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Abstract

We consider structural vector autoregressions subject to narrative restrictions, which are inequalities
involving structural shocks in specific time periods (e.g. shock signs in given quarters). Narrative
restrictions are used widely in the empirical literature. However, under these restrictions, there are no
formal results on identification or the properties of frequentist approaches to inference, and existing
Bayesian methods can be sensitive to prior choice. We provide formal results on identification,
propose a computationally tractable robust Bayesian method that eliminates prior sensitivity, and
show that it is asymptotically valid from a frequentist perspective. Using our method, we find that
inferences about the output effects of US monetary policy obtained under restrictions related to
the Volcker episode are sensitive to prior choice. Under a richer set of restrictions, there is robust
evidence that output falls following a positive monetary policy shock.

JEL Classification Numbers: C32, E52
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1. Introduction

Understanding the dynamic causal effects of structural shocks is one of the central problems in
macroeconometrics, and there is increasing empirical demand for methods that require minimal
identifying assumptions. Replacing point-identifying restrictions in structural vector autoregressions
(SVARs) with set-identifying sign restrictions is an early example of this search for robustness
(e.g. Uhlig 2005). A more recent example is the idea of substituting or augmenting traditional
restrictions on structural parameters with ‘narrative restrictions’ (henceforth NR), which are
inequalities involving structural shocks in given time periods (Antolín-Díaz and Rubio-Ramírez (2018)
(henceforth AR18); Ludvigson, Ma and Ng (2018)). These restrictions force the SVAR’s predictions to
be consistent with narratives about the nature of structural shocks driving macroeconomic variation
in particular historical episodes. The promise of these restrictions is that they may deliver informative
inferences about the effects of structural shocks under weak or uncontroversial restrictions on the
structural parameters.

An example of NR are ‘shock-sign restrictions’, such as the restriction in AR18 that the US economy
was hit by a positive monetary policy shock in October 1979. This is when the Federal Reserve
increased the federal funds rate following Paul Volcker becoming chairman, and is widely considered
an example of a positive monetary policy shock (e.g. Romer and Romer 1989). AR18 also consider
‘historical decomposition restrictions’, such as the restriction that the change in the federal funds rate
in October 1979 was overwhelmingly due to a monetary policy shock. Other restrictions also fit within
this framework, including restrictions on shock magnitudes (e.g. Ludvigson et al 2018) or rankings
(e.g. Ben Zeev 2018).

A burgeoning literature imposes NR in a broad range of empirical applications.1 However, the
non-standard nature of these restrictions raises econometric challenges. Under these restrictions,
there are no formal results on identification or the validity of frequentist approaches to inference.2

Moreover, as we show in this paper, the Bayesian procedure of AR18, which is used by the majority
of the literature, may be sensitive to prior choice. This paper contributes to the literature by formally
analysing identification and inference in models with NR, and by providing an approach to inference
that eliminates prior sensitivity. Importantly, this approach is valid from both Bayesian and frequentist
perspectives.

From a frequentist perspective, NR are fundamentally different from traditional restrictions. Under
normally distributed structural shocks, traditional sign restrictions induce set identification, because
they generate a set-valued mapping from the SVAR’s reduced-form parameters to its structural
parameters – an identified set – that represents observational equivalence. The identified set
corresponds to the flat region of the likelihood and, by the definition of observational equivalence,

1 Examples of papers imposing NR include Ben Zeev (2018), Altavilla, Darracq Pariès and Nicoletti (2019), Furlanetto and
Robstad (2019), Cheng and Yang (2020), Kilian and Zhou (2020, 2022), Laumer (2020), Redl (2020), Zhou (2020),
Antolín-Díaz, Petrella and Rubio-Ramírez (2021), Caggiano et al (2021), Larsen (2021), Ludvigson, Ma and Ng (2021),
Maffei-Faccioli and Vella (2021), Berger, Richter and Wong (2022), Fanelli and Marsi (2022), Inoue and Kilian (2022),
Badinger and Schiman (2023), Berthold (2023), Caggiano and Castelnuovo (2023), Conti, Nobili and Signoretti (2023),
Harrison, Liu and Stewart (2023), Herwatz and Wang (2023), Neri (2023), Reichlin, Ricco and Tarbé (2023), Ascari
et al (forthcoming), Boer, Pescatori and Stuermer (forthcoming) and Rüth and Van der Veken (forthcoming).

2 Ludvigson et al (2018, 2021) use a bootstrap to conduct inference, but do not provide evidence about its validity. Existing
frequentist approaches to conducting inference in set-identified SVARs include Gafarov, Meier and Montiel Olea (2018)
and Granziera, Moon and Schorfheide (2018).
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does not depend on the realisation of the data (e.g. Rothenberg 1971). NR also result in the likelihood
possessing flat regions and hence generate a set-valued mapping from the reduced-form parameters
to the structural parameters. Crucially, this mapping additionally depends on the realisation of the
data. The data dependence of this mapping implies that the standard concept of an identified set
does not apply. In turn, this means that: 1) existing results on identification in SVARs are inapplicable;
and 2) there is no known valid frequentist procedure for inference.

From a Bayesian perspective, the bulk of the empirical literature conducts Bayesian inference under
NR in a similar way as under traditional restrictions by following a procedure in AR18. We highlight two
issues with the existing approach: the potentially spurious effects on inference of using a conditional
likelihood to construct the posterior; and the sensitivity of inference to prior choice due to the
likelihood possessing flat regions. The prior sensitivity of the existing Bayesian approach makes it
difficult to know whether apparently informative inference obtained in empirical studies (e.g. narrow
credible intervals) reflects the informativeness of NR or the choice of prior. Removing the effect of the
prior allows us to understand if NR deliver on their promise of offering informative inference under
minimal assumptions, in contrast with traditional sign restrictions, which have been shown to provide
little information in some settings (e.g. Baumeister and Hamilton 2015; Wolf 2020; Read 2022b).

The paper proceeds in four main steps. First, we formalise the identification problem under NR.
Second, we propose using the unconditional likelihood, rather than the conditional likelihood, to
construct the posterior. Third, we consider a robust (multiple-prior) Bayesian approach to assess
and/or eliminate the posterior sensitivity that remains when using the unconditional likelihood. Finally,
we show that the robust Bayesian approach has frequentist validity in large samples.

To the best of our knowledge, this is the first paper to study identification under general NR.
Plagborg-Møller and Wolf (2021b) note that shock-sign restrictions could in principle be cast as
an external instrument (or ‘narrative proxy’) and used to point identify impulse responses in a
local projection. Plagborg-Møller (2022) argues that such an approach possesses several appealing
robustness properties relative to the likelihood-based approach of AR18 that we consider here,
including that it allows for imperfect narrative information and non-invertibility.3 Petterson, Seim
and Shapiro (2023) derive bounds for a slope parameter in a single equation given restrictions on
the magnitude of the residuals, but the setting is non-probabilistic.

We make two main contributions to the understanding of identification under NR. First, we provide
a necessary and sufficient condition for global identification of a SVAR under NR and as an example
show that this condition is satisfied in a bivariate SVAR with a single shock-sign restriction. This
means that, in contrast with traditional sign restrictions, NR may be formally point identifying despite
generating a set-valued mapping from reduced-form to structural parameters in any particular
sample. This result does not, however, deliver a point estimator, because the observed likelihood
is almost always flat at the maximum. Second, we introduce the notion of a ‘conditional identified
set’, which extends the standard notion of an identified set to a setting where identification is defined
in a repeated sampling experiment conditional on the observations entering the NR. This provides an
interpretation for the set-valued mapping induced by the NR as the set of observationally equivalent

3 Giacomini, Kitagawa and Read (2022a) explore the performance of the weak-instrument robust frequentist inferential
procedures from Montiel Olea, Stock and Watson (2021) when using narrative proxies; these procedures may suffer
from size distortions when the sign of the shock is known in a small number of periods.
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structural parameters in such a conditional frequentist experiment. We make use of the conditional
identified set when analysing the frequentist properties of our procedure.

The fact that NR deliver a set of maximum likelihood estimators is reminiscent of maximum score
estimation, where the objective function yields a set of maximisers (Manski 1975, 1985). Our
conditional identified set, which fixes the flat regions of the likelihood in the conditional frequentist
experiment, shares geometric properties with the finite sample identified set introduced by Rosen
and Ura (2020) in the maximum score context; however, their finite sample inference procedure does
not apply here.

In terms of inference under NR, our contribution can be viewed from both a Bayesian and a frequentist
point of view. Our first message to Bayesian researchers is to base analysis on the unconditional
likelihood, rather than the conditional likelihood used by AR18. Conditioning can be problematic
because, for some types of NR, a component of the prior is updated only in the direction that makes
the NR unlikely to hold ex ante. This is due to conditioning on a non-ancillary event, which results in
loss of information.

Our second message to Bayesian researchers is that posterior inference may be sensitive to the choice
of prior, because the unconditional likelihood has flat regions under NR (the conditional likelihood
also has flat regions under shock-sign restrictions). This sensitivity is a problem that also occurs in
set-identified models under traditional restrictions (e.g. Poirier 1998; Baumeister and Hamilton 2015).
As advocated for by Giacomini and Kitagawa (2021a) (henceforth GK21), this problem can be solved
by adopting a robust (multiple-prior) Bayesian approach. GK21 consider robust Bayesian inference in
SVARs under traditional set-identifying restrictions, a setting where – unlike in our case – frequentist
inference is also available (e.g. Gafarov et al 2018; Granziera et al 2018). They decompose the
prior for structural parameters into a prior for reduced-form parameters, which is revisable, and
a conditional prior for structural parameters given reduced-form parameters, which is unrevisable.
Considering the set of all conditional priors satisfying the identifying restrictions generates a set
of posteriors. This removes the source of posterior sensitivity and makes robust Bayesian and
frequentist approaches asymptotically equivalent, reconciling the disagreement between frequentist
and Bayesian methods that arises in set-identified models (Moon and Schorfheide 2012).4

We explain how this robust Bayesian approach can be adapted to NR. Even if a researcher has a
credible prior, we recommend reporting the standard Bayesian posterior (under the unconditional
likelihood) together with the robust Bayesian output. This allows researchers to assess the extent
to which posterior inference may be driven by prior choice. In the absence of a credible prior, we
recommend reporting the robust Bayesian output as an alternative to the standard Bayesian posterior.

This paper’s contribution to frequentist inference is to provide the first (to our knowledge)
asymptotically valid approach to inference under NR. While other frequentist approaches are in
principle possible, one appealing feature of the robust Bayesian approach is its numerical tractability.
Proving the frequentist asymptotic validity of the approach is challenging, due to the data-dependent
mapping induced by the NR that we discussed above. This means that the results in GK21 about

4 Giacomini, Kitagawa and Read (2022b) extend this approach to SVARs where the parameters of interest are set identified
using external instruments, or ‘proxy SVARs’. See Giacomini, Kitagawa and Read (2021) for a survey of the literature
on robust Bayesian methods, including a discussion of different approaches to conducting robust Bayesian inference in
set-identified SVARs.
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the asymptotic equivalence between Bayesian and frequentist inference are not applicable here. We
address these challenges by deriving new results on the asymptotics of robust Bayesian analysis
under a fixed number of NR, which we argue is the empirically relevant case given the small number
of restrictions typically imposed in the literature. We show that, under regularity conditions, the robust
credible region provides asymptotically valid frequentist coverage of the conditional identified set for
the impulse response, which also implies correct coverage for the true impulse response.

