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Abstract

Clark and McCracken (2008) argue that combining real-time point forecasts from

VARs of output, prices and interest rates improves point forecast accuracy in the

presence of uncertain model instabilities. In this paper, we generalize their approach

to consider forecast density combinations and evaluations. Whereas Clark and Mc-

Cracken (2008) show that the point forecast errors from particular equal-weight

pairwise averages are typically comparable or better than benchmark univariate

time series models, we show that neither approach produces accurate real-time

forecast densities for recent US data. If greater weight is given to models that allow

for the shifts in volatilities associated with the Great Moderation, predictive density

accuracy improves substantially.
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1 Introduction

Clark & McCracken (2008) [CM, 2008] find that forecast combination improves the Root

Mean Squared forecast Error (RMSE) of Vector Autoregressions (VARs) in the presence

of unknown structural changes, referred to as “uncertain instabilities”. They endorse

two forecast selection strategies. In the first, the forecasts from two models are weighted

equally, which we refer to as pairwise equal weights (PEW). The second strategy involves

averaging the forecasts from all the VARs considered, which we term equal weights (EW).

The finding that these combinations help is reassuring to forecasters and decision makers

concerned with quadratic loss. In this special case, uncertain instabilities in VARs can

(in general) be circumvented by simply attaching an equal weight to each forecast.

For more general but unknown loss functions, the effectiveness of simple averages for

VARs in the presence of unknown structural changes has not been studied previously.

This is surprising given the plausibility of asymmetric loss functions where the range of

uncertainty matters; see Granger & Pesaran (2000). For example, the Federal Reserve

may not care equally about inflation above and below the zero bound, but of course the

exact loss function of the monetary policymaker is unknown.

In this paper, we generalize the analysis of CM (2008) to study the forecast densities

produced by averaging. As discussed by Timmermann (2006), the literature on averaging

densities has produced a number of feasible alternatives, with no consensus on the “best”

approach. In keeping with the simple pairwise convex mix of point forecasts considered

by CM (2008), we consider the analogous convex combinations of probability forecasts

known as the “linear opinion pool”; see Timmermann (2006) (p.177). We evaluate the

resulting forecast densities by three methods. First, by testing whether the probability

integral transforms of the forecast density with respect to the realization of the variable

are uniform and, via a transformation, normal (e.g., Diebold et al. (1998)). Second, by

using the logarithmic score (e.g., Gneiting & Raftery (2007), Hall & Mitchell (2007) and

Amisano & Giacomini (2007)). And finally by considering the probabilities of tail events

or economic events of interest, such as a (one period) recession. Corradi & Swanson (2006)

review methods for predictive density evaluation.

To facilitate comparisons with CM (2008), we use the same real-time data and estimate

their preferred VAR models (and combinations) in output, prices and the short-term

interest rate. The models include a wide range of VARs and ARs, including the full

sample and their respective rolling window variants considered by CM (2008).

In contrast to CM (2008), we find a substantial difference between the accuracy of
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simple averaging before, and after, the US Great Moderation. In the 1985-2005 period,

the PEW forecast density combinations favored by CM (2008) rank very badly. The

univariate benchmark models are roughly as accurate as the simple pairwise combinations

for all evaluation periods. The strategy of equally weighting all models considered, EW,

is more successful. But it is often dominated by the strategy of time varying recursive

weights, RW, proportional to the logarithmic score.

The following figure illustrates how PEW density combinations can produce inaccurate

forecast densities in the presence of the shifting volatilities exhibited in the US sample

data. The top left-hand panel of Figure 1 plots the 1-step ahead out-of-sample forecast

mean for output growth from two models favored by CM (2008). The first is an order

4 VAR (using detrended inflation), the second is an autoregressive model with two lags.

Neither model performs particularly well, exhibiting substantial forecast failure at times.

The top right-hand panel illustrates the modest benefits of the PEW strategy for point

forecasts.

