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Abstract 

Existing estimates of the macroeconomic effects of Australian monetary policy tend to be based on 

strong, potentially contentious, assumptions. I estimate these effects under weaker assumptions. 

Specifically, I estimate a structural vector autoregression identified using a variety of sign 

restrictions, including restrictions on impulse responses to a monetary policy shock, the monetary 

policy reaction function, and the relationship between the monetary policy shock and a proxy for 

this shock. I use an approach to Bayesian inference that accounts for the problem of posterior 

sensitivity to the choice of prior that arises in this setting, which turns out to be important. Some 

sets of identifying restrictions are not particularly informative about the effects of monetary policy. 

However, combining the restrictions allows us to draw some useful inferences. There is robust 

evidence that an increase in the cash rate lowers output and consumer prices at horizons beyond a 

year or so. The results are consistent with the macroeconomic effects of a 100 basis point increase 

in the cash rate lying towards the upper end of the range of existing estimates. 

JEL Classification Numbers: C32, E52 

Keywords: impulse responses, monetary policy, proxies, robust Bayesian inference, sign 
restrictions 
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1. Introduction 

For a central bank to set monetary policy effectively, it is important to understand the 

macroeconomic effects of changes in its policy rate. However, estimating these effects is difficult. 

Doing so requires disentangling the effects of changes in the policy rate from the effects of other 

forces that drive macroeconomic fluctuations and to which monetary policy itself responds. A 

common way to disentangle these effects is to use a structural vector autoregression (SVAR) with 

zero restrictions imposed on some of the structural parameters; these zero restrictions correspond 

to particular assumptions about the structure of the economy. However, these restrictions are 

sometimes only loosely based on economic theory and may be controversial. Moreover, when applied 

in the Australian context, such restrictions often yield estimates that imply a so-called ‘price puzzle’, 

where prices rise in response to a positive monetary policy shock (e.g. Bishop and Tulip 2017). 

An alternative approach is to replace the zero restrictions with an arguably weaker set of sign 

restrictions that are consistent with economic theory or other prior information. For example, rather 

than assuming that inflation does not respond within the quarter to a change in the policy rate (a 

zero restriction), we might assume that inflation does not increase in response to an increase in the 

policy rate (a sign restriction). The cost of using these weaker restrictions is that they only determine 

a set of possible values for the effects of monetary policy (i.e. they are ‘set identifying’ rather than 

‘point identifying’). In this work, I explore the extent to which different sign restrictions are 

informative about the effects of changes in the cash rate.1 In doing so, I use a ‘prior robust’ approach 

to Bayesian inference (Giacomini and Kitagawa 2021). This is important, because there are well-

known problems with conducting Bayesian inference in set-identified models; in particular, a 

component of the prior is never updated and results may be sensitive to the choice of prior 

(e.g. Poirier 1998; Baumeister and Hamilton 2015). 

I initially consider a minimal set of sign restrictions on impulse responses to a monetary policy shock 

that should, in principle, be sufficient to disentangle this shock from shocks to aggregate demand 

and supply (Section 3).2 This involves restricting the cash rate and prices to move in opposite 

directions following a monetary policy shock, as in Uhlig (2005). When using a standard approach 

to conducting Bayesian inference under sign restrictions, I find that output falls with reasonably high 

posterior probability following a positive monetary policy shock. However, the robust approach 

indicates that the results obtained using the standard Bayesian approach are largely driven by the 

choice of prior, and the identifying restrictions appear to be uninformative about the responses of 

macroeconomic variables; for example, the results are consistent with both decreases and increases 

in output following a positive monetary policy shock. This highlights the importance of using the 

robust Bayesian approach to inference in this setting. 

One explanation for the ambiguous output response obtained using sign restrictions on impulse 

responses is that combinations of expansionary supply and demand shocks may ‘masquerade’ as 

positive monetary policy shocks (Wolf 2020). The intuition is that, although the monetary policy 

                                                      

1 I make no distinction between the effects of anticipated (or ‘systematic’) changes in the cash rate and unanticipated 

changes (i.e. monetary policy shocks), since the effects are the same given an appropriately defined counterfactual 

path for the cash rate. In defining the causal effect of an anticipated change in the cash rate, one needs to specify a 

counterfactual path for the cash rate against which the anticipated response can be compared; the difference between 

these paths can be represented by a monetary policy shock (or sequence of shocks). 

2 I talk about ‘identifying a monetary policy shock’ as shorthand for ‘identifying the effects of a monetary policy shock’, 

since the two are equivalent; the effects of the shock are identified if the shock itself is identified and vice versa. 
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shock is the only ‘pure’ shock that satisfies the sign restrictions, linear combinations of other shocks 

also satisfy the restrictions and have expansionary effects. Consequently, estimates obtained under 

these sign restrictions may imply that positive monetary policy shocks have expansionary effects 

even when this is a not a feature of the data-generating process. In an attempt to overcome the 

problem of masquerading shocks, I consider two types of additional sign restrictions. 

First, I impose sign restrictions on the monetary policy reaction function, as in Arias, Caldara and 

Rubio-Ramírez (2019). More specifically, I impose that – all else equal – the cash rate is not increased 

in response to lower output and/or prices. These restrictions are consistent with the types of 

monetary policy rules that are typically used in macroeconomic models. When imposed on their own, 

these restrictions on the reaction function are more informative about the effects of monetary policy 

on output than the previous restrictions imposed on impulse responses; under the robust approach 

to inference, there is reasonably strong evidence that output falls following a positive monetary 

policy shock. However, there is also evidence of a price puzzle following the shock. Combining the 

restrictions on the reaction function with restrictions on the impulse responses yields even stronger 

evidence that output falls following a positive monetary policy shock. Moreover, under the combined 

restrictions, there is little evidence of a price puzzle at any horizon. 

Second, I consider imposing additional sign restrictions based on an existing ‘proxy’ for the monetary 

policy shock. The proxy is taken from Beckers (2020), who applies a variant of the approach in 

Romer and Romer (2004) to purge the cash rate of its systematic response to macroeconomic and 

financial conditions. This proxy has been constructed with the purpose of measuring monetary policy 

shocks, so it should be positively correlated with the ‘true’ monetary policy shock. Assuming that the 

proxy is uncorrelated with all other structural shocks (i.e. exogenous), the proxy can be used to 

point identify the impulse responses to the monetary policy shock in a proxy SVAR (e.g. Gertler and 

Karadi 2015; Stock and Watson 2018). However, exogeneity of the proxy with respect to other 

shocks is a strong assumption. 

Accordingly, I explore whether the proxy is still informative about the effects of monetary policy 

when the exogeneity assumption is relaxed and replaced with a set of less-restrictive sign 

restrictions. Specifically, I impose that the proxy is positively correlated with the monetary policy 

shock and that the contribution of the monetary policy shock to the variance of the proxy is greater 

than the contribution of any other shock. These restrictions maintain that the proxy primarily 

contains information about the monetary policy shock while allowing for the possibility that it is 

contaminated by other shocks. Augmenting the sign restrictions discussed above with the proxy-

based sign restrictions appreciably tightens the set of estimates, which suggests that the proxy 

contains useful identifying information even without assuming exogeneity. Under the full set of 

restrictions, there is strong evidence that output and prices fall following a positive monetary policy 

shock at horizons beyond a year or so. 

The results described above are based on the responses of variables to a ‘standard deviation’ 

monetary policy shock. These are useful for understanding the sign of the response to a change in 

the cash rate, but are less useful for understanding the magnitude of the response. For instance, 

understanding the effect of increasing the cash rate by 100 basis points requires knowing the effect 

of a monetary policy shock that results in the cash rate increasing by 100 basis points; the effects 

of a standard deviation shock do not provide this information. However, as discussed in 

Read (2022b), interval estimates obtained under the robust approach to inference may be 
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unbounded (i.e. infinite in length) when the parameter of interest is the impulse response to a 

100 basis point shock. This occurs because the identifying restrictions may admit the possibility that 

the cash rate does not respond on to a monetary policy shock on impact. Sign restrictions may 

therefore be extremely uninformative about the effects of a 100 basis point shock. Accordingly, I 

explore the informativeness of the sign restrictions when trying to assess the effects of a 100 basis 

point shock to the cash rate (Section 4). 

Most of the restrictions described above are uninformative about the effects of a 100 basis point 

shock. However, the full set of restrictions (i.e. including the proxy-based restrictions) allows us to 

draw some useful inferences about the effects of changes in the cash rate. Following a 100 basis 

point monetary policy shock, there is fairly strong evidence that output declines by at least half of a 

per cent after two years, which is consistent with the peak response of output lying towards the 

upper end of the range of existing estimates. More specifically, I find that there is a reasonably high 

posterior probability assigned to output responses that exceed the peak responses in the RBA’s 

multi-sector and MARTIN models (Gibbs, Hambur and Nodari 2018; Ballantyne et al 2019). A version 

of my model that includes the unemployment rate also assigns fairly high posterior probability to 

unemployment responses larger than the peak response in the MARTIN model. 

Overall, this work suggests that some sign restrictions are not very informative about the effects of 

Australian monetary policy. However, imposing a rich set of restrictions allows us to draw some 

useful inferences. More generally, a takeaway from this work is that it is important that we continue 

to search for credible identifying restrictions and question the assumptions underlying existing 

estimates of the effects of monetary policy. 

