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1 Introduction

This paper presents estimates of time-variation in the coefficients of the widely cited DSGE model in

Smets and Wouters (2007a) (referred to hereafter as SW). The estimation strategy has three parts. It

starts by estimating a time-varying parameter, reduced-form VAR [TVP-VAR] in the same 7 observed

variables for the US as the DSGE model, using kernel methods that we proposed in previous work

(Giraitis et al. (2011)) that, unlike other methods, can handle without difficulty a large VAR like this.

Next, we use sign-restrictions to identify monetary policy (and other) shocks (in a fashion derived from

the work of Uhlig (2005), Canova and Nicolo (2002) and others) for each observation in our sample

period, corresponding to each of the ‘instantaneous VARs’ estimated by the TVP VAR. Finally, a

minimum-distance estimator is used (see, for example, Theodoridis (2011)) to fit the DSGE model to

these impulse response functions, once again, for each observation in the sample period. We therefore

map changes in reduced form macro-dynamics (as manifest in the TVP-VAR) into implied changes

in the structural DSGE parameters. Our approach is a deliberate echo of the work of Christiano

et al. (2005) [hereafter CEE]. They estimated a DSGE model - the precursor to SW - by choosing

the parameter constellation that minimised the distance between the impulse responses to a monetary

policy shock in the DSGE model and a fixed-coefficient VAR. We do the same but starting out with a

time-varying coefficient VAR that produces correspondingly time-varying DSGE parameter estimates.

The connection with CEE’s pioneering work is not perfect: we use sign restrictions to identify the

monetary policy shock, while Christiano et al. (2005) used a Cholesky identification scheme appropriate

for the timing implied by the limited participation mechanism built into their DSGE model (and not

appropriate for SW); we fit the SW model, Christiano et al. (2005) of course fit their own, essentially

the SW model less six of the shocks, but with an additional working capital channel. But these

differences are details.

We find very substantial fluctuations in the DSGE parameters that best fit the evolving impulse

response functions. It is useful at this point to give a flavour of some of our results: The probability

that prices and wages are not reset in a given period varies between 0.6 and 0.85 for prices, and between

0.6 and 0.9 for wages. There are also significant changes in the coefficient that wage and price setters

load onto past inflation when indexing between price changes: from 0.45 to 0.7 in the case of wages,

and from 0.25-0.7 in the case of prices. We compute that there is an increase in implied values for

h, which encodes habits in consumption, from around 0.75 to 0.85: a less dramatic change than

for the nominal rigidities parameters, but, given the predominance of this parameter in determining

overall persistence in the reduced form for inflation and other variables, still an important shift. The

investment adjustment costs parameter rises precipitously in the boom years before 2000 and falls

just as quickly thereafter. Interestingly a parameter that is probably most securely micro-founded,

the discount rate, is estimated to be pretty constant. We also detect variations in the parameters

defining the behaviour of monetary policy. The standard deviation of monetary policy shocks varies

between 0.18 and 0.1; the persistence in these shocks varies between 0.2 and 0.45. The coefficients in

the policy rule are, in absolute terms, more stable than some of the others coefficients, but they still

each vary by as much as 0.2 from their maximum to their minimum values. There is no indication

that there was ever a period where monetary policy was insufficiently responsive to inflation such that

there was model indeterminacy, in contrast to findings of some other work on the Great Moderation

(see, for example, Lubik and Schorfheide (2004) and Clarida et al. (2000)). Relatedly, we find that

there are times when monetary policy pre-Volcker appears as or even more counter inflationary than
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that post-Volcker, a result that might seem surprising from the perspective of studies of monetary

policy change that use split-sample analysis, eg Clarida et al. (2000).

2 Connections to existing work

What we do and find in our paper relates to several strands of thought in the literature in empirical

macroeconomics. We make these connections below, distinguishing between the methodological lit-

erature on characterising and detecting structural change, and the empirical literature on uncovering

and explaining structural change in VAR and DSGE model parameters.

2.1 Methodological literature on characterising structural change

The first line of work we want to emphasise is methodological. This paper is the latest in a series

of papers we have written seeking to comment on the standard method for estimating stochastic

time varying parameter VAR models in macroeconometrics, by offering an alternative, kernel-based

method. These papers include Kapetanios and Yates (2011), which reworked the analysis of evolving

inflation persistence in Cogley and Sargent (2005) using kernel methods; Giraitis et al. (2011) which

derives the theoretical results on consistency and asymptotic normality of the kernel estimator for

an AR model where the coefficients follow a bounded random walk and Giratis et al. (2012) which

extends these results to the case of a VAR with stochastic volatility.

The standard method for estimating time varying coefficient VARs was presented by Cogley and

Sargent (2005), Cogley et al. (2010) and others that followed them in a number of papers, including,

for example: Benati and Surico (2008), Gali and Gambetti (2009a), Benati and Mumtaz (2007)

and Mumtaz and Surico (2009) and many more. This method estimates the sequence of VAR

parameters and volatilities by formulating the VAR as a state-space model (with the law of motion

for the VAR parameters taking the place of the state transition equation) using the Gibbs sampler to

characterise the joint posterior density. Most macro practitioners (certainly those cited above and

more) are using the Carter and Kohn (1994) algorithm or analagous, which draws an entire sequence

of parameters in the transition equation of the state-space model, and wish to enforce the restriction

that at all points in the sample the hypothetical VAR corresponding to the values of the state at

any point is instantaneously stationary (on the grounds that instances that breach this condition are

not economically meaningful). As is well known (and discussed, for example, in Koop and Potter

(2011)) this method can quickly become very slow, or entirely intractable in macro applications with

persistent data, due to a failure to obtain enough, or even any draws, with applications where the VAR

has a dimension of 5 or more. Koop and Potter (2011) present an alternative set of (’single move’)

algorithms that draw states (VAR parameters) one period at a time, easing this problem substantially,

but at the computational cost of the chain mixing more slowly.

Our alternative kernel estimator is not subject to this problem. It delivers point estimates of the VAR

parameter sequence (and confidence intervals) directly, not indirectly via characterising a posterior.

The stationarity problem is not eliminated, of course. The frequentist user of the kernel method

might find that having estimated the VAR parameter sequence that there are some values for which

point estimates violate the stationarity condition. In which case, one would either proceed or stop,
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discarding the VAR as not meaningful. The Bayesian user of kernel methods would inevitably find

that, without informed priors, some probablity mass were attached to the event that the VAR is non-

stationary, in which case suitably informed priors could rule this out. (Note that we don’t explain how

a Bayesian would use our estimates, and leave this particular application of non-parametric Bayesian

econometrics to future work).

These practical benefits - stressed in our earlier work - come into play in the application presented in

this paper because we have such a large dimension VAR (7 variables). We assert that this would be

problematic for sampling methods to handle estimating a TVP VAR of this dimension, but TVP-VARs

of this size and even much greater can be executed easily with our method.

Aside from the considerable practical benefits, we stressed in previous work that for the frequentist

user, our kernel estimator has good theoretical properties such as consistency and asymptotic normality

in the presence of persistent but stochastic time varying coefficients. Analogous results are not

available for likelihood estmates using the Gibbs-sampling/state-space approach in the presence of the

economically motivated restrictions bounding the VAR coefficients inside the unit circle.

Of course, the debate about how best to characterise structural change is broader than simply a choice

between kernel versus Gibbs sampler based methods for estimating stochastic time varying coefficient

models. This debate should be seen in the context of the larger literature spanning other methods for

describing structural change. This embraces at least three literatures, including i) the literature on

smooth, deterministic change, exemplified by Priestley (1965), Dahlhaus (1996) and Robinson (1991);

ii) the literature on estimating VARs with parameters that follow a Markov process [see, for example,

Sims and Zha (2006)]; and iii) the literature on identifying infrequent and abrupt, structural change,

(see, for example Chow (1960), Brown et al. (1974) and Ploberger and Kramer (1992)).

