 3 and 4, the TVPEQ and TVPVA models with the tight priors

implying a break in parameters each period of time is essentially the same as the stochastic

volatility TVP model in Primiceri (2005). Also, our benchmark models, BEQ and BVA,

would collapse to the model in Koop et. al. (2009) if parameters change or stay the same

simultaneously. However, as clearly shown in Table 1, the BEQ model receives the strongest

11Another way to investigate sources of the decline in volatility is to consider counterfactual analysis.
Using this approach, Sims and Zha (2006) find that smaller shocks are responsible, while Inoue and Rossi
(2011) find that a change in monetary policy also played a role.

12For easy comparison, these dates are the same as those considered in Primiceri (2005) and Koop et
al. (2009). However, we consider the Fed Funds Rate and inflation based on the PCE deflator, while they
consider the 3-month treasury bill rate as a proxy for the policy instrument and measure inflation using the
GDP deflator. Despite this difference, it should be noted that the impulse response results are robust to
considering the other measures of the interest rate and inflation.

13There is an apparent “price puzzle” in 1975Q1 and 1981Q3, which is common for small monetary VAR
models with triangular identification schemes for pre-1980 US data. This might suggest misspecification of
the model–i.e., some informative variables that impact the Fed and private sectors’ decision-making processes
are missing from the model. As suggested by Sims (1992), one promising way to solve this problem is to
include a commodity price index. Nevertheless, for the sake of computational feasibility given the already
large dimension of the parameter space, we stick with the trivariate model. Also, we are interested in the
evolution of impulse responses instead of impulse responses per se. Thus, the price puzzle should not be
as much of a hindrance for understanding variations in impulse responses as it is for understanding the
responses themselves.
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(a) (b)

(c) (d)

Figure 2: Response of inflation to a 1 percent monetary policy shock in 1975Q1, 1981Q3, 1996Q1
and 2006Q3: (a) medians of impulse responses; (b) response in 1981Q3 minus response in 1975Q1
with 90% credible interval; (c) response in 1996Q1 minus response in 1975Q1 with 90% credible
interval; (d) response in 2006Q3 minus response in 1996Q1 with 90% credible interval.
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(a) (b)

(c) (d)

Figure 3: Response of the unemployment rate to a 1 percent monetary policy shock for 1975Q1,
1981Q3, 1996Q1 and 2006Q3: (a) medians of impulse responses; (b) response in 1981Q3 minus
response in 1975Q1 with 90% credible interval; (c) response in 1996Q1 minus response in 1975Q1
with 90% credible interval; (d) response in 2006Q3 minus response in 1996Q1 with 90% credible
interval.
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(a) (b)

(c) (d)

Figure 4: Response of the interest rate to 1 percent monetary policy shock for 1975Q1, 1981Q3,
1996Q1 and 2006Q3: (a) medians of impulse responses; (b) response in 1981Q3 minus response in
1975Q1 with 90% credible interval; (c) response in 1996Q1 minus response in 1975Q1 with 90%
credible interval; (d) response in 2006Q3 minus response in 1996Q1 with 90% credible interval.
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support from the data, implying that it is the greater flexibility in how the VAR parameters

change that makes a difference in shaping impulse responses. Specifically, because the BEQ

model is preferred to TVP and SB models, we argue that the impulse responses derived

from this model provide better estimates of the effects of a monetary policy shock. These

estimates suggest a weaker response of inflation to a monetary policy shock since the 1980s.

