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Abstract

This paper combines multivariate density forecasts of output growth, inflation
and interest rates from a suite of models. An out-of-sample weighting scheme
based on the predictive likelihood as proposed by Eklund and Karlsson (2007)
and Andersson and Karlsson (2007) is used to combine the models. Three
classes of models are considered: a Bayesian vector autoregression (BVAR), a
factor-augmented vector autoregression (FAVAR) and a medium-scale dynamic
stochastic general equilibrium (DSGE) model. Using Australian data over the
inflation-targeting period, we find that, at short forecast horizons, the Bayesian
VAR model is assigned the most weight, while at intermediate and longer horizons
the factor model is preferred. The DSGE model is assigned little weight at all
horizons, a result that can be attributed to the DSGE model producing density
forecasts that are very wide when compared with the actual distribution of
observations. While a density forecast evaluation exercise reveals little formal
evidence that the optimally combined densities are superior to those from the best-
performing individual model, or a simple equal-weighting scheme, this may be a
result of the short sample available.

JEL Classification Numbers: C52, C53
Keywords: density forecasts, combining forecasts, predictive criteria
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COMBINING MULTIVARIATE DENSITY FORECASTS
USING PREDICTIVE CRITERIA

Hugo Gerard and Kristoffer Nimark

1. Introduction

Density forecasts, or fan charts, can help to communicate risks around a central
tendency, or point forecast. Density forecasts are useful tools for inflation-
targeting central banks as they can be used to quantify the probabilities of key
variables being outside a given range in the future. Furthermore, multivariate or
joint density forecasts can be useful in predicting the covariances across different
variables of interest.

Under a Bayesian estimation framework, constructing density forecasts using
a statistical model is straightforward, enabling the various types of uncertainty
inherent in forecasts to be incorporated in a coherent fashion. Taking multiple
draws from a model’s posterior parameter distribution allows for parameter
uncertainty in the forecasts. Taking many draws from a model’s assumed
distributions for shocks can help to characterise an inherently uncertain future.
But using a single model may not result in an accurate characterisation of the true
degree of uncertainty since the true data-generating process is unknown. Forecast
uncertainty due to model uncertainty can also be considered by combining several
models.

There is considerable evidence that combining point forecasts from multiple
models can improve forecast accuracy (see Timmermann 2006). Much less
attention has been paid to combining density forecasts. Some recent work filling
this gap includes Kapetanios, Labhard and Price (2005), Hall and
Mitchell (2004, 2007) and Jore et al (2007). While point forecast combinations
are usually evaluated according to root mean squared errors (RMSE), the criteria
for evaluating density forecasts are less clear cut. This is primarily because the
true density is never observed. Unlike ‘optimally’ combined point forecasts,
there is nothing to guarantee that a combined density forecast will perform better
even in-sample, let alone out-of-sample. Also, as Hall and Mitchell (2004, 2007)
note, a combined density may have characteristics quite different to those of
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the individual densities from which it is constructed. For example, the weighted
linear combination of two normal densities with different means and variances
will be non-normal. So while density forecasts from a combination of models
are more flexible than a density constructed from a single model, whether or not
the combined density provides a more accurate description of the true degree of
uncertainty is, in the end, an empirical question and will depend on the method
used to choose weights for individual models when constructing the combined
density.

Most of the previous literature on combining density forecasts has focused on
univariate densities, that is, density forecasts for a single variable. Yet in many
settings it is of interest to characterise the joint probabilities of future outcomes
of several variables. For instance, a policy-maker might be interested in the joint
probabilities of a target variable and a policy instrument.

This paper proposes to combine multivariate density forecasts from a suite
of models consisting of a Bayesian vector autoregression (BVAR), a factor-
augmented vector autoregression (FAVAR) and a dynamic stochastic general
equilibrium (DSGE) model. A weighting scheme based on predictive likelihoods
following Eklund and Karlsson (2007) and Andersson and Karlsson (2007) is
used to combine the models. This weighting scheme also allows for different
weights to be assigned to different models at different forecast horizons. We
evaluate the combination forecasts following Diebold, Gunther and Tay (1998) and
Diebold, Hahn and Tay (1999) by assessing whether the probability integral
transform of a series of observations with respect to the density forecasts are
uniformly distributed and, in the case of the one-step-ahead forecasts, also
independently and identically distributed.

The rest of the paper is structured as follows. Section 2 outlines the suite of models
and describes how they are estimated. Section 3 presents some density forecasts
and discusses the motivation for using an out-of-sample-based weighting criteria
to combine the models. The predictive-likelihood weighting scheme is outlined
here. Section 3 also discusses the trade-offs implied by choosing the lengths of the
training and hold-out samples necessary to evaluate an out-of-sample predictive
criteria. Section 4 describes the data and the model weights obtained. A univariate
and multivariate evaluation of the combined density forecasts is presented in
Section 5. The final section concludes.
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2. A Suite of Models

The aim of this paper is to construct accurate multivariate density forecasts of GDP
growth, inflation and short-term interest rates from a suite of models. We consider
three types of models: a BVAR with Minnesota priors, a dynamic factor model or
FAVAR and a medium-scale DSGE model. The first two are statistical models with
a solid track record in forecasting (see, among others, Litterman 1986, Robertson
and Tallman 1999 and Stock and Watson 2002). The structural DSGE model, on
the other hand, has a shorter history as a forecasting tool (for examples, see Smets
and Wouters 2004; Adolfson, Andersson et al 2005).