2.2 Substantive literature on detecting changes in DSGE parameters

The second line of work which is relevant for this paper concerns the substantive empirical findings

in our paper. The broad framework for this work is that it asks whether DSGE parameters are time

varying or not, or, to put it more pejoratively, and borrowing the title of Fernandez-Villaverde and

Rubio-Ramirez (2008), asks “how structural are structural parameters?” The stakes are high, here,

because the hope of DSGE modellers was that the model construction had bridged the gap between

the early RBC models of Kydland and Prescott (1982) and others by incorporating various nominal

and real frictions, yet without violating the insistence on microfoundations of that school of thought.

Time-variation in the parameters defining these descendants of the early purist models provides prima-

facie evidence that the microfoundations are suspect.

2.2.1 Mapping from changes in the reduced from VAR to DSGE parameters

There are three variants of this kind of work. The first, which includes our paper, first estimates

reduced form time-variation and then maps that into, or seeks to interpret this as caused by, time

variation in DSGE parameters. The closest paper in this vein to ours in execution is Hofmann et al.

(2010). They estimate a 4 variable TVP-VAR using the industry standard Gibbs-Sampling algorithm
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and identify technology and demand shocks using sign restrictions. They then take three snapshots

of the implied estimated impulse responses (at the beginning, middle and end of their sample) and to

these they fit a New Keynesian model with sticky prices, sticky wages (indexation in both) and habits

in consumption. The model could be described as a Smets-Wouters model without capital formation.

Their three point estimates show changes in DSGE parameters that are larger than those we uncover

(see Table 1 of their paper). For example: median estimates of the price indexation parameter are

0.15 for 1960, 0.8 for 1974 and 0.17 for 2000. And for wages the analogous figures are 0.3, 0.91 and

0.17.

The main point of departure from this paper for us is the use of the kernel estimator to generate the

sequence of reduced form VAR coefficients. As a consequence this allows us to estimate a larger,

7-variable VAR on an (updated) Smets and Wouters (2007a) dataset. The hope is that by using

more data we can improve identification. Our paper also differs on a number of details. First, we

allow all the parameters of the SW model to change over time, whereas Hofmann et al. (2010) fix

some of their parameters at calibrated values. In particular, they fix the discount rate, the elasticity of

labour supply, and the mark-ups in product and labour markets. Our results provide more support for

fixing the discount rate than the elasticity of labour supply, which does show considerable movement

across the sample. Second, we chose to fit the DSGE model to an identified monetary policy shock,

as opposed to the technology shock used by Hofmann et al. (2010).1 We make this choice on two

grounds. First, we expect that the response of real variables to a monetary shock should be the acid

test of the extent of nominal rigidities, a key focus for those scrutinising the validity of the CEE/SW

model. If the classical dichotomy held, and prices were flexible, real variables would be invariant to

a monetary policy shock. Secondly, we want to preserve a parallel with the original paper by CEE,

who fitted a DSGE model to the impulse response to a monetary policy shock recovered from a fixed

coeffcient VAR.

Several other papers adopt this same general approach of making connections between time-varying

reduced form VAR dynamics and changes in structural DSGE parameters. Cogley and Sargent (2005)

build a 3 variable time-varying coefficient VAR to characterise shifts in macroeconomic dynamics.

Later, in their joint work with Primiceri, these author seek to find structural explanations via a small

DSGE model.2 In a similar vein, Sargent and Surico (2011) interpret shifts in the money growth

- inflation correlation as accountable for by changes in the monetary policy rule in a smaller scale

sticky price RBC model. In Cogley et al. (2012), changes in the correlation between nominal interest

rates and inflation, and inflation persistence are associated with shifts in the degree of indexation of

firms’ prices, shifts which come about because of changes in the monetary regime. Gali and Gambetti

(2009b) estimate a TVP-VAR involving labour productivity and hours work, and uncover changes in

the impulse response to identified technology shocks. The fixed-coefficient literature to which these two

papers address themselves was an argument about key parameters of the DSGE model that should

be taken as the DGP. If hours worked did fall, as Gali’s striking 1999 paper found3, following a

technology shock, then this suggested either that technology shocks were not major contributors to

the business cycle (indicating a small value for the parameter governing the variance of these shocks)

or, for example, that prices were sticky (whereupon the conventional result in the flex price RBC

1In order gain extra precision in the identification of the monetary policy shock, we also identify technology, labour
supply and aggregate demand shocks. For an exposition of how precision in identifying one shock is improved by
identifying other shocks, see Paustian (2007)

2Cogley et al. (2010).
3See: Gali (1999).
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model that hours rise after a technology shock is overturned). The TVP-VAR results are therefore

to be interpreted as alluding to potential changes in, eg, the volatility of technology shocks and the

degree of stickiness in prices.

2.2.2 Estimating time-varying DSGE parameters directly

The second variety of work on time-variation in DSGE parameters estimates changes in DSGE param-

eters directly rather than indirectly via a mapping from a reduced form VAR. Within this category of

papers, there are two tactics. One is to embed time-variation into the DSGE model itself. Another

is simply to estimate the DSGE model on different samples.

Fernandez-Villaverde and Rubio-Ramirez (2008) build a DSGE model that includes stochastic pro-

cesses for policy rule and price/wage stickiness parameters, processes over which agents in the model

form rational expectations. They find abundant evidence of time variation. In one sense, our exercise

is more limited and less constructive: we don’t offer a DSGE model with full-blown time variation

in place of the fixed coefficient variety, a model that would be a potential replacement for the fixed-

coefficient DSGE model. Instead we undertake the narrower task of shedding light on whether the

benchmark fixed coefficient variety is deficient or not, specifically asking whether the coefficients in

the fixed coefficient DSGE model are really fixed. In another sense, our paper offers something new

relative to Fernandez-Villaverde and Rubio-Ramirez (2008). Freed from the computational burden

of computing expectations over the time-variation in the DSGE parameters, we can look for time-

variation in all of the model’s (19) parameters at the same time. By contrast, Fernandez-Villaverde

and Rubio-Ramirez (2008) allow only one parameter at a time to move.4 Note too that they use full

information methods; we resort to partial information methods, partly to preserve the parallel with

CEE’s fixed coefficient work; and because of the benefits claimed for this approach (insurance against

model misspecification), though we of course note the costs (for example aggravating identification

problems).

Cogley and Sbordone (2008) is another example of a DSGE model that embodies explicit time-

variation. They estimate a VAR with a time-varying trend inflation rate, imposing on the VAR

cross equation restrictions implied by a version of the New Keynesian model linearised around a time-

varying trend. This time-variation allows the model to explain the persistence in inflation well despite

having no “backward-lookingness” in the form of indexation. This paper therefore makes an intimate

connection between a TVP-VAR and a DSGE model related to the one considered here, re-interpreting

the previous result that the data need indexation in the Philips Curve as reflecting the fact that the

model omits time varying trend inflation.

Justiniano and Primiceri (2008) estimate a DSGE model with time-varying volatilities of the structural

shocks in the model, and interpret the Great Moderation through the lens of this model. Born and

Pfeifer (2011) likewise estimate time-variation in volatilites, with a particular focus on the changing

volatility of monetary and fiscal policies.