7 The Natural Rate of Unemployment and the Short

Run Phillips Curve

7.1 Dynamics of the Natural Rate of Unemployment

Following Milton Friedman’s (1968) presidential address to the American Economic As-

sociation, the natural rate of unemployment (NRU) and the related concept of the non-

accelarating inflation rate of unemployment (NAIRU) have been central concepts in macroe-

conomic modeling. Traditional approaches to estimating the natural rate often impose some

restrictions to make the natural rate constant or, at most, allowing a few discrete jumps

at certain periods of time (see Papell et al., 2000), force the NRU to be a function of time

using a “spline” (see Staiger et al., 1997), or other techniques such as calibrated unobserved-

components models (see Gordon, 1997), low-pass filtering (see Staiger et al., 2001) and the

Hodrick-Prescott filter (see Ball and Mankiw, 2002). King and Morley (2007) endogenize

the NRU as the steady-state derived from a structural vector autoregression (SVAR) in the

spirit of the following quote from Phelps (1994):

“In a useful shorthand one may characterize the theory here as endogenizing the natural

unemployment rate − defined now as the current equilibrium steady-state rate, given the

current capital stock and any other state variables.”

Hence, the natural rate of unemployment is not necessarily a constant. Instead, King and

Morley (2007) estimate a time-varying steady-state of unemployment following Beveridge and

Nelson (1981) by calculating the long-run forecast in levels yt = limh→∞Etyt+h conditional

on the information set available at time t. We follow this strategy by first casting the VAR

into its companion form:

Yt+1 = gt + FtYt + εY,t+1.

Then, we use the companion form to calculate forecasts by assuming that VAR parameters

remain constants at their current values as time goes forward–i.e., in each period of time,

a time-invariant VAR is assumed based on the time-varying parameter estimates for that
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period.14 Conditional on the information set available at time t, gt, Ft, the long-run forecast

is

Y t = lim
h→∞

Yt+h = lim
h→∞

(
h∑
k=0

F k
t gt + F h

t Yt

)
and ut = suY t, (6)

where su is a selector vector for the unemployment rate and ut is the time-varying NRU.15

The point estimates (based on posterior medians in each period) of the natural rate of

unemployment, the 68% credible intervals, and the actual unemployment rate are plotted

in Figure 5. The point estimates for the NRU range from 3.7 − 7.8 percent, which is less

volatile compared to the range of 1.8 − 9.5 percent of the point estimate obtained by King

and Morley (2007), but is comparable to Phelps’s (1994) estimates. The uncertainty of the

point estimate has declined since the mid-1980s, which may be due to the substantial decline

in the volatility of exogenous shocks around that time. Besides the difference in the range

of the NRU, our estimate is smoother than that derived in King and Morley (2007). This

is possibly because our model allows any block of the VAR coefficients to stay constant at

their previous values, so that the trend unemployment is not forced to drift as a random

walk in each period of time, and the magnitude of drift can be small if only some of VAR

coefficients change.

7.2 Test of the Short-Run Phillips Curve

Because we have estimated the natural rate of unemployment, we can construct cyclical

unemployment and test for the existence of the short-run Phillips curve. Following Gordon

(1997), we investigate a “triangle” model (although without explicit supply shocks). Specif-

ically, inflation is regressed on four lags of inflation and current cyclical unemployment uCt

as follows:16

πt =
4∑
i=1

δiπt−i + βuCt + ωt, E(ωtπt−i) = 0, E(ωtu
C
t ) = 0, ∀t. (7)

Table 5 reports regression results based on the full sample and two subsamples.17 Two

14This assumption is common in the literature on bounded rationality and learning (see the “anticipated-
utility” model in Kreps, 1998).

15Though we do not impose stationarity on Ft, it turns out that a large fraction of draws satisfy the
stationary conditions, making the NRU well behaved. Note that the NRU is allowed to vary with time in
both King and Morley (2007) and our paper, but they fit the whole sample by a time-invariant VAR model,
albeit allowing for a unit root in the unemployment rate. By contrast, we allow the VAR coefficients and
variances of error terms to be time-varying.

16The cyclical unemployment is constructed by subtracting the median NRU from the actual unemploy-
ment rate.

