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Abstract

This paper uses Bayesian methods to estimate the ‘fiscal limit’ distribution for Greece
implied by a rational expectations framework. We build a real business cycle model
that allows for interactions among fiscal policy instruments, the stochastic ‘fiscal limit,’
and sovereign default. A fiscal limit measures the debt level beyond which the gov-
ernment is no longer willing to finance, causing a partial default to occur. The fiscal
policy specification takes into account government spending, lump-sum transfers, and
distortionary taxation. Using the particle filter to perform likelihood-based inference,
we estimate the full nonlinear model with post-EMU data until 2010Q4. We find that
the probability of default on Greek debt remained close to zero from 2001 until 2009,
and then rose sharply to the range of 5% to 10% by 2010Q4. The model also predicts
a probability of default between 60-80% by 2011Q4, consistent with the debt restruc-
turing arrangements that took place at the beginning of 2012. In addition, the surge
in the real interest rate in Greece in 2011 is within forecast bands of our rational ex-
pectations model. Finally, model comparisons based on Bayes factors strongly favor
the nonlinear model specification with an endogenous probability of default over a lin-
earized specification without default.
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1. Introduction

During the past five years, there has been a concern over the fiscal positions of several

Eurozone nations, as evidenced by the rapid increase in long-term interest rate spreads of

several countries’ bonds against German bonds. For instance, the spread between Greek

bonds and German bonds rose from 2.35 percentage points in 2009 to nearly 30 points by

the end of 2011.

Such marked increases in spreads have stimulated a debate over whether financial markets

have mispriced default risks in the Eurozone periphery countries before and/or after the start

of the crisis. Aizenman, Hutchison, and Jinjarak (2012) find a dynamic panel model can

hardly predict the magnitude of sovereign risk premia in the Eurozone periphery countries

during the crisis, either in or out of sample. They conjecture that the market has either

mispriced the risk, or has priced based on future, not current, fundamentals. Using a similar

approach, De Grauwe and Ji (2012) take a stronger stand and argue that the financial

markets underpriced the sovereign risk from 2001 to 2008 and have been overpricing the risk

since then.

One issue with these approaches is that the reduced-form panel regressions lack the struc-

ture to extensively explore how macroeconomic fundamentals explain interest rate dynamics.

This paper introduces a different approach to contribute to the pricing debate by estimating

a rational expectations model that allows for sovereign default. Using Bayesian method, the

structural model is estimated for Greece during the post-EMU period until the end of 2010.

Two key findings emerge. First, the rapid deterioration of confidence in Greek debt

over 2011 is consistent with behavior from a simple rational expectations model. Using the

estimated structural model, we find that the model-implied default probability remained

close to zero from 2001 until 2009, and then rose sharply to the range of 5% to 10% by

the fourth quarter of 2010. The model also predicts a probability of default between 60%

to 80% by the end of 2011, consistent with the debt restructuring arrangements that took

place at the beginning of 2012. In addition, the surge in the real interest rate observed in

Greece over 2011 is well within the forecast bands of our rational expectations model. These

results suggest that Greek debt was not mispriced in 2011, as the interest rate path can be

accounted for by macroeconomic fundamentals.

Second, model comparisons based on Bayes factors strongly favor the nonlinear model

specification with an endogenous probability of default over a log-linearized model speci-

fication that does not allow for default. In addition, some parameters are more precisely

estimated with the nonlinear specification.

We consider a closed economy in which the government finances transfers and expendi-



tures by collecting distortionary income taxes and issuing bonds.1 The bond contract is not

enforceable and depends on the maximum level of debt that the government is politically able

to service, a so-called ‘fiscal limit.’ Given the stochastic environment, we do not assume that

the fiscal limit is a deterministic point, but rather follows a distribution. Previous studies

have shown that economic models can give rise endogenously to such a distribution through

dynamic Laffer curves and the political inability to cut public expenditures (see Bi (2012),

and Juessen, Linnemann, and Schabert (2011)). In the case of Greece, the protests against

austerity measures in 2010 and 2011 suggest the relevance of political considerations. Instead

of estimating a structural political economy model that captures such underlying political

factors, we follow the approach of Davig, Leeper, and Walker (2010) and take the distribu-

tion of the fiscal limit as exogenously given. The parameters associated with the distribution

are estimated, so that the fiscal limit is data-driven in our framework.

We do not model default as a strategic decision made by a benevolent government.

Instead, we appeal to political frictions that make the default decision intrinsically uncertain.

Default is possible at any point on the distribution of the fiscal limit. Randomness inherent

in the politically-determined default decision is modeled as a random draw of the ‘effective

fiscal limit’ from the distribution. Each period, the government reneges on a fraction of its

debt if the level of government debt surpasses the effective fiscal limit; otherwise, it fully

honors the debt obligations.

Since the economy switches between the default and the no-default regimes endogenously

depending upon the level of government debt, the model cannot be solved using a first-order

approximation. Instead, it is solved using the monotone mapping method (see Davig (2004)

and Coleman (1991)) and estimated using Bayesian inference methods and a sequential

Monte Carlo approximation of the likelihood (see Fernandez-Villaverde and Rubio-Ramirez

(2007), Doh (2011), and Amisano and Tristani (2010)).

2. Contacts with the Literature

An important branch of the sovereign default literature builds on Eaton and Gersovitz (1981),

Aguiar and Gopinath (2006), and Arellano (2008). In those models, sovereign default is the

optimal decision made by a benevolent social planner in response to unlucky external shocks.

Our approach abstracts from the government’s strategic incentives to default; instead, it lets

1Ceteris paribus, the assumption that the economy is open and all debt is held by foreigners raises the
observed risk premium relative to the closed economy environment, as foreigners do not experience the
negative wealth effects of debt and, in turn, have less incentive to hold debt. Therefore, the estimates from
our closed economy framework can be thought as the lower bound to estimates of the fiscal limit. See section
4.2.3 for more details.
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the data determine the distribution of the fiscal limit, which can be driven by both bad policy

and bad luck.