All three models restrict the dynamics of the variables of interest in order
to avoid in-sample over fitting, which is a well-known cause of poor
forecasting performance in unrestricted models (see, for instance, Robertson and
Tallman 1999 and references therein). The BVAR shrinks the parameters on
integrated variables in an unrestricted VAR towards the univariate random walk
model. The FAVAR uses principal components to extract information from a large
panel of data in the form of a small number of common factors. The DSGE
model uses economic theory to restrict the dynamics and cross-correlations of
key macroeconomic time series. Each model is briefly presented below along with
an overview of how the individual models are estimated.

2.1 BVAR

The BVAR can be represented as:

ybvar
t =

p∑
i=1

Aiy
bvar
t−i +B+ εt (1)

where εt ∼ N(0,Σbvar), B is a vector of constants and ybvar
t is an m× 1 vector

that includes quarterly data on the following variables: trade-weighted measures
of G7 output growth, G7 inflation and a simple average of US, euro area and
Japanese interest rates; the corresponding domestic variables we are interested
in forecasting (GDP growth, trimmed mean underlying inflation and the cash
rate); and the level of the real exchange rate. Variables in growth rates are
approximated by log differences and foreign variables are treated as exogenous to
the domestic variables. We consider three specifications of Equation (1) denoted
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BVAR2, BVAR3 and BVAR4 corresponding to the number of lags p = 2, 3 and
4 respectively.

Minnesota-style priors (Doan, Litterman and Sims 1984; Litterman 1986) are
imposed on the dynamic coefficients Ai. The prior mean on the coefficient on
the first lag of the dependent variable in each equation is set equal to zero for
variables in changes and to 0.9 for the three variables specified in levels (both
interest rate variables and the real exchange rate). The prior mean on coefficients
for all other lags is set to zero and is ‘tighter’ on longer lags than on short lags. This
prior centres the non-stationary domestic and foreign price and output levels on a
univariate random walk, and centres domestic and foreign interest rates and the
real exchange rate (stationary variables) on AR(1) processes.1 A diffuse prior is
placed on the deterministic coefficients of the unit root processes and the constants
of the stationary processes in B and we impose a diffuse prior on the variance
covariance matrix of the errors, p(Σbvar) ∝ |Σbvar|−(m+1)/2.

To draw from the posterior distribution of parameters under this Normal-Diffuse
prior, the Gibbs Sampler described in Kadiyala and Karlsson (1997) was used,
with the number of iterations set at 10 000 and the first 500 draws used as a burn-
in sample to remove any influence of the choice of starting value (the OLS estimate
of Σ

bvar was chosen).

2.2 FAVAR

Factor models are based on the idea that a small number of unobserved
factors ft =

(
f1t . . . fkt

)′ can explain much of the variation between
observed economic time series. Once estimated, these factors can be included as
predictors in an otherwise standard VAR, forming a factor-augmented VAR (see
(Bernanke, Boivin and Eliasz 2005). The FAVAR therefore takes the same form
as Equation (1), where yfavar

t =
(

z′t f ′t
)′ and the vector zt refers to the three

domestic variables we are interested in forecasting.

Imposing a diffuse prior on the parameters of the model delivers the standard
result that the covariance matrix of the errors Σ

favar is distributed as inverse

1 How strongly the overall and cross-equation elements of this prior are imposed is governed
by two hyper parameters which are set at 0.5 and 0.2 respectively. Harmonic lag decay is also
imposed. For a useful discussion of the Minnesota prior see Robertson and Tallman (1999).
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Wishart (a multivariate generalisation of the inverse gamma distribution), while
the regression coefficients follow a normal distribution, conditional on Σ

favar (see,
for instance, Kadiyala and Karlsson 1997).

We use principal-components analysis following Stock and Watson (2002) to
estimate ft from a static representation of a dynamic factor model. The static
representation is:

Xt = Λ ft + et (2)

where Xt represents a large data panel of predictor variables (demeaned and in
stationary form), Λ is a matrix of factor loadings and et is an error term (with zero
mean) which may be weakly correlated across time and series. The k× 1 vector
of static factors ft can include current and lagged values of the dynamic factors.
When lags are included in the dynamic factor representation, the static factors in
Equation (2) are estimated by principal components of a matrix that augments the
data panel Xt with lags of the data panel. The principal-component estimator of the
factors is f̂t = V ′Xt , where V represents the matrix of eigenvectors corresponding
to the k largest eigenvalues of the variance covariance matrix of the data panel (see
Stock and Watson 2002 and Boivin and Ng 2005).

The data series included in Xt are the same as in Gillitzer and Kearns (2007)
– see Appendix A of that paper for details – except that the three foreign variables
used in the BVAR are also included. Up to three static factors (k = 1,2,3) are
included in the model, which are estimated assuming a one-lag dynamic factor
model representation. The first three factors explain approximately 25 per cent of
the total variation of the data panel. Finally, we allow for either 2 or 3 lags in the
FAVAR itself (p = 2,3), which means that in total, six different specifications of
the factor model are considered, each denoted FAVARkp.

One drawback of the principal-components approach is that it gives no measure
of the uncertainty surrounding the factor estimates f̂t , something that could
be important for determining the overall uncertainty surrounding the forecasts.
Bai and Ng (2006) show that when the number of series included in the data panel
n grows faster than the number of observations T (that is T/n → 0), then the
impact from using the ‘estimated regressors’ f̂t on the variance of the estimated
model parameters is negligible. While this condition is not met here, we expect
any influence on the variance of the FAVAR’s parameters to be factored into the
predictive criteria used to combine the different model forecasts.
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2.3 DSGE Model

The DSGE model is a medium-scale open economy New Keynesian model that
follows the open economy extension of Christiano, Eichenbaum and Evans (2005)
by Adolfson et al (2007) closely. It consists of a domestic economy populated with
households that consume goods, supply labour and own the firms that produce
the goods. Domestic households trade with the rest of the world by exporting
and importing consumption and investment goods. Consumption and investment
goods are also produced domestically for domestic use. The domestic economy
is small compared to the rest of the world in the sense that developments in the
domestic economy are assumed to have only a negligible impact on the rest of the
world. The model is rich in the number of frictions and shocks, which appears to
be important for matching the data.