The second tactic for estimating time-variation in DSGE coefficients is, as described above, to estimate

DSGE models on different samples. Smets and Wouters (2007b) estimate their model over two sub-

samples of US data and concludde that (variances of shocks aside), structural DSGE parameters are

4This was confirmed to us in email correspondence with Fernandez-Villaverde.
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stable. Benati (2008) estimates a small New Keynesian model on various subsamples corresponding

to different monetary regimes. He finds that the indexation parameter, corresponding to inflation

persistence in the Philips Curve, varies substantially between monetary regimes, and therefore adduces

that the reduced form property of inflation persistence derives, ultimately, not from indexation, but

from the behaviour of monetary policy. Canova and Sala (2009) estimates the simplest New Keynesian

model on rolling samples using full information Bayesian methods. He finds evidence that policy and

private sector parameters change, and also instability in the variance of the shocks. Canova and

Ferroni (2011) conduct a similar exercise using the Smets and Wouters (2007a) model, augmented to

allow for real balances to affect consumption and for money growth to enter the policy rule. Giacomini

and Rossi (2009) report rolling regression estimates of the Smets and Wouters (2003) model in the

course of developing a KLIC based method of conducting rolling comparisons of the performance of

competing models. Castelnuovo (2012) estimates on US data a rolling-sample version of the model

of Andres et al. (2006) (a New Keynesian model without capital, but with habits, indexation, and

costs of adjusting porfolios to bring in a role for money).

Also worth mentioning is the literature on detecting instabilities in DSGE model parameters. An

example is Inoue and Rossi (2011). They develop and test an algorithm for recursively identifying sets

of stable and unstable parameters in a DSGE model. They test for joint stability of all parameters,

and, if this rejects, eliminate the parameter with the lowest individual p-value (corresponding to a test

that this individual parameter is stable), and re-test for joint stability, proceeding like this until that

test does not reject. This identifies a set of stable parameters. They apply this to a New Keynesian

model, and find widespread evidence of parameter instability, including changes in parameters defining

nominal rigidities, habits and monetary policy parameters.

The subsample and rolling-regression literature here is connected with our paper not just in terms of

its substantive focus (DSGE parameter change) but also methodologically. Appropriately specified

kernel functions can produce as special cases either rolling regressions or subsample estimates. Kernel

estimators therefore nest these alternatives. For example, a kernel function that equal-weights all

observations within a window, and zero-weights those outside it is a rolling-regression. Which, then,

would be most appropriate? A richer kernel, or those that produce rolling regressions? The answer

to this depends on the kind of structural change one is trying to model, which, unfortunately, is not

known ex ante! Loosely speaking, one might say that provided the structural change is sufficiently

gradual, richer (eg normal) kernels will be optimal, rather than rolling-regression kernels. Note that

flat, rolling-regression kernels are not optimal in the case that we consider, where change in the DSGE

parameters is derived from asssuming at the outset persistent, stochastic evolution of the reduced-form

VAR parameters.

2.3 Diagnosing the causes of the Great Moderation

One of the focal points of the literature on structural change in macroeconomic dynamics has beent

to to try to diagnose the causes of the Great Moderation - crudely, the phenomena including the rise

and fall of the mean, variance and persistence of inflation and the fall in the volatility of output.

Many of the papers mentioned above seek to quantify the contribution of shock volatilities versus

parameter change, and to identify and those factors directly attributable to policy and those not.

Two prominent, early papers were McConnell and Perez-Quiros (2000) and Stock and Watson (2002).
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A survey of some of the subsequent literature is Velde (2004)

Our paper makes a limited contribution to this literature in so far as it quantifies changes in monetary

policy. As already noted above, we find that there is not such a dramatic difference between pre

and post-Volcker monetary policy rules as sometimes reported in other papers; and we also find no

evidence that monetary policy was such as to have led to indeterminacy at any time in the sample.

We cannot say much more than this -eg to speculate about the relative contributions of different kinds

of shocks - because of the way we estimated the DSGE model. Recall that we are fitting it to the

impulse response to a monetary policy shock, and not taking a stand on, and therefore not producing

estimates of changes in the rest of the stochastic structure of the model. So our paper speaks to the

contribution of ‘good luck’ to the Great Moderation (ie factors unrelated to policy) only indirectly, by

noting the relative constancy of the monetary regime in the US.

3 Econometric framework for estimating the TVP-VAR and DSGE

parameters

In this Section we set out the components of the analytical toolkit used to derive the time-varying

DSGE coefficient estimates. There are three elements of this. First, the estimation of the reduced

form TVP-VAR; second, the identification of the structural shocks from the reduced form shocks, and

the computation of the associated impulse responses; and third, the estimation of the time-varying

DSGE parameters. There is nothing new in this toolkit presented in this paper; the justification

for the kernel estimator in the case of potentially stochastic time varying coefficient models is set out

in Giraitis et al. (2011); using sign restrictions to identify monetary policy and other shocks derives

form work by many (see our citations in the introduction); estimating the DSGE model using impulse

resposne function matching is the basis of Rotemberg and Woodford (1998) and Christiano et al.

(2005), and an account of the theoretical basis for this can be found in Theodoridis (2011). The next

sections serve only to clarify notation and make the paper self contained for readers not familiar with

all the components.

3.1 Time-Varying Estimation of Reduced Form VAR Models

We start by considering the multivariate dynanic autoregressive model given by

yt = Ψt−1yt−1 + ut, t = 1, 2, · · · , n, (3.1)

where yt is an m−dimensional vector, ut = (u1t, ..., umt)
′ and Ψt−1 = [ψt−1,ij ]. It is important for the

theoretical properties of our proposed estimator to bound the eigenvalues of Ψt−1 to lie in the interval

(−1, 1). There are a variety of ways to implement such a bounding. One such way, that mirrors the

bounding of Giraitis et al. (2011) for univariate processes, can be implemented by defining

Ψ̃t−1 = [ψ̃t−1,ij ], ψ̃t,ij = ψ̃t−1,ij + vψt,ij , t = 1, · · · , n; i, j = 1, · · · ,m
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where vψt,ij is a zero mean i.i.d. sequence with finite variance. Then,

ψt−1,ij = ψ
ψ̃t−1,ij

max0≤i≤t−1
∑m

j=1 |ψ̃t−1,ij |
, t = 1, 2, · · · , n,

where 0 < ψ < 1. This ensures that the maximum eigenvalue of Ψt−1 is bounded above by one in

absolute value.

To estimate the coefficients Ψ1, · · · ,Ψn , we suggest as an estimator a weighted sample autocorrelation

at lag 1 given by

Ψ̂t :=

(
n∑
k=1

K(
t− k
HΨ

)yky
′
k−1

)−1( n∑
k=1

K(
t− k
HΨ

)yk−1y
′
k−1

)
,

where K(x) ≥ 0, x ∈ R is a continuous bounded function. This estimator is simply a generalisation

of a rolling window estimator given by

Ψ̂t :=

 t+HΨ∑
k=t−HΨ

yky
′
k−1

−1 t+HΨ∑
k=t−HΨ

yk−1y
′
k−1

 ,

which is a local sample correlation of yt’s at lag 1, based on 2HΨ + 1 observations yt−HΨ
, · · · , yt+HΨ

.

For the bandwidth we assume that

HΨ →∞ and HΨ = op (n) . (3.2)

K is a kernel function such that K(x) ≥ 0, x ∈ R is continuous and bounded, such for some c > 1,

K(x) ≤ exp(−cx2), x→∞. (3.3)

Giraitis et al. (2011) show that under certain regularity conditions, and in the case of a univariate

model, this kernel estimator delivers consistent estimates: ie it can be shown that

||Ψ̂t −Ψt|| = Op

((
HΨ

n

)1/2
)

+Op

((
1

HΨ

)1/2
)
. (3.4)

Giratis et al. (2012) suggest that analogous results hold in the multivariate context considered here.