Before describing the formal framework of the paper (Section 2), I will briefly describe the 

relationship between this work and the existing literature. Previous work has used sign restrictions 

in SVAR analyses of the Australian economy, including Liu (2008), Jääskelä and Jennings (2010) and 

Jääskelä and Smith (2011). These papers impose restrictions on impulse responses to multiple 

shocks, which requires taking a stand on the nature of the non-monetary policy shocks. In contrast, 

the restrictions I consider relate (primarily) to the monetary policy shock, and I remain agnostic 

about the effects of other shocks; this approach is in the same spirit as Uhlig (2005) and Arias 

et al (2019). Another key difference is that I consider sign restrictions on parameters other than 

impulse responses. Fisher and Huh (2022) impose sign restrictions on the monetary policy reaction 

function in an SVAR of the Australian economy, although they do not consider combining these 

restrictions with other types of identifying restrictions. The aforementioned papers do not address 

the problem of posterior sensitivity to the choice of prior that arises when using sign restrictions. 

More broadly, this paper complements previous attempts to estimate the effects of monetary policy 

in Australia. Recent examples include Bishop and Tulip (2017) and Beckers (2020), who apply 

variations of the approach in Romer and Romer (2004) to purge the cash rate of anticipated changes. 

Earlier work tended to impose a system of zero restrictions sufficient to achieve point identification 

of impulse responses in an SVAR; examples include Brischetto and Voss (1999), Suzuki (2004), 

Berkelmans (2005) and Lawson and Rees (2008). 
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2. Framework 

This section describes the SVAR framework, outlines the concepts of identifying restrictions and 

identified sets, and explains the Bayesian approaches to inference used throughout the paper. 

I will make use of the following notation. For a matrix X ,  vec X  is the vectorisation of X . When 

X  is symmetric,  vech X  is the half-vectorisation of X , which stacks the elements of X  that lie 

on or below the diagonal into a vector. ,i ne  is the i th column of the n n  identity matrix, nI . n m0  

is an n m  matrix of zeros. 

2.1 SVAR, orthogonal reduced form and identified sets 

Let ty  be an 1n  vector of endogenous variables following the SVAR( p ) process: 

 0 t t t A y A x ε  (1) 

where 0A  is an invertible n n  matrix with positive diagonal elements (a normalisation on the signs 

of the structural shocks),  1, , ,t t t p t 
  x y y z  with tz  a vector of exogenous variables, and 

 1, , ,p z A A A A  contains the coefficients on the variables in tx . Conditional on tx , the 

structural shocks tε  are normally distributed with zero mean and identity covariance matrix.3 

In set-identified SVARs, it is convenient to reparameterise the model into its ‘orthogonal reduced 

form’ (e.g. Arias, Rubio-Ramírez and Waggoner 2018): 

 t t tr t y Bx Σ Qε  (2) 

where   1
1 0, , p


 B B B A A  is the matrix of reduced-form coefficients, trΣ  is the lower-

triangular Cholesky factor of the variance-covariance matrix of the reduced-form VAR innovations, 

   1 1
0 0t tE    Σ u u A A  with t t t u y Bx , and Q  is an n n  orthonormal matrix (i.e. n QQ I ). 

I denote the reduced-form parameters by     vec , vech tr


 B Σ   and the space of orthonormal 

matrices by  O n . In the absence of identifying restrictions, the structural parameters of the SVAR 

are set identified, because any  O nQ  is consistent with the joint distribution of the data 

(summarised by  ). 

The impulse responses to a monetary policy shock are obtained from the coefficients of the vector 

moving average representation: 

                                                      

3 Bayesian inference under the assumption of homoskedastic, normally distributed structural shocks can be interpreted 

asymptotically as a limited-information procedure based on the second moments of the data; for discussion of this 

point, see Plagborg-Møller (2019). 
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0t h tr t hh




y C Σ Qε  (3) 

where hC  are the reduced-form impulse responses, defined recursively by 
 min ,

1

h p

h l h ll 
C B C  

for 1h   with 0 nC I . The  ,i j th element of the matrix h trC Σ Q  is the horizon- h  impulse 

response of the i th variable to the j th structural shock, denoted by    , , ,i j h ih j Q c q  , where 

  ,ih i n h tr c e C Σ  is the i th row of h trC Σ  and ,j j nq Qe  is the j th column of Q . Given the 

normalisation that the structural shocks have unit standard deviation, these impulse responses 

represent responses to standard deviation shocks. 

Sign restrictions on impulse responses or structural coefficients (i.e. elements of 0A ) can be 

represented as linear inequality restrictions on a column of Q , where the restrictions are a function 

of the reduced-form parameters. For example, the sign restriction    , , , 0i j h ih j  Q c q   is a 

linear inequality restriction on jq . Imposing sign restrictions can be viewed as restricting Q  to lie 

in a subspace of  O n . Let   1, sS Q 0  represent a collection of s  sign restrictions (including the 

sign normalisation  0 1diag nA 0 ).4 Given the sign restrictions, the identified set for Q  is  

       1: , sS O n S   Q Q 0   (4) 

The identified set for Q  contains observationally equivalent parameter values, which are parameter 

values corresponding to the same value of the likelihood (Rothenberg 1971). Any values of Q  within 

 S  are therefore equally consistent with the joint distribution of the data. The identified set for 

a particular impulse response is the set of values of  , , ,i j h Q  as Q  varies over its identified set: 

       , , , , , :i j h i j hS S  Q Q    (5) 

2.2 Standard and robust Bayesian inference under sign restrictions 

The standard approach to conducting Bayesian inference in set-identified SVARs involves specifying 
a prior for the reduced-form parameters   and a uniform prior for the orthonormal matrix Q  

(Uhlig 2005; Rubio-Ramírez, Waggoner and Zha 2010; Arias et al 2018).5 To draw from the resulting 
posterior in practice, one samples values of   from its posterior and Q  from a uniform distribution 

over  O n  and discards draws that violate the sign restrictions. Draws of the impulse responses are 

                                                      

4 See Stock and Watson (2016) or Kilian and Lütkepohl (2017) for overviews of identification in SVARs. See Giacomini 

and Kitagawa (2021) for more information about the construction of  ,S Q . 

5 This approach to conducting inference in SVARs under sign restrictions is ubiquitous in the empirical literature. An 

alternative approach is to conduct Bayesian inference under a prior that is specified directly over the structural 

parameters of the SVAR, as advocated for in Baumeister and Hamilton (2015). There are also frequentist approaches, 

although these have not (yet) been adopted widely (e.g. Gafarov, Meier and Montiel Olea 2018; Granziera, Moon and 

Schorfheide 2018). 
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obtained by transforming the draws of   and Q  via the function  , , ,i j h Q , and the posterior is 

summarised using quantities such as the posterior mean and quantiles. 

Because Q  is set identified under sign restrictions, the likelihood function is flat over  S  and 

a component of the prior (specifically, the conditional prior for Q  given  ) is never updated; in 

other words, the conditional posterior for Q  is equal to the conditional prior (Poirier 1998; 

Baumeister and Hamilton 2015). This raises the concern that posterior inferences may be sensitive 

to the choice of conditional prior. Given that the conditional prior under the standard approach to 

Bayesian inference does not necessarily reflect prior information about the parameters, it is desirable 

that researchers eliminate or quantify the sensitivity of posterior inference to changes in the 

conditional prior. 

I therefore adopt a ‘robust’ (multiple-prior) Bayesian approach to conduct posterior inference in set-

identified models (Giacomini and Kitagawa 2021).6 In the context of an SVAR, this approach 

eliminates the posterior sensitivity arising from the choice of the conditional prior. Importantly, this 

helps to disentangle the information in the posterior that is contributed by the data and the 

identifying restrictions from the information that is contributed by the conditional prior, and helps to 

transparently assess the informativeness of the identifying restrictions. The key feature of the 
approach is that it replaces the conditional prior for Q  with the class of all conditional priors that 

satisfy the identifying restrictions. Combining the class of prior distributions with the posterior 

distribution for  ,  Y , generates a class of posteriors for  , , ,i j h Q . 

Giacomini and Kitagawa (2021) suggest summarising the class of posteriors by reporting the ‘set of 

posterior means’: 

    ,d u d  
  Y Y
Φ Φ

    (6) 

where       , ,inf , :i j h S Q Q Q    is the lower bound of the identified set for , ,i j h  and 

      , ,sup , :i j hu S Q Q Q    is the upper bound. The set of posterior means is an interval 

containing all posterior means obtainable within the class of posteriors. They also suggest reporting 

a robust credible region with credibility level  , which is an interval estimate for , ,i j h  such that the 

posterior probability assigned to the interval is at least   uniformly over the class of posteriors.7 

Given a particular hypothesis of interest (e.g. that the output response to a monetary policy shock 

is negative at some horizon), the set of posteriors also generates a set of posterior probabilities for 

this hypothesis. This set can be summarised by the posterior lower and upper probabilities, which 

                                                      

6 Giacomini, Kitagawa and Read (2021b) review the literature on robust Bayesian analysis in econometrics, and describe 

different approaches to conducting robust Bayesian inference in set-identified SVARs. 

7 Giacomini and Kitagawa (2021) provide sufficient conditions under which this approach is valid from a frequentist 

perspective, in the sense that the set of posterior means is consistent for the true identified set and the robust credible 

interval has asymptotically correct frequentist coverage of the true identified set. This approach therefore reconciles 

the asymptotic disagreement between frequentist and Bayesian methods that arises in set-identified models (Moon 

and Schorfheide 2012), as well as having a well-defined (robust) Bayesian interpretation in finite samples. 
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are, respectively, the smallest or largest posterior probabilities assigned to the hypothesis over the 

class of posteriors. Appendix A describes the numerical algorithms used to compute these quantities. 

3. Estimates under Different Sets of Sign Restrictions 

This section presents estimates of impulse responses to a standard deviation monetary policy shock 

under different sets of identifying restrictions. Section 3.1 describes the specification of the reduced-

form VAR. The subsequent sections describe the different sets of sign restrictions that are imposed 

and present the estimates obtained under each set of restrictions. I consider different sets of 

restrictions individually and in combination to disentangle their informativeness. Throughout, I report 

results based on the standard Bayesian approach to inference with a conditionally uniform prior for 

Q  along with results based on the robust Bayesian approach to inference. 