We illustrate our methods by revisiting the monetary SVAR in AR18. We first examine the robustness
of conclusions about the output effects of US monetary policy when NR are imposed based only on
the Volcker episode. We find that inferences about the output response are sensitive to prior choice,
and the restrictions are largely uninformative in the sense that they admit a wide range of positive
and negative output responses. Restrictions based on the Volcker episode in isolation are therefore
not sufficient to precisely identify the effects of monetary policy. We then impose an extended set
of NR related to multiple episodes, and find robust evidence that output falls following a positive
monetary policy shock. Disentangling the informativeness of the different restrictions, the shock-sign
restrictions on their own are not particularly informative, and drawing robust conclusions about the
output response relies on imposing restrictions on the historical decomposition.

The remainder of the paper is structured as follows. Section 2 highlights the econometric issues
that arise when imposing NR using a bivariate example. Section 3 describes the general framework.
Section 4 analyses global identification under NR and introduces the concept of a conditional identified
set. Section 5 discusses how to conduct standard and robust Bayesian inference under NR. Section 6
explores the frequentist properties of the robust Bayesian approach. Section 7 contains the empirical
application and Section 8 concludes. The appendices contain proofs and other supplemental material.

Notation: For the matrix X, vec(X) is the vectorisation of X and vech(X) is the half-vectorisation.
ei,n is the ith column of the n× n identity matrix, In. 0n×m is a n×m matrix of zeros. 1(.) is the
indicator function.

2. Bivariate Example

We illustrate the econometric issues that arise when imposing NR in the context of the following
bivariate SVAR(0): A0yt = εεε t , for t = 1, . . . ,T , where yt = (y1t ,y2t)

′ and εεε t = (ε1t ,ε2t)
′ with

εεε t
iid∼ N (02×1,I2). We abstract from dynamics for ease of exposition, but this is without loss of

generality. The orthogonal reduced form of the model reparameterises A0 as Q′ΣΣΣ−1
tr , where ΣΣΣtr is

the lower-triangular Cholesky factor (with positive diagonal elements) of ΣΣΣ =E(yty
′
t) = A−1

0

(
A−1

0

)′
.

We parameterise ΣΣΣtr as

ΣΣΣtr =

[
σ11 0
σ21 σ22

]
(σ11,σ22 > 0) (1)

and denote the vector of reduced-form parameters as ϕϕϕ = vech(ΣΣΣtr). Q is an orthonormal matrix in
the space of 2×2 orthonormal matrices, O(2):

Q ∈ O(2) =

{[
cosθ −sinθ
sinθ cosθ

]}
∪

{[
cosθ sinθ
sinθ −cosθ

]}
(2)

where θ ∈ [−π,π]. This formulation of the model, which follows Baumeister and Hamilton (2015),
means that the structural parameters can be expressed as functions of the reduced-form parameters
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and θ . Restrictions on the structural parameters and/or functions of the structural shocks can then
be interpreted as restricting θ to some set. In what follows, we discuss properties of this set that are
key for analysing identification and inference under NR.

2.1 Shock-sign restrictions

Consider the ‘shock-sign restriction’ that ε1k is non-negative for some k ∈ {1, . . . ,T}:

ε1k = e′1,2A0yk = (σ11σ22)
−1 (σ22y1k cosθ +(σ11y2k −σ21y1k)sinθ)≥ 0 (3)

Equation (3) implies that the restricted structural shock can be written as a function ε1k(θ ,ϕϕϕ ,yk).
Along with the ‘sign normalisation’ diag(A0) ≥ 02×1, the shock-sign restriction implies that θ is
restricted to the set

θ ∈ {θ : σ21 sinθ ≤ σ22 cosθ ,cosθ ≥ 0,σ22y1k cosθ ≥ (σ21y1k −σ11y2k)sinθ}
∪{θ : σ21 sinθ ≤ σ22 cosθ ,cosθ ≤ 0,σ22y1k cosθ ≥ (σ21y1k −σ11y2k)sinθ} (4)

The restriction induces a set-valued mapping from ϕϕϕ to θ that depends on the realisation of yk.
Giacomini et al (2022a) characterise this mapping in the case where σ21 < 0. For example, if
h(ϕϕϕ ,yk) = σ21y1k −σ11y2k < 0, then

θ ∈
[

arctan
(

max
{

σ22
σ21

,C(ϕϕϕ ,yk)

})
,π + arctan

(
min

{
σ22
σ21

,C(ϕϕϕ ,yk

})]
(5)

where C(ϕϕϕ ,yk) = σ22y1k/h(ϕϕϕ ,yk). The direct dependence of this mapping on the realisation of the
data implies that the standard notion of an identified set – the set of observationally equivalent
structural parameters given the reduced-form parameters – does not apply. Consequently, it is not
obvious whether the restrictions are, in fact, set identifying in a formal frequentist sense, nor whether
existing frequentist procedures for conducting inference in set-identified models are valid. We analyse
identification under these restrictions in Section 4.

When conducting Bayesian inference, AR18 construct the posterior using the conditional likelihood
– the likelihood of observing the data conditional on the NR holding. Letting yT = (y′1, . . . ,y

′
T )

′, the
conditional likelihood is

p
(

yT |θ ,ϕϕϕ ,ε1k(θ ,ϕϕϕ ,yk)≥ 0
)
=

∏T
t=1(2π)−1|ΣΣΣ|−

1
2 exp

(
−1

2y′tΣΣΣ
−1yt

)
Pr(ε1k ≥ 0|θ ,ϕϕϕ)

1(ε1k(θ ,ϕϕϕ ,yk)≥ 0) (6)

The denominator in the first term – the ex ante probability that the NR is satisfied – equals ½, because
ε1k is standard normal. The conditional likelihood therefore depends on θ only through the indicator
function 1(ε1k(θ ,ϕϕϕ ,yk)≥ 0), which truncates the likelihood, with the truncation points depending on
yk. To illustrate, the left panel of Figure 1 plots the conditional likelihood as a function of θ given two
realisations of a data-generating process and fixing ϕϕϕ to its true value.5 The conditional likelihood is
flat over the interval for θ satisfying the shock-sign restriction and is zero outside this interval. The
support of the non-zero region depends on yk.

5 The data-generating process assumes vec(A0) = (1,0.2,0.5,1.2)′, which implies that σ21 < 0 and θ = arcsin(0.5σ22) with Q
equal to the rotation matrix. We assume the time series is of length T = 3 and draw sequences of structural shocks such
that ε1,1 ≥ 0. T is a small number to control Monte Carlo sampling error. The analysis with ϕϕϕ set to its true value replicates
the situation with a large sample, where the likelihood for ϕϕϕ concentrates at the truth. It also facilitates visualising the
likelihood, which otherwise is a function of four parameters.
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Figure 1: Shock-sign Restriction in Bivariate Model

Likelihood
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η
Notes: T = 3, ϕϕϕ is known and ε1k(θ ,ϕϕϕ ,yk) ≥ 0 is the narrative restriction. (I) corresponds to h(ϕϕϕ ,yk) < 0, (II)

corresponds to h(ϕϕϕ ,yk)> 0 and C(ϕϕϕ ,yk)> σ22/σ21. Posterior for η = σ11 cosθ approximated using 1,000,000
draws of θ from uniform posterior.

The flat likelihood implies that the posterior for θ is proportional to the prior in the region where the
likelihood is non-zero, and is zero outside this region. The standard approach to Bayesian inference in
SVARs under sign restrictions assumes a uniform prior over Q, as do AR18.6 In the bivariate example,
this is equivalent to a prior for θ that is uniform (Baumeister and Hamilton 2015). This prior implies
that the posterior for θ is also uniform over the interval for θ where the likelihood is non-zero.

The impact impulse response of y1t to a positive standard deviation shock ε1t is η ≡ σ11 cosθ . The
right panel of Figure 1 plots the posterior for η induced by a uniform prior over θ given the same
realisations of the data for which the likelihood was plotted in the left panel. It can be seen that the
posterior for η assigns more probability mass to more-extreme values of η . This highlights that even
a uniform prior may be informative for parameters of interest, which also occurs under traditional sign
restrictions (Baumeister and Hamilton 2015). One difference is that the prior under sign restrictions
is never updated by the data, whereas the support and shape of the posterior for η under NR may
depend on the realisation of yk through its effect on the truncation points of the likelihood, so there
may be some updating of the prior. However, the prior is not updated at values of θ corresponding
to the flat region of the likelihood. Posterior inference about η may therefore still be sensitive to the
choice of prior, as in standard set-identified SVARs.

6 See, for example, Uhlig (2005), Rubio-Ramírez, Waggoner and Zha (2010) and Arias, Rubio-Ramírez and
Waggoner (2018).
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2.2 Historical decomposition restrictions

The historical decomposition is the contribution of a particular structural shock to the observed
unexpected change in a particular variable over some horizon. The contribution of the first shock
to the change in the first variable in the kth period is

H1,1,k(θ ,ϕϕϕ ,yk) = σ−1
22

(
σ22y1k cos2 θ +(σ11y2k −σ21y1k)cosθ sinθ

)
(7)

while the contribution of the second shock is

H1,2,k(θ ,ϕϕϕ ,yk) = σ−1
22

(
σ22y1k sin2 θ +(σ21y1k −σ11y2k)cosθ sinθ

)
(8)

Consider the restriction that the first structural shock in period k was positive and (in the language
of AR18) the ‘most important contributor’ to the change in the first variable, which requires that
|H1,1,k(θ ,ϕϕϕ ,yk)| ≥ |H1,2,k(θ ,ϕϕϕ ,yk)|. Under these restrictions, θ must satisfy a set of inequalities that
depends on ϕϕϕ and yk. As in the case of the shock-sign restriction, this set of inequalities generates
a set-valued mapping from ϕϕϕ to θ that depends on yk.

Let D(θ ,ϕϕϕ ,yk) = 1{ε1k(θ ,ϕϕϕ ,yk) ≥ 0, |H1,1,k(θ ,ϕϕϕ ,yk)| ≥ |H1,2,k(θ ,ϕϕϕ ,yk)|} represent the indicator
function equal to one when the NR are satisfied and equal to zero otherwise, and let D̃(θ ,ϕϕϕ ,εεεk) =

1{ε1k ≥ 0, |H̃1,1,k(θ ,ϕϕϕ ,ε1k)| ≥ |H̃1,2,k(θ ,ϕϕϕ ,ε2k)|} denote the indicator function for the same event in
terms of the structural shocks rather than the data. The conditional likelihood given the restrictions
is then

p
(

yT |θ ,ϕϕϕ ,D(θ ,ϕϕϕ ,yk) = 1
)
=

∏T
t=1(2π)−

n
2 |ΣΣΣ|−

1
2 exp

(
−1

2y′tΣΣΣ
−1yt

)
Pr(D̃(θ ,ϕϕϕ ,εεεk) = 1|θ ,ϕϕϕ)

D(θ ,ϕϕϕ ,yk) (9)

In contrast to the case of shock-sign restrictions, the probability in the denominator now depends on
θ through the historical decomposition. Intuitively, changing θ changes the impulse responses of y1t
to the two shocks and thus changes the ex ante probability that |H̃1,1,k(θ ,ϕϕϕ ,ε1k)| ≥ |H̃1,2,k(θ ,ϕϕϕ ,ε2k)|.
Consequently, the likelihood is not necessarily flat when it is non-zero.