17Results for this regression are robust to also including an intercept or lags of cyclical unemployment.
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Figure 5: Natural rate of unemployment: posterior median and 68% credible interval

things stand out: First, along the lines of a Solow-Tobin test (see Solow, 1968, and To-

bin, 1968), we might consider the natural rate hypothesis (i.e., a vertical long-run Phillips

curve) by testing whether the sum of δ’s is significantly less than 1. Of course, as famously

pointed out by Sargent (1971), the Solow-Tobin test is only informative about the natural

rate hypothesis when inflation contains a unit root. As reported in Table 4, the 95% confi-

dence intervals for the sum of the δ’s always contain 1. Hence, the natural rate hypothesis

is supported by the data.18 Second, there is strong evidence supporting the existence of

the short-run trade-off between inflation and the cyclical unemployment, with the short-run

trade-off significant at the 5% level and estimated at β = −0.4446 for the full sample. How-

ever, there is evidence that this short-run trade-off has weakened (the median of β shifts

from −0.4843 in the first subsample to −0.0428 in the latter one) and possibly even disap-

peared, with the 95% confidence interval for β of [−0.3827, 0.2972] for the latter subsample,

in accordance with the findings of Atkeson and Ohanian (2001).

In addition to the “triangle” regression analysis, we investigate time variation in the

Meanwhile, the timing of the subsamples is chosen based on the discussion in Atkeson and Ohanian (2001)
and King and Morley (2007), amongst others, about a possible change in the slope of the Phillips curve in
1990.

18The decrease in the estimated sum of the δ’s in the latter subsample is likely due to the decline in the
persistence of inflation, as discussed in Cogley and Sargent (2001).
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Table 5: Phillips curve regression results: OLS estimates and 95% confidence intervals

Full Sample 1965:Q1 - 1990:Q4 1991:Q1 - 2007:Q4
Parameters Estimate 95% CI Estimate 95% CI Estimate 95% CI

δ1 0.5629 [0.4139, 0.7119] 0.5925 [0.3999, 0.7851] 0.3542 [0.1054, 0.6030]
δ2 0.0811 [-0.0907, 0.2528] 0.0572 [-0.1685, 0.2829] 0.1809 [-0.0737, 0.4354]
δ3 0.1471 [-0.0246, 0.3188] 0.1101 [-0.1158, 0.3363] 0.3041 [0.0613, 0.5469]
δ4 0.1984 [0.0477, 0.3492] 0.2281 [0.0367, 0.4196] 0.1120 [-0.1520, 0.3760]
β -0.4446 [-0.6157, -0.2734] -0.4843 [-0.7007, -0.2679] -0.0428 [-0.3827, 0.2972]
δ∗ 0.9895 [0.6672, 1.3119] 0.9881 [0.5689, 1.4074] 0.9512 [0.4459, 1.4565]

The sum of the δ’s is given by δ∗ =
∑
δj , j = 1, .., 4. CI denotes “confidence interval”.

short-run trade-off between inflation and cyclical unemployment using the impulse responses

discussed in the previous section. Specifically, we consider the ratio of the 0 - 4 quarter aver-

age response of inflation relative to the 0 - 4 quarter average response of the unemployment

rate for each structural shock.

Figure 6 plots the posterior medians of the ratios of the inflation and unemployment

rate responses for each structural shock. The short-run trade-offs vary across the structural

shocks and across time. The posteriors are generally quite wide and include zero, except for

a shock to the unemployment rate, for which the ratio is always negative and significant up

until the mid-1990s based on 68% credible intervals, as reported in Figure 7. This trade-off

strengthened until around 1977 and then weakened and possibly disappeared by the mid-

1990s, consistent with our findings based on the OLS regressions reported in Table 5.