3.1 Specification of reduced-form VAR 

The model includes a domestic block and a foreign block. The domestic block includes the interbank 

overnight cash rate ( tCASH ), real GDP ( tGDP ), trimmed mean CPI ( tCPI ) and the nominal trade-

weighted exchange rate index ( tTWI ) defined such that higher values correspond to an appreciation 

of the Australian dollar. The foreign block of the model includes the terms of trade ( tTOT ), US real 

GDP ( tUSGDP ) and the federal funds rate ( tFFR ).8 The choice of variables is broadly consistent 

with previous SVAR analyses of the Australian economy, including Brischetto and Voss (1999), 

Dungey and Pagan (2000, 2009), Berkelmans (2005), Lawson and Rees (2008), Liu (2008), Jääskelä 

and Smith (2011), Jacobs and Rayner (2012) and Manalo, Perera and Rees (2014). All variables 

enter the model in log levels except for interest rates, which enter in levels. Consistent with 

Australia’s status as a small open economy, the contemporaneous and lagged values of the foreign 

variables enter as exogenous variables in the equations for  , , ,t t t t tCASH GDP CPI TWI y . The 

model includes four lags of all variables and a constant. In the notation of Equation (1), tz  is a 

vector containing  1, , ,t t tTOT USGDP FFR   as well as four lags of the foreign variables. 

The estimation sample begins in the March quarter 1984 (following the floating of Australia’s 

exchange rate in December 1983) and ends in the December quarter 2019 (before the onset of the 

COVID-19 pandemic). The start of the sample period is similar to that in other SVAR analyses of the 

Australian economy, including Berklemans (2005) and Lawson and Rees (2008). 

The prior for the reduced-form parameters is the non-informative Jeffreys prior, so 
 1 /2n


 

 Σ . 

The posterior is a normal-inverse-Wishart distribution, from which it is straightforward to obtain 

independent draws (e.g. Del Negro and Schorfheide 2011). All results are based on 1,000 draws 
from the posterior of   such that the identified set is non-empty. 

                                                      

8 Over the period following the global financial crisis, the federal funds rate was constrained by the zero lower bound 

and unconventional monetary policy was used to deliver stimulus to the US economy. The federal funds rate was 

therefore an imperfect indicator of the stance of US monetary policy during this period. I obtain similar results if I 

instead splice the federal funds rate with the ‘shadow federal funds rate’ constructed by Wu and Xia (2016), which is 

the predicted short rate from a model of the term structure of interest rates that does not feature a lower bound. 
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3.2 Sign restrictions on impulse responses 

To begin, I impose the following set of sign restrictions on the impulse responses to a monetary 

policy shock. 

Restriction (1): In response to a positive monetary policy shock at time t , the response of t hCASH   

is non-negative and the response of t hCPI   is non-positive for 0,1,2,3h  . 

These restrictions impose that the cash rate does not decrease and the CPI does not increase in the 

year after a positive monetary policy shock. The pattern of restrictions is, in principle, the minimum 

required to differentiate monetary policy shocks from shocks to supply and demand; conventional 

theory suggests that a positive monetary policy shock should raise the interest rate and lower prices, 

while both supply and demand shocks should move the interest rate and prices in the same direction. 

The restrictions are similar to those considered in Uhlig (2005), who estimates the effects of 

US monetary policy.9 Note that the responses of output and the exchange rate are left unrestricted. 

The horizon over which the impulse responses are restricted is somewhat arbitrary. Uhlig explores 

different choices of horizon up to a maximum of two years. My choice reflects a belief that monetary 

policy shocks are likely to have moderately persistent effects. I am hesitant to impose restrictions at 

horizons much longer than one year, since these restrictions become less credible as the horizon 

increases, and I want to consider restrictions that are likely to be uncontroversial.10 

Figure 1 plots impulse responses to a positive, standard deviation monetary policy shock obtained 

under Restriction (1). When using the standard Bayesian approach to inference, and based on the 

posterior mean, the shock results in the cash rate increasing by about 20 basis points on impact. 

Output responds sluggishly and is about 0.2 per cent lower at the two-year horizon. There is a 

reasonably high posterior probability (around 80 per cent) that the output response is negative at 

this horizon. Prices also decline persistently and the real exchange rate appreciates on impact before 

depreciating. Overall, these results are broadly consistent with conventional macroeconomic theory, 

although they are subject to considerable uncertainty; the 68 per cent credible intervals include zero 

at most horizons.11 

                                                      

9 Uhlig (2005) imposes additional restrictions that are designed to disentangle monetary policy shocks from shocks to 

money demand. Since my SVAR does not include any monetary aggregates, I do not consider such restrictions. Kim 

and Lim (2018) impose similar restrictions in models of several small open economies, including Australia. 

10 The results are similar when imposing the restrictions on impact only. 

11 The credible intervals presented under the standard Bayesian approach to inference are highest posterior density 

intervals, which are the shortest intervals that cover 68 per cent of the posterior. 
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Figure 1: Impulse Responses – Restriction (1) 

 

Notes: Restrictions on impulse responses of the cash rate and CPI. Impulse responses are to a positive, standard deviation monetary 

policy shock. 

To what extent are these results sensitive to the choice of conditional prior? To answer this question, 

I plot the set of posterior means and 68 per cent robust credible intervals obtained using the robust 

Bayesian approach to inference. Focusing on the output response, the set of posterior means 

contains zero at all horizons and the posterior lower probability (the smallest posterior probability 

over the class of posteriors) that the output response is negative after two years is zero. This implies 

that there are conditional priors that are consistent with the identifying restrictions and that yield 

posteriors assigning probability one to the hypothesis that output increases two years after the 

shock. The set of posterior means for the response of prices also includes fairly large positive 

responses at horizons beyond one year (i.e. beyond the horizons that are restricted to be non-

positive), so the data and identifying restrictions cannot rule out the presence of price puzzles. The 

set of posterior means for the exchange rate response includes large negative responses on impact; 

this is at odds with ‘exchange rate overshooting’, which is a prediction of conventional open economy 

models (Dornbusch 1976). Overall, posterior inferences under the standard Bayesian approach 

appear to be largely driven by the choice of conditional prior. After eliminating this source of posterior 

sensitivity, the identifying restrictions cannot rule out responses that are at odds with conventional 

macroeconomic theory, and the identifying restrictions appear to be fairly uninformative about the 

effects of monetary policy. 

Wolf (2020) explains that the apparent expansionary effects of monetary policy shocks obtained 

under standard sign restrictions on impulse responses may reflect linear combinations of demand 

and supply shocks ‘masquerading’ as monetary policy shocks. The intuition is that a linear 

combination of expansionary demand and supply shocks can result in the nominal interest rate 

increasing and prices decreasing. Because these responses satisfy the sign restrictions used to 
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identify the monetary policy shock, the identified sets for the impulse responses obtained under the 

sign restrictions are contaminated by linear combinations of impulse responses to these 

expansionary demand and supply shocks. This suggests that it is necessary to impose additional 

identifying restrictions to better disentangle the monetary policy shock from other shocks. 

To this end, I consider imposing additional restrictions. As noted above, the set of posterior means 

for the response of the exchange rate obtained under Restriction (1) includes negative responses, 

which is at odds with conventional macroeconomic theory; standard models imply that the exchange 

rate should appreciate on impact in response to a positive monetary policy shock before depreciating. 

This motivates the following set of restrictions, which augments Restriction (1) with a restriction on 

the response of the exchange rate. 

Restriction (2): In response to a positive monetary policy shock at time t , the responses of t hCASH   

and t hTWI   are non-negative and the response of t hCPI   is non-positive for 0,1,2,3h  . 

As seen in Figure 2, the results under these additional restrictions are little changed from those 

under Restriction (1) (with the obvious exception of the response of the exchange rate, whose 

response is restricted). The restrictions on the response of the exchange rate therefore do not appear 

to mitigate the problem of masquerading shocks. 

Figure 2: Impulse Responses – Restriction (2) 

 

Notes: Restrictions on the impulse responses of the cash rate, CPI and TWI. Impulse responses are to a positive, standard deviation 

monetary policy shock. 
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3.3 Sign restrictions on the monetary policy reaction function 

As an alternative to imposing further restrictions on impulse responses, I follow Arias et al (2019) 

and consider restricting the structural coefficients in the equation for the cash rate, which can be 

interpreted as the monetary policy reaction function. For instance, the coefficients on prices and 

output are restricted so that monetary policy is not loosened in response to higher output or prices.12 

These restrictions are consistent with monetary policy rules that are typically embedded in 

macroeconomic models. Moreover, Wolf (2020) explains that these restrictions can help mitigate the 

masquerading shocks problem. Using a simple New Keynesian model as a data-generating process, 

he shows that the misidentification of linear combinations of expansionary supply and demand 

shocks as monetary policy shocks means that the identified structural equation for the nominal 

interest rate is actually a linear combination of the IS curve, Phillips curve and Taylor rule. When the 

weight assigned to the true monetary policy shock is small, the implied coefficient on output in the 

misidentified Taylor rule has the wrong sign. Restricting the sign of this coefficient largely removes 

the effect of the masquerading supply and demand shocks by ruling out identified shocks that assign 

small weight to the true monetary policy shock. 

To be more concrete, consider the first equation in the SVAR, which I interpret as the monetary 

policy reaction function: 

 11 12 13 14 1, 1t t t t n t ta CASH a GDP a CPI a TWI     e A x  (7) 

where 1 1, 0 ,i n i na  e A e  is the  1, i th element of 0A . The sign normalisation implies that 11 0a  . 