A related branch of the empirical literature focuses on estimating first order approxima-

tions of small, open economy DSGE models to study real business cycle properties. Examples

include Garcia-Cicco, Pancrazi, and Uribe (2010) and Guerron-Quintana (forthcoming). In

contrast, we estimate a full, nonlinear model that incorporates a richer fiscal policy specifi-

cation than often is encountered in this literature to study properties related to default.2

This paper is also related to a large empirical literature that studies the determinants

of sovereign default risk premia through reduced-form panel regressions. Examples include

Alesina, De Broeck, Prati, and Tabellini (1992), Bernoth, von Hagen, and Schuknecht (2006),

Aizenman, Hutchison, and Jinjarak (2012), and De Grauwe and Ji (2012). This literature

has not fully agreed upon the relative importance of different factors in determining risk

premia, suggesting there is an importance of country-specific macroeconomic fundamentals

in explaining sovereign risk premia. In addition, linear regressions that are often used in this

line of work cannot capture the strong nonlinearity in sovereign risk premia that rational

expectations models predict, see Arellano (2008) and Bi (2012) among others.3 Nonlinearity

may be particularly relevant in a crisis, such as the one the Eurozone is facing now.

Using a VAR model based on rolling-window estimation, Polito and Wickens (2012)

compute the time-varying forecasts of the debt-to-GDP ratio and their volatility for the

United States, and then calculate the time-varying default probabilities for different ad-hoc

debt limits. Related work by Ostry, Ghosh, Kim, and Qureshi (2010) estimate historical

fiscal responses to construct debt limits which are backward-looking by construction.

This paper builds upon our earlier work of Bi and Traum (2012), which provides a coher-

ent framework for estimating forward-looking fiscal limits, but does not examine the extent

to which a rational expectations model can explain the interest rates surges on sovereign

debt.

3. Model

Following Bi (2012), our model is a closed economy with linear production technology,

whereby output depends on the level of productivity (At) and the labor supply (nt). Private

consumption (ct) and government purchases (gt) satisfy the aggregate resource constraint,

ct + gt = Atnt. (1)

2Our modeling of private behavior is simpler than the frameworks often found in this literature, which is
a trade-off made to ensure the full nonlinear estimation is computationally feasible.

3Some papers in this literature allows weak nonlinearity by including quadratic terms.
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The deviation of technological productivity (At) from its steady state value (A) follows an

AR(1) process,

At −A = ρA(At−1 −A) + εAt εAt ∼ N (0, σ2
A). (2)

3.1 Government

The government finances lump-sum transfers to households (zt) and exogenous, unproductive

purchases by levying a tax (τt) on labor income and issuing one-period bonds (bt). We denote

qt as the price of the bond in units of consumption at time t. For each unit of the bond,

the government promises to pay the household one unit of consumption in the next period.

However, the bond contract is not enforceable. At time t, the government may partially

default on its liability (bt−1) by a fraction of ∆t, with the post-default liability being denoted

as bdt ,

τtAtnt + btqt = (1−∆t)bt−1
︸ ︷︷ ︸

bdt

+gt + zt. (3)

The default scheme at each period depends on an effective fiscal limit (s∗t ), specified in

terms of the debt-to-GDP ratio. If current outstanding debt obligations, relative to GDP,

are below the effective fiscal limit, then the government fully repays its liabilities; otherwise,

the government partially defaults on its obligations by a fixed share of δ. The amount of

unpaid bonds in any period (∆t), which we call the default rate, is summarized by

∆t =

{

0 if st−1 < s∗t

δ if st−1 ≥ s∗t

where st−1 = bt−1/yt−1. The effective fiscal limit (s∗t ) is stochastic and drawn from an

exogenous distribution, s∗t ∼ S∗. Bi (2012) shows that a similar rational expectations model

can give rise to an endogenous distribution of the fiscal limit that is strongly nonlinear

— once the default probability begins to rise, it does so rapidly. To capture this strong

nonlinearity, we follow Davig, Leeper, and Walker (2010) and model the cumulative density

function of the fiscal limit distribution as a logistical function with parameters η1 and η2

dictating its shape,4

pt−1 ≡ P (st−1 ≥ s∗t ) =
exp(η1 + η2st−1)

1 + exp(η1 + η2st−1)
, (4)

4Davig, Leeper, and Walker (2010) specify the fiscal limit in terms of a tax rate, while we specify the
fiscal limit in terms of the debt-to-GDP ratio.
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where pt−1 is the default probability associated with the debt-to-GDP ratio of st−1. The

higher the government liability, the higher the default probability. The distribution is

uniquely determined by the η1 and η2 parameters. As elaborated in section 4.2.1, these

parameters are inferred from the estimation, so that the associated distribution reflects the

economic and political fiscal limit implied by the data. With the estimated distribution, we

can compute the default probability for Greek government debt.

We assume that the government follows simple fiscal rules: it may raise the income tax

rate or reduce government spending when the level of debt increases:

τt = (1− ρτ )τ + ρτ τt−1 + ετt
︸ ︷︷ ︸

uτ
t

+γτ
(

bdt − b
)

γτ > 0, ετt ∼ N (0, σ2
τ) (5)

gt = (1− ρg)g + ρggt−1 + εgt
︸ ︷︷ ︸

ug
t

−γg
(

bdt − b
)

γg > 0, εgt ∼ N (0, σ2
g) (6)

AR(1) components are denoted as uτt and ugt , and x denoting the steady state level of any

variables xt. γ
τ and γg are the fiscal adjustment parameters. A larger γτ or γg implies that

the government is more willing to retire debt by raising the tax rate or cutting government

spending.

The non-distortionary transfers are modeled as a residual in the government budget

constraint, exogenously determined by an AR(1) process,

zt − z = ρz(zt−1 − z) + εzt εzt ∼ N (0, σ2
z). (7)

Since transfers are not included as an observable in our estimation, they can be thought of as

a residual capturing all movements in government debt that are not explained by the model.