To illustrate, the top panel of Figure 2 plots the conditional likelihood under the historical
decomposition NR using the same data-generating process as in Figure 1. The bottom panel plots
the probability in the denominator of the conditional likelihood. The likelihood is again truncated, but
it is no longer flat – it has a maximum at the value of θ that minimises the ex ante probability that
the NR are satisfied (within the set of values of θ that are consistent with the restriction given the
realisation of the data). The posterior for θ induced by the usual uniform prior will therefore assign
greater posterior probability to values of θ that yield a lower ex ante probability of satisfying the NR.
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Figure 2: Historical Decomposition Restriction in Bivariate Model
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Notes: T = 3, ϕϕϕ is known, and ε1,1(ϕϕϕ ,θ ,yk)≥ 0 and |H1,1,1(ϕϕϕ ,θ ,yk)| ≥ |H2,1,1(ϕϕϕ ,θ ,yk)| are the narrative restrictions.

Pr(D̃(θ ,ϕϕϕ ,εεεk) = 1|θ ,ϕϕϕ) is approximated using 1,000,000 Monte Carlo draws.

If we view the narrative event (i.e. D̃(θ ,ϕϕϕ ,εεεk)) as observable and its probability of occurring depends
on the parameter of interest, then conditioning on the narrative event implies that we are conditioning
on a non-ancillary statistic. This is undesirable when conducting likelihood-based inference, because it
represents a loss of information about the parameter of interest. Unlike for the shock-sign restriction,
the probability that the historical decomposition restriction is satisfied depends on θ , so the event
that the NR are satisfied is not ancillary. Conditioning on this event means that the shape of the
likelihood (within the non-zero region) is fully driven by the inverse probability of the conditioning
event.

Based on this consideration, we therefore advocate constructing the posterior using the joint (or
unconditional) likelihood of observing the data and the NR holding:

p
(

yT ,D(θ ,ϕϕϕ ,yk) = 1|θ ,ϕϕϕ
)
=

T∏
t=1

(2π)−1|ΣΣΣ|−
1
2 exp

(
−1

2
y′tΣΣΣ

−1yt

)
D(θ ,ϕϕϕ ,yk) (10)

For all types of NR, the unconditional likelihood is flat with respect to θ (when it is non-zero) and
depends on θ only through the points of truncation. Of course, this means that posterior inference
based on the unconditional likelihood may be sensitive to the choice of prior, as when using the
conditional likelihood under shock-sign restrictions. In Section 5.2, we propose how to deal with this
posterior sensitivity.

3. General Framework

This section describes the general SVAR, outlines the identifying restrictions we consider, and defines
the conditional and unconditional likelihoods in this general setting.



9

3.1 SVAR

Let yt be an n×1 vector of variables following the SVAR(p) process:

A0yt = A+xt + εεε t , t = 1, ...,T (11)

where: A0 is invertible; xt = (y′t−1, . . . ,y
′
t−p,z

′
t)
′ with zt containing any exogenous variables (e.g. a

constant); A+ = (A1, . . . ,Ap,Az); and εεε t
iid∼ N (0n×1,In) are structural shocks. The initial conditions

(y1−p, ...,y0) are given.

The reduced-form VAR(p) representation is

yt = Bxt +ut , t = 1, ...,T (12)

where: B = (B1, . . . ,Bp,Bz) with Bl = A−1
0 Al; and ut = A−1

0 εεε t
iid∼ N (0n×1,ΣΣΣ) with ΣΣΣ = A−1

0 (A−1
0 )′.

ϕϕϕ = (vec(B)′,vech(ΣΣΣ)′)′ ∈ ΦΦΦ are the reduced-form parameters.

As is standard in the literature that considers set-identified SVARs, we reparameterise the model into
its orthogonal reduced form (e.g. Arias et al 2018):

yt = Bxt +ΣΣΣtrQεεε t , t = 1, ...,T (13)

where: ΣΣΣtr is the lower-triangular Cholesky factor of ΣΣΣ (i.e. ΣΣΣtrΣΣΣ
′
tr = ΣΣΣ) with non-negative diagonal

elements; and Q is an n×n orthonormal matrix with O(n) the set of all such matrices. The structural
and orthogonal reduced-form parameterisations are related through the mapping B = A−1

0 A+,
ΣΣΣ = A−1

0 (A−1
0 )′ and Q = ΣΣΣ−1

tr A−1
0 with inverse mapping A0 = Q′ΣΣΣ−1

tr and A+ = Q′ΣΣΣ−1
tr B.

We assume B is such that the VAR(p) can be inverted into an infinite-order vector moving average
(VMA(∞)) representation:7

yt =
∞∑

h=0

Chut−h =
∞∑

h=0

ChΣΣΣtrQεεε t−h, t = 1, ...,T (14)

where Ch is the hth term in (In −
∑p

l=1 BlL
l)−1 and L is the lag operator.8 The (i, j)th element of

the matrix ChΣΣΣtrQ, which we denote by ηi, j,h(ϕϕϕ ,Q), is the horizon-h impulse response of the ith
variable to the jth structural shock:

ηi, j,h(ϕϕϕ ,Q) = e′i,nChΣΣΣtrQe j,n = c′i,h(ϕϕϕ)q j (15)

with c′i,h(ϕϕϕ) = e′i,nChΣΣΣtr the ith row of ChΣΣΣtr and q j = Qe j,n the jth column of Q.

3.2 Narrative restrictions

In the absence of identifying restrictions, Q – and functions of Q such as ηi, j,h(ϕϕϕ ,Q) – are set
identified, since any Q∈O(n) is consistent with the joint distribution of the data, which is summarised
by the reduced-form parameters. Imposing identifying restrictions is equivalent to restricting Q to lie

7 The VAR(p) is invertible into a VMA(∞) process when the eigenvalues of the companion matrix lie inside the unit circle.
See Hamilton (1994) or Kilian and Lütkepohl (2017).

8 Ch can be defined recursively by Ch =
∑min{h,p}

l=1 BlCh−l for h ≥ 1 with C0 = In. In practice Ch can be computed using
the companion form of the VAR.
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in a subspace of O(n). Throughout, we impose the ‘sign normalisation’ diag(A0) = diag(Q′ΣΣΣ−1
tr ) ≥

0n×1, so a positive value of εit is a positive shock to the ith equation in the SVAR at time t.

It is common to impose sign restrictions on the impulse responses (e.g. Uhlig 2005) or on the
structural parameters (e.g. Arias, Caldara and Rubio-Ramírez 2019). For example, the restriction
ηi, j,h(ϕϕϕ ,Q) = c′i,h(ϕϕϕ)q j ≥ 0 is a linear inequality restriction on a single column of Q that depends
only on the reduced-form parameters ϕϕϕ . Restrictions on elements of A0 take a similar form.

In contrast, NR constrain the values of the structural shocks in particular periods. The structural
shocks are

εεε t = A0ut = Q′ΣΣΣ−1
tr ut (16)

The shock-sign restriction that the ith structural shock at time k is positive is

εik(ϕϕϕ ,Q,uk) = e′i,nQ′ΣΣΣ−1
tr uk = (ΣΣΣ−1

tr uk)
′qi ≥ 0 (17)

We can treat ut as observable given ϕϕϕ and the data, so we suppress the dependence of ut on ϕϕϕ and
(y′t ,x

′
t)
′ for notational convenience. The restriction in Equation (17) is a linear inequality restriction on

a single column of Q. In contrast with traditional sign restrictions, the shock-sign restriction depends
directly on the data through the reduced-form VAR innovations.

In addition to shock-sign restrictions, AR18 consider restrictions on the historical decomposition,
which is the cumulative contribution of the jth shock to the observed unexpected change in the ith
variable between periods k and k+h (i.e. the contribution to the (h+1)-step-ahead forecast error):

Hi, j,k,k+h

(
ϕϕϕ ,Q,{ut}

k+h
t=k

)
=

h∑
l=0

e′i,nClΣΣΣtrQe j,ne′j,nεεεk+h−l =
h∑

l=0

c′i,l(ϕϕϕ)q jq
′
jΣΣΣ

−1
tr uk+h−l (18)

An example is the restriction that the jth structural shock was the ‘most important contributor’
to the change in the ith variable between periods k and k + h, which requires that |Hi, j,k,k+h| ≥
maxl ̸= j |Hi,l,k,k+h|. Another is that the jth structural shock was the ‘overwhelming contributor’ to
the change in the ith variable between periods k and k + h, which requires that |Hi, j,k,k+h| ≥∑

l ̸= j |Hi,l,k,k+h|. From Equation (18), it is clear that these restrictions are nonlinear inequality
constraints that simultaneously constrain every column of Q and that depend on the realisations
of the data in particular periods in addition to the reduced-form parameters.

Other restrictions also naturally fit within this framework. For instance, Ludvigson et al (2018) restrict
the magnitudes of structural shocks in particular periods (e.g. εik(ϕϕϕ ,Q,uk) < λ for some specified
scalar λ ). One could also consider restrictions on the relative magnitudes of a particular shock in
different periods (e.g. εik(ϕϕϕ ,Q,uk)≥ εi j(ϕϕϕ ,Q,u j) for j ̸= k).9

A collection of NR can be represented in the general form N(ϕϕϕ ,Q,YT )≥ 0s×1, where s is the number
of restrictions. As an illustration, consider the case where there is a single shock-sign restriction in
period k, ε1k(ϕϕϕ ,Q,uk) ≥ 0, as well as the restriction that the first structural shock was the most

9 Ben Zeev (2018) imposes a restriction on the timing of the maximum three-year average of a particular shock, as
well as restrictions on the sign and relative magnitudes of this three-year average in specific periods. Restrictions on
averages of shocks can also be implemented in this framework. An earlier version of our paper considered the restriction
that the shock in a particular period was the largest (absolute) realisation of the shock in the sample period; see also
Read (2022a).
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important contributor to the change in the first variable in period k. Then,

N(ϕϕϕ ,Q,YT ) =

[
(ΣΣΣ−1

tr uk)
′q1

|e′1,nΣΣΣtrq1q′
1ΣΣΣ−1

tr uk|−max j ̸=1 |e
′
1,nΣΣΣtrq jq

′
jΣΣΣ

−1
tr uk|

]
≥ 02×1 (19)

Traditional sign and zero restrictions can also be imposed alongside NR. We follow AR18 by
explicitly allowing for sign restrictions on impulse responses and on elements of A0. We denote
such sign restrictions by S(ϕϕϕ ,Q) ≥ 0s̃×1, where s̃ is the number of traditional sign restrictions. It is
straightforward to additionally allow for zero restrictions, so long as these are not over-identifying.
These include ‘short-run’ zero restrictions (Sims 1980), ‘long-run’ zero restrictions (Blanchard and
Quah 1989), or restrictions arising from external instruments (Mertens and Ravn 2013; Stock and
Watson 2018; Aria, Rubio-Ramírez and Waggoner 2021).10

3.3 Conditional and unconditional likelihoods

When constructing the posterior of the SVAR’s parameters, AR18 use the likelihood conditional on
the NR holding. Define

DN = DN(ϕϕϕ ,Q,YT )≡ 1{N(ϕϕϕ ,Q,YT )≥ 0s×1} (20)

r(ϕϕϕ ,Q)≡ Pr(DN(ϕϕϕ ,Q,YT ) = 1|ϕϕϕ ,Q) (21)

f (yT |ϕϕϕ)≡
T∏

t=1

(2π)−
n
2 |ΣΣΣ|−

1
2 exp

(
−1

2
(yt −Bxt)

′ΣΣΣ−1 (yt −Bxt)

)
(22)

The likelihood conditional on DN = 1 can be written as

p(yT |DN = 1,ϕϕϕ ,Q) =
f (yT |ϕϕϕ)
r(ϕϕϕ ,Q)

·DN(ϕϕϕ ,Q,yT ) (23)

f (yT |ϕϕϕ) is the joint density of the data given ϕϕϕ (i.e. the likelihood of the reduced-form VAR), which
depends only on ϕϕϕ and the data. The indicator function DN(ϕϕϕ ,Q,yT ) equals one when the NR are
satisfied and is zero otherwise. This determines the truncation points of the likelihood. r(ϕϕϕ ,Q) is
the ex ante probability that the NR are satisfied. This is constant when there are only shock-sign
restrictions; for example, if there are s shock-sign restrictions, r(ϕϕϕ ,Q) = (1/2)s. When there are
restrictions on the historical decomposition, this probability depends on ϕϕϕ and Q.