Consequently, the reactions of the cash rate to output and prices are non-negative if 12 0a   and 

13 0a  . 

I initially replace the restrictions on impulse responses with restrictions on the coefficients in the 

reaction function and later combine the two sets of restrictions. This allows me to isolate the 

informativeness of the restrictions on the reaction function. I maintain the restriction that the cash 

rate responds positively to the monetary policy shock, so I am always identifying impulse responses 

to a shock that raises the cash rate on impact. 

Restriction (3): The coefficients on tGDP  and tCPI  in the structural equation for tCASH , 12a  and 

13a , are non-positive, and the impact response of tCASH  to the monetary policy shock is non-

negative. 

Under Restriction (3) and using the standard approach to Bayesian inference, the output response 

is negative with high posterior probability (Figure 3); the posterior mean indicates that output falls 

by about 0.3 per cent on impact and remains around this level for two to three years, and the 

posterior probability of a negative output response after two years is close to 95 per cent. There is 

reasonably strong evidence that prices – whose response is unrestricted under this set of restrictions 

                                                      

12 Arias et al (2019) note that central banks do not have access to contemporaneous data on output and prices when 

setting the policy rate. However, they typically have access to rich data that allows them to accurately nowcast these 

variables. Rather than modelling the process of information acquisition and nowcasting, their approach makes the 

simplifying assumption that the central bank has access to data on current output and prices when setting policy. 

They also impose zero restrictions on the coefficients of some monetary aggregates in the monetary policy reaction 

function, but such variables are not included in my model. 
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– decline with some delay; the posterior probability that the price response is negative is a bit over 

80 per cent at the two-year horizon. The credible intervals for the response of the TWI include zero 

at all horizons. Overall, the results obtained under the conditionally uniform prior suggest that the 

restrictions are quite informative about the effects of monetary policy on output and prices. However, 

as in the case where the sign restrictions were imposed on the impulse responses, the results are 

sensitive to the choice of conditional prior; the set of posterior means includes zero for all variables 

and horizons. 

Figure 3: Impulse Responses – Restriction (3) 

 

Notes: Restrictions on coefficients in the monetary policy reaction function (real GDP and CPI). Impulse responses are to a positive, 

standard deviation monetary policy shock. 

The coefficient on the exchange rate was left unrestricted under Restriction (3). However, it seems 

plausible that the central bank may take into account the exchange rate when setting policy, 

including indirectly via its effects on forecasts of other macroeconomic variables.13 For example, an 

appreciation of the exchange rate will put downward pressure on consumer prices due to the direct 

effect of lower import prices. It will also lead to a decline in exports, which will weigh on output. To 

the extent that these developments occur with a lag and the central bank sets policy in a forward-

looking manner, it may therefore want to cut the policy rate in response to the appreciation. This 

motivates restricting the coefficient on the exchange rate. The set of posterior means for the 

coefficient on the exchange rate under Restriction (3) is  0.25,0.24 , so restricting this coefficient 

to be non-negative will truncate  S  (at least at some values of  ) and thus may result in more 

                                                      

13 The RBA’s multi-sector model of the Australian economy includes the change in the real exchange rate in the 

Taylor rule (Gibbs et al 2018). The posterior mean of the coefficient on this variable is negative, but close to zero. 
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informative inference about the impulse responses.14 I therefore consider the following set of 

restrictions, which extends the restrictions on the systematic component of monetary policy 

introduced in Arias et al (2019) to the open economy setting.15 

Restriction (4): The coefficients on tGDP  and tCPI  in the structural equation for tCASH , 12a  and 

13a , are non-positive, the coefficient on tTWI , 14a , is non-negative, and the impact response of 

tCASH  to the monetary policy shock is non-negative. 

Relative to Restriction (3), the additional restriction on the exchange rate coefficient leads to more 

informative inference about the output response; the set of posterior means for the output response 

excludes zero at horizons beyond one year and the output response is negative at the two-year 

horizon with a posterior lower probability of around 75 per cent (Figure 4). The estimates do not 

rule out increases in prices at short-to-medium horizons, although prices fall with high posterior 

lower probability at longer horizons. The restriction reduces the prominence of negative exchange 

rate responses, although the posterior lower probability that the exchange rate appreciates on 

impact is still only around 25 per cent. 

Figure 4: Impulse Responses – Restriction (4) 

 

Notes: Restrictions on coefficients in the monetary policy reaction function (real GDP, CPI and TWI). Impulse responses are to a 

positive, standard deviation monetary policy shock. 

  

                                                      

14 The coefficient on the exchange rate ( 14a ) does not represent the change in the cash rate in response to a 1 per cent 

appreciation, because the coefficient on tCASH  ( 11a ) is not normalised to equal one. The change in the cash rate in 

response to a 1 per cent appreciation (holding all else equal) would be 14 11/a a . 

15 Castelnuovo, Pellegrino and Ranzato (2022) also consider imposing this restriction in the US context. They justify the 

restriction on the basis of narrative evidence. 
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Overall, comparing the results in Figures 2 and 4, it appears that restrictions on the monetary policy 

reaction function are more informative about the responses of output and prices to a monetary 

policy shock than restrictions on the impulse responses. However, the restrictions do not rule out 

positive price responses at short-to-medium horizons or an exchange rate depreciation on impact. 

Both of these results are at odds with conventional macroeconomic theory. 

3.4 Combining sign restrictions on impulse responses and reaction function 

Given the inability of restrictions on the monetary policy reaction function to rule out price puzzles 

and exchange rate depreciations, I consider combining these restrictions with restrictions on the 

impulse responses. For this exercise, I include the restrictions relating to the exchange rate. 

Restriction (5): In response to a positive monetary policy shock at time t , the responses of t hCASH   

and t hTWI   are non-negative and the response of t hCPI   is non-positive for 0,1,2,3h  . 

Additionally, the coefficients on tGDP  and tCPI  in the structural equation for tCASH , 12a  and 13a , 

are non-positive and the coefficient on tTWI , 14a , is non-negative. 

Under Restriction (5), output falls with high posterior lower probability at horizons between one and 

three years (Figure 5). For example, the posterior lower probability of a negative output response 

at the two-year horizon is about 95 per cent. Combining the restrictions reduces the prominence of 

price puzzles at short-to-medium horizons, although a positive price response is not ruled out 

entirely; for instance, the posterior upper probability of a positive price response at the two-year 

horizon is about 40 per cent. Prices fall with high posterior lower probability at longer horizons; the 

posterior lower probability of a negative price response is at least 90 per cent at horizons greater 

than three years. Overall, the restrictions appear to be reasonably informative about the effects of 

monetary policy when combined, in the sense that output, prices and the TWI all respond to 

monetary policy in a way that is consistent with macroeconomic theory with high posterior probability 

regardless of the choice of conditional prior, at least at longer horizons. 
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Figure 5: Impulse Responses – Restriction (5) 

 

Notes: Restrictions on impulse responses (cash rate, CPI and TWI) and coefficients in the monetary policy reaction function (real 

GDP, CPI and TWI). Impulse responses are to a positive, standard deviation monetary policy shock. 

3.5 Restrictions on relationship with a proxy variable 

Although Restriction (5) appears to be fairly informative about the macroeconomic effects of 

monetary policy shocks, additional credible restrictions could be valuable in reducing uncertainty. 

One possible approach is to impose restrictions on the impulse responses to other shocks or on the 

coefficients in other structural equations. However, this requires making assumptions about the 

nature of these other shocks or equations; for example, based on predictions from a macroeconomic 

model (e.g. Jääskelä and Jennings 2010). Instead, I consider alternative restrictions that are not 

tied to a particular macroeconomic model. 

Specifically, I impose restrictions on the relationship between the monetary policy shock and an 

existing proxy for that shock. The proxy is taken from Beckers (2020), who applies a variant of the 

approach in Romer and Romer (2004) to purge the cash rate of its endogenous response to economic 

conditions. He additionally controls for the systematic response of the cash rate to credit conditions 

(measured by money market spreads) and uses cash rate expectations (proxied for by estimated 

zero-coupon forward rates) to further purge the cash rate of variation that is anticipated by financial 

market participants. I use this ‘unanticipated’ change in the cash rate as a proxy for the monetary 

policy shock. 

The proxy in Beckers (2020) was constructed with the purpose of measuring monetary policy shocks, 

so it is natural to assume that the proxy is positively correlated with the monetary policy shock. 

Additionally assuming that the proxy is contemporaneously uncorrelated with all other structural 

shocks (i.e. exogenous) implies that the proxy can be used to point identify the monetary policy 

Cash rate

-0.2

0.0

0.2

0.4

0.6

ppt Real GDP

-0.50

-0.25

0.00

0.25

0.50

%

CPI

0 4 8 12 16
-0.6

-0.4

-0.2

0.0

0.2

0.4

%

Horizon – quarters

Posterior mean

68 per cent credible interval

TWI

0 4 8 12 16 20
-6

-4

-2

0

2

4

%

Horizon – quarters

Set of posterior means

68 per cent robust credible interval



16 

  

shock in a proxy SVAR (e.g. Stock and Watson 2018).16 However, even though this measure is 

purged of many potentially endogenous drivers of the cash rate, the exogeneity condition is still 

quite strong and will be violated if the variables used to purge the cash rate of its endogenous 

response to economic and financial conditions do not control for the RBA’s response to all other 

shocks hitting the economy. 

To relax this assumption, I instead impose restrictions that the proxy and the true monetary policy 

shock are positively correlated, and that variation in the proxy primarily reflects the monetary policy 

shock.17 This allows me to incorporate the information included in the proxy while allowing the proxy 

to be contaminated by other shocks. Because I do not impose exogeneity with respect to non-

monetary policy shocks, the impulse responses remain set identified and I can continue to impose 

the other sign restrictions considered above. 