3.2 Household

With access to the sovereign bond market, a representative household chooses consumption

(ct), hours worked (nt), and bond purchases (bt) by solving,

max E0

∞∑

t=0

βt (log (ct − hc̄t−1) + φ log(1− nt)) (8)

s.t. Atnt(1− τt) + zt − ct = btqt − (1−∆t)bt−1 (9)

where β is the discount factor. The household’s utility for consumption is relative to a habit

stock that is given by a fraction of aggregate consumption from the previous period, hc̄t−1
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with h ∈ [0, 1].

The household’s first-order condition requires the marginal rate of substitution between

consumption and leisure equates to the after-tax wage. The bond price reflects the house-

hold’s expectation about the probability and magnitude of sovereign default in the next

period.

φ
ct − hc̄t−1

1− nt
= At(1− τt) (10)

qt = βEt

(

(1−∆t+1)
ct − hc̄t−1

ct+1 − hc̄t

)

. (11)

The optimal solution to the household’s maximization problem must also satisfy the transver-

sality condition,

lim
j→∞

Etβ
j+1uc(t+ j + 1)

uc(t)
(1−∆t+j+1)bt+j = 0. (12)

3.3 Model Solution

The complete model consists of a system of nonlinear equations, including the household’s op-

timization conditions, household and government budget constraints, specifications of fiscal

policy, the default scheme, shock processes, and the transversality condition. The solution,

based on Coleman (1991) and Davig (2004), conjectures candidate decision rules that reduce

the equilibrium conditions to a set of expectation first-order difference equations.

At time t, the state vector (ψt) includes (bdt , ct−1, At, u
g
t , zt, u

τ
t ), and the decision rule of

the bond price can be written as qt = f q(ψt). The core equilibrium conditions are

qt =
bdt + zt + gt − τtAtnt

bt
(13)

qt = β(ct − hct−1)Et
1−∆t+1

ct+1 − hct
. (14)

The government bond demand equation, (13), is derived from the government budget con-

straint, while the bond supply equation, (13), is from the household’s first-order condition.

Appendix A discusses the solution procedure in detail.

4. Estimation

The model is estimated for Greece over the post-EMU period, 2001Q1-2010Q4, as inter-

est rates during the pre-Euro period are susceptible to exchange rate risk from which our

model abstracts. Five observables are used for the estimation: real output, the government
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spending-to-GDP ratio, the tax revenue-to-GDP ratio, the government debt-to-GDP ratio,

and the 10-year sovereign real interest rate. For the estimation, we use percentage deviations

of each observable from its mean value over the sample. Figure 3 depicts the data used for

estimation. Appendix B.1 provides a detailed description of the data.

4.1 Methodology

We estimate the model using Bayesian methods. The equilibrium system is written in the

nonlinear state-space form, linking observables vt to model variables xt:

xt = f(xt−1, ǫt, θ) (15)

vt = Axt + ξt, (16)

where θ denotes model parameters and ξt is a vector of measurement errors distributed

N(0,Σ). We assume that Σ is a diagonal matrix and calibrate the standard deviation of

each measurement error to be 20% of the standard deviation of the corresponding observable

variable.5

We use a particle filter to approximate the likelihood function. For a given sequence

of observations up to time t, vt = [v1, ..., vt], the particle filter approximates the density

p(xt|v
t, θ) by applying a law of large numbers to a series of simulations using a swarm of

particles xit (i = 1, ..., N), see appendix B.2 for more details. The particle filter is applicable

for nonlinear and non-Gaussian distributions, and it is increasingly used to estimate non-

linear DSGE models, to which class our model belongs. Recent examples include An and

Schorfheide (2007), Fernandez-Villaverde and Rubio-Ramirez (2007), Amisano and Tristani

(2010), Fernandez-Villaverde, Guerron-Quintana, Rubio-Ramirez, and Uribe (2011), and

Doh (2011).

We combine the likelihood L(θ|vT ) with a prior density p(θ) to obtain the posterior kernel,

which is proportional to the posterior density. We assume that parameters are independent

a priori. However, we discard any prior draws that do not deliver a unique rational expec-

tations equilibrium, as we restrict the analysis to the determinacy parameter subspace.6 We

construct the posterior distribution of the parameters using the random walk Metropolis-

Hastings algorithm, see appendix B.3 for more details. In each estimation, we sample 500,000

draws from the posterior distribution and discard the first 300,000 draws.7 The likelihood is

5Estimating measurement errors provides complications with nonlinear estimation techniques. See Doh
(2011) for more discussion of the role of measurement error in nonlinear DSGE model estimation.

6A technical appendix of the authors provides more discussion on this point. Assuming a 30% annualized
default rate, only 0.38% of the prior distribution falls outside the determinacy region.

7We use Fortran MPI code compiled in Intel Visual Fortran for the estimation. We use the computer
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computed using 60,000 particles, and posterior analysis is conducted using every 25th draw

from the chains.

4.2 Prior Distributions

As shown in table C, we impose dogmatic priors over some parameters. The discount rate is

0.99, so that the deterministic net interest rate is 1%.8 We calibrate the household’s leisure

preference parameter φ such that a household spends 25% of its time working at the steady

state. We calibrate the deterministic debt-to-GDP ratio, government spending-to-GDP ratio,

and tax rate to the mean values of the data sample.

The prior for habit persistence h is similar to those in the linear DSGE estimation liter-

ature, for instance Smets and Wouters (2007). For the remaining parameters, we first use

ordinary least squares and estimate an AR(1) process for GDP and processes for government

spending, the tax rate, and transfers given by equations (5)-(7).9 The results are used as

general guidance for the parameter space of the shocks’ persistence and standard deviations.

For the government spending and the tax adjustment parameters, we form priors for the

long-run responses in terms of percentage deviations from the steady state, that is

γg,L ≡
b̄

ḡ

γg

(1− ρg)
, γt,L ≡

b̄

τ̄

γτ

(1− ρτ )

These values are more comparable to estimates in the literature. Since determinacy is

sensitive to the combination of the γτ,L and γg,L parameters, we restrict the lower bound of

the γτ,L (γg,L) prior to a value that ensures determinacy when only γτ,L (γg,L) finances debt.