In order to estimate the model, the structural equations are linearised and the
model is then solved for the rational expectations equilibrium. This can be
represented as a reduced-form VAR. Since many of the theoretical variables of
the model are unobservable, the model is estimated using the Kalman filter. To do
this, the solved model is first put in state space form as follows:

ξt = Fξ ξt−1 + vt (3)

ydsge
t = AX +H ′ξt +ζt (4)[
vt
ζt

]
∼ N

(
0,

[
Q 0
0 R

])
(5)

where the theoretical variables are collected in the state vector ξt and the
observable variables are collected in the vector ydsge

t . The state transition
Equation (3) governs the law of motion of the state of the model and the
measurement Equation (4) maps the state into the observable variables. The
matrices Fξ , AX , H ′ and Q are functions of the parameters of the model. The
observable variables included in ydsge

t are the real wage, real consumption growth,
real investment growth, the real exchange rate, the cash rate, employment, real
GDP growth, real exports and real imports growth (adjusted), trimmed mean
underlying inflation, real foreign (G7) output growth, G7 inflation and the foreign
interest rate. Again, variables in growth rates are approximated by log differences.
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The covariance matrix R of the vector of measurement errors ζt in Equation (4)
is chosen so that approximately 5 per cent of the variance of the observable time
series are assumed to be due to measurement errors. The model is estimated using
Bayesian methods and the posterior distributions of the 52 structural parameters
are simulated using 1 000 000 draws from the Random-Walk Metropolis
Algorithm, where the first 400 000 are removed as a burn-in sample. Further
details of this model are available on request.

3. Combining the Model Forecasts

While each model included in the suite is estimated using different time series,
the three core variables of interest – GDP growth, trimmed mean underlying
inflation and the cash rate – are included in the data series for all three. To simplify
notation, these three variables are collected in the vector zt =

(
∆gdpt πt it

)′. It
is each model’s forecasting performance of the joint density p(zt+h|Ωt), where Ωt
represents information available at time t, that will be used to combine the models.
To simplify notation in what follows we leave out Ωt and use pt(zt+h) to denote an
h step-ahead conditional predictive density but the dependence on the information
set available at time t should be remembered.

The three models and how they map into the observable variables that we are
interested in can be represented by a state space system:

yk,t = Akyk,t−1 +Ckuk,t (6)

zk,t = Dkyk,t + vk,t (7)

where (6) is the state transition equation and (7) is the measurement equation. The
subscript k is used to index the models and yk,t is the vector of model k’s variables
at time t. The matrices Ak and Ck will depend on the functional forms of the
models and the estimated model-specific posterior parameter distributions while
the matrix Dk maps each model’s variables into the vector of interest zt . In the case
of the BVAR and FAVAR models, where all variables in yk,t are observable, Dk is
simply a selector matrix that picks out the variables included in zt .
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3.1 Constructing Density Forecasts

The approach to constructing pt(zk,t+h) is similar for each model. Multiple
draws are taken from each model’s posterior parameter distribution and for
each draw j, a potential multivariate realisation z( j)

k,t+h is constructed by iterating
Equations (6) and (7) forward up to horizon h. At each iteration, a vector of shocks
u( j)

k,t+h is drawn from a mean zero normal distribution where the variance is itself a

draw from the relevant model’s parameter distribution (that is, u( j)
k,t+h∼N(0,Σ

( j)
k )).

Repeating this procedure j = 1 000 times at each forecast horizon allows us to
build up a complete picture of the forecast probability distribution. To complete the
density forecast, the potential realisations are ordered at each ‘slice’ in the forecast
horizon. Each ordered set of realisations represents the h step-ahead conditional
density forecast for zk,t+h. Different percentile bands are usually shaded when
presenting the final forecast. Each band represents a range in which we expect
future realisations of zk,t to fall in with a certain probability.

As an example, the density forecasts that would have been obtained using data
up to 2005:Q3 with the BVAR2 model are presented in Figure 1. The median
projection along with 50 and 90 per cent probability intervals are shown.

A combination density forecast, denoted pc
t (zt+h), can be constructed as a

weighted linear combination (or ‘linear opinion pool’) of the competing model
forecasts:

pc
t (zt+h) =

K∑
k=1

pt(zk,t+h)wk,h (8)

where wk,h represents the weight assigned to model k when forecasting at
horizon h. The remainder of this section focuses on how to go about choosing
these weights.
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Figure 1: BVAR2 Density Forecasts
2005:Q4–2007:Q3
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3.2 Equal and Posterior Probability Weights

The simplest and most straightforward weighting scheme is to put equal weight
on all models in the suite. In this case, wk,h = 1/K at each forecast horizon.
Apart from its simplicity, a priori this approach seems to have little going for
it. For example, an over-parameterised model that forecasts poorly would still
be assigned substantial weight.2 But such a scheme has been found to perform
well when combining point forecasts (see Timmermann 2006) and could also
prove useful in a density combination context. One reason for this unexpected

2 Also, models that were quite similar would tend to be ‘over-represented.’
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success may be that an equal-weighting scheme is robust to possible small-sample
problems that may arise when choosing weights ‘optimally’.