More formally, assume that the proxy, tm , contains information about the structural shocks 

according to the process 

 t t tm v γ ε  (8) 

where  ~ 0,tv N   independently of tε . Substituting out tε  using the SVAR representation yields 

the ‘first-stage regression’ of the proxy on the contemporaneous and lagged values of the variables 

entering the VAR: 

 t t t tm v   d y g x  (9) 

where 0 d γ A  and   g γ A  are reduced-form parameters that are identified from the 

regression of tm  on ty  and tx . The covariance between the proxy and the structural shocks is 

   1
0t t trm      ε γ d A d Σ Q  (10) 

Restrictions on elements of γ  can therefore be expressed as restrictions on Q , where the 

restrictions are a function of the reduced-form parameters in the VAR for ty  and the first-stage 

regression. The restriction that tm  is positively correlated with the monetary policy shock, 

 1 0t tm   , is equivalent to 1 0tr d Σ q , which is a linear inequality restriction on the first column 

of Q .18 The contribution of the i th structural shock to the variance of tm  is 

    
2 22

,i i n tr i   e γ d Σ q  (11) 

                                                      

16 To estimate the effects of monetary policy shocks in Australia, Beckers (2020) includes the (cumulated) purged 

measure of the cash rate in an SVAR and imposes additional zero restrictions on the structural parameters (i.e. he 

does not use a proxy SVAR). 

17 These restrictions are also considered in Braun and Brüggemann (forthcoming). In a similar vein, Ludvigson, Ma and 

Ng (2017), Piffer and Podstawski (2018), Arias, Rubio-Ramírez and Waggoner (2021), Caggiano and 

Castelnuovo (2021) and Giacomini, Kitagawa and Read (2022b) impose sign restrictions on the correlations between 

structural shocks and variables that are external to the VAR. 

18 I write this restriction in terms of the covariance, but it is equivalent to a restriction on the correlation; to write the 

restriction in terms of the correlation, divide by  2
tm . 
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If the contribution of the monetary policy shock to the variance of the proxy is greater than that of 

any other shock, then 2 2
1 1max j j  . This is equivalent to the restriction that the correlation 

between tm  and the monetary policy shock is greater in absolute value than the correlation between 

tm  and any other structural shock,    1 1maxt t j t jtm m  . Given that the correlation 

between the proxy and the monetary policy shock is positive, this is equivalent to 

    1 10 and 0 for 2, ,tr j tr j j n     dΣ q q d Σ q q  (12) 

which can be expressed as a system of linear inequalities in  vec Q . 

The vector of reduced-form parameters is now augmented with the parameters from the reduced-

form process for the proxies, so     vec , vech , , ,tr 


    B Σ d g . Following Giacomini 

et al (2022b), I assume a (non-informative) Jeffreys prior for the reduced-form parameters in the 

first-stage regression that is independent of the prior over the reduced-form VAR parameters. The 

proxy from Beckers (2020) is available from the March quarter 1994 to the December quarter 2018. 

I continue to estimate the VAR over the same (longer) sample used above, and use the sample over 

which the proxy is available to estimate the first-stage regression. 

I augment the restrictions on impulse responses and the monetary policy reaction function with the 

proxy-based restrictions. 

Restriction (6): In addition to the restrictions in Restriction (5), tm  is positively correlated with the 

monetary policy shock and the contribution of the monetary policy shock to the variance of the proxy 

is greater than the contribution of any other structural shock. 

The set of posterior means for the correlation between the proxy and the monetary policy shock, 

 2
1 / tm  , is  0.14,0.22  and the 95 per cent robust credible interval is  0.05,0.40 . This suggests 

that the proxy and monetary policy shock are fairly weakly correlated. Nevertheless, the additional 

restrictions appear to sharpen identification relative to Restriction (5); for example, as seen in 

Figure 6, the set of posterior means for the output response at the two-year horizon obtained under 

Restriction (6) is about 60 per cent as wide as the set obtained under Restriction (5). A natural 

question is whether the apparent informativeness of the proxy is because the VAR does not span 

the relevant information set. For instance, credit spreads are used to construct the proxy but are 

not included in the VAR. Section 5.3 presents estimates from a model that includes credit spreads.19 

                                                      

19 More generally, the fact that the VAR excludes information to which monetary policy responds (in particular, 

information summarised by the RBA’s forecasts) means that the ‘true’ monetary policy shock may not be invertible 

(i.e. not recoverable as a linear combination of the reduced-form VAR innovations). However, if the true monetary 

policy shock is ‘close to’ invertible, it may still be possible to accurately identify the effects of the shock (Wolf 2020). 

It would be interesting to explore how misspecification of the reaction function in the SVAR affects identification when 

an externally generated proxy is available from an estimated reaction function that is plausibly (close to) correctly 

specified. 
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Figure 6: Impulse Responses – Restriction (6) 

 

Notes: Restrictions on impulse responses (cash rate, CPI and TWI), coefficients in the monetary policy reaction function (real GDP, 

CPI and TWI), and relationship between monetary policy shock and proxy for the shock. Impulse responses are to a positive, 

standard deviation monetary policy shock. 

The set of posterior means for the output response obtained under Restriction (6) excludes zero at 

all horizons, and the robust credible intervals exclude zero at horizons between one and four years. 

The additional restrictions also appear to largely rule out the price puzzle; the posterior lower 

probability that prices fall following the shock is greater than 80 per cent at all horizons and greater 

than 90 per cent at horizons longer than three years. Overall, the proxy variable appears to contain 

useful identifying information even when discarding the usual fairly strong exogeneity assumption 

and despite the proxy appearing to be only weakly correlated with the monetary policy shock. 

3.6 Plausibility and informativeness of restrictions 

This section quantitatively assesses the ‘plausibility’ of the restrictions, which is the degree to which 

the identifying restrictions are compatible with the observed data. It also systematically compares 

the informativeness of the different restrictions. The approaches to quantifying these concepts follow 

Giacomini and Kitagawa (2021). 

3.6.1 Posterior plausibility 

When there are a sufficient number of sign restrictions, the identified set may be empty at particular 

values of  . The posterior probability that the identified set is non-empty – the ‘posterior plausibility’ 

– can be used to quantify the degree to which the identifying restrictions are consistent with the 

observed data (as summarised by the reduced-form parameters). If the posterior plausibility is zero 

(which will occur if every draw of   yields an empty identified set), the identifying restrictions are 
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posterior plausibility should approach one asymptotically as the sample size grows and the reduced-

form posterior converges towards the true value of  . 

Under Restrictions (1)–(4), the posterior plausibility of the restrictions is one (i.e. the identified set 

is never empty), and it is greater than 99 per cent under Restriction (5). These restrictions therefore 

appear to be ‘plausible’ in the sense that they are consistent with the observed data. In contrast, 

the posterior plausibility of Restriction (6) is only around 45 per cent. However, as discussed in 

Giacomini, Kitagawa and Read (2022a), this does not necessarily mean that the restrictions are likely 

to be incorrect. In a finite sample, the posterior may assign probability to regions of the reduced-

form parameter space that are ‘far’ from the true value, in which case the posterior plausibility may 

be low even when the identifying restrictions are correct. 

3.6.2 Informativeness of restrictions 

The informativeness of a given set of identifying restrictions can be quantified by comparing the 

width of the set of posterior means against that obtained under a less-restrictive model. Specifically, 

I compare the width of the set of posterior means of the output response at the two-year horizon 

under each set of restrictions against that obtained when the only restriction is that the impact 

response of the cash rate is non-negative (Table 1).20 If the restrictions were point identifying, the 

informativeness measure would be 100 per cent. 

Table 1: Informativeness of Identifying Restrictions 

Per cent 

Restriction 

(1) (2) (3) (4) (5) (6) 

13.1 17.7 25.9 54.5 64.3 78.2 

Note: Informativeness is measured as the percentage by which the set of posterior means for the output response at the two-year 

horizon narrows relative to a model where only the impact response of the cash rate is restricted; higher numbers indicate 

more-informative restrictions. 

 

Based on this measure, the restrictions on the monetary policy reaction function are substantially 

more informative than the restrictions on the impulse responses; for instance, relative to the 

‘unrestricted’ model, Restriction (1) shrinks the set of posterior means by 13 per cent, whereas 

Restriction (3) shrinks the set of posterior means by 26 per cent. Restriction (4), which adds a 

restriction on the systematic response to the exchange rate, shrinks the set of posterior means by 

over 50 per cent. The full set of restrictions (Restriction (6)) shrinks the set of posterior means by 

close to 80 per cent. 

In principle, differences in the apparent informativeness of the identifying restrictions can arise from 

two sources: 1) differences in the extent to which the restrictions truncate the identified set on 

average over the reduced-form posterior; and 2) differences in the space of reduced-form 

parameters that have a non-empty identified set. Because the posterior plausibility is close to one 

for Restrictions (1)–(5), differences in the informativeness measure across these restrictions arise 

from the restrictions truncating the identified set to a greater or lesser degree. In contrast, because 

the posterior plausibility of Restriction (6) is around 45 per cent, the results under this set of 

                                                      

20 The measured informativeness of the restrictions is similar when averaging over horizons. 
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restrictions are based on a different posterior distribution of reduced-form parameters. This makes 

it more complicated to directly compare the informativeness of Restriction (6) to the other sets of 

restrictions. To make a like-for-like comparison, I take the draws of the reduced-form parameters 

obtained under Restriction (6) and impose Restriction (5). Doing this returns results that are very 

similar to those obtained under Restriction (5), which suggests that it is the ability of Restriction (6) 

to truncate the identified set, rather than the different reduced-form posterior, which is driving the 

measured informativeness.21 

4. The Effects of a 100 Basis Point Monetary Policy Shock 

The impulse responses presented in Section 3 represent responses to a standard deviation monetary 

policy shock. However, if we are interested in understanding the effects of, say, increasing the cash 

rate by 100 basis points, it is necessary to know the effects of a monetary policy shock that raises 

the cash rate by 100 basis points. Accordingly, I explore the informativeness of the sign restrictions 

with respect to the impulse responses to a 100 basis point monetary policy shock. 

