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Abstract

The extent to which either supply or demand factors drive inflation has important

implications for economic policy. I propose a framework to decompose inflation into

supply- and demand-driven components. I generate two new data series, the supply-

and demand-driven contributions to personal consumption expenditures (PCE) infla-

tion, which quantify the degree to which either demand or supply is driving inflation in

a current month. The series show expected time-series patterns. The demand-driven

contribution tends to decline during recessions, while the supply-driven contribution

tends to follow food and energy prices. Monetary policy tightening acts to reduce the

demand-driven contribution of inflation. Oil-supply shocks act to increase the supply-

driven contribution, but decrease the demand-driven contribution of inflation. The

decompositions can be used to test theory or by policymakers and practitioners to

track inflation drivers in real time.
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1 Introduction

At the heart of New Keynesian theory lies the Phillips curve which posits that inflation

deviates from its expected path due to aggregate demand and supply factors. Indeed, oil-

related supply factors and monetary-policy related demand factors were shown to play a large

role in explaining the high inflation of the 1970s (Blinder and Rudd (2013)) and Primiceri

(2006)). More recently, researchers are pointing to both supply and demand factors as being

responsible for the recent post-COVID inflation surge.1 More generally, the extent to which

either supply or demand factors drive inflation may have important implications for economic

policy, particularly monetary policy. Jerome Powell, Chair of the Federal Reserve, stated

this directly, “What [the Fed] can control is demand, we can’t really affect supply with our

policies. . . so the question whether we can execute a soft landing or not, it may actually

depend on factors that we don’t control.”2

I propose a framework to decompose overall inflation into supply-driven and demand-

driven components. I generate two new data series, the supply- and demand-driven contri-

butions to personal consumption expenditures (PCE) inflation. These series quantify the

degree to which either demand or supply is driving inflation in a current month. Since infla-

tion is constructed as the weighted sum of category-level inflation rates, it is straightforward

to divide inflation by category, or groups of categories. I separate categories each month

into those where prices moved due to a surprise change in demand from those where prices

moved due to a surprise change in supply.

The methodology is based on standard theory about the slopes of the supply and demand

curves. Shifts in demand move both prices and quantities in the same direction along the

upward-sloping supply curve, while shifts in supply move prices and quantities in opposite

directions along the downward-sloping demand curve. Implementing this concept empirically

entails the use of a sign-restrictions (Faust (1998) and Uhlig (2005)). The sign restriction

implemented in this study—restricting the sign of the slopes of the supply and demand

curves—is appealing because it is theoretically intuitive and therefore likely not controver-

sial. While this restriction indicates whether a demand or supply shock occurred at any

point in time (i.e., a binary variable), it does not pin down the extent to which supply or de-

1Jordà, Liu, Nechio, Rivera-Reyes, et al. (2022), Ball, Leigh, and Mishra (2022)
2Taken from Powell’s May 2022 interview on NPR’s Marketplace
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mand is impacting inflation. One needs to make additional identifying restrictions, beyond

sign restrictions, in order to quantify the magnitudes of the structural shocks. Including

additional identifying restrictions, however, defeats the originally intended parsimonious ap-

peal of sign-restrictions (Fry and Pagan (2011)). The advantage of using the category-level

data is that one can obtain a continuous measure of the extent to which supply and demand

factors are impacting inflation without having to impose additional non-sign restrictions.

Specifically, category-level data allow one to track the share of (expenditure-weighted) PCE

categories that are experiencing at least a supply shock or at least a demand shock.

Separate price and quantity regressions are run on each of the more than 100 goods and

services categories that make up the PCE price index, and the residuals are collected.3 The

categories are then labeled as supply-driven or demand-driven based on the signs of residuals

in the price and quantity reduced-form regressions. As shown in Jump and Kohler (2022), the

signs of the residuals can be used to identify the signs of the structural shocks. Categories

with residuals of the same sign experienced at least a demand shock and are labeled as

demand-driven in that month. Categories with residuals of opposite signs experienced at least

a supply shock, and are labeled as supply driven in that month. The demand-driven (supply-

driven) contribution to inflation in a given month is then constructed as the expenditure-

weighted average of the inflation rates of those categories labeled as demand-driven (supply-

driven) in that month—the same weights used by the Bureau of Economic Analysis (BEA)

in constructing aggregate PCE inflation from category-level inflation rates.

The supply- and demand-driven contributions track the share of PCE inflation that

experienced at least a supply shock or at least a demand shock. Thus, they do not measure

changes over time in the absolute size or the relative size of structural supply and demand

shocks. For instance, under some parameterizations of supply and demand elasticities, a

relatively large supply shock and small demand shock can cause both prices and quantities

to rise for a specific category. One way to help validate that the methodology is in fact

tracking demand- and supply-related factor is to assess how the series co-vary with economic

3The empirical analysis therefore relies on the fact that price dynamics are best explained at the category
level. There is ample evidence in the literature that this holds. For example, the health care services sector
is sensitive to prices administered by the government (that is, Medicare and Medicaid) as shown in Clemens
and Gottlieb (2017), Clemens, Gottlieb, and Shapiro (2014), and Clemens, Gottlieb, and Shapiro (2016).
Certain products, such as airline services Gerardi and Shapiro (2009) and technology goods (Aizcorbe (2006)
and Copeland and Shapiro (2016)), tend to strongly move with technological progress and sector-specific
competitive pressures.

3



events that are well known to be either demand- or supply-driven. Indeed, the contribution

of demand-driven inflation falls during recessions and rises during economic booms. Specific

key events also impact the series, for instance, the collapse in airline travel after September

11, 2001 reduced demand-driven inflation while the sharp energy price declines in 2014 and

2015 reduced supply-driven inflation. The decomposition also reveals information about the

post-COVID surge in inflation. After a precipitous decline in 2020, demand-driven inflation

began to surge in the Spring of 2021, coinciding with the re-opening of the economy and

the implementation of the American Rescue Plan. Supply-driven inflation surged in early

2022 likely due to the economic disruptions associated with the Russian invasion of Ukraine.

These patterns are robust along several dimensions: using a rolling-average of past residuals

instead of the current residual, ignoring labels that are possibly labeled imprecisely, relaxing

the assumption of binary labeling, using alternative number of lags in the VAR, and allowing

for time-varying parameters in the VAR.