Consider the case where ϕϕϕ is known, which will be the case asymptotically because ϕϕϕ is point
identified. When r(ϕϕϕ ,Q) depends on Q, the conditional likelihood is maximised at the value of Q
that minimises r(ϕϕϕ ,Q) (within the set of values of Q satisfying the restrictions). The posterior based
on this likelihood therefore places higher posterior probability on values of Q that result in a lower
ex ante probability that the restrictions are satisfied. As discussed in Section 2.2, this is an artefact
of conditioning on a non-ancillary event, which represents a loss of information.

10 GK21 explicitly allow for zero restrictions in their robust Bayesian analysis of set-identified SVARs. Giacomini et al (2022b)
extend this to proxy SVARs. Read (2022b) imposes sign, narrative and zero restrictions within our robust Bayesian
framework.
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We therefore advocate constructing the likelihood without conditioning on the NR holding. The
unconditional likelihood (the joint distribution of the data and DN) is

p(yT ,DN = d|ϕϕϕ ,Q) =
[

f (yT |ϕϕϕ)DN(ϕϕϕ ,Q,yT )
]d

·
[

f (yT |ϕϕϕ)
(

1−DN(ϕϕϕ ,Q,yT )
)]1−d

= f (yT |ϕϕϕ) ·
[
DN(ϕϕϕ ,Q,yT )

]d
·
[
1−DN(ϕϕϕ ,Q,yT )

]1−d
(24)

For any value of ϕϕϕ such that yT is compatible with the NR, there is a set of values of Q that satisfy the
restrictions, which depend on the data, but the value of the unconditional likelihood is the same for
any Q in this set. The conditional posterior for Q given ϕϕϕ is therefore proportional to the conditional
prior in these regions. Given a fixed number of NR, the likelihood has flat regions even with a time
series of infinite length, so posterior inference may be sensitive to the choice of conditional prior
for Q given ϕϕϕ , even asymptotically (which is also the case for the conditional likelihood when the
restrictions are ancillary). This motivates considering Bayesian procedures that are robust to the
choice of conditional prior, which we explore in Section 5.2.

3.4 Discussion of assumptions

3.4.1 Distributional assumptions

Researchers may be concerned about misspecification with regards to the assumption of standard
normal shocks. For instance, one could worry that the periods in which the NR are imposed are
‘unusual’ in the sense that the structural shocks in these periods were drawn from a distribution with,
say, different variance or fat tails. The unconditional likelihood depends on the normality assumption
only through the reduced-form VAR likelihood, f (yT |ϕϕϕ). By omitting terms in f (yT |ϕϕϕ) corresponding
to the periods in which the NR are imposed, one can thus conduct inference that is robust to the
distributional assumption about the shocks in these particular periods.

To illustrate, consider the case where NR are imposed in period k only and assume the likelihood for
yT takes the form

f̃ (yT |ϕϕϕ) = v({yt −Bxt}t ̸=k |ϕϕϕ)w(yk −Bxk) (25)

where
v({yt −Bxt}t ̸=k |ϕϕϕ) =

∏
t ̸=k

(2π)−
n
2 |ΣΣΣ|−

1
2 exp

(
−1

2
(yt −Bxt)

′ΣΣΣ−1 (yt −Bxt)

)
(26)

and w(yk−Bxk) is an unknown, potentially non-normal, density. Replacing f (yT |ϕϕϕ) in Equation (24)
with v({yt −Bxt}t ̸=k |ϕϕϕ) yields an ‘unconditional partial likelihood’ that does not depend on the
distribution of εεεk, but is still truncated by the NR. This would potentially result in a loss of information
relative to a likelihood that correctly specifies the distribution of the shocks in period k. However,
when NR are imposed in only a few periods, this loss is likely to be small. In contrast, when using
the conditional likelihood, the distribution of the structural shocks must be specified in all periods to
be able to compute r(ϕϕϕ ,Q).

Concerns about misspecification may also be alleviated by recognising that the distributional
assumption is irrelevant asymptotically. The set of values of Q with non-zero unconditional likelihood
depends only on ϕϕϕ and the realisation of the data in the periods in which the NR are imposed.
Under regularity assumptions, the likelihood (and thus the posterior) of ϕϕϕ will converge to a point
at the true value of ϕϕϕ asymptotically regardless of whether the true data-generating process is
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a VAR with homoskedastic normal shocks.11 The set of values of Q with non-zero likelihood will
therefore converge asymptotically to the same set regardless of whether the distributional assumption
is correct.

3.4.2 Mechanism generating NR

In line with the existing literature, we do not explicitly model the mechanism responsible for revealing
the information underlying the NR (i.e. whether DN = 1 or DN = 0) or the mechanism determining the
periods in which this information is revealed (e.g. the identity of k in examples above). If the revelation
of this information depends on the data, the likelihood will be misspecified. The exact implications of
this misspecification for identification or inference will depend on assumptions about the mechanism
revealing the narrative information. Exploring the consequences of such misspecification may be an
interesting area for further work. In the bivariate model of Section 2, if the identity of k is randomly
determined independently of εεε1, . . . ,εεεT , we can interpret the current analysis conditional on k.

4. Identification under NR

This section formally analyses identification in the SVAR under NR. Section 4.1 considers whether NR
are point or set identifying in a frequentist sense. Section 4.2 introduces the notion of a ‘conditional
identified set’, which extends the standard notion of an identified set to the setting where the
mapping from reduced-form to structural parameters depends on the realisation of the data. This
provides an interpretation of the set-valued mapping induced by the NR. Additionally, we make use
of the conditional identified set when investigating the frequentist properties of our robust Bayesian
procedure in Section 6.

4.1 Point identification under NR

Denoting the true parameter value by (ϕϕϕ 0,Q0), point identification for the parametric model
(Equation (24)), which is based on the unconditional likelihood, requires that there is no other
parameter value (ϕϕϕ ,Q) ̸= (ϕϕϕ 0,Q0) that is observationally equivalent to (ϕϕϕ 0,Q0).12

To assess the existence of observationally equivalent parameters, we analyse a statistical distance
between p(yT ,DN = d|ϕϕϕ ,Q) and p(yT ,DN = d|ϕϕϕ 0,Q0) that metrises observational equivalence.
Since the support of the distribution of observables can depend on the parameters, it is convenient
to work with the Hellinger distance:

HD(ϕϕϕ ,Q)≡

∑
d=0,1

∫
Y

(
p1/2(yT ,DN = d|ϕϕϕ ,Q)− p1/2(yT ,DN = d|ϕϕϕ 0,Q0)

)2
dyT

1
2

=
√

2(1−H (ϕϕϕ ,Q))
1
2 , where

H (ϕϕϕ ,Q)≡
∑

d=0,1

∫
Y

p1/2(yT ,DN = d|ϕϕϕ ,Q) · p1/2(yT ,DN = d|ϕϕϕ 0,Q0)dyT (27)

11 See Plagborg-Møller (2019) for a discussion of this point in the context of structural VMA models.

12 (ϕϕϕ ,Q) ̸= (ϕϕϕ 0,Q0) is observationally equivalent to (ϕϕϕ 0,Q0) if p(yT ,DN = d|ϕϕϕ ,Q) = p(yT ,DN = d|ϕϕϕ 0,Q0) holds for all yT

and d ∈ {0,1}.
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and Y is the sample space for YT . As is known in the literature on minimum distance estimation,
(ϕϕϕ ,Q) and (ϕϕϕ 0,Q0) are observationally equivalent if and only if HD(ϕϕϕ ,Q) = 0 or, equivalently,
H (ϕϕϕ ,Q) = 1 (e.g. Basu, Shioya and Park 2011).

We similarly define the Hellinger distance for the conditional likelihood as

HDc(ϕϕϕ ,Q)≡
√

2(1−Hc(ϕϕϕ ,Q))
1
2 , where

Hc(ϕϕϕ ,Q)≡
(∫

Y
p1/2(yT |DN = 1,ϕϕϕ ,Q) · p1/2(yT |DN = 1,ϕϕϕ 0,Q0)dyT

) 1
2

(28)

The next proposition analyses the conditions for H (ϕϕϕ ,Q) = 1 and Hc(ϕϕϕ ,Q) = 1, and shows that
observational equivalence of (ϕϕϕ ,Q) and (ϕϕϕ 0,Q0) boils down to geometric equivalence of the set of
reduced-form VAR innovations satisfying the NR.

Proposition 4.1. Let (ϕϕϕ 0,Q0) be the true parameter value and let U ≡ U(yT ;ϕϕϕ) = (u′
1, . . . ,u

′
T )

′

collect the reduced-form VAR innovations. Define

Q∗ ≡
{

Q ∈ O(n) : {U : N(ϕϕϕ ,Q,YT )≥ 0s×1}= {U : N(ϕϕϕ 0,Q0,Y
T )≥ 0s×1}

up to f (YT |ϕϕϕ 0)-null set, diag(Q′ΣΣΣ−1
tr )≥ 0n×1

}
The unconditional likelihood model (Equation (24)) and the conditional likelihood model
(Equation (23)) are globally identified (i.e. there are no observationally equivalent parameter points
to (ϕϕϕ 0,Q0)) if and only if Q∗ is a singleton. If the parameter of interest is an impulse response to
the jth structural shock, ηi, j,h(ϕϕϕ ,Q), as defined in Equation (15), then ηi, j,h(ϕϕϕ ,Q) is point identified
if the projection of Q∗ onto its jth column vector is a singleton.

This proposition provides a necessary and sufficient condition for global identification of SVARs by
NR. As shown in the proof in Appendix B, Q∗ defined in this proposition corresponds to the set of
observationally equivalent values of Q given ϕϕϕ = ϕϕϕ 0, but, importantly, it does not correspond to any
flat region of the observed likelihood (the conditional identified set in Definition 4.1 below).