The bottom panel of the figure shows the corresponding plots for the 1-step ahead

probability that output growth is less than zero percent. The bottom left-hand panel

shows that both models suggest implausibly high probabilities of this event. Output

growth very rarely drops below this threshold in our sample—only once in the last 10

years of the sample—as noted by Potter (2007). The bottom right-hand panel reveals

that the pairwise equally-weighted (PEW) forecast density gives a poor indication of the

probability of this particular event, indicating a 10 to 20 percent probability of a (one

period) recession for most of the last 10 years. Broadening the model space to take a

convex combination across all the models considered, with weights based on the recursive

logarithmic score, produces more accurate probabilities. The RW forecasts achieve this

improved performance by giving greater weight to models that allow for the shifts in

volatilities associated with the Great Moderation.

The rest of this paper provides more formal evidence that equally weighted combina-

tions provide poor density forecasts for US real-time data spanning the Great Moderation.

We consider a wide range of models, together with many combinations of their forecast

densities. Furthermore, we evaluate the densities, rather than the conditional means (as

in CM, 2008), and the probability of large losses (along the lines of the above output

growth example).

The remainder of this paper is structured as follows. In Section 2 we describe our

methods for forecast density combination. In Section 3, we outline briefly the data set

used in both this paper and CM (2008). In Section 4, we present the results, and in the
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final section, we discuss the scope for future research in this area.

2 Methods for density combination and evaluation

We begin by describing the density combination methods used in this study. The high-

ranking PEW and EW combinations used by CM (2008) can be obtained as special cases

by taking the means of the individual densities. Table 1 summarizes the complete set of

model types.

2.1 Forecast density combination

To formalize density combination in a way that extends the pairwise convex mix of point

forecasts utilized by CM (2008), we adopt the linear opinion pool approach described by

Timmermann (2006), (p.177), and the references described therein. Given i = 1, . . . , N

VAR and AR models, the combined densities are defined by the convex combination

(linear opinion pool):1

pτ (yτ,h) =
N∑

i=1

wi,τ ,h g(yτ,h | Ii,τ ), τ = τ , . . . , τ , (1)

where g(yτ,h | Ii,τ ) are the h-step ahead forecast densities from individual model i, i =

1, . . . , N of a variable yτ , conditional on the information set Iτ . The publication delay in

the production of real-time data ensures that this information set contains macroeconomic

variables dated τ − 1 and earlier. Each individual model is used to produce h-step ahead

forecasts via the direct approach; see the discussion by Marcellino et al. (2003). Hence,

the macro variables used to produce an h-step ahead forecast density for τ are dated

τ − 1 − h. The set of non-negative weights, wi,τ ,h, in this finite mixture sum to unity.2

Furthermore, the weights may change through the evaluation period τ = τ , . . . , τ .

Since the VAR and AR models considered produce forecast densities that are normal,

but with different means and variances, the combined density by Equation (1) will be

mixture normal—accommodating skewness and kurtosis. The method delivers a more

1The linear opinion pool is sometimes justified by considering an expert combination problem. See
for example, Morris (1974, 1977) and Winkler (1981), Lindley (1983) and McConway (1990). Wallis
(2005) proposes the linear opinion pool as a tool to aggregate forecast densities from survey participants.
Mitchell & Hall (2005) combine inflation density forecasts from different institutions.

2The restriction that each weight is positive might be relaxed; for discussion see Genest & Zidek
(1986).
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flexible distribution than each of the individual densities from which it was derived.

We consider a number of different methods for constructing the weights, wi,τ ,h.

2.1.1 Recursive weights

We construct the weights based on the fit of the individual model forecast densities.

Following Amisano & Giacomini (2007) and Hall & Mitchell (2007), we use the logarithmic

score to measure density fit for each model through the evaluation period. The logarithmic

scoring rule is intuitively appealing as it gives a high score to a density forecast that

provides a high probability to the value yτ that materializes. Specifically the weights for

the h-step ahead densities take the form:

wi,τ ,h =
exp

[∑τ−1−h
τ−10 ln g(yτ,h | Ii,τ )

]
∑N

i=1 exp
[∑τ−1−h

τ−10 ln g(yτ,h | Ii,τ )
] , τ = τ , . . . , τ (2)

where the τ − 10 to τ comprises the training period used to initialize the weights. Hall &

Mitchell (2007) demonstrate that these weights minimize the Kullback-Leibler Informa-

tion Criterion (KLIC) distance between the combined density forecast and the true but

unknown density.