As further demonstration of “proof of concept,” I examine how the supply- and demand-

driven contributions respond to aggregate supply and demand shocks constructed by external

researchers. Specifically, I run local projections using high-frequency identified (HFI) mone-

tary policy shocks (Gürkaynak, Sack, and Swanson (2005) and externally identified oil supply

shocks (Baumeister and Hamilton (2019)). A monetary policy tightening, as measured by a

100 basis point surprise increase in the slope of yield curve around FOMC announcements,

reduces the demand-drive contribution of inflation by a cumulative 1.5 percentage points over

two years. This result is line with standard macro models, for example, (Smets and Wouters

(2003), whereby monetary tightening reduces inflation through a dampening of demand.

Interestingly, the same tightening induces a small positive increase in supply-driven infla-

tion, showing some evidence of a cost-channel effect of monetary policy (Barth and Ramey

(2001)). A negative oil supply shock has a small positive impact on the supply-driven con-

tribution to core inflation, thus showing the well-known pass-through effect of oil prices on

core prices.4 Specifically, a 10 percent increase in oil prices translates into about a 15 basis

point increase in the supply-driven contribution to core PCE inflation over 24 months. The

results also show a small negative effect on demand-driven inflation, which is consistent with

4There has been some debate in the literature on the degree to which energy prices pass through to
non-core prices (see, for example, Hooker (2002), Blanchard and Gali (2007), Bachmeier and Cha (2011),
Conflitti and Luciani (2019))
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the well-known finding that oil supply shocks reduce aggregate demand (Lee and Ni (2002),

Hamilton (2008), Edelstein and Kilian (2009)). The same 10 percent increase in oil prices

causes approximately the same size decrease in the demand-driven contribution. Thus, al-

though the oil supply shock has no net effect on overall core inflation, the decomposition

reveals off-setting supply and demand effects.

The supply and demand contributions can be used by researchers to help test and better

understand existing macroeconomic theories. They can also be used to test how economic

policy works in practice, such as examining whether monetary or fiscal policy has differential

effects when inflation is driven by supply as opposed to demand (Boissay, Collard, Gaĺı, and

Manea (2021) and Ghassibe and Zanetti (2022)). As the series can be easily updated each

month, they also provide an additional economic indicator for policymakers and market

participants to track inflation in real time. The study is organized as follows. In section

2, I describe the methodology and provide a brief overview of the BEA data. In section

3, I provide an overview of the decomposition and review robustness tests. In section 4, I

describe the local projection method and examine the impact of HFI monetary policy shocks

and oil supply shocks on the inflation decompositions. I conclude in section 5.

2 Methodology and Data

2.1 Methodology

The framework stems from the assumption of an upward sloping supply curve and a down-

ward sloping demand curve applied to each sector i:

Supply curve: qi = σipi + αi (1)

Demand curve: pi = −δiqi + βi (2)

where qi represents quantity (or real consumption), pi represents the price level, σi is the

slope of the supply curve, δi is the slope of the demand curve, and αi and βi are the intercepts.

It is standard to refer to a shift in the intercept of (1) as a “supply shock” and a shift in the

intercept of (2) as a “demand shock.” It follows that shifts (or shocks) to the supply and
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demand curve for each sector i can be represented as:

Supply shock: εsi = (qi,t − σipi,t)− (qi,t−1 − σipi,t−1) (3)

Demand shock: εdi = (δiqi,t + pi,t)− (δiqi,t−1 + pi,t−1) (4)

where εsi = ∆αi and εdi = ∆βi. This model can be estimated using time-series data by

translating it into a structural VAR:

Aizi,t =
N∑
j=1

Aijzi,t−j + εi,t (5)

where zi =

[
qi

pi

]
, Ai =

[
1 −σi

δi 1

]
, and it follows that εi =

[
εsi

εdi

]
represent the structural

supply and demand shocks in period t. Specifically, εi,t represent the surprise shifts in the

supply or demand curves in period t, where surprise is defined as new information relative

to that observed prior to time t. Recovering the structural shocks entails running a reduced-

form estimation of price and quantity (zi) and collecting the reduced-form residuals, νqi,t and

νpi,t:

zi,t = [Ai]−1
N∑
j=1

Aijzi,t−j + νi,t (6)

where νi =

[
νqi
νpi

]
. Specifically, the structural shocks can be recovered via a transformation

of the reduced-form residuals:

εi,t = Aiνi,t. (7)

As shown in Jump and Kohler (2022), the restrictions on the slopes of the supply and

demand curves (represented by Ai) imply restrictions on the signs of the structural shocks

(εi,t) and hence, restrictions on the reduced-form residuals νi,t. Specifically, it is straightfor-

ward to show that (7) implies that the signs of the reduced-form residuals reveal information
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about the signs of the structural shocks:

+ Demand Shock : νpi,t > 0, νqi,t > 0→ εdi,t > 0 (8)

- Demand Shock : νpi,t < 0, νqi,t < 0→ εdi,t < 0 (9)

+ Supply Shock : νpi,t < 0, νqi,t > 0→ εsi,t > 0 (10)

- Supply Shock : νpi,t > 0, νqi,t < 0→ εsi,t < 0. (11)

If the price and quantity residuals are of the same sign, it indicates a demand shock oc-

curred. That is, a positive (negative) reduced-form residual obtained from both the price

and quantity regressions in time t imply a positive (negative) demand shock occurred at time

t, with an unknown sign of the supply shock. Residuals of opposite signs indicates a supply

shock occurred. That is, a positive (negative) reduced-form residual obtained from the price

regression and a negative (positive) reduced-form residual from the quantity regressions in

time t imply a negative (positive) supply shock occurred at time t, with an unknown sign of

the demand shock.