An alternative and intuitive approach to combining models can be derived in a
Bayesian framework. Each model’s marginal likelihood, p(yk), could be used
to generate posterior probability weights, a method known as Bayesian Model
Averaging (see, for example, Raftery, Madigan and Hoeting 1997). That is,

wk =
p(yk)p(Mk)∑K
i=1 p(yi)p(Mi)

(9)

where p(Mk) represents any prior beliefs about model k being the true model.

This method is attractive as models that appear to describe the observed data better
are assigned a higher weight. But a potential problem with using an in-sample
measure to generate model weights is that too much weight may be placed on
over-parameterised models with good in-sample fit even if they perform poorly
when forecasting.3

A further issue is that the marginal likelihood reflects the entire fit of a model. The
weights from Equation (9) will depend upon each model’s description of all the
variables making up yk, but yk differs between models.

Another approach that can be used to help control for in-sample over-fitting,
and to focus on the key variables of interest, is an out-of-sample weighting
scheme based on predictive likelihoods, as in Andersson and Karlsson (2007) and
Eklund and Karlsson (2007).

3.3 Predictive-likelihood Weights

A weighting scheme based on predictive likelihoods requires the available data to
be split into two samples. A ‘training’ sample is used to estimate the parameters of
each model, and the remaining ‘hold-out’ sample is used to evaluate each model’s

3 While it is possible to view the marginal likelihood as an out-of-sample measure, this
interpretation relies on the predictive content of the prior (see, for example, Adolfson, Lindé
and Villani 2005 and Eklund and Karlsson 2007). This will only be true for the DSGE model
in our suite of models and, in that case, the marginal likelihood is likely to be sensitive to
the choice of prior. For both the BVAR and FAVAR models, where either diffuse or relatively
uninformative priors are imposed, the marginal likelihood reflects an in-sample measure of fit.
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out-of-sample forecasting performance. Asymptotically, that is, with an infinitely
long hold-out sample, predictive likelihoods would tend to put all the weight on
the best model. In practice, however, there is a trade-off between the length of
training and hold-out samples. With a short training sample, a model’s parameters
will be imprecisely estimated. But lengthening the training sample necessarily
shortens the hold-out sample, which makes the evaluation of the predictive criteria
less precise. Therefore, in small samples, a poor model may still be assigned
substantial weight. Worse still, if there are several poor models, their combined
weight can be large.

It should be noted that the predictive likelihood is not an absolute measure of
forecasting performance, but rather, it is a measure of forecasting accuracy relative
to the variance implied by the model (see Andersson and Karlsson 2007 and
Eklund and Karlsson 2007). This makes the predictive likelihood appealing when
evaluating density forecasts from different models, although the ranking of models
could be quite different to that obtained according to RMSEs based on point
forecasts, for example.

As in Andersson and Karlsson (2007), we calculate a series of small hold-out
sample predictive likelihoods (PL), as shown in Equation (10). This involves a
recursive forecasting scheme where the training sample of initial size l is expanded
throughout the forecasting exercise.4 We also restrict our attention to each model’s
predictive performance of the subset of variables zk,t as set out in Equation (7).

PLk,h = p(zhold-out
k,h |ytraining

k ) =
T−h∏
t=l

p̂(zk,t+h|yk,t) (10)

In Equation (10), zhold-out
k,h denotes the (T − h− l) hold-out observations used to

evaluate model k at horizon h, ytraining
k represents the (expanding) training sample

4 Theoretically, either a fixed- or rolling-window forecasting scheme would be preferred to
accommodate the idea that the hold-out sample should tend towards infinity. With dynamic
models, however, a fixed estimation window is not suitable as forecasts would essentially lack
information available at the time of forecasting. The rolling-window scheme is also not practical
when faced with a short sample of data. We therefore prefer the recursive approach.
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and yk,t =
(

yk,1 . . . yk,t
)′

represents each individual training sample relevant to
iteration t in the recursive forecasting exercise.5

The predictive-likelihood weights can be calculated by replacing the marginal
likelihood in Equation (9) with the predictive likelihood of Equation (10) as
follows:

wk,h =
PLk,hp(Mk)∑K
i=1 PLi,hp(Mi)

. (11)

In the analysis below, we assign an equal prior probability to each model being the
true model, that is, p(Mk) = 1/K. 6

4. Results

4.1 The Sample

The data sample is from 1992:Q1 to 2007:Q3 and as discussed above, a recursive
out-of-sample forecasting scheme was used to evaluate each model and generate
model weights. The first l = 36 observations (1992:Q1–2000:Q4) were used as
the initial training sample to estimate each model before constructing density
forecasts up to eight quarters ahead (2001:Q1–2002:Q4). The training sample
was then extended by one observation, the models re-estimated and density
forecasts over the next eight quarters (2001:Q2–2003:Q1) constructed. Model
weights were generated sequentially by repeating this exercise over the remaining
sample. The final set of model weights were based on a hold-out sample of
27 observations at the one-step-ahead forecast horizon and 19 observations at
the eight-step-ahead horizon (the final training sample was between 1992:Q1 and
2007:Q2, which allows one one-step-ahead forecast to be compared to the final
observation). It should be noted that the DSGE model was only re-estimated every
four quarters to save on computation time.