Next, we consider the case of a time varying variance for ut and ways to estimate it. We set

ut = Htεt (3.5)

where Ht = [ht,ij ], E (εt) = 0, E (εtε
′
t) = Σε, and

H̃t = [h̃t,ij ], h̃t,ij = h̃t−1,ij + vht,ij , t = 1, · · · , n; i, j = 1, · · · ,m

where vht,ij is a zero mean i.i.d. sequence with finite variance. Then,

ht,ij =
h̃t,ij√
t
, t = 1, 2, · · · , n,
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We suggest the fowish to obtain an estimator for Σt = HtΣεH
′
t. We suggest the following estimator.

Define

ût = yt − Ψ̂t−1yt−i

Then,

Σ̂t =

n∑
k=1

Kh(
t− k
Hh

)ûtû
′
t

where

Hh →∞ and Hh = op (HΨ) . (3.6)

Once again, work in progress that will form a new paper suggests that under certain regularity con-

ditions Σ̂t is a consistent estimator of Σt, such that:

||Σ̂t −Σt|| = O

((
HΨ

n

)1/2
)

+O

((
Hh

HΨ

)1/2
)

+O

((
1

HΨ

)1/2
)
. (3.7)

Given the above, the estimated reduced form impulse response function for the time-varying VAR

model at time t and horizon h, is given by

R
(
k; t, Ψ̂, Σ̂

)
= Ψ̂

k
t Σ̂

1/2
t .

3.2 Recovering structural shocks from the reduced form shocks using sign restric-

tions

Given an estimated reduced form impulse response function we wish to provide a structural interpre-

tation to the VAR shocks and thereby obtain an estimated structural impulse response function. The

aim is to factorise the covariance matrix of the m-dimensional reduced form error, at time t, denoted

by Σt, as

Σt = BtB
′
t

where Bt is usually either given by a Cholesky factorisation or, in our case, an eigenvector-eigenvalue

decomposition of the form P tDtP
′
t where P t is a matrix whose columns contain the eigenvectors of

Σt and Dt is a diagonal matrix containing the eigenvalues of Σt. Then, Bt = P tD
1/2
t . Of course,

there exist multiple such factorisations since for any nonsingular orthogonal matrix Qt, we have

Σt = BtQtQ
′
tB
′
t

As is well known, n(n − 1)/2 restrictions are sufficient to fully specify a unique Qt. A number of

schemes deriving from insights from theoretical models have been proposed to specify these n(n−1)/2

restrictions. But given the controversy that each has prompted, an alternative approach has become

popular, which rather than seeking to identify a unique Qt, instead aims to identify a set of Qt’s that

instead satisfy particular sign restrictions for the impulse responses, computed as:

R
(
k; t, Ψ̂, Σ̂

)
= Ψ̂

k
t B̂tQt. (3.8)

The benefit of using sign restrictions is that they can be selected to be ‘robust’ in that they apply

to many different varieties of business cycle model (see for example, Peersman and Straub (2009)),
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and that therefore one increases the chance of uncovering, within the set, a shock of the kind that

the research intends to find, rather than something that would only be a shock of the kind required

in the event that one model among many that are possible happens to obtain in reality. The cost,

of course, of giving up uniquness in identification, is, of course, that one no longer has uniqueness

(!) and istead many possible impulse responses, leaving the researcher with an imprecise conclusion

about the impact and the importance of the shock in question.

The practical problem then is to undertake a search of the possible Qt’s. We do this by searching

through Givens rotations, where these are of the following form:

Inpq(θ) =



1 . . . 0 . . . 0 . . . 0

. . .
. . . . . . . . . . . . . . . . . .

0 . . . cos(θ) . . . −sin(θ) . . . 0
...

...
...

...
...

...
...

0 . . . sin(θ) . . . cos(θ) . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 . . . 0 . . . 1


, 0 ≤ θ ≤ π/2

where p < q denote the positions on the diagonal taken by cos(θ). These matrices respect the desired

property that Inpq(θ)I
n′
pq(θ) = I. Then, Qt is parameterised as

Qt(θ) =
n−1∏
i=1

n∏
j=i+1

Inij(θij) (3.9)

where 0 ≤ θij ≤ π/2 and θ is the n(n− 1)/2 vector containing all the scalar θij . It is obvious that

Qt(θ)Qt(θ)
′ = I.

In fact, we found it beneficial to search through not single Givens rotations, but multiple products

of such rotations. This increases the number of satisficing sign restrictions, something that can

sometimes be beneficial when imposing many restrictions, or restrictions at multiple horizons. Thus,

we extend the parameterisation in (3.9) to the following

Qt(θ
(1), ..., θ(m)) =

m∏
s=1

Qt(θ
(s)) =

m∏
s=1

n−1∏
i=1

n∏
j=i+1

Inij(θ
(s)
ij ) (3.10)

The result of this sheme, to recap, is a set of rotations( Q′s) and a corresponding set of impulse

response function. These are mapped into a set of DSGE parameter estimates by, for each Q,

computing the resulting impulse response function R and then finding the DSGE parameter vector

θ that minimises the distance between the DSGE impulse response and the VAR impulse response.

To emphasis, we do this estimation for each rotation, ie we do not first construct a summary statistic

of the IRF’s (eg a median). Precisely what we mean, and the theoretical basis for this minimum

distance procedure, we set out briefly in the next section.
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3.3 Minimum Distance Estimation of the DSGE parameters

In this section, we describe formally the minimum distance estimation [MDE] procedure we use to

map from the time varying structural impulse response functions to the time varying DSGE param-

eter estimates, (which will be familiar to many from the work of Rotemberg and Woodford (1998),

Christiano et al. (2005) and many others), and set out the theoretical basis for so doing, established

in other work, an account of which can be found in Theodoridis (2011).

The solution of any linearised DSGE model, like the one described in Section 4.2, can be written in

the following state-space format

yt = Ξ (θ)xt (3.11)

xt = Φ(θ)xt−1 + Λ(θ)ωt (3.12)

where equation (3.12) describes the evolution of the state vector
(
xt ∈ Rdx

)
5, equation (3.11) relates

the vector of the observable variables
(
yt ∈ Rdy

)
with the states of the economy, and ωt ∈ Rdω

denotes the vector of the structural errors, which are normally distributed with zero mean and Idω

covariance matrix6, ie ωt ∼ N (0dω, Idω)7. Finally, the elements of the matrices Ξ (θ), Φ(θ) and Λ(θ)

are non-linear functions of the structural parameter vector θ ∈ Θ and Θ is a compact subset of Rdθ.

Equations (3.11) and (3.12) can be used to analyse the effects of the shocks disturbing the economy,

in other words, to study agents’ optimal responses to small structural perturbations. This type of

analysis, which lies at the core of the DSGE modelling, reveals the dynamic properties of the model

and improves researchers’ intuition about the cyclical behaviour of the model. This information is

summarised by the following kdy2 × 1 vector valued DSGE impulse response function

R (k, t,θ) ≡
(
vec

(
∂yt+1

∂ωt

)′
, ..., vec

(
∂yt+k
∂ωt

)′)′
=
(
Λ (θ)′ ⊗Ξ (θ)⊗ Ik

)
b(k;θ) (3.13)

where b(k;θ) ≡
(
vec [Φ(θ)]′ , ..., vec

[
Φ(θ)k

]′)′
.