For the standard deviations of shocks, we form priors relative to relevant steady-state

variables: σk,p ≡ σk/J̄ for J = {A, g, τ, z} and k = {a, g, τ, z}. This gives standard deviations

as percentage deviations, which provides more intuitive comparisons across values.

4.2.1 Fiscal Limit

As discussed in section 3.1, the fiscal limit distribution, given by equation (4), is defined by

the η1 and η2 parameters. A property of the logistic function is that for any given two points

on the distribution, (s̃, p̃) and (ŝ, p̂), the parameters η1 and η2 can be uniquely determined

server system at the Bank of Canada, each CPU of which uses Xeon CPU X5680 at 3.33GHz and has 23
processors with 64G RAM. One evaluation using the particle filter takes 5 seconds. These computational
constraints limit the number of draws from the Metropolis-Hastings algorithm.

8The mean of our data is 0.8% for Greece.
9We back out the model-consistent tax rate and transfers series implied by our observables for this exercise.
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by

η2 =
1

s̃− ŝ
log

(
p̃

p̂

1− p̂

1− p̃

)

, η1 = log
p̃

1− p̃
− η2s̃. (17)

For a given default rate δ, p̃ and p̂ represent the default probabilities at the debt-to-GDP

ratios of s̃ and ŝ respectively. Since they provide a more intuitive description about the fiscal

limit distribution than η1 and η2, we work directly with (s̃, p̃) and (ŝ, p̂).

We choose p̃ = 0.3 and p̂ = 0.999. Unfortunately, since defaults are not observed in

our data sample, the data is unlikely to be informative about the upper bound of the fiscal

limit distribution. In order to estimate s̃, we fix the difference between s̃ and ŝ to be 60% of

steady-state output, which captures the observation that once risk premia begin to rise, they

do so rapidly.10 This assumption fixes the shape of the fiscal limit distribution, while the

estimate of s̃ determines the intercept of the distribution. Figure 1 illustrates this concept

by plotting the fiscal limit distributions that are associated with various s̃ values. Given the

lack of guidance for the parameter s̃, we adopt a diffuse uniform prior over the interval 1.4

to 1.8, implying that the debt level associated with a 30% probability of default ranges from

140 to 180% of GDP.11 The red dashed line of figure 1 depicts the fiscal limit distribution

associated with the lower bound of s̃, while the black dotted line shows the distribution

associated with the upper bound of s̃.

4.2.2 δ Identification

To our knowledge, aside from Bi and Traum (2012), this paper is the only attempt to estimate

a DSGE model of sovereign default. Thus, prior to estimating the model with real data,

we performed several estimations with simulated data.12 Unfortunately, the results revealed

that we cannot jointly identify the default rate (δ) and the fiscal limit parameter (s̃) when

the data exclude observed defaults, since various combinations of δ and s̃ are consistent

with the same risk premium. Given this limitation, we estimate our model for two different

calibrations: δ fixed at 0.05 and 0.075. These calibrations imply annualized rates of default

(δA) of 20% and 30% respectively, which falls within the range of actual default rates in

emerging market economies over the period 1983 to 2005, as documented by Bi (2012).

10The difference of 60% of output, albeit ad-hoc, should not change the key estimation results as the data
are unlikely to be informative about the upper bound of distribution.

11Posterior estimates are robust to raising the upper bound of s̃ (results are available from the authors).
Decreasing the lower bound of s̃ dramatically increases the parameter region that falls outside of determinacy,
as it increases the likelihood of the government encountering a situation where it repeatedly defaults on debt.

12The results are available in a technical appendix from the authors.
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4.2.3 Modeling Alternatives

We assume a closed economy model for the estimation. In contrast, the literature on

sovereign default in emerging markets often utilizes an open economy framework where all

sovereign debt is held by foreigners, see Eaton and Gersovitz (1981), and Arellano (2008).

In the closed economy, domestic households have incentive to hold debt because of the

negative wealth effects of deficit-financed fiscal policies. Such policies cause households to

increase their current bond holdings (i.e. savings), as they know that future taxes will

increase to finance the accumulated debt. In contrast, foreigners do not face the same

negative wealth effects and, therefore, the interest rate reflects only the probability of default.

Ceteris paribus, in our model the assumption that the economy is open and all debt is held

by foreigners raises the observed risk premium relative to the closed economy environment.

Thus, estimates from our closed economy framework can be thought as the lower bound to

estimates of the fiscal limit associated with certain probabilities of default.

4.3 Posterior Estimates

Figure 2 plots the prior and posterior distributions for parameters when the annualized

default rate is set to 30%. Table 2 compares the medians and 90% credible intervals of the

posterior distributions estimated under both default rate specifications. For comparison, the

means and 90% intervals from the priors are also listed. The data appear informative for

all of the parameters, as the 90% credible intervals are smaller than those from the prior

distributions.

The estimates of s̃ vary slightly across the two default rate specifications. If the partial

default rate, δA, is 30%, the debt-to-GDP ratio that is associated with a 30% probability

of default is between 1.53-1.58, with the median being 1.56. If the partial default rate is

20%, the debt-to-GDP ratio that is associated with a 30% probability of default is between

1.5-1.55, with the median being 1.52. The lower s̃ estimates for a lower δA calibration are

consistent with theory. The model tries to match the interest rate data through the values

of δA and s̃. For higher values of δA, agents expect to lose more of the face-value of debt

following a default, and therefore households demand a higher interest rate to compensate

for this risk. For the given risk premium implied by the data, a slightly higher s̃ is needed

to offset a higher δA value.