2.2 Data and estimation

I employ the price, quantity, and expenditure data from the more than 100 goods and services

categories in the publicly available personal consumption expenditure (PCE) data and from

the Bureau of Economic Analysis (BEA). The data on the underlying detail of quantity,

price, and expenditures of the PCE index are available in Tables 2.4.3U, 2.4.4U and 2.4.5U

in the “Underlying Detail” page of the BEA’s website. The BEA constructs different levels

of aggregation depending on the category of product. I use the fourth level of disaggregation,

for example, (1) services → (2) transportation services → (3) public transportation → (4)

air transportation. Such an aggregation leaves 136 categories in the PCE price index and 124

categories in the core PCE index. Data at this level disaggregation are generally available

back to 1988, although some series at this level are available at earlier dates.
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I run price and quantity regressions for each of the 136 categories, i, in the PCE index:

qi,t =
12∑
j=1

γqpj pi,t−j +
12∑
j=1

γqqj qi,t−j + c+ νqi,t (12)

pi,t =
12∑
j=1

γppj pi,t−j +
12∑
j=1

γpqj qi,t−j + c+ νpi,t (13)

where qi,t is the log quantity index and pi,t is the log price index of category i, and c is

a constant. My main specification uses 12 lags of price and quantity as controls—the re-

sults are robust to alternative numbers of lags.5 These controls are meant to control for

existing trends, which are not likely to represent a shift in demand or supply, but instead

lower-frequency factors such as technology improvements, cost-of-living adjustments, or de-

mographic changes.6

The reduced-form residuals, νqi,t and νpi,t, are then used to label (or sign) each category i

in each month t using the restrictions defined in equations (8) to (11):

1i∈sup(+),t =

{
1 if νpi,t < 0, νqi,t > 0

0 otherwise

1i∈sup(−),t =

{
1 if νpi,t > 0, νqi,t < 0

0 otherwise

1i∈dem(+),t =

{
1 if νpi,t > 0, νqi,t > 0

0 otherwise

1i∈dem(−),t =

{
1 if νpi,t < 0, νqi,t < 0

0 otherwise

It follows that the share of total consumption personal expenditures (PCE) experiencing

5Online appendix figure A5 and table 1 show that the main results in this study are robust using 3 lags
and 24 lags.

6An alternative specification would be to run reduced-form regressions in first differences—for instance,
inflation rates. This residual, however, would represent a surprise to the acceleration (or deceleration) of
prices and quantities in industry i (not the surprise increase or decrease in prices and quantities).
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Figure 1: Share of PCE by shock type
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Notes: Plotted is the expenditure-weighted share of PCE that is labeled as supply or demand driven in a

given month, centered five-month moving average. Panel A shows the share of PCE labeled demand driven,

and then further decomposed into negative and positive shocks. Panel B shows the analogous series for

supply driven labels. All four series above sum to one for any given month. Unweighted shares are shown

in online appendix figure A1

each type of shock (s) in month t is:

γs,t =
∑
i

1i∈s,tωi,t (14)

where s ∈ {dem(+), dem(−), sup(+), sup(−)}. and ωi,t is the expenditure weight of category

i in the PCE consumption basket7 Thus, one can create a continuous measure of the degree to

which supply and demand shocks are impacting PCE by aggregating over the binary indicator

functions. For instance, γs,t = 1 indicates that the entire PCE basket is experiencing shock

type s in month t, while γs,t = 0.1 indicates that 10 percent of the PCE basket is experiencing

shock type s in month t.

Figure 1 shows a plot of these shares. Over the entire 1990 to 2022 sample period,

7The expenditure weight is a Laspyeyres weight, and is calculated a the share of consumption expenditures
in period t− 1.
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supply-shocks make up a larger fraction of the consumption expenditures than demand

shocks—roughly 60 percent of the PCE is labeled with a supply shock. The pattern of the

labeling shows some intuitive characteristics. During recessions, negative-demand shocks

are more prevalent while positive demand shock are less prevalent. Positive supply shocks

became more prevalent during the late 1990’s stemming from an increases in the supply of

new vehicles, financial services, energy, and telecommunication services. Spikes in positive

supply shocks in 2004 and 2019 appear due to food consumed at home. Categories that

experience relatively more negative demand shocks during recessions include information

processing equipment, women’s clothing, hotels, and air travel. More recently, the 2021-

2022 post-COVID surge in inflation appears to be driven by sharp increase in the number of

categories labeled with positive demand shocks and negative supply shocks. Categories that

experienced frequent positive demand shocks during the post-COVID period include clothing,

owner-occupied rent, and restaurants. Categories that experienced frequent negative supply

shocks in this period include new vehicles, tobacco, audio & video equipment, sporting goods,

and furniture.8

3 Decomposing PCE Inflation

3.1 Constructing demand- and supply-driven contributions to in-

flation

In the same fashion as constructing the share of total consumption expenditures experiencing

either a supply or demand shock, one can also construct the share of inflation that is expe-

riencing either a supply or demand shock. I use the labels defined in equations (8) to (11)

on the estimated residuals from equations (12)-(13) to decompose PCE inflation into two

separate components—supply driven inflation and demand-driven inflation. Specifically, I

define two indicator functions that determine whether category i experienced a supply shock

or demand shock in period t:

8See online appendix table A1 for a list of the categories with the highest frequency of positive demand
shocks and negative supply shocks during the 2021-2022 period, and the relative frequency of negative
demand shocks during recessions and positive supply shocks in the late 1990s.
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1i∈sup,t =

{
1 if νpi,t > 0, νqi,t < 0 or νpi,t < 0, νqi,t > 0

0 otherwise

1i∈dem,t =

{
1 if νpi,t > 0, νqi,t > 0 or νpi,t < 0, νqi,t < 0

0 otherwise

It follows that monthly PCE inflation can be divided into two distinct components, the

supply- and demand-driven contributions:

πt,t−1 =
∑
i

1i∈sup,tωi,tπi,t,t−1︸ ︷︷ ︸
supply-driven (πsup

t,t−1)

+
∑
i

1i∈dem,tωi,tπi,t,t−1︸ ︷︷ ︸
demand-driven (πdem

t,t−1)

(15)

where ωi,t is the expenditure weight of category i in the PCE consumption basket and πi,t,t−1

is the monthly percent change in the price index of category i between t − 1 and t. The

supply-driven component, πsupt,t−1, is the contribution to overall inflation from those categories

labeled as having experienced a supply shock in time t, and the demand-driven component,

πdemt,t−1, is the contribution from categories labeled as having experienced a demand-shock at

time t. It follows that the share of inflation that is experiencing a supply (demand) shock is

the ratio of the supply (demand) driven contribution divided by the inflation rate.