To illustrate this point, consider the bivariate model of Section 2 with the shock-sign restriction
(Equation (3)), where yt itself is the reduced-form error, so U in Proposition 4.1 can be set to yk.
Given ϕϕϕ , the set of yk ∈ R2 satisfying the NR is the half-space{

yk ∈ R2 : (σ11σ22)
−1
(

σ22 cosθ −σ21 sinθ , σ11 sinθ
)

yk ≥ 0
}

(29)

The condition for point identification shown in Proposition 4.1 is satisfied if no θ ′ ̸= θ can generate
a half-space identical to Equation (29). Such θ ′ cannot exist, since a half-space passing through
the origin (a1,a2)yk ≥ 0 can be indexed uniquely by the slope a1/a2 and Equation (29) implies the
slope σ−1

11 (σ22(tanθ)−1 − σ21) is a bijective map of θ on a constrained domain due to the sign
normalisation. Figure 3 plots the squared Hellinger distances in the bivariate model under the shock-
sign restriction (top panel) and the historical decomposition restriction (bottom panel). For both the
conditional and unconditional likelihood, the squared Hellinger distances are minimised uniquely at
the true θ , which is consistent with our point-identification claim for θ .13

13 Under the restriction on the historical decomposition, a notable difference between the conditional and unconditional
likelihood cases is the slope of the squared Hellinger distance around the minimum. The squared Hellinger distance of
the unconditional likelihood has a steeper slope than the conditional likelihood. This indicates the loss of information for
θ in the conditional likelihood due to conditioning on a non-ancillary event.
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Figure 3: Squared Hellinger Distance in Bivariate Model
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Note: Hellinger distances approximated using Monte Carlo under data-generating processes from Section 2.

Proposition 4.1 also provides conditions under which (ϕϕϕ ,Q) is not globally identified, but a particular
impulse response is. To give an example, consider an SVAR with n > 2 and with a shock-sign
restriction on the first shock in period k. Given ϕϕϕ , the set of uk ∈ Rn satisfying the NR is a half-
space defined by q′

1ΣΣΣ−1
tr uk ≥ 0. The set of values of uk satisfying this inequality is indexed uniquely

by q1 given ΣΣΣtr at its true value, so there are no values of Q that are observationally equivalent to
Q0 with q1 ̸= Q0e1,n. Any value for the remaining n−1 columns of Q such that they are orthogonal
to Q0e1,n will generate the same half-space for uk, so Q∗ is not a singleton and the SVAR is not
globally identified. However, the projection of Q∗ onto its first column is a singleton, so ηi,1,h(ϕϕϕ ,Q)

is globally identified for all i and h.

Although a single NR can deliver global identification in the frequentist sense, the practical implication
of this theoretical claim is not obvious. The observed unconditional likelihood is almost always flat
at the maximum, so we cannot obtain a unique maximum likelihood estimator for the structural
parameter. As a result, the standard asymptotic approximation of the sampling distribution of the
maximum likelihood estimator is not applicable. The SVAR model with NR possesses features of set-
identified models from the Bayesian standpoint (i.e. flat regions of the likelihood). However, strictly
speaking, it can be classified as a globally identified model in the frequentist sense when the condition
of Proposition 4.1 holds.

4.2 Conditional identified set

It is well-known that traditional sign restrictions S(ϕϕϕ ,Q) ≥ 0s̃×1 set identify Q or, equivalently, the
structural parameters. Given the reduced-form parameters ϕϕϕ – which are point identified – there are
multiple observationally equivalent values of Q, in the sense that there exists Q and Q̃ ̸= Q such
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that p(yT |ϕϕϕ ,Q) = p(yT |ϕϕϕ ,Q̃) for every yT in the sample space. The identified set for Q given ϕϕϕ
contains all such observationally equivalent parameter points, and is defined as

Q(ϕϕϕ |S) = {Q ∈ O(n) : S(ϕϕϕ ,Q)≥ 0s̃×1} (30)

The identified set is a set-valued map only of ϕϕϕ , which carries all the information about Q contained
in the data.

The complication in applying this definition of the identified set in SVARs when there are NR is that
ϕϕϕ no longer represents all information about Q contained in the data; by truncating the likelihood,
the realisations of the data entering the NR contain additional information about Q. To address this,
we introduce a refinement of the definition of an identified set.

Definition 4.1. Let N ≡ N(ϕϕϕ ,Q,yT )≥ 0s×1 represent a set of NR in terms of the parameters and
the data.

(i) The conditional identified set for Q under NR is

Q(ϕϕϕ |yT ,N) = {Q ∈ O(n) : N(ϕϕϕ ,Q,yT )≥ 0s×1} (31)

The conditional identified set for the impulse response η = ηi, j,h(ϕϕϕ ,Q) under NR is defined by
projecting Q(ϕϕϕ |yT ,N) via ηi, j,h(ϕϕϕ ,Q):

CISη(ϕϕϕ |y
T ,N) = {ηi, j,h(ϕϕϕ ,Q) : Q ∈ Q(ϕϕϕ |yT ,N)} (32)

(ii) Let s : Y → RS be a statistic. We call s(yT ) a sufficient statistic for the conditional identified set
Q(ϕϕϕ |yT ,N) if the conditional identified set for Q depends on the sample yT through s(yT ); that is,
there exists Q̃(ϕϕϕ |·,N) such that

Q(ϕϕϕ |yT ,N) = Q̃(ϕϕϕ |s(yT ),N) (33)

holds for all ϕϕϕ ∈ ΦΦΦ and yT ∈ Y.

Unlike the standard identified set Q(ϕϕϕ |S), the conditional identified set Q(ϕϕϕ |yT ,N) depends on the
sample yT because of the aforementioned data-dependent support of the likelihood. In terms of the
observed likelihood, however, they share the property that the likelihood is flat on the (conditional)
identified set. Hence, given the sample yT and the reduced-form parameters ϕϕϕ , all values of Q in
Q(ϕϕϕ |yT ,N) fit the data equally well and, in this particular sense, they are observationally equivalent.

When the NR involve shocks in only a subset of time periods (as is typically the case), the conditional
identified set depends on the sample only through the observations entering the NR, which are
represented by the sufficient statistic s(yT ) in Definition 4.1(ii). For instance, in the example of
Section 2.1 s(yT ) = yk. If we extend the example to the SVAR(p), the shock-sign restriction in
Equation (3) is

ε1k = e′1,2A0uk = e′1,2Q′ΣΣΣ−1
tr (yk −Bxk)≥ 0 (34)

Hence, the conditional identified set Q(ϕϕϕ |yT ,N) depends on the data only through (y′k,x
′
k)

′ =

(y′k,y
′
k−1, · · · ,y

′
k−p)

′, so we can set s(yT ) = (y′k,y
′
k−1, · · · ,y

′
k−p)

′.

If the conditional distribution of YT given s(YT ) = s(yT ) is non-degenerate, we can consider a
frequentist sampling experiment (repeated sampling of YT ) conditional on the sufficient statistics set
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to their observed values. We can then view the conditional identified set Q(ϕϕϕ |yT ,N) as the standard
identified set in set-identified models, since it no longer depends on the data in the conditional
experiment where s(yT ) is fixed. This motivates referring to Q(ϕϕϕ |yT ,N) as the conditional identified
set.

The conditional identified set resembles the finite-sample identified set introduced by Rosen and
Ura (2020) in the context of maximum score estimation (Manski 1975, 1985). Their set corresponds
to the plateau of the population objective function in the conditional frequentist sampling experiment
given the regressors. If we impose only the shock-sign restrictions, and given knowledge of the
true data-generating processes, the construction of the conditional identified set coincides with the
construction of the finite-sample identified set for the scale-normalised coefficients, as they both solve
the system of inequalities in Equations (3) or (34).14 Despite these common geometric features,
there are several differences between the SVAR under NR and maximum score estimation. First,
the SVAR under NR is a likelihood-based parametric model, while maximum score estimation is a
semi-parametric binary regression without a likelihood. Second, NR directly trim the support of the
sample objective function (the likelihood) by the intersection of inequalities, while the maximum score
objective function counts the number of inequalities satisfied in the sample. Third, the number of NR
depends on the researcher’s choice, while the number of inequalities in maximum score estimation
is driven by the support points of the regressors observed in the sample.

5. Bayesian Inference under NR

This section presents approaches to conducting Bayesian inference in SVARs under NR. Section 5.1
discusses how to modify the standard Bayesian approach in AR18 to use the unconditional likelihood
rather than the conditional likelihood. Section 5.2 explains how to conduct robust Bayesian inference
under NR, which further addresses the issue of posterior sensitivity due to a flat likelihood.

5.1 Standard Bayesian inference

AR18 propose an algorithm for drawing from the uniform normal-inverse-Wishart posterior of (ϕϕϕ ,Q)

given traditional sign restrictions and NR. This is the posterior induced by a normal-inverse-Wishart
prior for ϕϕϕ and a uniform prior for Q. The algorithm draws ϕϕϕ from a normal-inverse-Wishart
distribution and Q from a uniform distribution over O(n), and checks whether the restrictions are
satisfied. If not, the joint draw is discarded and another draw is made. If the restrictions are satisfied,
the ex ante probability that the NR are satisfied at the drawn parameter values is approximated via
Monte Carlo simulation. Once sufficient draws are obtained satisfying the restrictions, the draws are
resampled with replacement using as importance weights the inverse of the probability that the NR
are satisfied.15

This algorithm can be interpreted as drawing from the posterior based on the unconditional likelihood
and then using importance sampling to transform into draws from the posterior based on the
conditional likelihood. Drawing from the posterior based on the unconditional likelihood therefore
simply requires omitting the importance-sampling step. Constructing the importance weights requires

14 See also Komarova (2013) for the construction of identified sets for maximum score coefficients with discrete regressors.
15 Based on the results in Arias et al (2018), AR18 argue that their algorithm draws from a normal-generalised-normal

posterior for the SVAR’s structural parameters (A0,A+) induced by a conjugate normal-generalised-normal prior,
conditional on the restrictions.



18

Monte Carlo integration, which can be computationally expensive, particularly when the NR constrain
the structural shocks in multiple periods. Omitting the importance-sampling step can therefore ease
computational burden.

The algorithm described above places more weight on values of ϕϕϕ (relative to the notional normal-
inverse-Wishart prior) that are more likely to satisfy the restrictions under the uniform distribution
over O(n) (i.e. values with ‘larger’ conditional identified sets). As discussed in Uhlig (2017), it may
instead be preferable to use a prior that is conditionally uniform over the identified set for Q. To
draw from the posterior of (ϕϕϕ ,Q) under the unconditional likelihood given a conditionally uniform
prior for Q simply requires obtaining a fixed number of draws of Q at each draw of ϕϕϕ .

5.2 Robust Bayesian inference

Standard Bayesian inference based on the unconditional likelihood (or based on the conditional
likelihood under shock-sign restrictions) is potentially sensitive to the choice of conditional prior
for Q given ϕϕϕ , because the likelihood possesses flat regions. This section explains how to conduct
robust Bayesian inference about a scalar-valued function of the structural parameters under NR and
traditional sign restrictions. The approach can be viewed as performing global sensitivity analysis
to assess whether posterior conclusions are robust to the choice of prior on the flat regions of the
likelihood. We assume that the object of interest is an impulse response η , but the discussion applies
to any other scalar-valued function of the structural parameters.