5 More details on how the predictive likelihood (10) was calculated are provided in Appendix A.
6 We also generated weights numerically following Hall and Mitchell (2007) when choosing the

set of weights that minimise the Kullback-Leibler divergence between the combined density
forecast and the true but unknown density. When considering a small number of models, the
weights obtained were similar to those of the predictive-likelihood approach, but this Kullback-
Leibler information criterion weighting scheme, which involves a numerical search for the
optimal set of weights, becomes impractical when considering a larger model space.
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4.2 Model Weights

Table 1 shows the final set of model weights (using all observations in the
hold-out sample) according to the predictive-likelihood weighting scheme when
forecasting one, two, four and eight quarters ahead. Note that a simple unrestricted
VAR of GDP growth, trimmed mean inflation and the cash rate (with two to
four lags) was also included in the weighting scheme as a benchmark model.
How the predictive-likelihood weights evolve throughout the hold-out sample (as
the number of observations used to construct the weights increase) is shown in
Figure 2 for the BVAR2, FAVAR12 and DSGE models.

Table 1: Predictive-likelihood Weights at 2007:Q3
Model Forecast horizon (h)

1 2 4 8
BVAR4 0.22 0.32 0.00 0.00
BVAR3 0.18 0.11 0.00 0.00
BVAR2 0.25 0.07 0.01 0.00
FAVAR33 0.00 0.00 0.00 0.00
FAVAR32 0.00 0.00 0.02 0.01
FAVAR23 0.00 0.00 0.00 0.00
FAVAR22 0.00 0.18 0.35 0.13
FAVAR13 0.00 0.00 0.02 0.00
FAVAR12 0.03 0.25 0.59 0.84
DSGE 0.00 0.00 0.00 0.00
VAR4 0.02 0.04 0.00 0.00
VAR3 0.30 0.02 0.00 0.00
VAR2 0.00 0.00 0.00 0.00

Notes: The weights shown in the table are calculated using all observations in the hold-out sample, which is
made up of 27 observations for the one-quarter-ahead forecasts and is reduced by 1 observation for each
subsequent forecast horizon.

Table 1 shows that, for forecasting at short horizons, the BVAR model is assigned
the most weight. The BVAR specified with 2 lags is preferred at the one-quarter-
ahead forecast horizon while 4 lags are preferred at the two-quarter-ahead horizon.
The benchmark VAR model specified with 3 lags also receives substantial weight
at the one-quarter-ahead forecast horizon. When forecasting at intermediate and
longer horizons, the FAVAR model is assigned the majority of the weight. The
FAVAR specified with two lags and either one or two factors seems to do the best.



14

Figure 2: Predictive-likelihood Weights
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Interestingly, the DSGE model is assigned zero weight at all forecast horizons.
This result can be attributed to the large forecast error variance implied by the
DSGE model. As we will see in Section 5, the DSGE model’s density forecasts
were typically too wide (the true degree of uncertainty was over-estimated) when
compared with the distribution of actual observations in the sample.

As discussed above, combining weights ‘optimally’ could be troublesome when
faced with a small sample of data. Therefore, we also consider an equal-
weighting scheme, which assigns a one-third weight (wk,h = 1/3) to the BVAR2,
FAVAR12 and DSGE models at all horizons and in all time periods. While an
equal-weighting scheme across all 13 models shown in Table 1 could have been
used, that approach would tend to overweight the FAVAR models (of which
there are 6 different specifications) and underweight the others, in particular the
DSGE model.

To give a flavour of what the combination density forecasts may look like,
Figure 3 shows a cross-section of the four-quarter-ahead density forecasts that
would have been made in 2005:Q3 when using the predictive-likelihood and
equal-weighting schemes (using weights that would have been available at
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Figure 3: Four-quarter-ahead Density Forecasts
Made in 2005:Q3
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the time of forecasting). The individual BVAR2, FAVAR12 and DSGE model
forecasts are also shown to give an idea of how the combination forecasts differ.

Looking at Figure 3, a couple of points are worth making. The predictive-
likelihood combination density forecasts are typically similar to the FAVAR12
model’s density forecasts since that model is given a large weight at the four-
quarter-ahead forecast horizon. It is also clear that the DSGE model’s density
forecasts are characterised by a much larger degree of uncertainty than is the case
with the other models or the combination density forecasts. Finally, the equally
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weighted combination density forecast for the cash rate has a ‘fat’ right-hand tail,
suggesting that in 2005:Q3, according to this forecast, the risks to the central cash
rate projection in four quarters time were somewhat skewed to the upside.

5. Evaluating Density Forecasts

Accuracy is obviously a desirable feature of forecasts. For point forecasts,
accuracy is usually interpreted to mean that the forecast errors are unbiased and
small according to RMSEs. For density forecasts, accuracy can be interpreted
in a statistical sense by comparing the distribution of observed data with the
forecast distribution. Given a large enough sample of data, if a density forecast
is providing an accurate characterisation of the true degree of uncertainty,
that is, it provides an accurate description of reality, then we would expect
observations to fall uniformly across all regions of the distribution that are forecast
to contain the same probability density. As an example, if a density forecast
suggests there is a 10 per cent chance of GDP growth falling between 3.5 and
3.7 per cent at a given forecast horizon, then, if economic conditions at the time of
forecasting could be replicated 100 times, we would expect 10 actual observations
to fall between 3.5 and 3.7 per cent. Diebold et al (1998) employ this result
to formally evaluate density forecasts; an approach that avoids both the need to
specify the unknown true density and the need to specify a loss function for the
user of the forecasts.