Figure 2 shows the supply- and demand-driven contributions to year-over-year headline

(panel A) and core (panel B) PCE inflation. The supply- and demand-driven contribu-

tions to year-over-year inflation are constructed as the running sum of the current and

past 11 monthly supply- and demand-driven contributions: πsupt,t−12 =
∑11

k=0 π
sup
t−k,t−k−1 and

πdemt,t−12 =
∑11

k=0 π
dem
t−k,t−k−1. The contribution of demand-driven inflation generally declines at

the tail end of recessions. The Great Recession saw a decrease in both demand- and supply-

driven inflation. This decline in supply driven inflation mainly stemmed from positive supply

shocks among categories in the financial sector, plausibly due to accommodative monetary

policy (i.e., an increase in the supply of financial services) following the financial crisis. The

collapse in airline travel immediately after September 11, 2001 reduced demand-driven infla-

tion, while the sharp energy price declines in 2014 and 2015 reduced supply-driven inflation.

More recently, over the COVID period, the decomposition shows that demand-driven in-

flation fell precipitously at the onset of the pandemic, contributing a negative amount in
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the late Spring of 2020. Demand-driven inflation then quickly reversed course causing the

well-known upswing in inflation throughout 2021. Demand-drive inflation stayed strong into

2022 at the same time supply-driven inflation began to substantially increase.9 This acceler-

ation in supply-driven prices at this time was likely attributable to food and energy supply

disruptions, including those associated with the invasion of Ukraine.

The use of sign restrictions comes with some caveats that should be reemphasized. First,

as discussed above, the structural shocks are only set identified and their size cannot be de-

termined without further identification restrictions. Thus, changes over time in the supply-

and demand-driven contributions do not measure changes over time in the size of the struc-

tural supply and demand shocks (i.e. εsi and εdi ). Rather, the measures constructed in this

study track the share of (expenditure-weighted) categories that are experiencing at least a

supply shock or at least a demand shock. This is shown in equations (8) through (11). Sec-

ond, and relatedly, sign restrictions do not uncover the relative size of structural shocks when

shocks occur simultaneously. That is, equations (8) through (11) do not reveal whether the

demand shock or the supply shock is larger if the shocks occur simultaneously. The signs of

the residuals only reveal whether a supply shock or demand shock occurred or not. Further

restrictions on the size of the underlying parameters σ and δ would be necessary to pin down

the relative size of the structural shocks.10

3.2 Robustness

To test the robustness of the results of the methodology I go through a series of alterna-

tive estimation specifications. First, I address the concern that the residuals used to label

categories may contain measurement error. Second, I address the concern that the model is

misspecified.

9See online appendix figure A2 which shows the contributions to monthly (i.e., month-to-month) PCE
inflation over the 2019-2022 period.

10Suppose that νp > 0, νq > 0 such that the category was labeled as demand driven. Sign restrictions
reveal that a demand shock must have occurred. However, for εd > εs to also hold, it must be the case that
νp

νq > 1−δ
1+σ . In this case, the additional restriction that demand is inelastic (i.e δ > 1) would ensure that

νp > 0, νq > 0 → εd > εs.
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Figure 2: Supply- and demand-driven PCE Inflation
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Notes: Panel A the contributions to the 12-month change in headline PCE inflation and panel B shows the

contributions to the 12-month change in core PCE inflation. Both series are divided intro contributions

determined as supply-driven (red) and demand-driven (blue).13



3.2.1 Measurement error

The residuals, νpi,t and νpi,t, used to determine whether a category is labeled as supply- or

demand-driven may include measurement error or, more broadly, may not be indicative of a

clearly defined net demand or net supply shock. A poorly measured residual could cause a

category to be mislabeled, clouding the underlying measures of supply- and demand-driven

inflation.

As a first exercise, I isolate those observations that are most likely to be incorrectly la-

beled, namely cases where νpi,t or νpi,t are “close to zero.” Specifically, I relabel a category

as “ambiguous” if either of the price or quantity residuals are relatively small. These are

observations where supply and demand shocks may be occurring simultaneously or where

there were only small structural shocks occurring.11 In the column and row labeled “preci-

sion” in Table 1, I report the correlation of the supply and demand contributions using a

cut-off equal to 0.05 standard deviations from zero. This threshold results in re-labeling 15

percent of category-month observations across the entire sample as “ambiguous,” however,

the results are robust to enlarging this cut-off.12

As a second exercise, I relax the assumption that the labeling is definitive (or binary).

Instead I assume that the labeling is stochastic (or probability-based), which allows for

the possibility that supply and demand shocks occur simultaneously. Specifically, one can

replace equation (15) from that which is based on indicator functions to that which is based

on probability weights:

πt,t−1 =
∑
i

φsupi,t ωi,tπi,t,t−1︸ ︷︷ ︸
supply-driven (πsup

t,t−1)

+
∑
i

φdemi,t ωi,tπi,t,t−1︸ ︷︷ ︸
demand-driven (πdem

t,t−1)

. (16)

where φsupi,t represents the probability that category i experienced a supply shock in period

11Since supply and demand shocks move quantities in opposite directions for the same-direction price
change, simultaneous supply and demand shocks will result in asymmetric price and quantity changes. That
is, these will be observations with smaller changes in quantities than expected for a given price increase, and
vice versa.