For comparison, we also list the estimates implied by a log-linearized version of our

model in which the government is not allowed to default. The system of equations for

the log-linearized model is listed in appendix C. We use the Kalman filter to calculate the

likelihood function and initialize the Metropolis-Hastings algorithm using the posterior mode
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and inverse Hessian at the posterior mode. The estimates from the linear model suggest that

the data is not informative about γg,L and σz, as the 90% credible interval from the posterior

distribution mirrors that from the prior distribution, shown in table (2). γτ,L is also estimated

less precisely than in the nonlinear specifications. It appears that allowing default in the

standard RBC model may help to identify the fiscal policy responses in Greece. More formal

comparisons of the linear and nonlinear model specifications are provided in the next section.

5. Analysis

5.1 Model Fit

To examine how well the model fits the data, we compute smoothed estimates of model

variables using the sequential monte carlo approximation of the forward-backward smoothing

recursion, see Doh (2011) for a detailed explanation of the procedure. Figure 3 compares

the smoothed values from the nonlinear model with δA = 0.3 and from the linearized model

without default to the observable variables. For each specification, the fitted values are

computed using the corresponding posterior median. The fit for most variables is quite

accurate, with the real interest rate being the least precise.

We also compute smoothed estimates of the measurement errors E(ξt|vT , θ) and report

their mean absolute values and relative standard deviations in table 3. For the estimation,

the standard deviation of each measurement error was fixed to be 20% of the standard

deviation of the respective observable variable. For most observables, the actual estimated

relative standard deviation is less than 20%, suggesting that the measurement error did not

introduce many constraints for the model fit. The exception is the measurement error for

the real interest rate in the nonlinear model and for output in the linear model. Table 3 also

shows that mean absolute values of measurement error are close to zero.

Given that the different model specifications imply similar smoothed estimates, we per-

form posterior odds comparisons to determine which model is favored by the data. Bayes

factors are used to evaluate the relative model fit of the linear and two nonlinear specifica-

tions. Table 4 presents the results. Bayes factors are based on log-marginal data densities

calculated using Geweke’s (1999) modified harmonic mean estimator with a truncation pa-

rameter of 0.5. The results demonstrate that the data strongly prefer the nonlinear model

specifications over the linearized framework. In addition, it appears the data cannot distin-

guish between the two nonlinear models with alternative calibrated default rates, as the log

Bayes factor is close to zero.
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5.2 Default Probability and Interest Rate Dynamics

In this section, we use the estimated structural estimates to evaluate the historical probability

of default in Greece and explore the model’s ability to forecast the fiscal deterioration in

Greece since 2010Q4, which is the end of our estimation period.

5.2.1 Default Risk

Figure 4 depicts model-implied historical sovereign default probabilities for Greece, based

upon the estimated fiscal limit distribution with an annualized default rate of 30%, δA =

0.3. Solid lines show the median and 90% posterior interval for the probability of default,

calculated using the actual debt-to-GDP ratios from our debt and output observables for the

estimated sample period.13 Figure 4 shows that Greek debt had virtually zero probability of

default from 2001 until 2009. Starting in 2009, the probability of default rose steadily, and

ranged from 5-10% by the end of the estimated period 2010Q4, reflecting the deterioration

in confidence in Greek debt in 2010.

In addition, the dashed lines provide the median and 90% posterior interval for the model-

implied default probabilities for the out-of-sample debt-to-GDP ratios observed in 2011. The

probabilities increase dramatically, ranging from 60-80% by 2011Q4. The striking build-up

reflects the unsustainability of the Greek fiscal position and suggests imminent default. The

predictions are consistent with the debt restructuring arrangements that took place at the

beginning of 2012, which can be viewed as an effective default on Greek debt.

5.2.2 Out-of-Sample Interest Rate Forecasts

Over the course of 2011, the long-term nominal interest rate in the secondary market for

Greek government bonds rose from 9.1 percentage points in December 2010 to 21.2 in De-

cember 2011 based on BIS data, and to 31.2 based on Bloomberg data.14 In this section,

we examine the ability of the estimated model to predict this sharp increase in the Greek

interest rate.

To examine this issue, we use the posterior median estimates with an annualized default

rate of 30% to simulate 10,000 time series for four quarters, starting from the fitted values for

model variables in 2010Q4. This gives a distribution for the forecasted real interest rate in

2011. Figure 5 displays the median (blue, circled line) and 90% interval (blue, dashed lines)

13For the estimation, we use data in terms of percentage deviations from the sample average. In contrast,
we need level variables to back out model-implied probabilities of default. For model consistency, we convert
the percentage deviations of the data to level variables using the steady states of model variables.

14Quarterly averages of Bloomberg and BIS data differ only in 2011Q3 and 2011Q4, dues to differences in
pricing such as the PSI introduction.
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of these interest rate forecasts. The figure also plots the observed real interest rate during

the same period (black solid line for BIS data and dotted-dashed red line for Bloomberg

data).15

Figure 5 shows that the surge in the real interest rate in Greece is well within forecast

bands of our rational expectations model. The fact that model forecasts can be consistent

with the 2011 interest rate path suggests that the actual interest rate surge in 2011 can be

explained by macroeconomic fundamentals in a rational expectation framework.

The model-implied forecast band for 2011 ranges dramatically from 6 to 35 percentage

points. One might be tempted to conclude that the model forecast band is too large to be of

much use. To explore this issue, we repeat our forecasting exercise starting from the fitted

values for model variables in 2006Q4. That is, we calculate the model-implied distribution

for the interest rate path in 2007, assuming that only information through 2006 was known.

Figure 6 plots the median (blue, circled line) and 90% interval (blue, dashed lines) of the

interest rate forecasts, along with the observed interest rate (black solid line). Again, the

actual path is well within the forecast band, and the band, ranging a bit over 2 percentage

points, is much tighter than the 2011 band. This is because macroeconomic fundamentals

were more stable in 2006Q4 than in 2010Q4, as reflected by the virtually zero probability

of default in 2006Q4. Thus, while forecast bands appear tight in good times, large forecast

bands may emerge at a turning point from a deteriorating fiscal position, which is inherent

in the nonlinear model.

The results suggest that the surge in the Greek interest rate premium and the rapid

deterioration of confidence in Greek debt in 2011 are consistent with behaviors from a simple

rational expectations model, and that Greek debt was not mispriced in 2011.