Let πϕϕϕ be a prior over the reduced-form parameters ϕϕϕ ∈ ΦΦΦ, where ΦΦΦ is the space of reduced-form
parameters such that Q(ϕϕϕ |S) is non-empty. A joint prior for (ϕϕϕ ,Q) ∈ ΦΦΦ×O(n) can be written as
πϕϕϕ ,Q = πQ|ϕϕϕ πϕϕϕ , where πQ|ϕϕϕ is supported only on Q(ϕϕϕ |S). When there are only traditional identifying
restrictions, πQ|ϕϕϕ is not updated by the data, because the likelihood is not a function of Q. Posterior
inference may therefore be sensitive to the choice of conditional prior, even asymptotically. As
discussed above, a similar issue arises under NR. The difference under NR is that πQ|ϕϕϕ is updated by
the data through the truncation points of the unconditional likelihood. However, at each value of ϕϕϕ ,
the unconditional likelihood is flat over the set of values of Q satisfying the NR. Consequently, the
conditional posterior for Q|ϕϕϕ ,YT is proportional to the conditional prior for Q|ϕϕϕ at each ϕϕϕ whenever
the conditional identified set for Q given (ϕϕϕ ,YT ) is non-empty.

Rather than specifying a single conditional prior for Q, the robust Bayesian approach of GK21
considers the set of all conditional priors for Q that are consistent with the identifying restrictions:

ΠQ|ϕϕϕ =
{

πQ|ϕϕϕ : πQ|ϕϕϕ (Q(ϕϕϕ |S)) = 1
}

(35)

Notice that we cannot impose the NR using a particular conditional prior due to the data-dependent
mapping from ϕϕϕ to Q induced by the NR. However, by considering all possible conditional priors
that are consistent with the traditional identifying restrictions, we trace out all possible conditional
posteriors for Q|ϕϕϕ ,YT that are consistent with the traditional identifying restrictions and the NR.
This is because the NR truncate the unconditional likelihood and the traditional identifying restrictions
truncate the prior for Q|ϕϕϕ , so the posterior for Q|ϕϕϕ ,YT is supported only on values of Q that satisfy
both sets of restrictions.
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Given a particular prior for (ϕϕϕ ,Q) and using the unconditional likelihood, the posterior is

πϕϕϕ ,Q|YT
,DN=1

∝ p(YT ,DN = 1|ϕϕϕ ,Q)πQ|ϕϕϕ πϕϕϕ

∝ f (YT |ϕϕϕ)DN(ϕϕϕ ,Q,YT )πϕϕϕ πQ|ϕϕϕ

∝ πϕϕϕ |YT πQ|ϕϕϕ DN(ϕϕϕ ,Q,YT ) (36)

The final expression for the posterior makes it clear that any prior for Q|ϕϕϕ that is consistent with
the traditional identifying restrictions is in effect further truncated by the NR (through the likelihood)
once the data are realised. Generating this posterior using every prior in the set of conditional priors
yields a set of posteriors for (ϕϕϕ ,Q):

Πϕϕϕ ,Q|YT
,DN=1

=
{

πϕϕϕ ,Q|YT
,DN=1

= πϕϕϕ |YT πQ|ϕϕϕ DN(ϕϕϕ ,Q,YT ) : πQ|ϕϕϕ ∈ ΠQ|ϕϕϕ

}
(37)

Marginalising each posterior in this set induces a set of posteriors for η , Πη |YT
,DN=1

. Associated with
each of these posteriors are quantities such as the posterior mean, median and other quantiles. For
example, as we consider each possible prior within ΠQ|ϕϕϕ , we can trace out the set of all possible
posterior means for η . This will always be an interval, so we can summarise this ‘set of posterior
means’ by its end points: [∫

ΦΦΦ
ℓ(ϕϕϕ ,YT )dπϕϕϕ |YT ,

∫
ΦΦΦ

u(ϕϕϕ ,YT )dπϕϕϕ |YT

]
(38)

where ℓ(ϕϕϕ ,YT )= inf{η(ϕϕϕ ,Q) : Q∈Q(ϕϕϕ |YT ,N,S)}, u(ϕϕϕ ,YT )= sup{η(ϕϕϕ ,Q) : Q∈Q(ϕϕϕ |YT ,N,S)}
and Q(ϕϕϕ |YT ,N,S) =

{
Q(ϕϕϕ |S)∩Q(ϕϕϕ |YT ,N)

}
is the set of values of Q that are consistent with

the traditional identifying restrictions and the NR (i.e. the conditional identified set). In contrast, in
GK21 the set of posterior means is obtained by finding the infimum and supremum of η(ϕϕϕ ,Q) over
Q(ϕϕϕ |S) and averaging these over πϕϕϕ |YT . The important difference from GK21 is that the current
set of posterior means depends on the data not only through the posterior for ϕϕϕ but also through
the conditional identified set generated by the NR. As a result, in contrast with GK21, we cannot
interpret the set of posterior means (Equation (38)) as a consistent estimator for the identified set
for η (which is not well-defined, as we discussed above). Nevertheless, the set of posterior means
still carries a robust Bayesian interpretation similar to GK21 in that it clarifies posterior results that
are robust to the choice of prior on the non-updated part of the parameter space (i.e. on the flat
regions of the likelihood).

As in GK21, we can also report a robust credible region with credibility level α. This is the shortest
interval estimate for η such that the posterior probability put on the interval is greater than or equal
to α uniformly over the posteriors in Πη |YT

,DN=1
(see Proposition 1 of GK21). We can also report

posterior lower and upper probabilities. These are the infimum and supremum, respectively, of the
probability for a hypothesis over all posteriors in the set.

To numerically implement this robust Bayesian procedure, we extend the numerical algorithms in
GK21 to handle NR. We approximate the bounds of the conditional identified set at each value of ϕϕϕ
using a simulation-based approach based on Algorithm 2 of GK21. See Appendix A for details.

6. Frequentist Coverage

This section analyses the frequentist properties of the robust Bayesian approach under NR. GK21
provide conditions under which the robust credible region is an asymptotically valid confidence set
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for the true identified set. For the same reason as mentioned above, however, frequentist validity of
the robust credible region does not immediately extend to the NR case.

We assume that the number of NR is fixed when the sample size grows, representing situations where
the number of NR is ‘small’ relative to the sample size. This setting is empirically relevant given that
the literature typically imposes no more than a handful of NR. The sense in which the number of NR
is ‘small’ is made precise in the following assumption.

Assumption 1. (Fixed-dimensional s(YT )): The conditional identified set under NR has sufficient
statistics s(YT ), as defined in Definition 4.1(ii), and the dimension of s(YT ) does not depend on T .

Let (ϕϕϕ 0,Q0) be the true parameter values. We view the sample YT as being drawn from p(YT |ϕϕϕ 0).
Let p(YT |s,ϕϕϕ 0) be the conditional distribution of the sample YT given the sufficient statistics for the
conditional identified set s = s(YT ) at ϕϕϕ = ϕϕϕ 0. We denote by p(s|ϕϕϕ 0) the distribution of the sufficient
statistics s(YT ) at ϕϕϕ = ϕϕϕ 0. The next assumption assumes that in the conditional sampling experiment
given s(YT ), the sampling distribution for the maximum likelihood estimator ϕ̂ϕϕ ≡ argmaxϕϕϕ p(YT |ϕϕϕ)
centered at ϕϕϕ 0 and the posterior for ϕϕϕ centered at ϕ̂ϕϕ asymptotically coincide. To characterise the
asymptotic properties of our inference proposals, let Y∞ be a sequence of endogenous variables of
infinite length, (yt : t = 1,2, . . .), generated according to the SVAR(p) model of Equation (11). We
denote its true probability law as P0, whose marginal distribution for the first T realisations, YT ,
corresponds to p(YT |ϕϕϕ 0).

Assumption 2. (Conditional Bernstein–von Mises property for ϕϕϕ ): For p(s|ϕϕϕ 0)-almost every s
and p(Y∞|s,ϕϕϕ 0)-almost every sampling sequence Y∞, the posterior for

√
T (ϕϕϕ − ϕ̂ϕϕ) asymptotically

coincides with the sampling distribution of
√

T (ϕ̂ϕϕ −ϕϕϕ 0) under p(YT |s,ϕϕϕ 0) as T → ∞, in the sense
stated in Assumption 5(i) in GK21.

This is a key assumption for establishing the asymptotic frequentist validity of the robust credible
region under NR. It holds, for instance, when s(yT ) corresponds to one or a few observations in
the whole sample, as we had in the example of Section 2.1. In this case, the influence of s(yT )

vanishes in the conditional sampling distribution of
√

T (ϕ̂ϕϕ −ϕϕϕ 0) as T →∞, as the latter asymptotically
agrees with the asymptotically normal sampling distribution for the maximum likelihood estimator
with variance-covariance matrix given by the inverse of the Fisher information matrix. By the well-
known Bernstein–von Mises theorem for regular parametric models, the posterior for

√
T (ϕϕϕ − ϕ̂ϕϕ)

asymptotically agrees with this sampling distribution.

The last assumption requires convexity and smoothness of the conditional identified set, and is
analogous to Assumption 5(ii) of GK21 for set-identified models.

Assumption 3. (Almost-sure convexity and smoothness of the impulse response identified set): Let
C̃ISη(ϕϕϕ |s(Y

T ),N) be the conditional identified set for η with the sufficient statistics s(YT ). For any
T and p(YT |ϕϕϕ 0)-almost every YT , C̃ISη(ϕϕϕ |s(Y

T ),N) is closed and convex, C̃ISη(ϕϕϕ |s(Y
T ),N) =

[ℓ̃(ϕϕϕ ,s(YT )), ũ(ϕϕϕ ,s(YT ))], and its lower and upper bounds are differentiable in ϕϕϕ at ϕϕϕ = ϕϕϕ 0 with
non-zero derivatives.

Propositions B.1–B.3 provide primitive conditions for Assumption 3 to hold in the case where there
are shock-sign restrictions. Imposing Assumptions 1, 2 and 3, we obtain the following theorem
characterising the asymptotic frequentist properties of the robust credible interval under NR.
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Theorem 6.1. For α ∈ (0,1), let Ĉ∗
α be the volume-minimising robust credible region for η with

credibility α,16 which satisfies

inf
π∈Π

ϕϕϕ ,Q|YT
,DN=1

π(Ĉ∗
α) = πϕϕϕ |YT

,DN=1
(CISη(ϕϕϕ |Y

T ,N)⊂ Ĉ∗
α |Y

T ,DN = 1) = α (39)

Under Assumptions 1, 2, and 3, Ĉ∗
α attains asymptotically valid coverage for the true impulse

response, η0, conditional on s(YT ):

liminf
T→∞

PYT |s,ϕϕϕ (η0 ∈ Ĉ∗
α |s(Y

T ),ϕϕϕ 0)≥ lim
T→∞

PYT |s,ϕϕϕ (C̃ISη(ϕϕϕ 0|s(Y
T ),N)⊂ Ĉ∗

α |s(Y
T ),ϕϕϕ 0) = α (40)

Accordingly, Ĉ∗
α attains asymptotically valid coverage for η0 unconditionally,

liminf
T→∞

PYT |ϕϕϕ (η0 ∈ Ĉ∗
α |ϕϕϕ 0)≥ lim

T→∞
PYT |ϕϕϕ (C̃ISη(ϕϕϕ 0|s(Y

T ),N)⊂ Ĉ∗
α |ϕϕϕ 0) = α (41)

This theorem shows that the robust credible region applied to the SVAR model with NR attains
asymptotically valid frequentist coverage for the impulse response conditional identified set
and consequently for the true impulse response. Even if the point-identification condition of
Proposition 4.1 holds for the impulse response, it is not obvious that the standard (single prior)
Bayesian credible region can attain frequentist coverage. This is because the Bernstein–von Mises
theorem does not seem to hold for the impulse response due to the non-standard features of models
with NR.