12The first panel of online appendix figure A3 shows the result of this re-labeling. Increasing the threshold
to 0.10 standard deviations (or 25 percent of observations) results in correlations of 0.97 and 0.98 for the
demand and supply contributions respectively. The second panel of online appendix figure A3 uses multiple
precision cut-offs representing those category-months with a residuals up to 0.10 standard deviations and
0.25 standard deviations from zero.
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Table 1: Cross-correlations, alternative measures of supply- and demand-driven contributions
to PCE inflation

Variables Baseline Smooth-1 Smooth-2 Smooth-3 AR-3 AR-24 Wt. (Param.) Wt. (Bayes.) Rolling Precision

Supply-driven contribution
Baseline 1.000
Smooth-1 0.929 1.000
Smooth-2 0.925 0.936 1.000
Smooth-3 0.917 0.961 0.967 1.000
AR-3 0.933 0.867 0.814 0.832 1.000
AR-24 0.946 0.902 0.925 0.898 0.816 1.000
Wt. (Param.) 0.958 0.923 0.939 0.938 0.897 0.925 1.000
Wt. (Bayes.) 0.965 0.921 0.877 0.889 0.984 0.878 0.936 1.000
Rolling 0.958 0.884 0.876 0.875 0.889 0.895 0.960 0.934 1.000
Precision 0.963 0.889 0.845 0.854 0.954 0.868 0.895 0.966 0.909 1.000

Demand-driven contribution
Baseline 1.000
Smooth-1 0.887 1.000
Smooth-2 0.869 0.887 1.000
Smooth-3 0.873 0.935 0.938 1.000
AR-3 0.923 0.820 0.731 0.782 1.000
AR-24 0.936 0.874 0.882 0.867 0.808 1.000
Wt. (Param.) 0.937 0.858 0.861 0.887 0.891 0.908 1.000
Wt. (Bayes.) 0.954 0.877 0.797 0.838 0.984 0.859 0.918 1.000
Rolling 0.945 0.850 0.821 0.832 0.891 0.865 0.918 0.919 1.000
Precision 0.989 0.890 0.873 0.879 0.907 0.925 0.922 0.942 0.946 1.000

Notes: Shown are the contemporaneous correlations of the contributions to 12-month headline PCE infla-

tion.. Smooth-1 uses the sum of the current and lagged residual to determine whether a category is supply

or demand driven. Smooth-2 uses the sum of the current and two lagged residuals, and smooth-3 uses the

sum of the current and three lagged residuals. AR-3 uses a 3-lag VAR to compute the residuals. AR-24 uses

a 24 lag VAR to compute the residuals. Rolling window estimates the VAR using 10-year rolling windows,

using the residual of the final period window to label the category. Wt. (Bayes) uses probability-based label

weights constructed from the posterior distribution of Bayesian estimation of (12) and (13). Wt. (Param.)

uses probability-based label weights constructed from an assumed parametric distribution of supply and

demand residuals. Precision removes (i.e, re-labels as ambiguous) those categories where the residual from

either the price or quantity index regression lied less than 0.025 category-specific standard deviations from

zero.
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t and φdemi,t represents the probability that category i experienced a demand shock in period

t, such that φsupi,t + φdemi,t = 1. There are of course a large possibility of choices for model-

ing these probability weights. I choose two sets of constructions based on their tractability

and intuitive appeal. One set is constructed using the posterior distribution from Bayesian

estimation of (12) and (13). The other set is constructed using an assumed parametric distri-

bution of the residuals, similar to that used in the precision labeling exercise above. Details

are provided in the online appendix, section A.1. While these two methodologies are based

on quite different modeling assumptions, they result in supply and demand contributions

with similar time series patterns to the baseline. The cross-correlations shown in Table 1,

labeled as “Wt. (Bayes.)” and “Wt. (Param),”13 are both above 0.95 for supply-driven and

above 0.93 for demand-driven.

As a final exercise, I account for the possibility that the residuals may be noisy by

smoothing over them:

1i∈sup,t =

{
1 if

∑J
j=0 ν

p
i,t−j > 0,

∑J
j=0 ν

q
i,t−j < 0 or

∑J
j=0 ν

p
i,t−j < 0,

∑J
j=0 ν

q
i,t−j > 0

0 otherwise

1i∈dem,t =

{
1 if

∑J
j=0 ν

p
i,t−j > 0,

∑J
j=0 ν

q
i,t−j > 0 or

∑J
j=0 ν

p
i,t−j < 0,

∑J
j=0 ν

q
i,t−j < 0

0 otherwise.

which entails substituting the current residual, with a rolling sum of current and previous

residuals. The idea here is that the current residual might be contaminated with noise, which

could be dissipated some by taking the rolling sum (or equivalently, average). The drawback

here is that this uses perhaps stale information to define the label in the current period. I test

three different smoothing specifications where J = {1, 2, 3}. I report the cross-correlations

of the implied 12-month supply- and demand-driven contributions to headline inflation in

Table 1, labeled as “Smooth-1,” “Smooth-2,” and “Smooth-3.”14 The correlations are all

quite high with the baseline specification, ranging from 0.88 to 0.934.

13The series are shown graphically in the online appendix figure A7
14The series are shown graphically in the online appendix figure A4.
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3.2.2 Model misspecification

Another concern is model misspecification, which could result in biased estimates of the

residuals νpi,t and νpi,t. One type of miss-specification bias is the number of lags included

in equations (12) and (13), which is 12 in the baseline specification. I test two alternative

lag specifications: J = 3 and J = 24 lags. The cross-correlations of the implied 12-month

supply- and demand-driven contributions to headline inflation are shown in Table 1, labeled

as “AR-3” and “AR-24.”15 Changing the lag-structure of the VAR has a minimal impact

on the constructed demand and supply contributions. The correlations with the baseline

specification range from 0.93 to 0.96.

Another type of model misspecification bias is the assumption that the coefficients in

equations (12) and (13)—γqqj ,γqpj , γppj , and γpqj —are fixed over time. To address this possible

misspecification bias, I estimate (12) and (13) using 10-year rolling-windows which allows the

coefficients to vary over time. The first window begins in January 1988, the first period PCE

data are available at the detailed level, and ends in December 1997. This generates residuals

in January 1998. I then roll the data window forward one month and repeat the process. I

iterate this process for each month until I reach the last window of data. One downside of

this method is that it allows for the supply- and demand-driven contribution series to begin

only in 1998, the end of the first 10-year window. The correlations (reported as “Rolling”

in Table 1) again are quite large with the baseline specification—0.96 for supply-driven and

0.95 for demand-driven.16

4 Proof of concept

As a way to test whether the methodology is performing as intended I assess how externally

identified aggregate shocks impact the constructed inflation decompositions. There is more

assurance that the inflation measures are externally valid if externally-constructed shocks

move the supply- and demand-driven contributions in anticipated directions. This is similar

to a falsification test. Standard macroeconomic models (for example, Smets and Wouters

(2003) and Christiano, Eichenbaum, and Evans (2005)) predict that monetary policy tight-

ening reduces inflation via a reduction in aggregate demand. Analogously, declines in the

15The series are shown graphically in the online appendix Figure A5.
16The series are shown graphically in the online appendix figure A6.
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supply of oil are known to be associated with declines in aggregate output and increases

in inflation (Hamilton (1983), Rotemberg and Woodford (1996), and Blanchard and Gali

(2007)).