6. Conclusion

This paper uses Bayesian methods to estimate the fiscal limit distribution and the associated

sovereign default probability for Greece. We build a real business cycle model that allows

for interactions among fiscal policy instruments, the stochastic fiscal limit, and sovereign

default risk. The fiscal policy specification takes into account government spending, lump-

sum transfers, and distortionary taxation. We model the fiscal limit distribution with a

logistical function, which illustrates the market’s belief about the government’s ability and

willingness to service its debt at various debt levels.

Using the particle filter to perform likelihood-based inference, we estimate the full non-

linear model with post-EMU data. We find that the probability of default on Greek debt

15We constructed the real interest rate in 2011 using the same procedure documented in appendix B.1.
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remained close to zero from 2001 until 2009, and then rose sharply to the range of 5% to

10% by the fourth quarter of 2010. The model also predicts a probability of default between

60% to 80% by the end of 2011, consistent with the debt restructuring arrangements that

took place at the beginning of 2012. In addition, the surge in the Greek real interest rate

in 2011 is within the forecast bands of our rational expectations model. The results suggest

that Greek debt was not mispriced in 2011, as the interest rate path can be accounted for by

macroeconomic fundamentals. Finally, model comparisons based on Bayes factors strongly

favor our nonlinear model specification with an endogenous probability of default over a

linearized specification without default.

In current ongoing research, we are estimating the model for other European countries,

so as to allow cross-country comparisons of default probabilities. Although our nonlinear

model allows for interactions among fiscal policy instruments and the fiscal limit, it is only a

first step in our understanding of default probabilities for developed countries. Exploration

of other model features are worthy of attention, including the interaction of monetary and

fiscal policies, the interaction of financial sector and sovereign debt, and open economy

considerations.
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A Solving the Nonlinear Model

Other than the end-of-period government debt, all other variables are either exogenous or

can be computed in terms of the current state, ψt = (bdt , ct−1, At, u
g
t , zt, u

τ
t ).

τt = uτt + γτ
(

bdt − b
)

(A.1)

gt = ugt + γg
(

bdt − b
)

(A.2)

zt = (1− ρz)z + ρzzt−1 + εzt (A.3)

At = (1− ρA)A+ ρAAt−1 + εAt (A.4)

∆t =

{

0 if bt−1 < b∗t

δ if bt−1 ≥ b∗t

Given the utility function, consumption is determined by,

ct =
φhct−1 + (At − gt)(1− τt)

1 + φ− τt
. (A.5)

In terms of computation, the most time-consuming part is the loop iterations of the numerical

integration in equation (14) in the text.

Et
1−∆t+1

ct+1 − hct
=

∫

εAt+1

∫

εgt+1

∫

ετt+1

∫

s∗t+1

1−∆t+1

ct+1 − hct
(A.6)

=
(
1− Φ(st ≥ s∗t+1)

)
∫

εAt+1

∫

εgt+1

∫

ετt+1

1

ct+1 − hct
|no default

+ Φ(st ≥ s∗t+1)

∫

εAt+1

∫

εgt+1

∫

ετt+1

1− δ

ct+1 − hct
|default

Thus, the integration in Equation (A.6) can be re-written as

∫

εAt+1

∫

εgt+1

∫

ετt+1

1

ct+1 − hct
=

∫

εAt+1

∫

εgt+1

∫

ετt+1

1 + φ− τt+1

(1− τt+1)(At+1 − gt+1 − hct)
(A.7)

=

∫

ετt+1

1 + φ− τt+1

1− τt+1

∫

εAt+1

∫

εgt+1

1

At+1 − gt+1 − hct
(A.8)

The logarithmal utility function helps to reduce the 4-dimension integration into 1- and 2-

dimension integrations. The decision rule for government debt, bt = f b(ψt), is solved in the

following steps:

• Step 1: Discretize the state space ψt with grid points of nb = 25, nc = 5, nA = 5, ng =

17



7, nz = 12, nτ = 11.16 Make an initial guess of the decision rule f b
0 over the state space.

• Step 2: At each grid point, solve the following core equation and obtain the updated

rule f b
i using the given rule f b

i−1. The integral in the right-hand side is evaluated as

described above using numerical quadrature.

bdt + zt + gt − τtAtn(ψt)

f b
i (ψt)

= βEt
c(ψt)− hct−1

c(ψt+1)− hc(ψt)
(1−∆t+1) (A.9)

where ψt+1 =




(f b

i−1(ψt),∆t+1)
︸ ︷︷ ︸

bdt

, ct, At+1, u
g
t+1, zt+1, u

τ
t+1




.

• Step 3: Check the convergence of the decision rule. If |f b
i − f b

i−1| is above the desired

tolerance (set to 1e− 5), go back to step 2; otherwise, f b
i is the decision rule and used

to evaluate the particle filter as described below.

B Estimation

B.1 Data Description

Five observables for Greece over the period 2001Q1-2010Q4 are used for the estimation: real

output, government spending to GDP ratio, tax revenue to GDP ratio, government debt

to GDP ratio, and 10-year real interest rate. This appendix provides documentation for

constructing these series.

Real GDP. Constructed by dividing the nominal quarterly gross domestic product from

the OECD quarterly National Accounts (using the expenditure approach, series B1 GE)

by the gross domestic product deflator (constructed using the expenditure approach, series

B13).

Real Gov. Spending. Constructed using general government final consumption ex-

penditure from the OECD quarterly National Accounts (series P3S13) divided by the gross

domestic product deflator (constructed using the expenditure approach, series B13).

Real Tax Revenue. A quarterly tax revenue series is not provided by the OECD. Thus,

we construct a quarterly measure in the following way. First, we construct a measure of total

tax revenue by combining Eurostat quarterly series for tax receipts on income/wealth, pro-

duction and imports, capital taxes, and social contributions. We seasonally adjust this series

16The grid boundaries are fixed throughout the estimation to ensure the same solution precision for different
parameter draws.
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using Demetra+ and the tramo-seat RSA4 specification. Next, using an annual nominal tax

revenue series from the OECD volume 90 (consisting of indirect and direct taxes and social

security contributions, TIND + TY + SSRG), we interpolate a quarterly frequency series

using the method of Chow and Lin (1971)17 and the seasonally adjusted quarterly Eurostat

tax revenue series for the interpolation. Finally, we construct a quarterly real tax revenue

series by dividing the interpolated series by the OECD’s gross domestic product deflator

(constructed using the expenditure approach, series B13).