Figure 8 presents a related measure of the decline in the short-run trade-off since the

1990s. This figure plots the 95% joint credible set for the ratios of the inflation and unem-

ployment rate responses to a structural shock to the unemployment rate based on estimates

from time periods A and B and conditional on a negative simulated ratio in period A. The

periods for comparison that we consider in the four panels are 1975:Q1 vs. 1990:Q3, 1975:Q1

vs. 1991:Q1, 1975:Q1 vs. 2000:Q1 and 1990:Q3 vs. 2000:Q1. These are based on key busi-

ness cycle reference dates of trough, peak, trough, and normal time for the four respective

dates. The results evident in Figure 8 can also be summarized by the statistic FB
A , which

is defined as the fraction of simulated ratios that are greater in period B than in period

A. For example, consider F 1990
1975 = 73.17%. This means that 73.17% of the simulated ratios

in 1990:Q3 are greater than those in 1975:Q1. The equivalent statistics for the other dates

are F 1991
1975 = 85.47%, F 2000

1975 = 91.35%, and F 2000
1990 = 81.41%. Thus, from Figure 8 and the

corresponding FB
A statistic, we can conclude that the short-run trade-off between inflation

and cyclical unemployment has declined significantly since the beginning of the 1990s.
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Figure 6: The posterior medians of the ratios of the inflation and unemployment rate re-
sponses (averaged over the 0 - 4 quarter horizon) for each structural shock

Figure 7: The posterior median and 68% credible interval for the ratio of the inflation and
unemployment rate responses (averaged over the 0 - 4 quarter horizon) for a structural shock
to the unemployment rate
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(a) (b)

(c) (d)

Figure 8: 95% joint credible sets of ratios of inflation and unemployment rate responses (averaged
over the 0 - 4 quarter horizon) for a structural shock to the unemployment rate across certain
periods of time: (a) 1975Q1 vs. 1990Q3; (b) 1975Q1 vs. 1991Q1; (c) 1975Q1 vs. 2000Q1; (d)
1990Q3 vs. 2000Q1. 95% joint credible sets are constructed by excluding 2.5% equal-tailed draws
from the two marginal distributions.
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8 Conclusion

In this paper, we have developed a stochastic volatility time-varying parameter vector au-

toregressive model with mixture innovations parameters and allowing different blocks of

parameters to change at different points of time. We find that this model fits the U.S.

macroeconomic data better than models that assume continuous or infrequent change in all

of the model parameters at the same time. As a by-product of the flexible variation allowed

in the VAR parameters, we do not force non-policy parameters to change at the same time

as those related to monetary policy. This allows us to test the empirical relevance of Lucas

critique. Our test provides evidence against the Lucas critique in terms of shifts in both

the VAR parameters and error terms. However, the instability in the reduced-form VAR

parameters is highly structured such that the parameters in the reduced-form equation for

the unemployment rate vary infrequently over time, while other blocks of parameters change

much more frequently.

We study the evolution of the impulse responses of inflation and the unemployment rate

to monetary policy shocks as well. There is mild evidence supporting diminished effects

of monetary policy after the 1970s, with an apparent shift in the response of inflation to

monetary policy shock at the 3 - 9 quarter horizon only. The natural rate of unemployment

is estimated as the long-run forecast of the “local-to-date” steady-state unemployment rate.

Based on this measure, there is strong evidence of the existence of a short-run trade-off

between inflation and cyclical unemployment. However, this trade-off has weakened since

the late 1970s and has even disappeared since early 1990s.
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Technical Appendix: The Markov Chain Monte
Carlo (MCMC) Algorithm for Simulating the
Posterior Density

Appendix A. Simulating p(θT , αT , σT , Q, S,W,KT , kT5 , k
T
6 , λ|yT )

In order to simulate the joint posterior density p(θT , αT , σT , Q, S,W,KT , kT5 , k
T
6 , λ|yT ), where

T is the sample size, λ = {λ1j, λ2j}6j=1 and KT =
(
kT1 , k

T
2 , k

T
3 , k

T
4

)
, we draw from full con-

ditionals, except for drawing KT , kT5 , k
T
6 which are based on reduced conditional sampling

algorithm suggested by Gerlach et al. (2000), step by step as follows.