I measure how high-frequency identified (HFI) monetary policy shocks and externally-

identified oil supply (OS) shocks drive the supply-driven and demand-driven contributions to

inflation. I use the local projection method of (Jorda (2005)) which is similar to the standard

vector auto-regression (VAR) approach but less restrictive. That is, for each forecast horizon

h, a distinct regression is run for a given contribution measure (πdemt+h,t or πsupt+h,t) on the HFI

monetary policy and OS shocks, as well as controls:

πjt+h,t−1 = αhjHFIt + βhjOSt + Ah
j

6∑
τ=0

Yt−τ + ζj,t+h. (17)

where πjt+h,t−1 is the cumulative growth in the contribution of j ∈ {dem, sup} between

t− 1 and t+ h. The HFI monetary policy shocks, developed in Kuttner (2001), were taken

from Gürkaynak, Sack, and Swanson (2005) and are available until 2016. These shocks are

constructed from surprises in bond/futures prices around Federal Open Market Committee

announcements. My main specification use surprises to the slope of the 10-year yield curve

due to monetary policy tightenings.17 Monetary policy shocks to the slope of the yield curve

can be estimated over the zero-lower bound period and are known to cause monotonic and

persistent increases in the unemployment rate (see Rudebusch and Wu (2008), Eberly, Stock,

and Wright (2019), Barnichon and Mesters (2020) and Barnichon and Mesters (2022)).18 The

oil supply shocks (OS) are constructed by Baumeister and Hamilton (2019) and represent

surprise decreases in the supply of oil.19 Results using alternative oil supply shocks—oil

supply news shocks by Känzig (2021)—produce qualitatively similar results.20 Controls, Yt,

include current and six lags of the monthly demand and supply contributions, unemployment

17Results were robust to using the surprise to the 5 minus the surprise to the federal funds rate, as well
as assessing it over the 2008 to 2016 sample period used in Eberly, Stock, and Wright (2019). See online
appendix figure A10.

18Online appendix figure A10 shows that a 1 percentage point surprise increase in the slope shock increases
the unemployment rate by approximate 2 percentage points within 2 years. Figure A10 shows the impact of
a 1 percentage point surprise increase in the level of the federal funds rate, estimated over the 1990 to 2007
sample period. The unemployment rate declines upon impact and then begins to by the end of the first year.

19I take the negative value of the positive supply shocks constructed in the paper.
20See online appendix figure A9.
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rate, the excess bond premium, and credit spreads (Gilchrist and Zakraǰsek (2012)).

Figure 3 shows the results on the contributions to core PCE inflation, along with one-

standard deviation and 90th percentile confidence intervals.21 A monetary policy tightening—

that induces a 100 basis point surprise increase in the slope—reduces the demand-driven

contribution of inflation by a cumulative 1.5 percentage points over 24 months.22 The same

tightening induces a smaller 0.5 percentage point increase in the supply-driven contribution

to inflation, but the estimates are not statistically distinguishable from zero. The positive,

albeit noisy, impact of a monetary policy tightening on supply-driven could imply some ev-

idence of a cost-channel effect, whereby higher costs of capital are passed on to consumers

(Barth and Ramey (2001) and Ravenna and Walsh (2006)).

The bottom two panels of figure 3 show the impact of the negative oil supply shock. The

negative supply shock has a small, yet precisely estimated, positive impact on the supply-

driven contribution to core inflation. The Baumeister and Hamilton (2019) shock, which

corresponds to an immediate 3.5 percent increase in the price of crude oil, causes a 5 basis

point increase in the supply-driven contribution to core PCE inflation over 24 months. This

implies that a 10 percent increase in the price of oil translates into a 15 basis point increase

inflation over two years—a small response. There also appears to be an equally small sized

negative effect on demand-driven inflation, which is consistent with the idea that energy

price increases also act as negative demand shocks (Lee and Ni (2002), Hamilton (2008),

Edelstein and Kilian (2009)). Thus, the oil supply shock has no net effect on overall core

inflation, but the decomposition reveals interesting underlying supply and demand effects.

Repeating the oil supply shock exercise on headline inflation, shown in figure 4, reveals

more interesting dynamics. As expected, the oil supply shock has a larger impact on the

supply-driven component of headline inflation than the supply-driven contribution to core

inflation. Specifically, a 10 percent increase in the price of crude oil causes a 0.5 percentage

point increase in the supply-driven contribution to headline inflation. The oil supply shock

has a smaller, yet statistically significant, positive impact on the demand-driven contribution

to headline inflation. A deeper examination into the components of non-core inflation reveal

interesting cross-substitution dynamics between different types of energy products causing

this effect. The bottom panel of figure 4 shows that the quantity and prices of fuel oil move

21Results for headline inflation show similar results and are shown in online appendix figure A8.
22Results showing the impact over 48 months are depicted in online appendix figure A10
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in oppositive directions—corroborating the externally identified negative supply. However,

the quantity and price of “other fuels” (i.e., propane, kerosene, and firewood) move in the

same direction, indicative of a demand shock. Thus, the inflation decomposition reveals an

increase in demand for oil substitutes stemming from the decline in oil supply.

5 Conclusion

This study provides an overview of a simple framework to decompose PCE inflation into

supply- and demand-driven components. The approach relies on the use of sign restrictions

on categorical-level data. I label categories as either supply or demand driven based on

the signs of the residuals in the reduced-form price and quantity regressions. The time-

series patterns of the series show intuitive and sensible dynamics. The series also respond to

externally identified supply and demand shocks in theoretically predicted ways.

The supply- and demand-contributions can be updated and used by researchers to help

answer a host of existing and future economic questions. For instance, one could test whether

monetary or fiscal policy impacts the economy differently when inflation is high due to supply

versus demand reasons. They can also be used to help tease out supply and demand effects

on inflation from productivity or government spending shocks. Finally, the series can help

track whether supply or demand factors are pushing on inflation in the current month, which

can help policy makers in real time.