Diebold et al’s (1998) approach to evaluating univariate density forecasts is
based on the probability integral transform (pit) of a sequence of n univariate
observations {yt+h}

n
t=1, with respect to the h-step-ahead density forecasts

{pt(yt+h)}
n
t=1. Each of the transformed observations or pits {vt+h}

n
t=1 reflects the

probability (according to the density forecast) that an out-turn yt+h will be less
than or equal to what was actually observed. That is,

vt+h =
∫ yt+h

−∞

pt(u)du, t = 1, . . . ,n. (12)

Equation (12) links where an actual observation falls relative to the percentiles
of the forecasted distribution. For example, an actual observation that falls at the
median of the density forecast would receive a pit value of 0.5. For an observation
that falls in the upper tail, say at the 90th percentile, the pit value would be 0.9. If a
sequence of density forecasts coincides with the true data-generating process, then
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the sequence of pits {vt+h}
n
t=1 will be uniform U(0,1) and in the case where h = 1,

{vt+h}
n
t=1 are both U(0,1) and independently and identically distributed (iid). In

other words, if the density forecasts are not misspecified, over a large enough
sample, realisations should fall over the entire range of the forecasted density and
with a probability equal to the probability specified in the density forecast.

Diebold et al (1999) show that the probability integral transform approach
to evaluating density forecasts can be extended to the multivariate case.7 Let
pt(zt+h) again denote a joint density forecast of the 3× 1 vector of interest
zt+h = ( z1,t+h z2,t+h z3,t+h )′ made at time t and suppose we have n such
forecasts and n corresponding multivariate realisations. After factoring the joint
density into the product of conditional densities,

pt(zt+h) = pt(z3,t+h|z2,t+h,z1,t+h)pt(z2,t+h|z1,t+h)pt(z1,t+h) (13)

the probability integral transform for each variable in the multivariate realisations
can be taken with respect to the corresponding conditional distribution. This
creates a set of three pit sequences, each of length n. If the joint density
forecasts correspond to the true conditional multivariate density, then these three
transformed sequences will each be U(0,1), as will the 3n× 1 vector formed by
stacking the individual sequences. As before, in the one-step-ahead case they will
also be iid. Since the joint density in Equation (13) can be factored in six ways,
there are, in fact, six equivalent pit sequences that can be used to evaluate the
multivariate density forecasts.8

So evaluating density forecasts can effectively be reduced to testing whether an
observed series is U(0,1), and in the case of the one-step-ahead forecasts, whether
it is also iid. Before presenting the results, it must be highlighted that in the
current context there are reasons why tests of uniformity and independence may be
unreliable and it would be unwise to over-emphasise the results from these tests.
Given the small sample of data on which we can evaluate the forecasts, it will
always be difficult to distinguish between forecasting ability and luck. Also, as
Hall and Mitchell (2007), among others, have noted, the way in which dependence

7 See also Clements and Smith (2000) for an application of the multivariate pit approach.

8 In the results that follow, the multivariate evaluation was based on factoring the joint density of
zt as follows: pt(zt+h) = pt(∆gdpt+h|πt+h, it+h)pt(πt+h|it+h)pt(it+h).
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in the forecasts affects tests for uniformity is unknown (as is the impact of non-
uniformity for tests of independence). And given that serially dependent forecasts
are entirely consistent with correctly-specified density forecasts at a forecast
horizon greater than one-step-ahead (see Elder et al 2005 for a good discussion of
this point), results must be treated with some caution. In addition, formal testing
of the densities presented in this paper is further complicated by the fact that we
allow for parameter uncertainty when constructing the forecasts.

We present a visual assessment of the hypothesis that the pit-values corresponding
to the one-quarter-ahead density forecasts are uniformly distributed in
Figure 4. The results for the two- and four-quarter-ahead forecasts are provided in
Appendix B (a visual assessment at longer forecast horizons is difficult due
to the small number of observations available to evaluate the forecasts). This
method is widely used in the literature and may also prove revealing as to
how the density forecasts are misspecified. We conduct both a univariate and
multivariate evaluation of the BVAR2, FAVAR12 and DSGE models, as well
as the two combined density forecasts based on the predictive-likelihood and
equal-weighting schemes.

Since a number of observations are ‘used up’ when calculating the predictive-
weighting criteria, the effective sample on which we can evaluate the combined
densities is reduced. To evaluate the combined one-quarter-ahead density
forecasts, 26 observations were available, while only 12 observations could be
compared to the combined eight-quarter-ahead density forecasts.9 To allow for
a fair comparison with the predictive-likelihood weighting scheme, this reduced
evaluation sample was also used to evaluate the equal-weighting scheme as well
as the models individually.

In Figures 4, B1 and B2, the horizontal line represents the theoretical distribution
that pit-values would follow in the case of correctly-specified density forecasts.

9 To see this, consider the sequence of eight-quarter-ahead combined density forecasts. The first
such forecast can only be made once the first set of eight-quarter-ahead weights are constructed
(which is in 2002:Q4). And being an eight-quarter-ahead forecast, it is evaluated against the
2004:Q4 observation. A second eight-quarter-ahead forecast can be made in 2003:Q1 (using an
updated set of eight-quarter-ahead weights) and evaluated in 2005:Q1. This pattern continues
until the sample is exhausted, which occurs after 12 eight-quarter-ahead forecasts are made.
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Figure 4: Pit Distributions
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Notes: Rows in the figure refer to the three individual model density forecasts and the two
combination density forecasts. The first three columns refer to the pit-values corresponding
to the univariate one-quarter-ahead density forecasts for GDP growth, inflation and the
cash rate. The final column refers to the multivariate forecasts where the histogram is
constructed using the ‘stacked’ sequence of pit-values as described in the main text. The
height of each bin (vertical axis) reflects the number of observations that fell within
different percentile bands (horizontal axis) over the evaluation period (26 observations
in total in the univariate cases and 26 observations for each of the three variables in the
multivariate case).
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The ‘closer’ the sample histogram is to this U(0,1) distribution, the ‘better’ the
density forecast. A ‘hump’-shaped histogram would be suggestive of density
forecasts that are over-estimating the true degree of uncertainty, with too many
pit-values close to 0.5 (a result of too many actual observations falling around
the centre of the density forecasts over time). A histogram with peaks near 0 and
1, on the other hand, would suggest too small a probability is being assigned to
outcomes in the tails of the forecasted distribution.