We can now use the time-series model (3.1) to obtain the VAR counterpart of R (k, t,θ) which is given

by (3.8). Given (3.4), (3.7) and the continuity of R (k; t,Ψ,Σ) with respect to Ψ,Σ, we have that∥∥∥R (k; t,Ψt,Σt)−R
(
k; t, Ψ̂, Σ̂

)∥∥∥ = op(1). (3.14)

This property allows us to use R
(
k; t, Ψ̂, Σ̂

)
to derive an estimate of the structural parameter vector

θt (to emphasise, for each t in our sample period) as follows

θ̂t ≡ arg min
θ

[
R (k, t,θ)−R

(
k; t, Ψ̂t, Σ̂t

)]′
W
[
R (k, t,θ)−R

(
k; t, Ψ̂t, Σ̂t

)]
(3.15)

where W is a positive definite matrix. We assume that the above problem has a unique solution, and

we also define θt to be the unique solution of

arg min
θ

[R (k, t,θ)−R (k; t,Ψt,Σt)]
′W [R (k, t,θ)−R (k; t,Ψt,Σt)] (3.16)

5R denotes the real line and da the dimension of the vector a.
6Ida stands for the da× da identity matrix.
7 D→ implies convergence in distribution, while

P→ convergence in probability.
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Thus: for consistency, for each period t, there must be only one DSGE parameter vector, that

minimises the distance between the DSGE and the estimated VAR impulse responses; and only

one DSGE parameter vector that minimises the distance between the DSGE and true VAR impulse

responses.

The following quantity (the square root of the distance function) -

Q (k;θt,Ψt,Σt) ≡ W1/2 [R (k, t,θt)−R (k; t,Ψt,Σt)] (3.17)

- is used to illustrate that our structural estimate is a consistent estimate. We assume that:

1. Q (k; ·,Ψt,Σt) is continuous in a neighborhood of θt ∈ Θ

2. The rank of ∇θQ (k;θt,Ψt,Σt) equals the dimension of θt and it is constant in a neighborhood

of θt

3. The dimension of Q (k;θt,Ψt,Σt) is greater than or equal to the dimension of θt

4. There exists α > 0 and M = Op (1) such that for all θ̃t,θ
′
t ∈ Θ and all Ψ̂, Σ̂,∣∣∣∣∥∥∥Q(k; θ̃t, Ψ̂t, Σ̂t

)∥∥∥2
−
∥∥∥Q(k;θ′t, Ψ̂t, Σ̂t

)∥∥∥2
∣∣∣∣ ≤M ∥∥∥θ̃t − θ′t∥∥∥α (3.18)

Then given (3.14) and by theorem 2.1 of Newey and McFadden (1986),∥∥∥θ̂t − θt∥∥∥ p→ 0. (3.19)

Our MDE procedure and the assumptions underpinning its consistency are thus identical to the

standard MDE procedures used in fixed coefficient VAR and DSGE analyses, with the exception that

it is carried out, and the assumptions invoked, for each of the ’instantaneous VARs’ defined by the

sequence of parameters in the TVP-VARs which the kernel estimator (described earlier) produces.

This procedure mirrors what Hofmann et al. (2010) did, with the only difference being that, they were

using a smaller dimension VAR, using more familiar state-space/Gibbs sampling methods to estimate

the TVP-VAR, a smaller dimension DSGE model, calibrating some of the parameters, and picking

out just a few of the instantaneous VARs articulated by their TVP-VAR.

Note that the standard costs and benefits of using MDE or related procedures also apply here in our

time-varying parameter implementation. We at no point invoke the truth or falsehood of the DSGE

model in establishing consistency. That result simply states that whatever (true or false) DSGE

model best matches the true set of instantaneous VAR impulse responses will anchor our estimated

DSGE parameters, given ample data.

This concludes the theoretical discussion of our estimation method. Of course many choices have to

be made to operationalise the above approach. These include the choice of the variables in the VAR

model, the sign restrictions and the DSGE model used. These will be discussed in detail in the next

section.
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4 Empirical implementation

As noted earlier, we use the 7 variable quarterly dataset for the US compiled by SW, comprising:

quarterly growth in GDP, CPI inflation, hours worked, quarterly growth in investment, quarterly

growth in consumption, quarterly growth in real wages and the Fed Funds rate. The dataset in the

2007 AER depository is updated to 2010Q2.

4.1 Identification and computation of the impulse response functions

We fit the DSGE model to the impulse response function to a monetary policy shock. We consider this

to be the key moment for estimating parameters defining nominal frictions, which we suspect - not

least because of the previous work by Fernandez-Villaverde and Rubio-Ramirez (2008) and Hofmann

et al. (2010) - are the least microfounded of all of the DSGE parameters. Plus, this preserves a parallel

with the CEE paper in 2005 which fits a fixed coefficient variety of a similar DSGE model to the IRF

to a monetary policy shock. In contrast to CEE, we will identify this shock using sign restrictions,

following (in the sense of being inspired by, rather than implementing the exact restrictions imposed)

Faust (1998), Uhlig (2005), Canova and Nicolo (2002) and others.

We identify four shocks in total, including, in addition to the monetary policy shock: a technology

shock, a labour supply shock, and a demand shock. We identify these additional shocks to increase

the precision with which the monetary policy shock is identified, noting the results in Paustian (2007).

The relevant sign restrictions are encoded in the table below, where the column headings refer, for

those not familiar, to (consumption, investment, GDP, hours worked, inflation, real wages and the

nominal interest rate respectively):

∆c ∆i ∆y h π ∆(w/p) i

mon pol - - - - +

technology + + -

labour supply + + - -

demand + + + + +

Unpacking the table in words: a monetary policy shock is taken to be a shock that, if interest rates rise,

induces inflation, output, investment and consumption to fall, with the responses on hours worked

and the real wage left free. Technology shocks are identified to be such that an improvement in

technology causes inflation to fall, output and investment to rise, with the response of interest rates,

hours worked and consumption left free. (Leaving the hours worked responses free is compelling here

given the prior controversy about that response, and the ease with which this sign can be reversed by

appropriate parameterisation of a DSGE model). An outward shock to labour supply is identified as

one that leads to hours worked increasing at the same time as the real wage falls, and output increases,

with other responses left free. This scheme bears some resemblance to the one used by Chang and

Schorfheide (2003): they took an outward shift in labour supply to be something that reduced labour

productivity: this is consistent with us assuming that real wages fall. A demand shock is one that

induces positive comovement in interest rates, inflation, output and consumption, with the responses

of hours and investment left free.
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In estimating and identifying the impulse response to the monetary policy (and other) shocks there are

two sources of uncertainty. The first is the sampling variability experienced in estimating the reduced

form VAR parameters, and the variance-covariance matrix of the VAR residuals. The second is the

uncertainty associated with the fact that many rotations of the variance covariance of the reduced

form residuals will satisfy the sign restrictions above. We report only uncertainty generated from this

second, rotational source. This is for expositional clarity, but we might note in addition that with

increasingly long samples the sampling uncertainty would of course disappear, while the rotational

uncertainty would not, so, in a sense, the latter is the dominant source of variability.

4.2 Brief review of the Smets-Wouters (2007) model

To make the paper self-contained, this subsection briefly discusses some of the key linearized equi-

librium conditions of Smets and Wouters (2007a) model. Readers who are interested in how these

arrive from solving consumer and firms’ decision problems are recommended to consult the references

mentioned above directly. All the variables are expressed as log deviations from their steady-state

values, Et denotes expectation formed at time t, ‘−’ denotes the steady state values and all the shocks

(ηit) are assumed to be normally distributed with zero mean and unit standard deviation.