Real Gov. Debt. A quarterly government debt series is not provided by the OECD.

Thus, we construct a quarterly measure in the following way. First, we seasonally adjust

using Demetra+ and the tramo-seat RSA4 specification the Eurostat quarterly series for

nominal gross government consolidated debt. Next, using the annual nominal gross public

debt series (under the Maastricht criterion) from the OECD volume 90, we interpolate a

quarterly frequency series using the method of Chow and Lin (1971) and the seasonally

adjusted quarterly Eurostat tax revenue series for the interpolation. Finally, we construct a

quarterly real debt series by dividing the interpolated series by the OECD’s gross domestic

product deflator (constructed using the expenditure approach, series B13).

Real Interest Rate. To construct a 10-year real interest rate measure, we use data

for the nominal interest rate, it (taken from the BIS) and the expected inflation rate, πe
t .

Our measure of expected inflation for Greece is the expected inflation series from the Survey

of Professional Forecasts EU-area five year ahead expected inflation series. The gross real

interest rate is constructed using the relation

Rt =
1 + it
1 + πe

t

Data for Estimation. We calculate the government spending to GDP ratio, tax revenue

to GDP ratio, and government debt to GDP ratio by taking each real fiscal series described

above and dividing by our real GDP series. The estimation uses these three series, along

with the real GDP and real interest rate series described above. For each series, we transform

the series into percentage deviations from its mean value over the period 2001Q1-2010Q4.

In addition, the real GDP series is linearly detrended. The black sold lines of figure 3 graphs

the observables.

17Forni, Monteforte, and Sessa (2009) use a similar approach.
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B.2 Particle Filter Algorithm

Let vT denote {v̂t}
T
t=1, which evolves according to equations (15) and (16) in the text. To

evaluate the likelihood function L(θ|vT ), we use a sequential Monte Carlo filter, specifically,

the sequential importance resampling filter of Kitagawa (1996). The algorithm is as follows:

• Step 1. Initialize the state variable x0. Instead of drawing particles of x0 from the

unconditional distribution p(x0|θ), we utilize pre-sample data to construct values x0.

We use data for the observables in 2000Q3 and 2000Q4 to back out the model state

vector in 2000Q4, assuming no measurement error.18

Denote these particles by xi0 for i = 1, ..., 60, 000. Draw 60, 000 values from standard

normal distributions for each of the structural shocks (ǫA, ǫg, ǫt, ǫz) and 60,000 values

from a standard uniform distribution for fiscal limit probabilities. Denote the vector

of these particles by ui. By induction, in period t these are particles ut|t−1,i.

• Step 2. Construct xt|t−1,i using equation (15) in the text. Assign to each draw (ut|t−1,i,

xt|t−1,i) a weight defined as:

wi
t =

1

(2π)5/2|Σ|1/2
exp

[

−
1

2

(
yt − Axt|t−1,i

)′
Σ
(
yt − Axt|t−1,i

)
]

(B.1)

• Step 3. Normalize the weights:

w̃i
t =

wi
t

∑N
i=1w

i
t

Update the values of xt|t−1,i by sampling with replacement 60,000 values of xt|t−1,i using

the relative weights w̃i
t and the residual resampling algorithm.

• Repeat steps 2-3 for t ≤ T .

The log-likelihood function is approximated by

L(θ|vT ) ≃
T∑

t=1

ln

(

1

60, 000

60,000
∑

i=1

wi
t

)

(B.2)

B.3 MCMC Algorithm

The random walk Metropolis-Hastings algorithm used for estimation works as follows:

18Fixing the initial state vector x0 with the data improves the accuracy of parameter estimates, which is
especially useful gvien our short sample period.
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• Step 1. Compute the posterior log-likelihood for 500 draws from the priors. Call the

draw with the highest posterior log-likelihood value θ∗.

• Step 2. Starting from θ∗, generate a MCMC chain using the following random-walk

proposal density

θpropj+1 = θpropj + cN (0,Λ), j = 1, ..., 100, 000

where Λ is the covariance matrix of 500 draws from the priors and c > 0 is a tuning

parameter set to determine the acceptance ratio.

• Step 3. Compute the acceptance ratio ϕ = min
{

p(θpropj+1
|vT )

p(θj |vT )
, 1
}

. Given a draw u from

the standard uniform distribution, θj+1 = θpropj+1 if u < ϕ; and θj+1 = θj otherwise.

Repeat for j = 1, ..., 100, 000.

• Step 4. Update the random walk proposal density in the following way. Update Λ

to be the covariance matrix from the previous draws {θj}
100,000
1 . Update θ∗ to be the

mean of previous draws {θj}
100,000
1 . Starting from the new θ∗, proceed through steps 2

and 3 for 500,000 draws from the new MCMC chain.

We burn the first 300,000 draws from the final MCMC chain and thin every 25 draws.