Some broad conclusions can be taken from the figures. It seems clear that the
distributions of pit-values corresponding to the DSGE model’s forecasts (the
third row in each of the figures) violate the uniformity hypothesis. For both the
univariate and multivariate cases, over the evaluation period, the DSGE model’s
density forecasts were too wide when compared to the actual distribution of
observations. The ‘hump’-shaped distribution of pit-values is particularly evident
at the two- and four-quarter-ahead forecast horizons (Figures B1 and B2).

Looking at the univariate cases (the first three columns in each figure) it appears
that, across the different models and weighting schemes, the density forecasts
for inflation perform the best. Apart from the DSGE model, the distribution of
pit-values for the inflation forecasts show a reasonable coverage in the tails of
the distribution, with the overall distribution typically close to the U(0,1) line.
The distribution of the cash rate variable seems to be the most poorly forecast
across the various methods. Turning to the multivariate cases, it seems that the
FAVAR12 model provides the best description of the joint distribution of GDP
growth, inflation and interest rates over the evaluation period. This seems to be
true at each forecast horizon. The combination density forecasts constructed using
the predictive-likelihood weights also perform well, although it is not clear that
the combination density performs that much better than the individual FAVAR12
model’s forecasts. There is perhaps some evidence that the optimally combined
density forecasts outperform those based on an equal-weighting scheme, although
this is most likely due to the poor performance of the DSGE model’s density
forecasts, which receive one-third weight in the equal-weighting scheme.

Formal statistical tests of the uniformity hypothesis have also been suggested.10

For example, Berkowitz (2001) suggests taking a further transformation using

10 Corradi and Swanson (2006) provide a detailed summary. See also Hall and Mitchell (2004)
for an application of the various testing procedures to density forecasts of UK inflation.
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the standard normal inverse cumulative density function to convert the test for
uniformity into a more powerful test for normality. In Appendix B we present a
variation of the Berkowitz-type test for normality which aims to allow for serial
correlation in the forecasts (see Elder et al 2005). While the test delivers broadly
the same conclusion as the visual assessment, given the difficulties faced when
assessing the uniformity (or normality) hypothesis discussed earlier, the results
should still be treated with some caution.

To test the hypothesis that the pit-values corresponding to the one-quarter-ahead
density forecasts are iid, Ljung-Box (LB) tests for up to fourth-order serial
correlation are shown in Table 2. LB tests on the first three moments were
considered to allow for the possibility of higher-order dependence. Except for
the univariate density forecasts for inflation, the tests do show evidence of
serial correlation. This suggests that the GDP growth, cash rate and multivariate
one-quarter-ahead density forecasts are misspecified to some extent. Taking
the multivariate evaluation as an example, the LB tests show dependence in
the stacked sequence of pit-values in all of the first three moments when
forecasting with the FAVAR12 model. The BVAR2 model seems to fare better,
although there is evidence of serial correlation in the second moment. Similarly,
pit-values corresponding to the predictive-likelihood and equal-weighting scheme
combination density forecasts show evidence of serial correlation in the second
moment, which is inconsistent with the hypothesis of correctly-specified density
forecasts at the one-step-ahead forecast horizon.

Table 2: Ljung-Box Tests for Independence
One-quarter-ahead forecast horizon

GDP growth Inflation Cash rate Multivariate
Moment 1 2 3 1 2 3 1 2 3 1 2 3
BVAR2 0.07 0.36 0.04 0.78 0.70 0.95 0.66 0.04 0.08 0.90 0.00 0.66
FAVAR12 0.19 0.62 0.39 0.20 0.56 0.20 0.01 0.21 0.03 0.00 0.06 0.01
DSGE 0.77 0.79 0.55 0.85 0.99 0.96 0.14 0.99 0.25 0.00 0.27 0.07

PL 0.09 0.08 0.10 0.94 0.76 0.95 0.94 0.03 0.39 0.91 0.00 0.87
EQUAL 0.21 0.41 0.21 0.94 0.84 0.95 0.75 0.11 0.34 0.58 0.00 0.56

Notes: Numbers in the table are p-values corresponding to Ljung-Box tests of up to fourth-order serial correlation
in the pit-values. Numbers in bold represent that the null hypothesis is rejected at the 10 per cent
significance level.
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Overall, based on these results, it is hard to draw strong conclusions about the
accuracy of the combined density forecasts. But one result that does seem clear
is that the density forecasts constructed using the DSGE model were inconsistent
with the data; the density forecasts were too wide when compared with the actual
distribution of observations. One possible reason for the large forecast uncertainty
implied by the DSGE model could be the many restrictions imposed on the
dynamics of the model. If the data ‘disagree’ with these restrictions, larger shocks
will be needed to explain the patterns seen in the data and, as a consequence,
greater shock uncertainty will be introduced into the forecasts. So while DSGE
models have been shown to produce relatively accurate point forecasts (see, for
example, Adolfson, Andersson et al 2005), our results suggest they may be less
successful at characterising the uncertainty surrounding point forecasts. However,
this does not mean that density forecasts from DSGE models are not useful
for policy analysis. As structural models with economically interpretable state
variables, DSGE models still have the advantage of lending themselves to scenario
analysis and ‘story telling’; something that purely statistical models cannot do.
This is equally true for density forecasts as it is for point forecasts.