The demand side of the economy consists of consumption (ct), investment (it), capital utilisation

(zt) and government spending
(
εgt = ρgε

g
t−1 + σgη

g
t

)
which is assumed to be exogenous. The market

clearing condition is given by

yt = cyct + iyit + zyzt + εgt (4.1)

where yt denotes the total output and Table (1) [displayed at the end of the paper] provides a full

description of the model’s parameters. The consumption Euler equation is given by

ct =
λ/γ

1 + λ/γ
ct−1 +

(
1− λ/γ

1 + λ/γ

)
Etct+1 +

(σC − 1)
(
W̄ hL̄/C̄

)
σC (1 + λ/γ)

(lt − Etlt+1)

− 1− λ/γ
σC (1 + λ/γ)

(rt − Etπt+1) (4.2)

where lt is the hours worked, rt is the nominal interest rate and πt is the rate of inflation. If the degree

of habits is zero (λ = 0), equation (4.2) reduces to the standard forward looking consumption Euler

equation. The linearised investment equation is given by

it =
1

1 + βγ1−σC
it−1 +

(
1− 1

1 + βγ1−σC

)
Etit+1 +

1

(1 + βγ1−σC ) γ2ϕ
qt (4.3)

where it denotes the investment and qt is the real value of existing capital stock (Tobin’s Q). The

sensitivity of investment to real value of the existing capital stock depends on the parameter ϕ (see,

?). The corresponding arbitrage equation for the value of capital is given by

qt = βγ−σC (1− δ)Etqt+1 +
(
1− βγ−σC (1− δ)

)
Etrkt+1 − (rt − Etπt+1) (4.4)

where rkt = − (kt − lt) + wt denotes the real rental rate of capital which is negatively related to the

capital-labour ratio and positively to the real wage.
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On the supply side of the economy, the aggregate production function is define as

yt = φp (αkst + (1− α) lt) (4.5)

where kst represents capital services which is a linear function of lagged installed capital (kt−1) and

the degree of capital utilisation, kst = kt−1 + zt. Capital utilization, on the other hand, is proportional

to the real rental rate of capital, zt = 1−ψ
ψ rkt . The accumulation process of installed capital is simply

described as

kt =
1− δ
γ

kt−1 +
γ − 1 + δ

γ
it (4.6)

Monopolistic competition within the production sector and Calvo-pricing constraints gives the follow-

ing New-Keynesian Phillips curve for inflation

πt =
ip

1 + βγ1−σC ip
πt−1 +

βγ1−σC

1 + βγ1−σC ip
Etπt+1

− 1

(1 + βγ1−σC ip)

(
1− βγ1−σCξp

)
(1− ξp)

(ξp ((φp − 1) εp + 1))
µpt + εpt (4.7)

where µpt = α (kst − lt)−wt is the marginal cost of production and εpt = ρpε
p
t−1 +σpη

p
t −µpσpη

p
t−1 is the

price mark-up price shock which is assumed to be an ARMA(1,1) process. Monopolistic competition

in the labour market also gives rise to a similar wage New-Keynesian Phillips curve

wt =
1

1 + βγ1−σC
wt−1 +

βγ1−σC

1 + βγ1−σC
(Etwt+1 + Etπt+1)− 1 + βγ1−σC iw

1 + βγ1−σC
πt

+
iw

1 + βγ1−σC
πt−1 −

1

1 + βγ1−σC

(
1− βγ1−σCξw

)
(1− ξw)

(ξw ((φw − 1) εw + 1))
µwt + εwt (4.8)

where µwt = wt −
(
σllt + 1

1−λ (ct − λct−1)
)

is the households’ marginal benefit of supplying an extra

unit of labour service and the wage mark-up shock εwt = ρwε
w
t−1 + σwη

w
t − µwσwηwt−1 is also assumed

to be an ARMA(1,1) process.

Finally, the monetary policy maker is assumed to set the nominal interest rate according to the

following Taylor-type rule

rt = ρrt−1 + (1− ρ) [rππt + ry (yt − ypt )] + r∆y

[
(yt − ypt ) +

(
yt−1 − ypt−1

)]
+ εrt (4.9)

where ypt is the flexible price level of output and εrt = ρrε
r
t−1 + σrη

r
t is the monetary policy shock.8

8The flexible price level of output is defined as the level of output that would prevail under flexible prices and wages
in the absence of the two mark-up shocks.
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5 Empirical Results

5.1 Time-varying impulse response functions to a monetary policy shock

Our estimated impulse responses - holding the variance of the reduced form shocks constant - are

reported in Figures 1 and 2 below. Figure 1 and 2 plots 3d charts of the IRFs through time. For

each period, and for each horizon, we are reporting the median across impulse responses that satisfy

the sign restrictions. (For the moment we defer the task of addressing the well known comment by

Fry and Pagan (2007) on this practice for future work).

The broad picture - in part by construction, since some of the signs are imposed - is as follows: a

contractionary policy shock - that therefore causes the short rate to rise - reduces inflation, investment,

consumption and output. The sign on real wages and hours worked were left free, and note that these

both fall. Hours and inflation show signs of a hump-shaped response (the peak response not being

on impact, but later). All charts show pronounced time-variation in the IRFs. For example, there is

a clear increase in the magnitude of the effect of the policy shock on some real variables in the early

2000s, relative to periods just prior to that.

Figure 3 depicts the IRFs in a slightly different way. We calculate the cumulated sum of these responses

and, for each IRF, and for each time period, we plot four lines, the first, fourth, eighth and twelfth

period responses. If the responses are defined as Ri, then the cumulated responses are defined as:

CR1 = R1

CR4 =

4∑
i=1

Ri

CR8 =

8∑
i=1

Ri

CR12 =
12∑
i=1

Ri

Loosely speaking these lines could be viewed as the integral of the response at each horizon. If

CR8 = CR12 then the variable has returned back to its steady-state in period Q = 8 and it stays

there. If CR8 < 0 (CR8 > 0) and CR12 > CR8 (CR12 < CR8) then the series has returned to its

steady state and moves to the opposite direction.

Figure 3 brings out more starkly some of the more detailed time-variation occurring in the IRFs

to the monetary policy shock. As the chart shows, the cumulative impact at all horizons and for

most responses shows quite a bit of variation. To take a few examples: if we look at the charts for

consumption, output, hours [“labour”], we can see that for some periods the turquoise line is below

the red line (implying that the monetary policy shock is still propagating and being amplified out to

12 quarters) yet at other times the reverse is true (implying that the shock has started to dissipate

by 12 quarters). Another example: for most charts, the cumulative impulse at all horizons varies a

lot. The impact of the shock on the growth in investment out to 12 quarters varies between -0.2 and

-1.2; the impact on output at 12 quarters varies between -0.2 and 0. The impact on real wages out to

4 quarters varies from -0.1 to 0.2.
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A necessary condition for us to get time variation in the implied DSGE estimates is that these impulse

responses to a monetary shock vary: this condition is clearly satisfied in our case, so we proceed

therefore to the step of mapping from the IRFs to the DSGE parameter estimates.

5.2 Time Varying DSGE parameters

Our benchmark estimation results are presented in Figures 4 and 5. The charts plot the median and

16%-84% confidence sets that result from fitting the entire set of rotations of the reduced form shocks

that satisfy the sign restrictions. Marked as a blue diamond are the SW estimates produced from

their full information Bayesian Maximum Likelihood procedure, which we report as a comparison.

These SW estimates very often are different from the average of our “sub-sample” estimates. This is

to be expected: our estimates differ not only because they are sub-sample, but because SW used full

information/Bayesian estimates, with informative priors, and ours are partial information, classical

estimates.

We report on the parameter estimates in several blocks; nominal rigidities; real side of the model;

monetary and fiscal policy.