From a Bayesian perspective, the forecast density averaging based on recursive log-

arithmic score weights, RW, has many similarities with an approximate predictive like-

lihood approach (see Raftery & Zheng (2003), and Eklund & Karlsson (2007)). Given

our definition of density fit, the model densities are combined using Bayes rule with

equal (prior) weight on each model—which a Bayesian would term non-informative pri-

ors. (Koop (2003) (chapter 11) and Geweke & Whiteman (2006) provide recent general

discussions of Bayesian Model Averaging methods.) Andersson & Karlsson (2007) propose

Bayesian predictive likelihood methods for forecast combination with Bayesian VARs but

do not consider forecast density evaluation.

2.1.2 Equal weights

The EW strategy suggested by CM (2008) attaches equal (prior) weight to each model

with no updating of the weights through the recursive analysis: wi,τ ,h = wi,h = 1/N .

Pairwise equal weight combinations, PEW, can be thought of as a truncation of the

(prior) model space. We note, however, that it is difficult to justify a priori truncation.

Put differently, a researcher would have faced considerable uncertainty about which pairs
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of models to select according to the PEW strategy at the start of our evaluation period.

2.2 Evaluation of forecast density combinations

In constructing the RW forecast densities, the model forecasts are evaluated using the

logarithmic score for each recursion. We emphasize that in deriving the weights based

on this measure of density fit, the many models are repeatedly evaluated using real-time

data.3 By construction, the PEW and EW strategies are dominated by the RW approach

using the logarithmic score. The forecast density evaluation carried out for each evaluation

period in the recursive analysis provides the weights on each model, and by summing the

weights, the weights attached to particular PEW combinations.

It is common in the density forecast evaluation literature to provide classical statistics

suitable for a single model evaluation in a one shot test. We report pits statistics at the end

of the evaluation period by using a number of methods. Diebold et al. (1998) have shown

that the pits are uniform when the density forecast is optimal (well calibrated) and also

i.i.d. for one step-ahead forecasts. When the pits are (i.i.d.) uniform the combined density

forecast will be preferred irrespective of the loss function. In practice, forecast density

evaluation by this method requires application of a test for uniformity (or normality, via

the inverse normal cumulative density function transformation).

We evaluate the forecast densities from various strategies, such as RW, PEW and

EW, using a number of pits statistics. These include the Likelihood Ratio (LR) test

proposed by Berkowitz (2001) for which results are presented using a two degrees-of-

freedom variant (without a test for autocorrelation); see Clements (2004).4 We also

follow Berkowitz (2001) and report a censored LR test which focuses on the 10% top and

bottom tails. This is designed to detect forecast failure in the tails of the forecast density

(see figure 1). Finally, we consider the Anderson-Darling (AD) test, a modification of the

Kolmogorv-Smirnov test, intended to give more weight to the tails (and advocated by

Noceti et al. (2003)). Given our limited number of macroeconomic observations, the LR

test is probably a better guide than using nonparametric tests.

3Clark & McCracken (2007) discuss tests of mean squared forecast error performance with real-time
data.

4Results are similar when the three degrees-of-freedom test is employed.
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3 The US data

To facilitate comparisons with CM (2008), we use the same real-time US data set and, like

them, estimate VAR models in output, inflation and the short-term interest rate. That

is, we use the same economic variables, and their respective measures.

The raw data for GDP (in practice, GNP for some vintages) are taken from the

Federal Reserve Bank of Philadelphia’s Real-Time Data Set for Macroeconomists. This

is a collection of vintages of National Income and Production Accounts; each vintage

reflects the information available around the middle of the respective quarter. Croushore

& Stark (2001) provide a description of the database. Although CM (2008) consider two

measures of the output gap and output growth, to save space we simply report results

for the output growth case. (Results for the other two definitions, which are qualitatively

very similar to those reported here, can be obtained from the authors on request.)