1. Drawing latent variables KT , kT5 and kT6

In the first step, latent variables KT =
(
kT1 , k

T
2 , k

T
3 , k

T
4

)
are drawn from the Gaussian linear

state-space model (1) and (2). Note that

yt = X ′tθt + A−1t εt, (A.1)

θt = θt−1 +Ktξt. (A.2)

Remember that Kt has two specifications with respect to restrictions on the reduced VAR

parameters according to equations or variables, but it suffices to present the simulation

procedures with only one unified notation. To draw Kt, we resort to the reduced conditional

sampling algorithm developed by Gerlach et al. (2000) which integrates the states out and

draws Kt without conditioning on the states. This algorithm greatly improves efficiency

especially when the states θt and Kt are highly correlated as usually the case. Kt can be

drawn from

p(Kt|yT , αT , σT , Q, S,W,K\t, kT5 , kT6 , λ)

= p(Kt|yT , αT , σT , Q, λ)

∝ p(yT |KT , αT , σT , Q, λ) p(Kt|αT , σT , Q, λ)

∝ p(yt+1,T |y1,t, KT , αT , σT , Q) p(yt|y1,t−1, K1,t, αT , σT , Q) p(Kt|λ)

∝ p(yt+1,T |y1,t, KT , αT , σT , Q) p(yt|y1,t−1, K1,t, αT , σT , Q)×
4∏
j=1

p(kjt|λ),

where K\t = KT\Kt and xs,t = (xs, xs+1, · · · , xt), s < t. The terms p(kjt|λ), j = 1, 2, 3, 4,

can be easily obtained from the hierarchical priors. To evaluate p(yt+1,T |Y 1,t, KT , αT , σT , Q)

and p(yt|y1,t−1, K1,t, αT , σT , Q), please see the details in Gerlach et al. (2000).
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As for k5t and k6t, we adapt the algorithm of Gerlach et al. (2000) to another two state-

space models and draw k5t and k6t separately. Specifically, under the assumption that S is

block diagonal, k5t is drawn from the Gaussian linear state-space model with respect to the

state αt derived in Primiceri (2005):

ŷt = Dtαt + Σtεt, (A.3)

αt = αt−1 + k5tηt, (A.4)

where Dt =

 0 0 0

−ŷ1,t 0 0

0 −ŷ1,t −ŷ2,t

. On the other hand, following Kim et al. (1998),

consider the non-Gaussian linear state-space model with respect to the state ht = ln σt as

follows:

y∗∗t = 2ht + et, (A.5)

ht = ht−1 + k6tζt, (A.6)

where y∗∗t = [y∗∗1t y∗∗2t y∗∗3t ]
′, y∗∗t = ln[(y∗t )

2 + c], y∗t = At(yt − X ′tθt), c = 0.001 and et =

[e1t e2t e3t]
′ in which ejt, j = 1, 2, 3 are log-chi-square distributed. Based on a mixture of

normals approximation of ejt’s log-chi-square distribution, we can approximate A.5 and A.6

to a sound precision by a Gaussian linear state-space model from which k6t can be drawn

by adapting reduced conditional sampling algorithm of Gerlach et al. (2000). Please see

the details of the mixture of normals approximation in the section of “Drawing stochastic

volatility σT”.

2. Drawing parameters of Beta priors λ

Denote the Beta priors for pj, j = 1, 2, · · · , 6 by Beta(λ1j, λ2j), therefore, the posterior

distribution of pj is Beta(λ1j, λ2j), where 19

λ1j = λ1j +
T∑
t=1

kjt and λ2j = λ2j + T −
T∑
t=1

kjt.