The horizon- h  impulse response of variable i  to a 100 basis point monetary policy shock is 

  
 

 
,1,

,1,

1,1,0

,
,

,

i h
i h







Q
Q

Q





 (13) 

As discussed in Read (2022b), the identified set for  ,1, ,i h Q  may be unbounded (i.e. infinite in 

length) when the identified set for the impact response of the cash rate includes zero; intuitively, if 

 1,1,00 S  , it may be possible to make  ,1, ,i h Q  arbitrarily large by considering a sequence of 

values for Q  converging to the point where  1,1,0 , 0 Q . Consequently, the set of posterior 

means and robust credible intervals may also be unbounded. This suggests that sign restrictions 

may be very uninformative about the impulse responses to a 100 basis point monetary policy shock. 

Note that I am not claiming that it is reasonable for the cash rate to not respond within the quarter 

to a monetary policy shock; however, sign restrictions do not necessarily preclude this possibility. 

Read (2022b) advocates reporting the posterior probability that  1,1,00 S  , defined as 

   1,1,0: 0 S   Y   , since this tells us which summaries of the class of posteriors 

(e.g. robust credible intervals) are guaranteed to be bounded. Table 2 tabulates this probability 

under the different sets of restrictions. Under Restrictions (1)–(4),   ranges between 89 and 

100 per cent. This means that the identifying restrictions admit the possibility that the cash rate 

does not respond on impact to a monetary policy shock with high posterior probability. As a 

consequence, the set of posterior means, the set of posterior medians and robust credible intervals 

(at conventional credibility levels) may be unbounded when the parameter of interest is the impulse 

response to a 100 basis point shock. In fact,   is 100 per cent under Restriction (3), so the identified 

set for  ,1, ,i h Q  may be unbounded at all values of  . Restrictions (5) and (6) yield lower values 

                                                      

21 Approximation errors associated with the algorithm used to check if the identified set is non-empty mean that the 

posterior plausibility of Restriction (6) may be understated. Similarly, numerical approximation errors mean that the 

informativeness of Restriction (6) may be under or overstated. I attempt to minimise both problems by using a large 

number of draws of Q  in the numerical approximation algorithms. See Appendix A for further details. 
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of  , but these are still greater than 50 per cent. Together, these results suggest that the sign 

restrictions may be quite uninformative about the effects of a 100 basis point change in the cash 

rate.22 

Table 2: Posterior Probability that Identified Set for Impact Response of Cash Rate 
Includes Zero 

Per cent 

Restriction 

(1) (2) (3) (4) (5) (6) 

91.8 89.1 100.0 98.8 73.1 54.9 

Note: See Appendix A for details about how these posterior probabilities are approximated. 

 

Figure 7 plots the posterior median and 68 per cent credible intervals for the impulse responses to 

a 100 basis point shock obtained under Restriction (6) and a conditionally uniform prior. Based on 

the posterior median, output is about 2 per cent lower 2 to 3 years after the shock, consumer prices 

are about 2 per cent lower four years after the shock and the exchange rate appreciates by about 

20 per cent on impact. These estimates suggest that monetary policy has potent effects on 

macroeconomic variables, although the credible intervals convey that there is substantial uncertainty 

around these estimates. However, even these wide credible intervals substantially overstate the 

informativeness of the identifying restrictions; for example, a numerical approximation of the set of 

posterior medians for the output response (not plotted) is extremely wide, with an average width of 

over 100 percentage points for the horizons considered. This implies that the results obtained under 

the standard Bayesian approach to inference are largely driven by the conditional prior. 

Despite the identifying restrictions appearing to be fairly uninformative about the effects of a 

100 basis point shock, we can still draw useful inferences about these effects using the posterior 

lower and upper probabilities, which are respectively the smallest and largest posterior probabilities 

that can be assigned to a particular hypothesis given the class of posteriors. Table 3 tabulates the 

posterior lower probability that the responses of output and prices exceed different thresholds at 

selected horizons under Restriction (6); that is, the posterior lower probability assigned to the 

hypothesis ,1,i h x   given different values of x . The posterior upper probabilities are close to 

100 per cent, so I omit them.23 

                                                      

22 The responses to any fixed-size shock (e.g. a 25 basis point shock) can be obtained by linearly rescaling the responses 

to a 100 basis point shock. The identified set for the response to any given fixed-size shock is consequently unbounded 

if and only if the identified set for the response to a 100 basis point shock is unbounded. 

23 If  ,1,i h x    is the posterior lower probability assigned to the hypothesis ,1,i h x  , the posterior upper probability 

assigned to the hypothesis ,1,i h x   is  ,1,1 i h x   . 
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Figure 7: Impulse Responses to 100 Basis Point Shock 

 

Note: Estimates obtained under Restriction (6), which includes restrictions on impulse responses (cash rate, CPI and TWI), 

coefficients in the monetary policy reaction function (real GDP, CPI and TWI), and relationship between monetary policy shock 

and proxy for the shock. 

Table 3: Posterior Lower Probability that Response to 100 Basis Point Shock is Less 
than Threshold 

Per cent 

Horizon Threshold (%) 

Output  Prices 

0.0 –0.25 –0.5 –1.0 –2.0  0.0 –0.25 –0.5 –1.0 –2.0 

Impact 75.6 38.6 14.5 3.1 1.0  100.0 22.7 11.1 2.4 0.2 

One year 86.8 81.7 61.5 22.0 3.6  80.8 30.6 15.9 5.3 0.8 

Two years 96.3 93.7 82.1 41.0 8.7  86.0 45.8 25.3 8.7 1.3 

Three years 94.2 88.7 71.5 31.4 7.4  96.2 75.5 43.2 14.4 3.3 

Four years 91.8 82.8 57.5 23.1 5.3  99.0 87.9 57.3 19.7 4.0 

Note: Posterior lower probability is the smallest posterior probability assigned to the hypothesis ,1,i h x   (e.g. that output declines 

by more than 1 per cent at the one-year horizon) within the class of posteriors consistent with Restriction (6). 

Focusing first on the response of output, the posterior lower probability that output declines by more 

than 0.25 per cent after two years is over 90 per cent and the posterior lower probability that it 

declines by more than 0.5 per cent is over 80 per cent. There is therefore fairly strong evidence for 

an appreciable decline in output in response to a 100 basis point shock, in the sense that a decline 

exceeding 0.5 per cent at the two-year horizon is assigned reasonably high posterior probability 

under any choice of conditional prior. 

Point estimates from previous SVAR analyses of the Australian economy based on zero restrictions 

suggest that the maximum decline in real GDP following a 100 basis point shock is between 0.2 per 
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cent and 1 per cent (see Figure 3 in Lawson and Rees (2008)). The point estimates from 

Beckers (2020) also suggest that the peak decline of real GDP is about 1 per cent, although there is 

substantial uncertainty around this estimate. Based on the RBA’s multi-sector dynamic stochastic 

general equilibrium model, output is estimated to decline by a maximum of about 0.4 per cent 

(Gibbs et al 2018). The peak response of output in the RBA’s macroeconometric model, MARTIN, is 

also about 0.4 per cent.24 The results in Table 3 are consistent with the peak response of output 

lying towards the upper end of this range of estimates, in the sense that – regardless of the choice 

of conditional prior – fairly large posterior probability is assigned to output responses exceeding the 

estimates at the lower end of this range. In particular, there is reasonably high posterior lower 

probability (around 90 per cent) assigned to the hypothesis that the output response after two years 

exceeds the peak responses in the multi-sector and MARTIN models. 

Turning to the response of prices, the posterior lower probability that prices fall by more than 

0.25 per cent after three years is around 75 per cent, so there is reasonably robust evidence for an 

appreciable fall in prices following a 100 basis point shock. The evidence for effects exceeding 1 per 

cent is less robust; for example, the posterior lower probability that prices decline by more than 

1 per cent after three years is only around 15 per cent. For comparison, the point estimates in 

Beckers (2020) indicate that prices fall by around 0.7 per cent after two or so years, although this 

estimate is again associated with substantial uncertainty. 

5. Robustness Exercises 

This section explores the sensitivity of the results obtained under Restriction (6) to selected changes 

in the modelling assumptions. 

5.1 Model in first differences 

Typical monetary policy rules embedded in macroeconomic models assume that the central bank 

responds to inflation and some measure of economic activity, such as the output gap or real GDP 

growth. In contrast, the monetary policy reaction function underlying the restrictions imposed in 

Section 3 is specified in the levels of prices and output. As a robustness exercise, I re-estimate the 

reduced-form VAR with all variables in first differences with the exception of interest rates and the 

TWI. I impose a variation of Restriction (6). I assume that the coefficients on tGDP  and tCPI  in 

the equation for tCASH  are non-positive and the coefficient on tTWI  is non-negative. I continue to 

impose the proxy-based restrictions alongside restrictions on the impulse responses of tCASH , tCPI  

and tTWI  (i.e. there are sign restrictions on the cumulative impulse response of tCPI ). The 

restrictions are therefore largely consistent with the restrictions imposed when the model is 

estimated in levels. 

The response of output to the shock is qualitatively similar to that obtained when all variables enter 

the model in levels (Figure 8). In contrast, the robust credible intervals include positive price 

                                                      

24 See Ballantyne et al (2019) for a description of the MARTIN model. The estimates I refer to are from the current 

version of the model, which differs in some ways from the version described in Ballantyne et al. Note also that the 

impulse responses to a monetary policy shock presented in Figure 12 of Ballantyne et al correspond to a 100 basis 

point increase in the cash rate that persists for four quarters, so they are not comparable to the responses discussed 

in this paper. 
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responses at horizons beyond one year, so price puzzles are no longer necessarily assigned low 

posterior probability. 