The short term interest rate is a T-bill rate taken from the Board of Governor’s FAME

database. For inflation, we report results using a GDP deflator series, which unlike the

T-bill commonly suffers from revisions. (Additional results using an alternative measure

of inflation derived from the CPI (Bureau of Labor Statistics, 1967 base year), seasonally

adjusted using an X-11 filter by CM (2008), can be provided on request.)

For completeness, the set of models comprising the 68 VARs and ARs are listed in

Table 1.5 The models include ARs, VARs, first differenced VARs (DVARs), de-trended

VARs (using an exponential smoother) and bivariate VARs always including the variable

of interest (i.e. restricted trivariate VARs). Both full-sample and rolling sample ARs

and VARs are estimated. The rolling models are estimated over the last x quarters

only. Following CM (2008) we set x = 40 for the ARs and x = 60 for the VARs.

We consider lag lengths of one to four, as well as recursively selecting the lag length

using the Schwarz Bayesian Information Criterion (BIC); see Schwarz (1978) for details.6

The density forecasts from each model are assumed Gaussian, with conditional mean

centered on the recursively computed point forecast and the conditional variance equal

to the approximate mean squared error of the forecast with parameter uncertainty (see

Lutkepohl (1991), p. 87, eq. 3.5.9).

The start dates for the GDP observations vary by vintage, dictated by data availability

in the FRB Philadelphia Real-time database. Like CM (2008, p4), we use 1955Q1 as the

5We focus on the VARs and ARs preferred by CM (2008) but do not consider their BVAR and factor
models which typically rank poorly in their forecasts evaluations.

6CM (2008) also report results for the Akaike Information Criterion. The ranking of the models is
very similar to BIC and can be obtained from the authors on request.
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first observation for parameter estimation of the models, or failing that, the first quarter

available (allowing for five quarters for differencing and lags). So each model forecast

is based on a sample, t = t0,iτ , . . . , τ − 1 to estimate the parameters of interest, where

the start date, t0,iτ , can vary by the model, and for rolling sample models, by recursion.

Each individual model produces forecast densities based on the sequence of data vintages

starting in 1965Q4 and ending in 2005Q4.

To match the approach taken by CM (2008), we break our evaluation period, τ =

τ , . . . , τ into two subperiods: with τ from 1970Q1 to 1984Q4, and from 1985Q1 to

2005Q4.7 To implement density combination through the evaluation period requires an

additional assumption about which measurement is to be forecast. CM (2008) use the

second estimate as the “final” data to be forecast. For consistency, we report results for

the same definition of “final” data for all forecast density combinations and evaluations.

CM (2008) discuss the robustness of their results to other definitions of realized outturns;

see also the discussion in Corradi et al. (2007). For our reported results, the delay in

observing the outturn introduces an additional one period lag in the construction of the

recursive density combination weights.

4 Results

We break our results into three components: the ranking of the model types (e.g. rolling

and full sample variants); forecast density evaluations of the pairwise equal weight com-

binations, PEW, and benchmark AR strategies found to work well for point forecasts

by CM (2008); and summaries of forecast density accuracy for the recursively selected

weights, RW, and equal weights, EW, strategies. In each case, we present results for

the evaluation period split into two subperiods, 1970-1984 and 1985-2005, for horizons 1

(denoted h = 0 since this is a current quarter forecast) and 5 (denoted h = 4).8

For each variable of interest, we present the weights on each model type at the end of

each evaluation period in Table 2 for horizons h = 0 and h = 4.9 Recall that these weights

use second measurements as “final data” with density fit measured by the logarithmic

7CM (2008) present results for point forecast combinations based on a static “training period” window
from 1965Q4 to 1969Q4. All our density combinations with recursive weights use an expanding window,
starting in τ − 10.

8The results for horizons h = 1, . . . , 8 are qualitatively similar and can be obtained from the authors
on request.

9Note that like CM (2008), we analyze the forecast for each variable individually, not jointly. We plan
to explore variable dependence in subsequent work.
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score. Looking first at the 1985-2005 period for GDP growth, the highest weighted models

are rolling window variants. For every model type, the rolling version receives greater

weight than the full sample equivalent. For example, for the VAR models at horizon

h = 1, the rolling weight is approximately 25 percent and the full sample weight is zero.