3. Drawing reduced VAR parameters θT

Conditional on yT , αT , σT , Q, S,W,KT , kT5 , k
T
6 , λ, the states θT can be drawn from the state-

space model A.1 and A.2 by Gibbs sampling developed in Carter and Kohn (1994). Note

19Hereafter, the underlined parameters stand for the parameters of priors and the overlined parameters
represent the parameters of posteriors.
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that

p(θT |αT , σT , Q, S,W,KT , kT5 , k
T
6 , λ, y

T )

= p(θT |αT , σT , Q, yT , KT )

= p(θT |αT , σT , Q, yT , KT )
T−1∏
t=1

p(θt|θt+1, y
t, αT , σT , Q,Kt+1),

where

θt | θt+1, y
t, αT , σT , Q,Kt+1 ∼ N(θt|t+1, Pt|t+1),

θt|t+1 = E(θt|θt+1, y
t, αT , σT , Q,Kt+1),

Pt|t+1 = V ar(θt|θt+1, y
t, αT , σT , Q,Kt+1).

The last recursion of forward Kalman filter gives θT |T and PT |T from which θT can be simu-

lated. Then θt|t+1 and Pt|t+1, t = 1, 2, · · · , T − 1, are obtained by backward recursions from

θT |T and PT |T . From N(θt|t+1, Pt|t+1), we are able to simulate the smoothed estimates of

θt, t = 1, 2, · · · , T − 1. Please see the details of Gibbs sampling in Appendix B.

4. Drawing hyperparameter Q

Since we assume the prior of Q is the inverse-Wishart distribution IW(Q, νQ), hence Q−1 is

governed by Wishart distribution as:

Q−1 ∼ W(Q−1, νQ).

Hence, the posterior for Q−1 conditional on other blocks is Wishart as well:

Q−1|yT , θT , αT , σT , S,W,KT , kT5 , k
T
6 , λ ∼ W(Q

−1
, νQ),

where

Q
−1

=

[
Q−1 +

T∑
t=1

(θt+1 − θt)(θt+1 − θt)′
]−1

and νQ = νQ + T.

5. Drawing covariances αT

Reconsider the Gaussian linear state-space model A.3 and A.4 under the assumption of

block-diagonal S. Since ŷ1,t is determined by exogenous identity shock ε1t and σ11,t, thus

conditional on other blocks, ŷ1,t is predetermined in ŷ2,t’s equation. So are ŷ1,t and ŷ2,t
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predetermined in ŷ3,t’s equation. Therefore, αt can be obtained by applying Kalman filter

and the backward recursion equation by equation. Let αt = [α1,t, α2,t]
′, where α1,t = α21,t

and α2,t = [α31,t, α32,t]
′ are corresponding to different blocks in S, then the smoothed

estimate of αt is derived from

αi,t | αi,t+1, y
t, θT , Si, σ

T , k5,t+1 ∼ N(αi,t|t+1,Λi,t|t+1),

αi,t|t+1 = E(αi,t|αi,t+1, y
t, θT , Si, σ

T , k5,t+1),

Λi,t|t+1 = V ar(αi,t|αi,t+1, y
t, θT , Si, σ

T , k5,t+1), i = 1, 2.

6. Drawing hyperparameter S

Recall that we separate S into two blocks S1 and S2 each governed by inverse-Wishart

distribution IW(Sj, νSj
), j = 1, 2. Equivalently, S−1j ∼ W(Sj

−1, νSj
), j = 1, 2. Thus, the

conditional posterior for Sj, j = 1, 2, are as follows:

S−1j |yT , θT , αT , σT , Q,W,KT , kT5 , k
T
6 , λ ∼ W(S

−1
j , νSj

),

where

S
−1
j =

[
S−1j +

T∑
t=1

(αj,t+1 − αj,t)(αj,t+1 − αj,t)′
]−1

and νSj
= νSj

+ T, i = 1, 2.

7. Drawing stochastic volatility σT

The stochastic volatility σT are drawn from the non-Gaussian linear state-space model A.5

and A.6 based on a mixture of seven normals approximation a la Kim et al. (1998) with

component probabilities ql, means ml − 1.2704 and variances v2l , l = 1, 2, · · · , 7. Please

see the constants {ql,ml, v
2
l } chosen for matching a number of moments of the log(χ2(1))

distribution in Kim et al. (1998). Note that y∗∗it and y∗∗jt are independent of one another for

i 6= j, hence, eit is independent of ejt as well. Thus, it allows us to employ the same mixture

of normals to approximate any element in et.