Figure 8: Impulse Responses – First Differences 

 

Notes: Estimates obtained under a version of Restriction (6) modified to account for some variables entering the model in differences. 

Impulse responses are to a positive, standard deviation monetary policy shock. 

5.2 Inflation-targeting period 

The baseline specification uses an estimation sample that starts in the March quarter 1984 and ends 

in the December quarter 2019. This sample period is chosen with the objective of maximising the 

number of observations, which should improve the precision of the estimates, subject to limiting the 

amount of structural change that is likely to have occurred during the period. One concern with this 

sample period is that it includes a change in the monetary policy regime; the RBA began to target 

consumer price inflation in the early-to-mid 1990s. I therefore consider estimating the model over a 

shorter sample period in which the monetary policy regime was more plausibly constant. 

It is difficult to be precise about the exact start of explicit inflation targeting by the RBA. However, 

there appears to be a rough consensus that inflation targeting was undertaken from at least 1993 

(and possibly earlier). For example, speeches by the Governor at the time, Bernie Fraser, in 1992 

and 1993 contain references to the practice of inflation targeting by the RBA (Fraser 1992, 1993a, 

1993b). I therefore consider an estimation sample that begins in the March quarter 1993, although 

other choices of starting date could also be reasonable. 

Under the shorter estimation sample, the robust credible intervals for the responses of output and 

prices include zero at most horizons (Figure 9). The evidence that output and prices fall following a 

monetary policy shock is weaker than that obtained using the full estimation sample; for example, 

the posterior lower probability that the output response is negative after two years is only about 
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40 per cent and the posterior lower probability that the response of prices is negative after three 

years is about 70 per cent. The sensitivity of the results to estimating the model over the inflation-

targeting period is consistent with the idea that, because monetary policy has been conducted more 

systematically over this period, it is more difficult to identify monetary policy shocks and their effects 

(e.g. Ramey 2016).25 Although the robust credible intervals are narrower in the inflation-targeting 

period (compare Figures 6 and 9), this seems to largely reflect that the impact response of the cash 

rate is more precisely estimated (or more tightly identified). 

Figure 9: Impulse Responses – Inflation Targeting 

 

Notes: Estimates obtained under Restriction (6). Estimation sample begins in the March quarter 1993. Impulse responses are to a 

positive, standard deviation monetary policy shock. 

5.3 Credit spreads 

Beckers (2020) finds evidence to suggest that the cash rate responds to contemporaneous 

developments in credit conditions, as measured by credit spreads, even after controlling for the 

response of the cash rate to forecasts of economic conditions. Accordingly, I investigate the 

robustness of my results to adding a measure of money market spreads, tMMS , to the reduced-

form VAR.26 This variable is available from the September quarter 1992, but I set the estimation 

sample to be consistent with the exercise in Section 5.2 (i.e. the sample begins in the March quarter 

1993). I also impose additional identifying restrictions related to credit spreads. Specifically, in 

addition to Restriction (6), I impose that the response of t hMMS   is non-negative for 0,1,2,3h  , 

so credit spreads cannot decline immediately following a positive monetary policy shock. Additionally, 

                                                      

25 Estimating the model in first differences using the inflation-targeting sample (e.g. combining the exercises in 

Sections 5.1 and 5.2) yields even weaker evidence that output and prices fall. 

26 The measure of money market spreads follows that constructed in Beckers (2020). See Appendix B for details. 
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the coefficient on tMMS  in the equation for tCASH  is restricted to be non-negative, so the central 

bank does not increase the cash rate in response to higher credit spreads. 

The results obtained under these restrictions are broadly similar to those obtained when estimating 

the model over the inflation-targeting period (Figure 10). One notable difference is that the robust 

credible intervals for the response of prices now exclude zero at many intermediate horizons. 

Consistent with this, the posterior lower probability that prices decline is around 90 per cent at 

horizons beyond one year. The difference in the responses of prices relative to the previous model 

reflect both the inclusion of credit spreads in the model as well as the additional identifying 

restrictions related to credit spreads. The posterior lower probability that output declines following 

the shock is fairly low at horizons shorter than around four years.27 

Figure 10: Impulse Responses – Credit Spreads 

 

Notes: Estimates obtained under a version of Restriction (6) augmented to account for credit spreads entering the model. Estimation 

sample begins in the March quarter 1993. Impulse responses are to a positive, standard deviation monetary policy shock. 

5.4 Unemployment 

Given the RBA’s mandate to pursue price stability and full employment, it may be more natural to 

impose restrictions on the systematic response of the cash rate to unemployment rather than to 

output. Additionally, given this mandate, the response of unemployment to a monetary policy shock 

is of interest. I therefore consider replacing tGDP  in the VAR with the unemployment rate, tUR . I 

impose that, all else equal, monetary policy is not tightened in response to higher unemployment. 

                                                      

27 The observation that the proxy appears to contain useful identifying information in this model suggests that the 

apparent informativeness of the proxy-based restriction is not purely due to the VAR omitting relevant information 

about credit spreads; see the discussion in footnote 19. 
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The restrictions are otherwise the same as in Restriction (6) and the response of the unemployment 

rate is left unrestricted. 

Under these restrictions, the unemployment rate appears to increase in response to the shock 

(Figure 11); the posterior lower probability that the response of the unemployment rate is positive 

after two years is around 90 per cent. In response to a 100 basis point shock, the posterior lower 

probability that the response of the unemployment rate exceeds 0.25 percentage points is around 

50 per cent and the lower probability that it exceeds 0.5 percentage points is less than 20 per cent. 

In comparison, the point estimates in Beckers (2020) suggest that the unemployment rate increases 

by a maximum of around one-third of a percentage point. The peak response of the unemployment 

rate in the MARTIN model is smaller than this, at a bit less than 0.15 percentage points. My estimates 

imply that there is a reasonably high posterior probability that the response of the unemployment 

rate is larger than in the MARTIN model; the posterior lower probability that the response of the 

unemployment rate two years after the shock exceeds the peak response in MARTIN is around 

80 per cent. 

Figure 11: Impulse Responses – Unemployment 

 

Notes: Estimates obtained under a version of Restriction (6) modified to account for the unemployment rate replacing real GDP in 

the model. Impulse responses are to a positive, standard deviation monetary policy shock. 

6. Conclusion 

To estimate the effects of monetary policy in Australia, this paper imposes sign restrictions on 

impulse responses to a monetary policy shock, the monetary policy reaction function, and the 

relationship between a proxy for the monetary policy shock and the shock itself. The advantage of 

using these sign restrictions over traditional zero restrictions is that the sign restrictions are less 

restrictive and arguably less controversial, in the sense that they are consistent with a wide range 
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of conventional macroeconomic models and/or prior information. The approach to inference that I 

take explicitly addresses the problem of posterior sensitivity to the choice of prior that arises when 

conducting Bayesian inference under sign restrictions, which turns out to be important. 

Together, the sign restrictions that I consider appear to be reasonably informative about the effects 

of a standard deviation monetary policy shock on output and prices; output and prices fall with high 

posterior probability at horizons beyond a year or so, and this result is robust to the choice of prior. 

However, the restrictions appear to be quite uninformative about responses to a 100 basis point 

monetary policy shock, which are the responses that are more relevant from a policymaking 

perspective, reflecting the fact that they do not necessarily rule out extremely small (or zero) 

responses of the cash rate to a monetary policy shock. Nevertheless, it remains possible to draw 

some useful inferences about the effects of a 100 basis point shock. For example, in response to a 

100 basis point shock, there is strong evidence that output declines by at least half a per cent at the 

two-year horizon. The results are consistent with the output effects of a change in the cash rate 

lying towards the upper end of the range of existing estimates and, in particular, the results suggest 

that the response of output is likely to exceed the peak responses in the RBA’s multi-sector and 

MARTIN models. One caveat around these results is that they are sensitive to shortening the 

estimation sample to the inflation-targeting period. 

The results in this paper could be further refined by imposing additional credible identifying 

restrictions. For example, restrictions on the sign of the monetary policy shock or its relative 

contribution to changes in the cash rate in specific historical episodes could sharpen identification 

(e.g. Antolín-Díaz and Rubio-Ramírez 2018; Giacomini, Kitagawa and Read 2021a). Another 

potentially useful avenue would be to identify other structural shocks, which should in principle help 

to identify monetary policy shocks. The availability of additional proxies for Australian 

macroeconomic shocks would be useful in this regard. More generally, it is important that we 

continue to search for credible identifying restrictions and question the assumptions underlying 

existing estimates of the effects of monetary policy. 
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Appendix A: Algorithms for Inference 

This appendix describes the algorithms used to conduct inference in the body of the paper. I first 

outline a generic algorithm. I then provide details on how the different steps of the algorithm are 

implemented in practice, since implementation differs across different types of identifying 

restrictions. 

Algorithm A1 (robust Bayesian inference). Assume the parameter of interest is  , , ,i j h Q . 

For 1, ,k K : 

Step 1: Draw k  from  Y . 

Step 2: Check whether the identified set  k S  is empty. If so, return to Step 1. If not, proceed 

to Step 3. 

Step 3: Compute  
 

 , ,min ,
k

k i j h k
S





Q
Q


   and  

 
 , ,max ,

k

k i j h k
S

u 



Q

Q


  . 

Given the output of Algorithm A1, the set of posterior means is approximated by the interval 

    
1 1

1 1
,

K K

k kk k
u

K K 

 
 
 
    (A1) 

Define       , max ,d u       , and let  z   be the sample  th quantile of  , kd   . 