For the DVARs the respective numbers are six percent and zero. However, in the earlier

1970-1984 period, rolling window variants fare less well for GDP growth. The longer

horizon, h = 4, results for GDP growth display a similar pattern across the two evaluation

periods, with the rolling models receiving greater weight in the second evaluation period,

but not the first.

A second striking feature of the GDP growth results is that the benchmark full sample

AR class of models rarely receive substantial weight. Regardless of the evaluation period,

this class typically receives a zero weight. The only exception is the 7.2 percent weight

for the ARs in the 1970-1984 evaluation.

For inflation and interest rates, the patterns are similar to GDP growth for the later

evaluation period, but the rolling models also receive large weights in the earlier 1970-1984

period. In general, the weights at the longer horizon are more concentrated than in the

GDP growth case, with the predominant models typically rolling.

To shed further light on the generally poor performance of the full sample AR bench-

marks, Figure 2 plots the recursively selected weights through the 1985-2005 evaluation

period for the AR(2) benchmark, found by CM (2008) to produce competitive point fore-

casts. We also plot the detrended VAR(4) model recursive weights. Recall that these two

models make up CM’s preferred PEW combination. The recursively computed forecast

density weights typically exhibit very little time variation (a notable exception is interest

rates before 1995). The general picture is one of declining weights as the evaluation period

progresses: all the weights are negligible by 2005. The PEW combination of these two

models also receives an approximately zero weight (the sum of the individual weights), as

does the rolling equivalent (not shown). We note, however, that the detrended VAR(4)

does better for both GDP growth and inflation in the first evaluation period.

To summarize, the analysis of our recursively generated weights based on the loga-

rithmic score suggests little evidence that the benchmark AR models, or the PEW com-

bination favored by CM (2008), produce accurate forecast densities, particularly over the

1985-2005 period.

Turning to the pits test p-values displayed in Tables 3-5, we see a similar story. The

GDP growth densities are evaluated in Table 3 for the 1970-1984 evaluation period, top

panel, and for 1985 to 2005, bottom panel. As with the previous table, we also report
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results by forecast horizon: h = 0 in the left hand panel and h = 4 in the right. Looking

at the later evaluation period, bottom panel, the benchmark AR(2) results indicate that

the densities are rejected at the one percent level for the LR and censored LR statistics;

and the AD test statistic exceeds the 2.5 critical value. The rolling equivalent of the

benchmark performs much better on all the tests. The PEW combination favored by

CM (2008) which averages the AR(2) with the detrended VAR (4) gives a similar density

performance to the benchmark. However the rolling variant of that combination does not

produce as much improvement as in the AR benchmark case.

Moving on to the longer horizon, those same patterns emerge again. But the evidence

based on the 1970-1984 period is more supportive of the benchmark and AR densities.

The 1985-2005 period is when these models and PEW combinations perform worst.

Looking at Table 4 and 5, which show comparable results for the other variables, we

see that the forecast densities for inflation give fairly poor LR and AD statistics for all

time periods and horizons. The PEW combination favored by CM (2008) does poorly

too. But the rolling variant of it does better for the h = 0 1985-2005 case. The interest

rate forecast densities are inadequate in all cases.

Since the evidence does not offer much support for the benchmark densities or those

from the PEW strategy, we now turn to forecast densities produced by our RW strategy.

Tables 3-5 show that the RW densities perform relatively well, with some differences by

test statistic. Typically the LR p-values are greater than 5 percent, often much greater,

and the AD statistics often less than 2.5. For example, the bottom left quadrant of Table

3 shows that the censored LR statistic p-values are around 30 percent and 9 percent for

the lower (10 percent) and upper (10 percent) tail LR tests, respectively. The AD test is

borderline. But, in contrast, the overall LR test is not, with a significance of less than

one percent.

For the other variables shown in Tables 4 and 5, the RW forecast densities give some

favorable statistics, but these are mostly restricted to the 1985-2005 evaluation period

for inflation. The results for the 1970-1984 evaluation period and for interest rates in

both evaluation periods are weaker. Evaluations of the density forecasts produced each

quarter in real-time by the Survey of Professional Forecasters have also found the GDP

growth forecasts to be better calibrated than those for inflation; see Diebold et al. (1999)

for an evaluation of the inflation densities and Mitchell (2007) for an evaluation of both

the inflation and real GDP growth densities.