Figure 3: Impulse responses of core PCE inflation to externally identified demand and supply
shocks
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Notes: Panels A and B show the cumulative impulse responses of the demand and supply contributions

to core PCE inflation to a high frequency identified (HFI) monetary surprises. Surprises are measured as

the change in the slope of the yield curve (the surprise to the 10-year on-the-run Treasury yield minus the

surprise to the fed funds rate) around the FOMC announcements within a 30 minute window (Gürkaynak,

Sack, and Swanson (2005)). Panels C and D show the impulse responses of the demand and supply

contributions to core PCE inflation to an oil supply news shock (Baumeister and Hamilton (2019)). Shown

are the 90th percentile and one-standard deviation confidence bands. Estimation sample is 1990-2016.
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Figure 4: Impulse responses of headline PCE inflation and energy products to negative oil
supply shock
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Notes: The top two panels show the cumulative impulse response of the demand and supply contributions

of headline PCE inflation to an oil supply shock (Baumeister and Hamilton (2019)). Shown are the 90th

percentile and one-standard deviation confidence bands. The bottom two panels show the cumulative

impulse responses of the log price index and log quantity index of “fuel oil” and “other fuels” to the same

oil supply shock, along with one-standard deviation error bands. “Other fuels” consist of propane, kerosene,

and firewood (see CPI-PCE Concordance).Estimation sample is 1990-2016.
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Gilchrist, S., and E. Zakrajšek (2012): “Credit spreads and business cycle fluctua-

tions,” American economic review, 102(4), 1692–1720.

Gürkaynak, R. S., B. Sack, and E. Swanson (2005): “The sensitivity of long-term

interest rates to economic news: Evidence and implications for macroeconomic models,”

American economic review, 95(1), 425–436.

Hamilton, J. D. (1983): “Oil and the macroeconomy since World War II,” Journal of

political economy, 91(2), 228–248.

(2008): “Oil and the Macroeconomy,” The new Palgrave dictionary of economics,

2.

Hooker, M. A. (2002): “Are oil shocks inflationary? Asymmetric and nonlinear specifica-

tions versus changes in regime,” Journal of money, credit and banking, pp. 540–561.

Jorda, O. (2005): “Estimation and Inference of Impulse Responses by Local Projections,”

American Economic Review, 95(1), 161–182.
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A Online Appendix

A.1 Probability Weighting

I construct two types of probability weights, φsupi,t and φdemi,t that are used in constructing the

“weighted labels” version of the inflation decomposition:

πt,t−1 =
∑
i

φsupi,t ωi,tπi,t,t−1︸ ︷︷ ︸
supply-driven (πsup

t,t−1)

+
∑
i

φdemi,t ωi,tπi,t,t−1︸ ︷︷ ︸
demand-driven (πdem

t,t−1)

. (18)

where φsupi,t represents the probability that category i experienced a supply shock in period

t and φdemi,t represents the probability that category i experienced a demand shock in period t.

Bayesian weights: I fit equations (12) and (13) to a Bayesian VAR model, using the

conjugate Minnesota prior with tightness parameter and lag decay parameter both equal to

1. The Markov chain Monte Carlo (MCMC) sample size is S = 10, 000 with a burn-in period

of 2,500. I collect the posterior estimates of the coefficients and construct expected values

and residuals. This results in S estimates of indicator functions 1si∈dem,t and 1
s
i∈sup,t for each

category i and month t. It follows that the probability weights are then constructed from

the distribution of posterior indicator functions:

φdemi,t = (1/S) ∗ (
S∑
s=1

1
s
i∈dem,t)

φsupi,t = 1− φdemi,t ,

Parametric weights: For any given month t and category i, the parametric model

assumes that the probability that category i experienced a supply (demand) shock increases

the larger the values of νpi,t and νqi,t, conditional on residuals being of the opposite (same)

sign. The variable λi,t = νpi,t · ν
q
i,t taken from a normal distribution has these characteristics.

It follows that:

φdemi,t = P [z(λi,t)]

φsupi,t = 1− P [z(λi,t)],
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where P (·) is the cumulative normal distribution, and z(λi,t) is the number of standard

deviations λi,t is from zero. If either νpi,t and νqi,t is close to zero, the algorithm assumes a

roughly equal probability that the category experienced either a supply or demand shock.
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A.2 Figures and Tables

Figure A1: Unweighted share of categories by shock type

0
.1

.2
.3

.4
.5

Sh
ar

e

1990m1 2000m1 2010m1 2020m1

Positive Shock Negative Shock

A: Demand Driven

0
.1

.2
.3

.4
.5

Sh
ar

e

1990m1 2000m1 2010m1 2020m1

Positive Shock Negative Shock

B: Supply Driven

Notes: Plotted is the unweighted share of PCE categories that are labeled as supply or demand driven in a

given month, centered five-month moving average. Panel A shows the share of categories that were labeled

demand driven, and then further decomposed into whether the category experienced a negative or positive

shock. Panel B shows the analogous series for categories that were labeled supply driven. All four series

sum to one for any given month.
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Figure A2: Supply- and demand-driven PCE Inflation in the time of COVID-19 (month-to-
month inflation)
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Notes: Panel A the contributions to the monthly change in headline PCE inflation and panel B shows the

contributions to the monthly-change in core PCE inflation. Both series are divided intro contributions

determined as supply-driven (red) and demand-driven (blue).
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Figure A3: Precision Labeling
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Notes: Panel A shows headline PCE (12-month change) divided into three components: supply driven,

demand driven, and ambiguous. The ambiguous component include those categories where the residual from

either the price or quantity index regression lied less than 0.025 category-specific standard deviations from

zero. Panel B further divides the supply- and demand-drive contributions into three subcomponents: “more

precise,” “mid precise” and “less precise.” “More precise” includes those categories where the residuals from

both the price and quantity regression lied at least 0.25 standard deviations from zero. “Mid precise” and