5.2.1 Nominal rigidities.

We estimate very pronounced changes in the parameters defining nominal wage and price rigidity. ξp,

the “Calvo parameter”for prices, which encodes the probability of not re-setting prices, is estimated

to be about 0.72 in 1955, falls steadily to a low point of 0.6 in 1985 (a period which, roughly speaking,

captures the ‘Great Inflation’), and then rises sharply to 0.83, by 2005 (a period which brackets

the ‘Great Moderation’), before falling back sharply to 0.7 by 2010.9 There is strong circumstantial

evidence, as also pointed out by Fernandez-Villaverde and Rubio-Ramirez (2008) and Hofmann et al.

(2010), that this parameter is a reduced form for some underlying state-dependent model of prices in

which the frequency of price changes is inversely related to inflation itself. The equivalent parameter

for wages, ξw follows a very similar path indeed, as we would expect if this speculation about the

underlying state-dependent pricing model is correct, since wage inflation has followed a similar path

to price inflation, but note that despite the pronounced time-variation in both parameters we find

that the probability of not re-setting is always lower for prices than wages.10

The indexation parameter is perhaps the most controversial aspect of the DSGE model: micro evidence

on prices strongly suggests that there is no indexation; yet indexation in prices and wages greatly

improves the fit of the DSGE model to macro time series. ip records the coefficient in the one argument

linear rule that firms use to multiply with last period’s inflation to index prices. We estimate that this

begins in 1955 at 0.4, rising to almost 0.7 in 1985 or so, before falling to a low point of around 0.25

in 2005, and then rising sharply again to 0.5 by 2010. This parameter is very closely correlated with

the estimated path for the Calvo price parameter ξp, for reasons which are obviously not interpretable

through the lens of the time-invariant DSGE model of nominal rigidities. This parameter varies

a lot with monetary regimes, as Benati (2008) showed, but our estimates reveal that there is also

9In terms of the price average duration the last two numbers imply that this varies from, approximately, 2 to 8
quarters, respectively (red diamonds in Figure 4).

10Mapping the minimum and the maximum value of ξw to wages average duration we realise that wages were reset
every 2 and 10 quarters, respectively (red diamonds in Figure 4).
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clearly a lot of instability within institutionally-defined regimes. For example, it is not the case that

indexation-induced persistence is greater pre than post-Volcker. Estimated indexation varies a lot in

both sub-regimes (Note too that we are separately estimating the contribution of monetary policy to

inflation persistence here, and will report on the policy block of parameters below). The equivalent

parameter for wages, iw follows a very similar path, but fluctuating in a slightly narrower range

(0.4-0.7, as opposed to 0.25-0.7 for prices).

These parameter fluctuations echo those found in Fernandez-Villaverde and Rubio-Ramirez (2008)

and Hofmann et al. (2010). Relative to the latter, which is the closest paper to ours in execution, we

find slightly smaller fluctuations in the parameters defining nominal rigidity. There are still quite a

few differences between their method and ours to account for the mildly contrasting results: we use

kernel methods to estimate the reduced form VAR, they use the random coefficients model; we use

a 7 variable VAR and they use 4 variables; we allow all parameters to vary over time, they fix many

at calibrated values; our identification scheme differs from their in some details; and we fit only to a

monetary policy shock.

Our results emphasise that more research may be needed to refine the nominal rigidities in the canonical

DSGE model, echoing many previous papers. It is well known that the details of optimal monetary

policy depend a lot on the nature of nominal rigidities. Examples being: the stickier are wages relative

to prices, the more weight the authorities should place on nominal wage stabilisation relative to price

stabilisation (Erceg et al. (2000)); the presence of indexation implies the authorities should stabilise a

quasi-difference of inflation involving the indexation parameter itself (Woodford (2003)). Finding such

a large amount of variation in the nominal rigidity parameters is disquieting since they are important

for optimal policy.

5.2.2 Real economy parameters.

There are several points worth noting here. First, on h, the parameter that encodes habits in con-

sumption. This parameter is estimated at about 0.77 in 1955 and fluctuates between this value and

about 0.83 until the early 2000s, when it jumps from a trough of 0.75 to 0.88. These changes are

smaller than for the indexation parameters that are engineered to generate persistence on the nominal

side, but in terms of half-lives of consumption these are still pretty large changes. Consumption ends

up more backward-looking and less sensitive to real interest rate changes than it begins the sample.

The inverse intertemporal elasticity of substitution (σc) fluctuates quite a bit, showing a particularly

large fall from a peak in 1970 of about 1.25 to a trough of about 0.8 in 1980. The inverse Frisch

elasticity of labour supply (σL) shows a marked fall between 1985 when it peaks around 5.25, to the

early 2000s when it troughs at around 2. The parameter governing the costs of adjusting investment

(Φ) is pretty flat for most of the sample, but then shows a large rise from a trough of around 2 in

1990 to a peak of about 5 in 2005, before falling back sharply to 2 again. The greater this parame-

ter, the more detached is investment from the traditional cost of finance manifest in Tobin’s Q. This

suggests that the DSGE model had a hard time to explain the boom investment during the 1990s,

and the subsequent ‘post Y2K’ bust in the 2000s. Interestingly, the discount rate, β, is found to be

relatively constant. We draw comfort from this. There is a wide body of evidence, macro/finance and

micro/experimental, that the discount rate is close to but less than 1. So this is probably the most

micro-founded parameter of all in the DSGE model. Stepping back: where the DSGE model is most
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micro-founded, we find the parameter estimates to be flat; where it is least well-microfounded, we find

the parameter to be quite variable. We take our flat β to strengthen the case for interpreting our

results as indicating something useful about the DSGE model’s failings. If everything were moving,

even parameters that were relatively solidly evidenced outside the model, we could be more sceptical

that this estimated variation was just noise, or indicative of poor identification. Note that the flat β

confirms ex post that the data would in some sense support the fixing of β in Hofmann et al. (2010).

5.2.3 Policy parameters.

Monetary policy is assumed to have been characterised by an interest rate rule such that the interest

rate responds to its own lag, a term in the inflation rate, the output gap and the change in the

output gap (sometimes known as the ‘speed limit’). The responsiveness of interest rates to inflation,

rπ, is the least precisely estimated of the monetary policy parameters, and moves around the least

relative to the confidence sets that we compute, staying within a range of 1.7 to 1.9. On the face of

it our estimates fail to confirm previous work that argues that the Great Inflation was caused by a

breach of the Taylor principle. We effectively discard all DSGE parameter constellations that imply

indeterminacy by penalising these heavily in the minimum distance procedure. But the profile of the

estimates of the monetary policy and other parameters suggests that this constraint is never binding:

if it were we would expect the minimisation to drive one of the parameters somewhere in the model to a

boundary. We discard separately (even amongst otherwise stationary solutions) candidate parameter

sets in which rπ is less than 1, but this coefficient is never driven to that boundary in estimation.11

The coefficient on lagged interest rates, ρ, fluctuates between 0.75 and 0.95, which we take to be

quite large movements, especially relative to the small confidence sets we estimated. Interestingly,

the coefficient on lagged interest rates rises at the point when the indexation parameters for prices

and wages rise. It has been remarked in previous work Dittmar et al. (2005) that interest rate inertia

can generate reduced form inflation persistence and therefore substitute for persistence imparted by

indexation in price and wage setting. But our estimates tell a story of policy induced and nominal

rigidity-induced persistence going hand in hand, acting as complements. The coefficients on the level

and change in the output gap also vary somewhat, between 0.04 and 0.14 for the level term and 0.15

and 0.3 for the speed limit term. The most pronounced movement in the monetary policy parameters

occurs in the early 200s, a time when the Fed was keeping rates as low as possible to avoid the threat

of deflation. Our estimates pick this up as being associated with a rise in interest rate inertia and the

responsiveness to the speed limit, and a fall in the response to the level of the output gap.