Finally, we turn to the evaluation of the EW strategy, which attaches equal weight to

all the models considered (see Table 1). Over the earlier evaluation period, 1970-1984,
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the results are similar to the RW case. For example, for GDP growth both combinations

deliver densities that appear well calibrated with at h = 0 a p-value for the (overall)

LR test of 0.479 for EW and 0.231 for RW. For inflation, again the RW performance

is matched by EW, although the forecast densities do not perform as well as for GDP

growth. For interest rates, as the top panel of Table 4 indicates, there is even stronger

rejection of the forecast densities over the 1970-1984 period.

The more interesting story is over the later evaluation period, 1985-2005, where the

EW strategy performs poorly. For example, the bottom panel of Table 3 shows that for

GDP growth at both h = 0 and h = 4, for 1985-2005, we reject the adequacy of the EW

combination, with p-values generally less than five percent and AD statistics greater than

2.5 (the 95% critical value). A similar pattern emerges for inflation as for GDP growth

in Table 4. For interest rates, Table 5, there is little difference between the RW and EW

strategies.

Overall, we draw out three main findings. First, typically the RW forecast densities

are the most satisfactory: the RW combinations appear particularly well-calibrated for

GDP growth. Consistent with the impression given by Figure 1, the RW combination

appears to perform particularly well relative to PEW in the tails of the distribution.

Second, simple full sample PEW and the full sample AR benchmarks perform equally

badly. Third, the EW strategy fares better than the PEW strategy and is comparable

to the RW approach for the 1970-1984 evaluation period but is worse for the 1985-2005

period.

5 Conclusions

CM (2008) argue that combining real-time point forecasts from VARs of output, prices

and interest rates improves point forecast accuracy in the presence of uncertain model

instabilities. They show that the (root mean squared) forecast errors from simple pairwise

averages are typically comparable with, or better, simple benchmark univariate time series

models. In contrast, in this paper, we have shown that neither approach produces accurate

real-time forecast densities for recent US data. Recursively constructed weights give

greater weight to rolling models that allow for the shifts in volatilities associated with the

Great Moderation. This improves substantially predictive density accuracy.

Although VAR combinations are widely used for forecasting macroeconomic variables,

particularly by central banks, there have been very few studies that systematically evalu-
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ate forecast performance in the presence of uncertain instabilities. The framework devel-

oped by CM (2008) takes an important first step towards formal evaluation by focusing

on the point forecasts. Their results suggest little scope for improvement beyond taking

simple pairwise averages. When generalizing their framework to consider forecast densi-

ties, we have found that recursively constructed weights give better forecasts, by bringing

together evidence for a wide range of VAR models. The recursive weight strategy fre-

quently attaches high weight to models that allow for structural change through rolling

windows. In future work, we plan to explore two further avenues for improving density

forecast accuracy: the scope for formal modeling of structural breaks (emphasized by

Pesaran & Timmermann (2007)); and the potential of restrictions derived from dynamic

stochastic general equilibrium models.
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Figure 1: Forecasting performance of AR(2) and de-trended VAR(4) models for GDP
growth
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Figure 2: Recursively selected weights on the AR(2) and the detrended VAR(4)
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Table 1: Model type: a summary of the complete set of VAR models and combination
methods

method details
AR ARs with fixed lags of 1 − 4 and determined at each t by BIC
AR (rolling) same as above but estimated with a rolling sample of 40 obs
VAR VARs in ∆y, π and i with fixed lags of 1 − 4 and determined at each t by BIC
VAR (rolling) same as above but estimated with a rolling sample of 60 obs and for

... VAR(1) and VAR(BIC) also with rolling samples of 30, 40, 50, 70 and 80 obs
DVAR VARs in ∆y, ∆π and ∆i with fixed lags of 1 − 4 and determined at each t by BIC
DVAR (rolling) same as above but estimated with a rolling sample of 60 obs
Inf. detrend VARs in ∆y, π − π∗−1 and i − π∗−1 with fixed lags of 1 − 4