6. Conclusion

In this paper, we have looked at a relatively unexplored area of the forecast
combination literature, that of combining multivariate density forecasts. We have
used predictive-likelihood scores to combine density forecasts produced by a suite
of models consisting of a BVAR, a FAVAR and a DSGE model. The weighting
scheme suggests that the DSGE model should be assigned a very low weight in
the combined density forecast. Inspecting the probability integral transforms of
the models’ forecasts suggests that this low weight is due to the fact that over
the evaluation sample the DSGE produced density forecasts that were too wide
when compared with the actual distribution of observations. Overall, testing the
performance of the combined density forecasts returned mixed results, and it is
not clear that the combined forecasts are superior to those of the best-performing
individual model or an equal-weighting scheme. This may be a result of the short
sample available to evaluate the forecasts.
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Appendix A: Calculating the Predictive Likelihood

To calculate the predictive likelihood (reproduced below for convenience),

PLk,h =
T−h∏
t=l

p̂(zk,t+h|yk,t) (A1)

for each model k we use the multivariate normal distribution and take an average
across multiple draws ( j) from model k’s predictive distribution of zk,t+h. That is,

p̂(zk,t+h|yk,t) = n−1
n∑

j=1

p(z( j)
k,t+h|yk,t) (A2)

where n = 500 and p(z( j)
k,t+h|yk,t) is multivariate normal. The predictive distribution

for each model was constructed via simulation as described in the main text. This
is the same approach used by Andersson and Karlsson (2007).
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Appendix B: Visual and Statistical Assessment

Figures B1 and B2 present a visual assessment of the hypothesis that the pit-values
corresponding to the two- and four-quarter-ahead density forecasts are uniformly
distributed.

Table B1 reports p-values for likelihood ratio tests of the null hypothesis that
the density forecasts are correctly specified at different forecast horizons. The
test is a variant of the tests suggested by Berkowitz (2001) and is described in
Elder et al (2005) with two degrees of freedom. The results are broadly in line
with the visual assessment of the uniformity hypothesis conducted in the main
text, although it is difficult to make a direct comparison. According to the tests,
the univariate density forecasts of GDP growth and the cash rate were, in general,
poorly characterised, while the inflation density forecasts tended to fare better.
We were unable to reject the null hypothesis at the 95 per cent significance level
that the BVAR12, FAVAR12, and predictive-likelihood weighted combination
density forecasts for inflation were not misspecified at any forecast horizon. The
test of correctly-specified multivariate density forecasts proved difficult to pass,
and except for the FAVAR12 model at the one- and two-quarter-ahead forecast
horizons, the null hypothesis that the multivariate density forecasts coincide with
the actual joint density was rejected at the 95 per cent significance level. Again,
there is little evidence to suggest that the ‘optimally’ combined density forecasts
are superior to the best-performing individual model or the equally weighted
forecasts, although the small sample makes it difficult to draw strong conclusions.
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Figure B1: Pit Distributions
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Notes: Rows in the figure refer to the three individual model density forecasts and the two
combination density forecasts. The first three columns refer to the pit-values corresponding
to the univariate two-quarter-ahead density forecasts for GDP growth, inflation and the
cash rate. The final column refers to the multivariate forecasts where the histogram is
constructed using the ‘stacked’ sequence of pit-values as described in the main text. The
height of each bin (vertical axis) reflects the number of observations that fell within
different percentile bands (horizontal axis) over the evaluation period (24 observations
in total in the univariate cases and 24 observations for each of the three variables in the
multivariate case).
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Figure B2: Pit Distributions
Four-quarter-ahead horizon
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Notes: Rows in the figure refer to the three individual model density forecasts and the two
combination density forecasts. The first three columns refer to the pit-values corresponding
to the univariate four-quarter-ahead density forecasts for GDP growth, inflation and the
cash rate. The final column refers to the multivariate forecasts where the histogram is
constructed using the ‘stacked’ sequence of pit-values as described in the main text. The
height of each bin (vertical axis) reflects the number of observations that fell within
different percentile bands (horizontal axis) over the evaluation period (20 observations
in total in the univariate cases and 20 observations for each of the three variables in the
multivariate case).
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Table B1: Likelihood Ratio Tests
GDP growth Inflation Cash rate Multivariate

One-quarter-ahead horizon
BVAR2 0.00 0.09 0.00 0.00
FAVAR12 0.01 0.90 0.24 0.24
DSGE 0.00 0.00 0.01 0.00
PL 0.01 0.25 0.00 0.00
EQUAL 0.00 0.01 0.00 0.00
Two-quarter-ahead horizon
BVAR2 0.01 0.08 0.00 0.00
FAVAR12 0.02 0.78 0.18 0.30
DSGE 0.00 0.00 0.00 0.00
PL 0.01 0.23 0.00 0.00
EQUAL 0.00 0.01 0.00 0.00
Four-quarter-ahead horizon
BVAR2 0.01 0.11 0.00 0.00
FAVAR12 0.04 0.30 0.03 0.00
DSGE 0.00 0.00 0.00 0.00
PL 0.02 0.22 0.01 0.00
EQUAL 0.00 0.01 0.00 0.00
Eight-quarter-ahead horizon
BVAR2 0.01 0.47 0.00 0.00
FAVAR12 0.01 0.59 0.00 0.05
DSGE 0.00 0.00 0.00 0.00
PL 0.01 0.64 0.00 0.02
EQUAL 0.00 0.14 0.00 0.00
Notes: Numbers in the table are the p-values for the likelihood ratio test of zero mean and unit variance of the

inverse normal cumulative distribution function transformed pit-values, with a maintained assumption of
normality. Numbers in bold indicate that the null hypothesis is rejected at the 5 per cent significance level.
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