C Log-Linearized Model Equations

The log-linearized system of equations for the basic variant of the model without default are:

ĉt −
1

1 + h
Etĉt+1 +

1− h

1 + h
R̂t =

h

1 + h
ĉt−1 (C.1)

1

1− h
ĉt +

n

1− n
n̂t − Ât +

τ

1− τ
τ̂t =

h

1− h
ĉt−1 (C.2)

c

y
ĉt +

g

y
ĝt = Ât + n̂t (C.3)

b

y
b̂t −

g

y
ĝt −

z

y
ẑt + τ(τ̂t + Ât + n̂t) = R ∗

b

y
(R̂t−1 + b̂t−1) (C.4)

ĝt = (1− ρg)ĝt−1 − γg,L(1− ρg)bt−1 + σg,pǫ
g
t , ǫgt ∼ N(0, 1) (C.5)

τ̂t = (1− ρτ )τ̂t−1 + γτ,L(1− ρτ )bt−1 + στ,pǫ
τ
t , ǫτt ∼ N(0, 1) (C.6)

ẑt = (1− ρz)ẑt−1 + σz,pǫ
z
t , ǫzt ∼ N(0, 1) (C.7)

Ât = (1− ρa)Ât−1 + σa,pǫ
a
t , ǫzt ∼ N(0, 1) (C.8)
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Figure 1: The fiscal limit distribution associated with various s̃ values. Red dashed line:
s̃ =1.4; blue solid line: s̃ = 1.6; black dotted line: s̃ = 1.8.

0 0.5 1
0

2

4

6
h

0 1 2
0

2

4

6

γ
τ

0 1 2
0

0.5

1

1.5

γ
g

0 0.02 0.04 0.06
0

50

100

150

200

σ
a

0.6 0.8 1
0

20

40

60

ρ
a

0 0.05 0.1
0

50

100

σ
g

0.6 0.8 1
0

10

20

30

ρ
g

0 0.5 1
0

2

4

6

σ
z

0 0.5 1
0

1

2

3

ρ
z

0 0.02 0.04 0.06
0

50

100

150

200

σ
τ

0 0.5 1
0

10

20

30

40

ρ
τ

1 1.5 2
0

10

20

30
stil

Figure 2: Prior distributions (black solid lines) versus posterior distributions (blue dashed
lines) for the nonlinear model with annualized default rate of 30%, δA = 0.3.
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Figure 4: Model-implied sovereign default probabilities for Greece. Solid lines denote the
median and 90% confidence interval probabilities for in-sample debt-to-GDP ratios. Dashed
lines denote the median and 90% confidence interval probabilities for out-of-sample debt-to-
GDP ratios.
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Figure 5: Data versus fitted and forecast values for the Greek interest rate. The median
(blue, circled line) and 90% interval (blue, dashed lines) of the interest rate forecasts for
2011 are calculated based on the posterior median parameter estimates. The black solid line
shows the BIS data, and red dotted-dashed line shows the Bloomberg data.
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Figure 6: Data versus fitted and forecast values for the Greek interest rate. The median
(blue, circled line) and 90% interval (blue, dashed lines) of the interest rate forecasts for
2007 are calculated based on the posterior median parameter estimates. The black solid line
shows the BIS data.

Table 1: Calibration and Priors for Greece
Calibration

β 0.99
n̄ 0.75
ḡ/ȳ 0.181
b̄/ȳ 1.095*4
τ 0.333

Priors

Function Mean St. Dev.
h Beta 0.5 0.2
s̃ Uniform 1.6 0.013
γτ,L Gamma 0.4 0.2
γg,L Gamma 1.1 0.3
ρa Beta 0.8 0.1
ρg Beta 0.8 0.1
ρτ Beta 0.5 0.2
ρz Beta 0.5 0.2
σa,p Gamma 0.005 0.01
σg,p Gamma 0.02 0.015
στ,p Gamma 0.005 0.01
σz,p Gamma 0.5 0.1
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Table 2: Greece Estimates.

Prior Posterior: δA = 0.3 Posterior: δA = 0.2 Posterior: Linear

mean [5, 95] median [5, 95] median [5, 95] median [5, 95]

h 0.5 [0.17, 0.83] 0.16 [0.06, 0.36] 0.14 [0.06, 0.37] 0.73 [0.59, 0.83]
s̃ 1.6 [1.42, 1.78] 1.56 [1.53, 1.58] 1.52 [1.50, 1.55] - -
γτ,L 0.4 [0.14, 0.78] 0.21 [0.09, 0.47] 0.19 [0.07, 0.39] 0.61 [0.30, 1.05]
γg,L 1.1 [0.66, 1.64] 1.22 [0.77, 1.75] 1.07 [0.80, 1.35] 1.07 [0.66, 1.62]
ρa 0.8 [0.61, 0.94] 0.97 [0.96, 0.98] 0.97 [0.96, 0.98] 0.95 [0.94, 0.96]
ρg 0.8 [0.61, 0.94] 0.94 [0.90, 0.98] 0.94 [0.90, 0.98] 0.96 [0.91, 0.98]
ρz 0.5 [0.17, 0.83] 0.60 [0.33, 0.83] 0.69 [0.30, 0.87] 0.63 [0.39, 0.82]
ρτ 0.5 [0.17, 0.83] 0.94 [0.92, 0.97] 0.94 [0.91, 0.96] 0.93 [0.90, 0.95]
σa,p 0.01 [0.003, 0.02] 0.023 [0.018, 0.029] 0.024 [0.019, 0.03] 0.019 [0.015, 0.024]
σg,p 0.02 [0.003, 0.05] 0.041 [0.034, 0.051] 0.040 [0.033, 0.049] 0.041 [0.034, 0.051]
σz,p 0.5 [0.35, 0.68] 0.47 [0.35, 0.59] 0.41 [0.29, 0.58] 0.50 [0.38, 0.66]
στ,p 0.01 [0.003, 0.02] 0.026 [0.022, 0.030] 0.026 [0.022, 0.031] 0.022 [0.018, 0.027]

Table 3: Smoothed estimates of measurement error.
Greece

bt
yt

gt
yt

Tt

yt

yt Rt

Nonlinear δA = 0.3
mean absolute value 0.01 0.004 0.002 0.005 0.001
relative standard deviation 0.12 0.10 0.11 0.16 0.22

Linear
mean absolute value 0.01 0.006 0.002 0.01 0.0003
relative standard deviation 0.09 0.13 0.08 0.29 0.10

Table 4: Model Fit Comparisons
Model Bayes Factor
Specification Rel. to M1

M1: Nonlinear Model w/ δA = 0.3 1
M2: Nonlinear Model w/ δA = 0.2 exp[0.02]
M3: Linear exp[55.5]
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