Define the state-indicator matrix sT = [s1, s2, · · · , sT ]′, st = [s1t, s2t, s3t]
′, sjt ∈ {1, 2, · · · , 7},

j = 1, 2, 3 and t = 1, 2, · · · , T , showing in each period of time which member of the mixture

of normals is used for each element of et. Conditional on other blocks, after determining

the members of the mixture of normals used for approximation for et, the system obtained

is a Gaussian linear state-space model in which ht can be easily drawn based on the stan-

dard Kalman filtering and backward recursions as in previous steps. Specifically, smoothed
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estimates of ht can be drawn recursively from

ht | ht+1, y
t, θT , αT ,W, kT6 , s

T ∼ N(ht|t+1, Ht|t+1),

ht|t+1 = E(ht|ht+1, y
t, θT , αT ,W, kT6 , s

T ),

Ht|t+1 = V ar(ht|ht+1, y
t, θT , αT ,W, kT6 , s

T ).

After obtaining a new draw of hT , sT can be updated as in Kim et al. (1998) for each sjt

independently from the discrete density

Pr(sjt = l|y∗∗jt , hjt) ∝ qlfN(y∗∗jt |2hjt +ml − 1.2704, v2l ), j = 1, 2, 3, l = 1, 2, · · · , 7,

where fN(·) stands for the normal density. Finally, the smoothed estimate of σt can be

recovered by transform σt = exp{0.5ht}.

8. Drawing hyperparameter W

Note that W ∼ IW(W, vW ), i.e. W−1 ∼ W(W−1, vW ), where W(·, ·) and IW(·, ·) stand for

Wishart distribution and inverse-Wishart distribution, respectively. Hence, the posterior for

W−1 conditional on other blocks reads:

W−1|yT , θT , αT , σT , Q, S,KT , kT5 , k
T
6 , λ ∼ W(W

−1
, vW ),

where

W
−1

=

[
W−1 +

T∑
t=1

(ht+1 − ht)(ht+1 − ht)′
]−1

and νW = νW + T.

Appendix B. Gibbs Sampling for State-Space Models

Cast the Gaussian linear state-space models in this paper into the following state-space form:

Measurement equation: yt = Ftβt + ut,

State equation: βt = βt−1 + vt,

where [
ut

vt

]
∼ iid. N

([
ut

vt

]
,

[
Rt 0

0 Q

])
.
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Define

βt|s = E(βt|ys, F s, Rs, Q),

Pt|s = V ar(βt|ys, F s, Rs, Q).

Given the mean and variance of the initial state, β0|0 and P0|0, the forward Kalman filter

yields:

βt|t−1 = βt−1|t−1,

Pt|t−1 = Pt−1|t−1 +Q,

κt = Pt|t−1F
′
t(FtPt|t−1F

′
t +Rt)

−1,

βt|t = βt|t−1 + κt(yt − Ftβt|t−1),

Pt|t = Pt|t−1 − κtFtPt|t−1.

After obtaining βT |T and PT |T , we draw βT from N(βT |T , PT |T ). Then the draw of βT and

the output derived from the above forward Kalman filter are used for backward recursion as

follows:

βt|t+1 = βt|t + Pt|tP
−1
t+1|t(βt+1 − βt|t),

Pt|t+1 = Pt|t − Pt|tP−1t+1|tPt|t,

which provide βT−1|T and PT−1|T that are used to generate βT−1. Likewise, βT−2, βT−3, · · · , β1
are drawn from N(βT−2|T−1, PT−2|T−1), N(βT−3|T−2, PT−3|T−2), · · · , N(β1|2, P1|2), respectively.
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