Finally, the volatility of the estimated monetary policy shock process falls steadily through the sample

period, from about 0.18 in 1955 to about 0.12 by 2010. We are used to reading that this volatility

is markedly higher pre than post Volcker, but our graphs tell a slightly different story. True enough,

this volatility is, on average, higher pre than post-Volcker. But its fall starts in 1970, and is actually

complete by 1985 when the volatility troughs. Thereafter, for the bulk of the Volcker regime, it rises,

until Greenspan arrives.

Taken together, the variation we detect in policy parameters is considerably less than that uncovered

11We appreciate that a value >1 is not going to be necessary or sufficient to guarantee stability, but it is nevertheless
interesting that our estimation generates values always >1, when others, using estimates of the interest rate reaction
function only, or structural models, have found differently.
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in much of the other work whose focus was understanding the causes of the Great Inflation and its

subsequent moderation. At face value (and noting that this is conditional on taking literally the notion

that the world was characterised by a sequence of private sector blocks of the DSGE model that also

differed each period) this suggests less of a role for monetary policy in explaining changes in macro

dynamics than other accounts which take different approaches.

5.3 Sensitivity: time varying Σ

It has been common for researchers estimating TVP-VARS using the Gibbs Sampling algorithm and

the random coefficients model to allow for time varying volatilities. Especially following the comments

by Sims on the first Cogley-Sargent work in this vein [Sims (2001)] where he worried that the apparent

changes in the reduced form VAR dynamics had been amplified by imposing that the VAR had time-

invariant volatilities. In this section, we comment on whether the results described above survive us

allowing the volatilities to be time varying. On the whole, the results survive. We still find substantial

instability in the DSGE parameter estimates, and the paths of the estimates largely follow those

derived under the assumption of fixed volatilities. These findings are evident from Figures 6 and 7,

which plot the median for the time-invariant volatilities against the confidence sets for those estimated

assuming time-varying volatilities.

6 Conclusions

In this paper, we have discussed an approach to the estimation of time-varying DSGE models that

begins by estimating a time-varying parameter VAR on the 7 variable data set SW used to estimate

their medium scale DSGE model. Such an estimation is currently impractical using the widely known

Gibbs-Sampling algorithms to estimate stochastic time-varying coefficient models, given the need to

impose that at each point in time the implied VAR satisfies stationarity conditions. In order to

proceed, we have deployed a kernel estimator, explained in prior work, (Kapetanios and Yates (2011),

Giraitis et al. (2011)) that is known to deliver consistent estimates of the VAR parameters, and has

no problem handling large dimension systems.

Armed with this estimated TVP-VAR, we have identified monetary policy shocks using sign restric-

tions, and computed the impulse response to those shocks implied by each of the instantaneous VARs

that the TVP-VAR produces, for each observation period in our data set. We have then fit the SW

model to these impulse response functions using a minimum distance procedure. In doing this, we are,

roughly speaking, replicating what CEE did for their model, (similar in design to SW), for impulse

responses to a monetary policy shock that were recovered from a fixed-coefficient VAR. We there-

fore map the time-varying evolution in reduced form dynamics into time-variation in the structural

parameters of the DSGE model.

We find that many of the parameters of the model are subject to substantial time-variation. Those

that move most are those that define the nominal rigidities in the model: the Calvo and indexation

parameters for prices and wages. These have long been the focus of criticism from outside the DSGE

community (see, for example, Chari et al. (2009)), and recognised by those practising within it to be

work in progress. But other parameters appear to move a lot too. For example, the parameter that
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defines the cost of adjusting investment. Smaller, but still economically meaningful movements are

detected in the parameter that encodes habits in consumption, and those that define the behaviour

of the monetary policy authorities.

It is hardly surprising that the changing reduced form VAR parameters translate into changes in the

DSGE parameters. Small samples are noisy. And we know that the DSGE model itself suffers from

identification problems. We should surely expect these estimates to move a round quite a bit over

time. So is there really anything to be read into these estimates? We believe they deserve attention

for a few reasons. First, the movements are smooth, relatively low frequency and, in the case of the

parameters defining nominal rigidities, correlate in a systematic way with inflation, which, as others

have noted, hints at an underlying state-dependent model for pricing. These movements look less like

those one would expect if the underlying cause was small-sample noise. Second, the parameters that

move most are those that are accepted to be the least well micro-founded, and whose justification

relies most on being necessary to fit the (fixed-coefficient) macro time series dynamics: those defining

nominal rigidities and investment adjustment costs. Those that move least - for example the discount

rate, are those for which there is a wide body of prior evidence that this is an invariant behavioural

parameter.

A final feature of our results that may be of interest is the relatively small movements in the parameters

that define monetary policy compared to those estimated by papers in the Great Moderation literature.

For example, taken literally, we find no support for the argument that there have been periods where

interest rates do not satisfy the “Taylor Principle”, and that the Great Inflation was therefore the result

of a period where policy had led to indeterminacy. We would not want to push this interpretation too

far though, since it is stretching it somewhat to characterise central bank policy as implementing an

entirely different but parsimonious rule for rates each period in the sample.

These results confirm finding in two other similar papers, particularly Fernandez-Villaverde and Rubio-

Ramirez (2008) and Hofmann et al. (2010). Those papers, as well as recording changes in monetary

policy behaviour, put the spotlight on the nominal rigidities in the DSGE model by recording that

estimates of those parameters moved over time, and in ways correlated with inflation. We have found

this too. Although, as we have emphasised already, our work also suggests that other parameters on

the real side seem to vary substantially too.
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Figure 1: IRFs Constant Σv: A
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Figure 2: IRFs Constant Σv: B
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Figure 3: IRFs Summary Constant Σv
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Figure 4: Structural Parameters Constant Σv: A
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Figure 5: Structural Parameters Constant Σv: B
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Figure 6: Structural Parameters Time-Varying Σv: A
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Figure 7: Structural Parameters Time-Varying Σv: B
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Figure 8: IRFs Time-Varying Σv: A
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Figure 9: IRFs Time-Varying Σv: B
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Figure 10: IRFs Summary Time-Varying Σv
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Tables

Table 1: Parameter descriptions and estimated values from ?

Symbols Description M0

γ Steady State Growth Rate 1.00
π Steady State Inflation 1.00
Φ Fixed Cost 1.50
S” Steady State Capital Adjustment Cost Elasticity 5.74
α Capital Production Share 0.19
σ Intertemporal Substitution 1.38
h Habit Persistence 0.71
ξw Wages Calvo Parameter 0.70
σl Labour Supply Elasticity 1.83
ξp Prices Calvo Parameter 0.66
iw Wage Indexation 0.58
ip Price Indexation 0.24
z Capital Utilisation Adjustment Cost 0.27
φπ Taylor Inflation Parameter 2.04
φr Taylor Inertia Parameter 0.81
φy Taylor Output Gap Parameter 0.08
φdy Taylor Output Gap Change Parameter 0.22
ρg Government Spending Shock Persistence 0.97
ρms Policy Shock Persistence 0.15
ρp Price Mark-up Shock Persistence 0.89
ρw Wage Mark-up Shock Persistence 0.96
map Price Mark-up MA Term 0.69
maw Wage Mark-up MA Term 0.84
σg Government Spending Shock Uncertainty 0.53
σms Policy Shock Uncertainty 0.24
σp Price Mark-up Shock Uncertainty 0.14
σw Wage Mark-up Shock Uncertainty 0.24
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