“less precise” reduces the threshold to 0.05 and 0.025 category-specific standard deviations.
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Figure A4: Smoothed Residuals, Headline PCE Inflation
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Notes: Depicted are the contributions to 12-month headline PCE inflation. Smooth-1 uses the sum of the

current and lagged residual to determine whether a category is supply or demand driven. Smooth-2 uses

the sum of the current and two lagged residuals, and smooth-3 uses the sum of the current and three lagged

residuals.
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Figure A5: Alternative auto-regression lags, Headline PCE Inflation
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Notes: Depicted are the contributions to 12-month headline PCE inflation. AR-3 uses a 3-lag VAR to

compute the residuals. AR-24 uses a 24 lag VAR to compute the residuals.
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Figure A6: Rolling-window residuals, Headline PCE Inflation
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Notes: Depicted are the contributions to 12-month headline PCE inflation. Rolling window estimates the

VAR using 10-year rolling windows, using the residual of the final period window to label the category.
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Figure A7: Weighted labeling, Headline PCE Inflation
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Notes: Depicted are the contributions to 12-month headline PCE inflation. Weighted labels assign non-

binary probability weights by category-month. “Bayesian” indicates weights are constructed from the

posterior distribution of a Bayesian estimation of equations (12) and (13). “Parametric” indicate weights

are constructed from an assumed normal distribution of the multiple of supply and demand residuals

λi,t = νpi,t · ν
q
i,t.
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Figure A8: IRFs of headline PCE inflation to HFI monetary policy shocks

-.0
3

-.0
2

-.0
1

0
.0

1
Pe

rc
en

t

0 24
Horizon (months)

Demand Contribution

-.0
3

-.0
2

-.0
1

0
.0

1
Pe

rc
en

t

0 24
Horizon (months)

Supply Contribution

Headline Inflation: HFI Monetary Tightening

Notes: Panels A and B show the cumulative impulse response of the demand and supply contributions,

respectively, to headline PCE inflation to a high frequency identified (HFI) monetary surprises (Gürkaynak,

Sack, and Swanson (2005)). Shown are the 90th percentile and one-standard deviation confidence bands.

Sample period is 1990-2016.
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Figure A9: IRFs of core PCE inflation to (Känzig (2021)) oil supply news shocks
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Notes: Panels A and B show the impulse responses of the demand and supply contributions, respectively,

to core PCE inflation to a negative oil supply news shock (Känzig (2021)). Shown are the 90th percentile

and one-standard deviation confidence bands. Sample period is 1990-2016.
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Figure A10: IRFs of unemployment and core PCE inflation to HFI monetary policy shocks
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Notes: Row 1 reproduces results in Figure 3. Row 2 replicates the sample period used by Eberly, Stock,

and Wright (2019). Row substitutes the surprise to the on-the-run 10 year Treasury with the surprise to

the on-the-run 5-year Treasury. Row estimates impact of the surprise to the fed funds rate, the difference

between the expected fed funds rate and the actual funds rate. I use the average of the surprise to the

current month, one-month-ahead, and two-month-ahead surprise and estimate it over the same sample

period as Eberly, Stock, and Wright (2019).
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Table A1: Top 10 highest relative frequency shocks by type and period

Negative Demand Shocks (Recessions)
Recessions Full Sample Exp. Weight

Info Processing Equip 0.58 0.30 0.008
Women’s & Girls’ Clothing 0.47 0.20 0.017
Hotels and Motels 0.44 0.19 0.007
Used Light Trucks 0.50 0.27 0.006
Air Transportation 0.42 0.23 0.007
Used Autos 0.39 0.22 0.006
New Light Trucks 0.31 0.15 0.015
Financial Services Furnished w/out Payment 0.25 0.10 0.023
Furniture 0.31 0.16 0.010
Life Insurance 0.22 0.08 0.009

Positive Supply Shocks (Late 1990s)
1997-1999 Full Sample Exp. Weight

New Autos 0.44 0.23 0.011
Financial Service Charges, Fees/Commissions 0.44 0.23 0.023
Telecommunication Services 0.50 0.32 0.015
Games, Toys & Hobbies 0.61 0.43 0.005
Gasoline & Other Motor Fuel 0.42 0.24 0.026
Info Processing Equip 0.72 0.55 0.008
Sporting Equip, Supplies, Guns & Ammunition 0.50 0.35 0.006
Video & Audio Equip 0.64 0.50 0.009
Shoes & Other Footwear 0.39 0.26 0.007
Jewelry 0.44 0.32 0.006

Positive Demand Shocks (Post Covid)
2021-2022 Full Sample Exp. Weight

Women’s & Girls’ Clothing 0.53 0.17 0.017
Imputed Rent of Owner-Occupied Nonfarm Hous 0.79 0.49 0.116
Purchased Meals & Beverages 0.79 0.51 0.054
Men’s & Boys’ Clothing 0.42 0.18 0.011
Hair/Dental/Shave/Misc Pers Care Prods ex Elec Prod 0.37 0.14 0.005
Info Processing Equip 0.26 0.03 0.008
Games, Toys & Hobbies 0.32 0.09 0.005
Water Supply & Sewage Maintenance 0.68 0.48 0.006
Jewelry 0.37 0.17 0.006
Electricity 0.47 0.29 0.015

Negative Supply Shocks (Post Covid)
2021-2022 Full Sample Exp. Weight

New Light Trucks 0.68 0.33 0.015
Tobacco 0.68 0.46 0.009
New Autos 0.53 0.32 0.011
Video & Audio Equip 0.32 0.12 0.009
Sporting Equip, Supplies, Guns & Ammunition 0.42 0.25 0.006
Furniture 0.47 0.32 0.010
Other Motor Vehicle Services 0.47 0.32 0.007
Info Processing Equip 0.26 0.12 0.008
Games, Toys & Hobbies 0.32 0.17 0.005
Nonalc Bev Purch for Off-Premises Cons 0.53 0.40 0.009

Notes: Shown are the share of months the category is labeled in a given period for categories with an average

expenditure weight of at least 0.5% over the full sample period. For example, Info Processing Equip was

labeled as having a negative demand shock 30 percent of all of months and 58 percent of months in recessions.

Categories are ordered according to the difference in frequency between the given period and full sample.

“Exp. weight” shows the average expenditure weight over the full sample.
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