7. Empirical Application: Dynamic Effects of US Monetary Policy

AR18 estimate the effects of monetary policy on the US economy using a combination of sign
restrictions on impulse responses and NR. We explore the degree to which inferences obtained under
these restrictions are robust to the choice of conditional prior for Q when using the unconditional
likelihood to construct the posterior. We also examine the informativeness of the different NR that
are imposed.

The reduced-form VAR is the same as in Uhlig (2005). The model’s variables are real GDP, the GDP
deflator, a commodity price index, total reserves, non-borrowed reserves (all in natural logarithms)
and the federal funds rate; see Arias et al (2019) for details on the variables. The data are monthly
from January 1965 to November 2007. The VAR includes a constant and 12 lags.

As NR, AR18 impose that the monetary policy shock in October 1979 was positive and that it was
the overwhelming contributor to the unexpected change in the federal funds rate in that month.
Following Uhlig (2005), they also impose the sign restrictions that the response of the federal funds
rate is non-negative for h = 0,1, . . . ,5 and the responses of the GDP deflator, the commodity price
index and non-borrowed reserves are non-positive for h = 0,1, . . . ,5.

We assume a Jeffreys’ (improper) prior over the reduced-form parameters, πϕϕϕ = πB,ΣΣΣ ∝ |ΣΣΣ|−
n+1

2 ,
which is truncated so that the VAR is stable. The posterior for the reduced-form parameters is then
a normal-inverse-Wishart distribution, from which it is straightforward to obtain independent draws

16 Ĉ∗
α is defined as a shortest interval among the connected intervals Cα satisfying PYT |s,ϕϕϕ (C̃ISη (ϕϕϕ 0|s(Y

T ),N) ⊂
Cα |s(Y

T ),ϕϕϕ 0)≥ α. See Proposition 1 in GK21 for a procedure to compute the volume-minimising credible region.
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(e.g. Del Negro and Schorfheide 2011). We obtain 1,000 draws from the posterior of ϕϕϕ such that
the VAR is stable and Q(ϕϕϕ |YT ,N,S) is non-empty. To compute sets of posterior means and robust
credible intervals, we use Algorithm A.1 in Appendix A, with 1,000 draws of Q used to approximate
the bounds of the conditional identified set. If we cannot obtain a draw of Q satisfying the restrictions
after 100,000 attempted draws, we approximate Q(ϕϕϕ |YT ,N,S) as being empty.

Figure 4 presents the impulse responses of the federal funds rate and real GDP to a positive standard
deviation monetary policy shock. As a benchmark, we first impose only the sign restrictions on
impulse responses (top row). The traditional sign restrictions appear to be fairly uninformative about
the output response. The standard Bayesian posterior obtained under a conditionally uniform prior
assigns high probability mass to positive output responses (an ‘output puzzle’). The set of posterior
means and robust credible intervals also include a wide range of output responses, both positive and
negative. This is consistent with the results in Wolf (2020), who shows that linear combinations
of expansionary supply and demand shocks may satisfy the sign restrictions and consequently
‘masquerade’ as positive monetary policy shocks.

When additionally imposing the NR based on the October 1979 episode (bottom row), the standard
Bayesian posterior concentrates around negative output responses at horizons beyond a year or so.
For example, at the two-year horizon and based on the conditionally uniform prior, the posterior
probability that the output response is negative is around 80 per cent.17 At face value, this suggests
that the NR based on the October 1979 episode are informative about the effects of monetary policy.
However, the set of posterior means and the 68 per cent robust credible intervals include zero at
all horizons. This indicates that the inferences about the output response obtained under this set of
restrictions are sensitive to the choice of conditional prior. For example, the posterior lower probability
– the smallest probability obtainable given the class of posteriors – that the output response is
negative at the two-year horizon is only around 10 per cent. The NR based on the October 1979
episode, when combined with the sign restrictions on impulse responses, therefore do not allow us
to draw robust conclusions about the sign of the output response to a positive monetary policy shock.

AR18 also consider an alternative set of restrictions based on a richer narrative account of US
monetary policy. Specifically, they argue that narrative evidence is consistent with the monetary policy
shock being: positive in April 1974, October 1979, December 1988 and February 1994; negative in
December 1990, October 1998, April 2001 and November 2002; and the most important contributor
to the observed unexpected change in the federal funds rate in these months. Our second exercise
examines the informativeness of these restrictions. In particular, we disentangle the informativeness
of the shock-sign restrictions from that of the historical decomposition restrictions. The robust
Bayesian approach is crucial for carrying out this exercise, since comparisons of standard Bayesian
credible intervals across the different sets of restrictions may confound the influence of the conditional
prior with the informativeness of the restrictions themselves.

17 The results are not directly comparable to those in Figure 6 of AR18. First, we present responses to a standard deviation
shock, whereas AR18 normalise the median impact response of the federal funds rate to 25 basis points. Second, our
prior for Q is conditionally uniform, whereas the prior in AR18 is unconditionally uniform. They also use the conditional
likelihood to construct the posterior.
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Figure 4: Responses to Monetary Policy Shock
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Note: Impulse responses are to a standard deviation shock.

Adding the extended set of shock-sign restrictions to the benchmark sign restrictions narrows the
set of posterior means and robust credible intervals (top row of Figure 5), suggesting that these
restrictions are somewhat informative. However, the intervals still admit positive output responses at
all horizons. Adding the historical decomposition restrictions narrows the sets further (bottom row);
for example, the set of posterior means now excludes zero at horizons beyond a year or so. The
posterior lower probability that the output response is negative at the two-year horizon is close to
80 per cent, which implies that output falls with high posterior probability regardless of the choice
of conditional prior. The extended set of restrictions therefore allows us to draw robust conclusions
about the output effects of monetary policy.
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Figure 5: Responses to Monetary Policy Shock – Extended Restrictions
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Note: Impulse responses are to a standard deviation shock.

One takeaway from this exercise is that it is necessary to impose NR in at least a handful of periods in
order to draw robust conclusions about the effects of US monetary policy; restrictions based on the
Volcker episode in isolation are not sufficient. Moreover, much of the apparent information provided
by the NR appears to come from the historical decomposition restrictions; the shock-sign restrictions
on their own do not allow us to draw robust conclusions.
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8. Conclusion

Restricting the values of structural shocks to be consistent with historical narratives offers a potentially
useful approach to learning about the effects of structural shocks in SVARs, but raises novel issues
related to identification and inference. We study such issues and propose a method for conducting
inference that is valid from both Bayesian and frequentist points of view.

Using our method, we assess whether conclusions about the effects of US monetary policy obtained
under narrative restrictions are robust to the choice of prior. We find that restrictions based on
the Volcker episode in isolation are not sufficiently informative to draw robust conclusions about the
output effects of monetary policy. However, under a richer set of restrictions, there is robust evidence
that output falls following a positive monetary policy shock.

While we focus on SVARs, our analysis could be extended to other settings. For example, Plagborg-
Møller and Wolf (2021a) explain how to impose traditional SVAR identifying restrictions in the local
projection framework under the assumption that the structural shocks are invertible. In this context
it should also be possible to impose narrative restrictions and to conduct inference using robust
Bayesian methods, but we leave this analysis to future research.
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Appendix A: Numerical Implementation

This appendix describes a general algorithm to implement the robust Bayesian procedure under NR.
GK21 propose numerical algorithms for conducting robust Bayesian inference in SVARs identified
using traditional sign and zero restrictions. Their Algorithm 1 uses a numerical optimisation routine
to obtain the lower and upper bounds of the identified set at each draw of ϕϕϕ . Obtaining the bounds
via numerical optimisation may be difficult under the set of NR considered here, since the problem
is non-convex. We therefore adapt Algorithm 2 of GK21, which approximates the bounds of the
identified set at each draw of ϕϕϕ using Monte Carlo simulation.

Algorithm A.1. Let N(ϕϕϕ ,Q,YT ) ≥ 0s×1 be the set of NR and let S(ϕϕϕ ,Q) ≥ 0s̃×1 be the set of
traditional sign restrictions (excluding the sign normalisation). Assume the object of interest is
ηi, j,h = c′i,h(ϕϕϕ)q j.

• Step 1: Specify a prior for ϕϕϕ , πϕϕϕ , and obtain the posterior πϕϕϕ |YT .

• Step 2: Draw ϕϕϕ from πϕϕϕ |YT and check whether Q(ϕϕϕ |YT ,N,S) is empty using the subroutine
below.
◦ Step 2.1: Draw an n×n matrix of independent standard normal random variables, Z, and

let Z = Q̃R be the QR decomposition of Z.18

◦ Step 2.2: Define

Q =

[
sign((ΣΣΣ−1

tr e1,n)
′q̃1)

q̃1
∥q̃1∥

, . . . ,sign((ΣΣΣ−1
tr en,n)

′q̃n)
q̃n

∥q̃n∥

]
,

where q̃ j is the jth column of Q̃.
◦ Step 2.3: Check whether Q satisfies N(ϕϕϕ ,Q,YT )≥ 0s×1 and S(ϕϕϕ ,Q)≥ 0s̃×1. If so, retain

Q and proceed to Step 3. Otherwise, repeat Steps 2.1 and 2.2 (up to a maximum of L
times) until Q is obtained satisfying the restrictions. If no draws of Q satisfy the restrictions,
approximate Q(ϕϕϕ |YT ,N,S) as being empty and return to Step 2.

• Step 3: Repeat Steps 2.1–2.3 until K draws of Q are obtained. Let {Qk,k = 1, ...,K} be the
K draws of Q that satisfy the restrictions and let q j,k be the jth column of Qk. Approximate
[ℓ(ϕϕϕ ,YT ),u(ϕϕϕ ,YT )] by [mink c′i,h(ϕϕϕ)q j,k, maxk c′i,h(ϕϕϕ)q j,k].

• Step 4: Repeat Steps 2–3 M times to obtain [ℓ(ϕϕϕ m,Y
T ),u(ϕϕϕ m,Y

T )] for m = 1, ...,M.
Approximate the set of posterior means using the sample averages of ℓ(ϕϕϕ m,Y

T ) and u(ϕϕϕ m,Y
T ).