... and determined at each t by BIC
Inf. detrend (rolling) same as above but estimated with a rolling sample of 60 obs
BiVAR Bivariate VARs in ∆y, π and ∆y, i for ∆y; in π,∆y and π, i for π;

... in i,∆y and i, π for i with fixed lags of 1 − 4 and determined at each t by BIC
BiVAR (rolling) same as above but estimated with a rolling sample of 60 obs
PEW equal-weight pairwise average of the AR(2) and the Inf. detrended VAR(4)
PEW (rolling) same as above but AR (VAR) estimated with a rolling sample of 40 (60) obs
EW equal-weight average of all AR and VAR models
RW recursive-weight average of all models determined at each t by the log-score

Notes: The variables ∆y, π and i refer to, respectively, GDP growth, inflation and the interest rate.
The BIC lag orders range from 0 (minimum) to 4 (the maximum allowed). π∗ = π∗−1+.05(π−π∗−1).
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Table 2: Recursive weights at the end of 2005

h=0 GDP growth Inflation Interest rates
1970-1984 1985-2005 1970-1984 1985-2005 1970-1984 1985-2005

AR 0.000 0.000 0.000 0.009 0.000 0.000
AR(rolling) 0.000 0.115 0.000 0.924 0.229 0.105
VAR 0.001 0.000 0.016 0.003 0.000 0.241
VAR (rolling) 0.004 0.246 0.661 0.001 0.616 0.361
DVAR 0.001 0.000 0.000 0.006 0.000 0.064
DVAR(rolling) 0.000 0.060 0.225 0.025 0.108 0.205
Inf. Detrend 0.986 0.000 0.002 0.000 0.000 0.000
Inf. Detrend (rolling) 0.001 0.522 0.004 0.000 0.047 0.000
BiVAR 0.006 0.000 0.005 0.018 0.000 0.018
BiVAR rolling 0.000 0.056 0.087 0.014 0.000 0.006

h=4 GDP growth Inflation Interest rates
1970-1984 1985-2005 1970-1984 1985-2005 1970-1984 1985-2005

AR 0.072 0.000 0.000 0.000 0.000 0.001
AR(rolling) 0.000 0.001 0.812 0.000 0.000 0.000
VAR 0.002 0.000 0.000 0.000 0.000 0.965
VAR (rolling) 0.000 0.021 0.000 0.000 0.000 0.000
DVAR 0.574 0.000 0.000 0.311 0.000 0.000
DVAR(rolling) 0.000 0.068 0.000 0.689 0.000 0.000
Inf. Detrend 0.014 0.001 0.000 0.000 0.002 0.000
Inf. Detrend (rolling) 0.000 0.760 0.000 0.000 0.998 0.000
BiVAR 0.337 0.001 0.081 0.000 0.000 0.034
BiVAR rolling 0.000 0.149 0.108 0.000 0.000 0.000

Notes: Weights on selected subsets of models; see Table 1 for a description of the models.
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Table 3: GDP growth density forecasts

1970-1984 1970-1984
h=0 h=4

LR LRlower LRupper AD LR LRlower LRupper AD
AR(2) 0.272 0.138 0.881 0.532 0.072 0.006 0.177 1.348
AR(2) roll 0.013 0.007 0.135 1.262 0.031 0.002 0.836 1.474
avg. AR(2),VAR(4) 0.982 0.918 0.594 0.239 0.443 0.106 0.337 0.944
avg. AR(2),VAR(4) roll 0.242 0.185 0.397 0.781 0.335 0.003 0.133 0.709
EW 0.479 0.814 0.208 1.352 0.850 0.096 0.457 1.287
RW 0.231 0.407 0.438 1.290 0.096 0.002 0.764 0.830