An approximated shortest robust credible interval for   (with credibility  ) is an interval centred at 

 arg min z    with radius  min z   . If D  is some hypothesis about , ,i j h  (i.e. that the 

parameter lies within some specified interval), the posterior lower probability assigned to the 

hypothesis can be approximated by the posterior probability that the identified set is contained 

entirely within the interval D  (i.e.   1
1 , ,1K

k i j h kK S D
  , where  1   is the indicator function). 

The posterior upper probability can be approximated by the posterior probability that the identified 

set intersects the interval D  (i.e.   1
1 , ,1K

k i j h kK S D
   ). 

How Steps 2 and 3 are implemented depends on the nature of the identifying restrictions imposed; 

in particular, whether the identifying restrictions constrain a single column of Q  or multiple columns. 

I discuss these steps below. 

A.1 Determining whether the identified set is empty 

Step 2 of Algorithm A1 requires determining whether the identified set for Q ,  S , is empty. 

There are different algorithms available to do this. The applicability and efficiency of the different 

algorithms depends on the type of sign restrictions imposed. 

When the sign restrictions constrain a single column of Q  only, which is the case under 

Restrictions (1)–(5), I use the algorithm proposed in Giacomini, Kitagawa and Volpicella (2022). This 

algorithm relies on the fact that any non-empty identified set for 1q  must contain a vertex on the 
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unit sphere in n  where 1n  restrictions are active (i.e. binding). The algorithm proceeds by 

considering different combinations of 1n  active sign restrictions, computing a unit-length vector 

that satisfies these restrictions with equality and checking whether this vector (or its negative) 

satisfies the remaining sign restrictions. In practice, one can compute the vector satisfying the active 

sign restrictions by computing an orthonormal basis for the null space of  S  , where  S   is an 

 1n n   matrix containing a selection of 1n  of the sign restrictions in  S  .If a vector satisfying 

the restrictions is found, the identified set is non-empty. If no such vector is found after considering 

all possible combinations of restrictions, the identified set is empty. 

When the sign restrictions constrain multiple columns of Q , which is the case under Restriction (6), 

I use the rejection-sampling approach described in Giacomini and Kitagawa (2021). This involves 

drawing Q  from a uniform distribution over the space of orthonormal matrices, normalising the 

draw so that the diagonal elements of 0A  are non-negative, and checking whether the draw satisfies 

the sign restrictions. If, after a very large number of draws, no draw of Q  satisfies the sign 

restrictions, the identified set is approximated as being empty. A problem with this approach is that 

it may misclassify the identified set as being empty when it is in fact non-empty. The chance of this 

happening increases when the sign restrictions substantially truncate the identified set given the 

sign normalisations. In practice, I obtain 100,000 draws of Q  that do not satisfy the sign restrictions 

before approximating the identified set as empty. 

When a value of Q  is obtained satisfying the sign restrictions, it can be treated as a draw from the 

uniform distribution over  S . These draws are used to conduct standard Bayesian inference 

under the conditionally uniform prior. 

When interest is in the impulse responses to a 100 basis point monetary policy shock (Section 4), I 

check whether  1,1,00 S   using the approaches described in Read (2022b). Under 

Restriction (3), the number of sign restrictions is equal to the number of endogenous variables in 

the VAR, so the sufficient condition in Proposition 4.2 of Read (2022b) applies and  1,1,00 S   

for all values of  . Otherwise, the posterior probability that  1,1,00 S   is approximated by 

augmenting the set of sign restrictions with the zero restriction  1,1,0 , 0 Q  and numerically 

checking whether the associated identified set is non-empty at each draw of  . Under 

Restrictions (1), (2), (4) and (5), I use Algorithm 4.1 in Read (2022a), which requires solving a 

simple linear program. Under Restriction (6), I use the rejection sampling approach from Giacomini 

and Kitagawa (2021) (i.e. draw a value of Q  satisfying  1,1,0 , 0 Q  and check whether it satisfies 

the remaining sign restrictions). 

A.2 Computing the bounds of the identified set 

Step 3 of Algorithm A1 requires computing the bounds of the identified set. Again, there are different 

algorithms available to do this. 

When the sign restrictions constrain a single column of Q  only, which is the case under 

Restrictions (1)–(5), I apply the active-set algorithm proposed in Gafarov et al (2018). Given a set 

of active restrictions, these authors provide analytical expressions (up to sign) for the value function 

and solution of the optimisation problem that defines    and  u  . Their algorithm proceeds by 

computing these quantities at every possible combination of active restrictions and checking whether 
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the corresponding solution satisfies the non-active sign restrictions (i.e. whether the potential 

solution is feasible).    and  u   are then computed as the minimum and maximum, 

respectively, of the feasible values across the different sets of active restrictions. 

The analytical expression for the potential solution of the optimisation problem provided by Gafarov 

et al (2018) is undefined when the value of the optimisation problem is equal to zero. In this case, 

the authors note that it is necessary to check whether there exists a vector that satisfies the active 

restrictions with equality and any non-active sign restrictions, but they do not explain how this should 

be done. When the number of active restrictions is strictly less than 1n , I apply an algorithm 

proposed in Read (2022a) to determine whether the identified set is non-empty given a set of sign 

and zero restrictions. When the number of active restrictions is equal to 1n , I compute an 

orthonormal basis for the null space of the matrix containing the coefficients of the active restrictions. 

By the rank-nullity theorem, this null space is one-dimensional (i.e. a vector). I then check whether 

this vector (or its negative) satisfies the remaining sign restrictions, in which case the corresponding 

solution is feasible. 

When the sign restrictions constrain multiple columns of Q , which is the case under Restriction (6), 

I compute the bounds of the identified set using the rejection-sampling algorithm proposed in 

Giacomini and Kitagawa (2021). Specifically, I approximate the bounds of the identified set by 

obtaining 5,000 draws of Q  from a uniform distribution over  S  and computing the minimum 

and maximum of the impulse response over these draws. A drawback of this approach is that the 

approximated identified set will be too narrow, although – when the identified set is bounded – the 

approximation error will vanish as the number of draws of Q  increases.28 

A.3 Approximation errors associated with Restriction (6) 

It is possible that the identified set is misclassified as empty at some draws of   under 

Restriction (6), because the algorithm used to determine whether the identified set is empty is only 

approximate in the case where multiple columns of Q  are restricted. The posterior plausibility 

obtained under Restriction (6) is therefore a lower bound on the ‘true’ posterior plausibility. This 

approximation error may also tend to make the reported sets of posterior means and robust credible 

intervals wider than they actually are, since the algorithm will be more likely to discard reduced-

form parameters that yield a ‘narrow’ identified set. On the other hand, at any given value of   that 

has a non-empty identified set, the algorithm used to approximate the identified set will yield an 

approximation that is too narrow. It is therefore unclear whether the ‘true’ informativeness of the 

restrictions – in terms of how much the restrictions tighten the set of posterior means – will be under 

or overstated. Experiments suggest that the results are fairly insensitive to increases in the number 

of draws used to check whether the identified set is empty or to approximate the bounds of the 

identified set. 

                                                      

28 When approximating identified sets for the elements of a d-dimensional vector, Montiel Olea and Nesbit (2021) derive 

bounds for the number of draws that are required to achieve an approximation error that is at most some value with 

at least some probability. Based on their upper bound for the number of draws, using 5,000 draws of Q  is consistent 

with an approximation error of at most 9 per cent with probability close to 100 per cent. 
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Appendix B: Data 

Table B1: Variable Definitions and Sources 

Variable Details Source 

Cash rate Interbank overnight cash rate, %, quarterly average RBA statistical table F1.1 

Interest Rates and Yields – 

Money Market 

Real GDP Chain volume measure, $m, seasonally adjusted ABS Cat No 5206.0 

‘Australian National Accounts: 

National Income, Expenditure 

and Product’ 

Trimmed mean CPI Excluding interest and tax changes, index, seasonally adjusted ABS Cat No 6401.0 

‘Consumer Price Index, 

Australia’; data for the period 

prior to September 2002 are 

calculated by the RBA using 

the ABS methodology 

Trade-weighted 

exchange rate index 

Australian dollar trade-weighted exchange rate, index, end of 

period 

ABS Cat No 5202.0 ‘Balance 

of Payments and 

International Investment 

Position, Australia’ 

Terms of trade Goods and services terms of trade, index, seasonally adjusted ABS Cat No 5302.0 ‘Balance 

of Payments and 

International Investment 

Position, Australia’ 

US real GDP Chain volume measure, $b, seasonally adjusted Federal Reserve Bank of 

St. Louis, FRED database 

(identifier GDPC1) 

Federal funds rate Effective federal funds rate, %, quarterly average Federal Reserve Bank of 

St. Louis, FRED database 

(identifier FEDFUNDS) 

Proxy for monetary 

policy shock 

‘Unanticipated’ series from Beckers (2020) Supplementary information 

from Beckers (2020) 

Money market spread Percentage point difference between the 3-month bank-

accepted bill rate and a 3-month risk-free interest rate. After 

the September quarter 2001, the risk-free rate is the 3-month 

Australian dollar overnight indexed swap (OIS) rate. Before the 

September quarter 2001, it is an estimated 3-month zero-

coupon forward rate based on the approach in Finlay and 

Olivan (2012). 

RBA statistical table F1.1 

Interest Rates and Yields – 

Money Market and 

Historical data: F17 Zero-

coupon Interest Rates – 

Analytical Series – 1992 to 

2008 

Unemployment rate %, derived from the quarterly average of seasonally adjusted 

unemployed persons and the quarterly average of seasonally 

adjusted labour force 

ABS Cat No 6202.0 ‘Labour 

Force, Australia’ 
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