• Step 5: To obtain an approximation of the smallest robust credible region with credibility
α ∈ (0,1), define d(η ,ϕϕϕ ,YT ) = max{|η − ℓ(ϕϕϕ ,YT )|, |η − u(ϕϕϕ ,YT )|} and let ẑα(η) be the
sample α quantile of {d(η ,ϕϕϕ m,Y

T ),m = 1, ...,M}. An approximated smallest robust credible
interval for ηi, j,h is an interval centered at argminη ẑα(η) with radius minη ẑα(η).

Algorithm 1 approximates [ℓ(ϕϕϕ ,YT ),u(ϕϕϕ ,YT )] at each draw of ϕϕϕ via Monte Carlo simulation. The
approximated set will be too narrow given a finite number of draws of Q, but the approximation error

18 This is the algorithm used by Rubio-Ramírez et al (2010) to draw from the uniform distribution over O(n), except that
we do not normalise the diagonal elements of R to be positive. This is because we impose a sign normalisation based
on the diagonal elements of A0 = Q′ΣΣΣ−1

tr in Step 2.2.
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will vanish as the number of draws goes to infinity. Montiel Olea and Nesbit (2021) derive bounds on
the number of draws required to control approximation error.

The algorithm may be computationally demanding when the restrictions substantially truncate
Q(ϕϕϕ |YT ,N,S), because many draws of Q may be rejected at each draw of ϕϕϕ .19 However, the
same draws of Q can be used to compute ℓ(ϕϕϕ ,YT ) and u(ϕϕϕ ,YT ) for different objects of interest,
which cuts down on computation time. For example, the same draws can be used to compute the
impulse responses of all variables to all shocks at all horizons of interest. Other quantities of interest
can also be computed, such as impulse responses to ‘unit’ shocks (e.g. Read 2022b), forecast error
variance decompositions, elements of A0 or A+, historical decompositions or structural shocks.

19 Read and Zhu (forthcoming) develop more computationally efficient algorithms for obtaining draws of Q from a uniform
distribution over the (conditional) identified set given a broad class of identifying restrictions, including NR.
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Appendix B: Proofs

Proof of Proposition 4.1. H (ϕϕϕ ,Q) can be written as

H (ϕϕϕ ,Q) =

∫
Y

f 1/2(yT |ϕϕϕ) f 1/2(yT |ϕϕϕ 0) ·DN(ϕϕϕ ,Q,yT )DN(ϕϕϕ 0,Q0,y
T )dyT

+

∫
Y

f 1/2(yT |ϕϕϕ) f 1/2(yT |ϕϕϕ 0) · (1−DN(ϕϕϕ ,Q,yT ))(1−DN(ϕϕϕ 0,Q0,y
T ))dyT

The likelihood for the reduced-form parameters f (yT |ϕϕϕ) point identifies ϕϕϕ , so f (·|ϕϕϕ) = f (·|ϕϕϕ 0) holds
only at ϕϕϕ = ϕϕϕ 0. Hence, we set ϕϕϕ = ϕϕϕ 0 and consider H (ϕϕϕ 0,Q),

H (ϕϕϕ 0,Q) =

∫
{yT :DN(ϕϕϕ0,Q,yT

)=DN(ϕϕϕ0,Q0,y
T
)}

f (yT |ϕϕϕ 0)dyT

H (ϕϕϕ 0,Q) = 1 if and only if DN(ϕϕϕ 0,Q,yT ) = DN(ϕϕϕ 0,Q0,y
T ) holds almost surely under f (YT |ϕϕϕ 0).

In terms of the reduced-form residuals entering the NR, the latter condition is equivalent to
{U : N(ϕϕϕ 0,Q,YT )≥ 0s×1}= {U : N(ϕϕϕ 0,Q0,Y

T )≥ 0s×1} up to a null set under f (YT |ϕϕϕ 0). Hence,
Q∗ defined in the proposition collects observationally equivalent values of Q at ϕϕϕ = ϕϕϕ 0 in terms of
the unconditional likelihood.

Next, for the case of the the conditional likelihood, consider

Hc(ϕϕϕ 0,Q) =
1

r1/2(ϕϕϕ 0,Q)r1/2(ϕϕϕ 0,Q0)

∫
Y

f (yT |ϕϕϕ 0) ·DN(ϕϕϕ 0,Q,yT )DN(ϕϕϕ 0,Q0,y
T )dyT

=
EYT |ϕϕϕ0

[
DN(ϕϕϕ 0,Q,YT )DN(ϕϕϕ 0,Q0,Y

T )
]

r1/2(ϕϕϕ 0,Q)r1/2(ϕϕϕ 0,Q0)
≤ 1

where the inequality follows from the Cauchy-Schwartz inequality. The inequality is satisfied with
equality if and only if DN(ϕϕϕ 0,Q,YT ) = DN(ϕϕϕ 0,Q0,Y

T ) holds almost surely under f (YT |ϕϕϕ 0). Hence,
by repeating the argument for the unconditional likelihood case, we conclude that Q∗ consists of
observationally equivalent values of Q at ϕϕϕ = ϕϕϕ 0 in terms of the conditional likelihood.

Proof of Theorem 6.1. Since (ϕϕϕ 0,Q0) satisfies the imposed NR N(ϕϕϕ 0,Q0,y
T )≥ 0s×1 and the other

sign restrictions (if any imposed), η0 ∈ C̃ISη(ϕϕϕ 0|s(y
T ),N) holds for any yT . Hence, for all T ,

PYT |s,ϕϕϕ (η0 ∈ Ĉ∗
α |s(Y

T ),ϕϕϕ 0)≥ PYT |ϕϕϕ (C̃ISη(ϕϕϕ 0|s(Y
T ),N)⊂ Ĉ∗

α |s(Y
T ),ϕϕϕ 0) (B1)

To prove the claim, it suffices to focus on the asymptotic behaviour of the coverage probability for
the conditional identified set shown in the right-hand side.

Under Assumptions 2 and 3, the asymptotically correct coverage for the conditional identified set can
be obtained by applying Proposition 2 in GK21.
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B.1 Primitive Conditions for Assumption 3.

In what follows, we present sufficient conditions for convexity, continuity and differentiability (both
in ϕϕϕ ) of the conditional impulse response identified set under the assumption that there is a fixed
number of shock-sign restrictions constraining the first structural shock only (possibly in multiple
periods).20

Proposition B.1. (Convexity) Let the parameter of interest be ηi,1,h. Assume that there are shock-
sign restrictions on ε1,t for t = t1, . . . , tK, so N(ϕϕϕ ,Q,YT ) = (ΣΣΣ−1

tr ut1
, . . . ,ΣΣΣ−1

tr utK
)′q1 ≥ 0K×1. Then the

set of values of ηi,1,h satisfying the shock-sign restrictions and sign normalisation, {ηi,1,h(ϕϕϕ ,Q) =

ci,h(ϕϕϕ)q1 : N(ϕϕϕ ,Q,YT ) ≥ 0K×1,diag(Q′ΣΣΣ−1
tr ) ≥ 0n×1,Q ∈ O(n)} is convex for all i and h if there

exists a unit-length vector q ∈ Rn satisfying[
(ΣΣΣ−1

tr ut1
, . . . ,ΣΣΣ−1

tr utK
)′

(ΣΣΣ−1
tr e1,n)

′

]
q ≥ 0(K+1)×1 (B2)

Proof. If there exists a unit-length vector q satisfying the inequality in Equation (B2), it must lie
within the intersection of the K half-spaces defined by the inequalities (ΣΣΣ−1

tr utK
)′q ≥ 0, k = 1, . . . ,K,

the half-space defined by the sign normalisation, (ΣΣΣ−1
tr e1,n)

′q ≥ 0, and the unit sphere in Rn. The
intersection of these K+1 half-spaces and the unit sphere is a path-connected set. Since ηi,1,h(ϕϕϕ ,Q)

is a continuous function of q1, the set of values of ηi,1,h satisfying the restrictions is an interval and
is thus convex, because the set of a continuous function with a path-connected domain is always an
interval.

Proposition B.2. (Continuity) Let the parameter of interest and restrictions be as in
Proposition B.1, and assume that the conditions in the proposition are satisfied. If there exists a
unit-length vector q ∈ Rn such that, at ϕϕϕ = ϕϕϕ 0,[

(ΣΣΣ−1
tr ut1

, . . . ,ΣΣΣ−1
tr utK

)′

(ΣΣΣ−1
tr e1,n)

′

]
q >> 0(K+1)×1 (B3)

then u(ϕϕϕ ,YT ) and ℓ(ϕϕϕ ,YT ) are continuous at ϕϕϕ = ϕϕϕ 0 for all i and h.21

Proof. YT enters the NR through the reduced-form VAR innovations, ut . After noting that the reduced-
form VAR innovations are (implicitly) continuous in ϕϕϕ , continuity of u(ϕϕϕ ,YT ) and ℓ(ϕϕϕ ,YT ) follows
by the same logic as in the proof of Proposition B.2 of Giacomini and Kitagawa (2021b). We omit the
detail for brevity.

Proposition B.3. (Differentiability) Let the parameter of interest and restrictions be as in
Proposition B.1, and assume that the conditions in the proposition are satisfied. Denote the unit
sphere in Rn by S n−1. If, at ϕϕϕ = ϕϕϕ 0, the set of solutions to the optimisation problem

max
q∈S n−1

(
min

q∈S n−1

)
c′i,h(ϕϕϕ)q s.t.

[
ΣΣΣ−1

tr ut1
, . . . ,ΣΣΣ−1

tr utK
, ΣΣΣ−1

tr e1,n

]′
q ≥ 0(K+1)×1 (B4)

20 Giacomini and Kitagawa (2021b) present similar conditions for SVARs identified using traditional signs and/or zero
restrictions. It would be straightforward to extend the conditions here to additionally allow for sign and zero restrictions
on the first column of Q.

21 For a vector x = (x1, . . . ,xm)
′, x >> 0m×1 means that xi > 0 for all i = 1, . . . ,m.
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is singleton, the optimised value u(ϕϕϕ ,YT ) (ℓ(ϕϕϕ ,YT )) is non-zero, and the number of binding
inequality restrictions at the optimum is at most n− 1, then u(ϕϕϕ ,YT ) (ℓ(ϕϕϕ ,YT )) is almost surely
differentiable at ϕϕϕ = ϕϕϕ 0.

Proof. One-to-one differentiable reparameterisation of the optimisation problem in Equation (B4)
using x = ΣΣΣtrq yields the optimisation problem in Equation (2.5) of Gafarov et al (2018), with a set of
inequality restrictions that are a function of the data through the reduced-form VAR innovations
entering the NR. Noting that ut is (implicitly) differentiable in ϕϕϕ , differentiability of u(ϕϕϕ ,YT ) at
ϕϕϕ = ϕϕϕ 0 follows from their Theorem 2 under the assumptions that, at ϕϕϕ = ϕϕϕ 0, the set of solutions to
the optimisation problem is singleton, the optimised value u(ϕϕϕ ,YT ) is non-zero, and the number of
binding sign restrictions at the optimum is at most n−1. Differentiability of ℓ(ϕϕϕ ,YT ) follows similarly.
Note that Theorem 2 of Gafarov et al (2018), when applied to the current context, additionally requires
that the column vectors of

[
ΣΣΣ−1

tr ut1
, . . . ,ΣΣΣ−1

tr utK
, ΣΣΣ−1

tr e1,n

]
are linearly independent, but this occurs

almost surely under the probability law for YT .
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