1985-2005 1985-2005
h=0 h=4

LR LRlower LRupper AD LR LRlower LRupper AD
AR(2) 0.000 0.000 0.002 7.884 0.000 0.004 0.000 7.078
AR(2) roll 0.134 0.481 0.600 1.438 0.975 0.610 0.903 0.813
avg. AR(2),VAR(4) 0.000 0.000 0.000 8.480 0.000 0.005 0.000 8.160
avg. AR(2),VAR(4) roll 0.001 0.001 0.191 2.994 0.019 0.057 0.595 1.658
EW 0.000 0.001 0.003 5.847 0.000 0.039 0.000 5.436
RW 0.004 0.302 0.087 2.507 0.000 0.033 0.222 2.863

Notes: LR is the p-value for the Likelihood Ratio test of zero mean and unit variance of the
inverse normal cumulative distribution function transformed pits, with a maintained assumption
of normality for the transformed pits; LRupper is the p-value for the LR test of zero mean and unit
variance focusing on the 10 percent upper tail; LRlower is the p-value for the LR test of zero mean
and unit variance focusing on the 10 percent lower tail; AD is the Anderson-Darling test statistic
for uniformity of the pits which assuming independence of the pits has an associated 95 percent
asymptotic critical value of 2.5. roll denotes models estimated using a rolling window of length 40
quarters for ARs and 60 quarters for VARs
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Table 4: Inflation density forecasts

1970-1984 1970-1984
h=0 h=4

LR LRlower LRupper AD LR LRlower LRupper AD
AR(2) 0.000 0.013 0.000 4.356 0.000 0.005 0.000 8.970
AR(2) roll 0.000 0.019 0.003 2.803 0.000 0.000 0.000 9.833
avg. AR(2),VAR(4) 0.000 0.009 0.000 2.829 0.000 0.000 0.000 10.137
avg. AR(2),VAR(4) roll 0.001 0.070 0.005 2.001 0.000 0.000 0.000 10.476
EW 0.009 0.609 0.003 1.518 0.000 0.034 0.000 6.077
RW 0.000 0.004 0.000 5.338 0.000 0.000 0.000 18.032

1985-2005 1985-2005
h=0 h=4

LR LRlower LRupper AD LR LRlower LRupper AD
AR(2) 0.001 0.241 0.008 2.624 0.000 0.008 0.000 8.213
AR(2) roll 0.762 0.591 0.903 1.225 0.028 0.341 0.340 4.098
avg. AR(2),VAR(4) 0.000 0.068 0.013 3.423 0.000 0.050 0.000 8.037
avg. AR(2),VAR(4) roll 0.247 0.984 0.331 1.801 0.013 0.011 0.750 4.776
EW 0.005 0.086 0.019 2.080 0.000 0.157 0.005 5.612
RW 0.210 0.010 0.844 1.321 0.420 0.284 0.419 0.766

See Notes to Table 3
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Table 5: Interest rate density forecasts

1970-1984 1970-1984
h=0 h=4

LR LRlower LRupper AD LR LRlower LRupper AD
AR(2) 0.000 0.001 0.002 6.511 0.000 0.000 0.000 19.819
AR(2) roll 0.000 0.009 0.018 3.493 0.000 0.000 0.000 24.500
avg. AR(2),VAR(4) 0.000 0.000 0.000 3.910 0.000 0.001 0.000 13.657
avg. AR(2),VAR(4) roll 0.001 0.000 0.103 1.930 0.000 0.000 0.000 10.660
EW 0.000 0.000 0.045 2.565 0.000 0.001 0.000 13.761
RW 0.000 0.000 0.005 3.959 0.000 0.000 0.000 18.136

1985-2005 1985-2005
h=0 h=4

LR LRlower LRupper AD LR LRlower LRupper AD
AR(2) 0.000 0.054 0.000 10.370 0.000 0.568 0.001 8.153
AR(2) roll 0.006 0.578 0.052 4.672 0.000 0.000 0.242 30.974
avg. AR(2),VAR(4) 0.000 0.010 0.000 7.851 0.000 0.094 0.001 11.071
avg. AR(2),VAR(4) roll 0.000 0.229 0.013 6.379 0.000 0.000 0.032 18.923
EW 0.000 0.079 0.000 7.661 0.000 0.018 0.000 8.812
RW 0.002 0.025 0.000 4.469 0.005 0.263 0.014 4.390

See Notes to Table 3
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