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Abstract 

Structural vector autoregressions that are set identified (e.g. with sign restrictions) are typically used 

to analyse the effects of standard deviation shocks. However, answering questions of economic 

interest often requires knowing the effects of a ‘unit’ shock. For example, central bankers want to 

answer questions like ‘what are the effects of a 100 basis point increase in the policy rate?’ The 

problem is that set-identifying restrictions do not always rule out the possibility that a variable does 

not react contemporaneously to its own shock. As a consequence, identified sets for the impulse 

responses to unit shocks may be unbounded, which implies that set-identifying restrictions may be 

extremely uninformative. Simply assuming that responses are non-zero turns out to be an arbitrary 

and unsatisfactory solution. I argue that it is therefore important to communicate about the extent 

to which the identified set may be unbounded, since this tells us about the informativeness of the 

identifying restrictions, and I develop tools to facilitate this. I explain how to draw useful posterior 

inferences about impulse responses when identified sets are unbounded with positive probability. I 

illustrate the empirical relevance of these issues by estimating the response of US output to a 

100 basis point federal funds rate shock under different sets of identifying restrictions. Some 

restrictions are very uninformative about the effects of a 100 basis point shock. The output responses 

I obtain under a rich set of identifying restrictions lie towards the smaller end of the range of existing 

estimates. 

JEL Classification Numbers: C32, E52 

Keywords: Bayesian inference, impulse responses, monetary policy, set-identified models, sign 
restrictions, zero restrictions 
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1. Introduction 

Estimating the response of the economy to macroeconomic shocks (such as monetary policy shocks) 

is difficult, because it requires disentangling the effects of the shock from the effects of other shocks 

hitting the economy at the same time. Macroeconomists do this by imposing ‘identifying restrictions’, 

which are assumptions about the structure of the economy. When using structural vector 

autoregression (SVAR) models, researchers have traditionally imposed identifying restrictions that 

are sufficient to pin down the responses to the shocks of interest, in which case we say that the 

responses are ‘point identified’. However, it has become increasingly common to impose arguably 

weaker sets of identifying restrictions at the expense of only being able to determine a set of possible 

responses, in which case we say that the effects are ‘set identified’. These weaker sets of restrictions 

often take the form of restrictions on the signs of impulse responses to shocks (e.g. Uhlig 2005). 

Set-identified SVARs are typically estimated under the normalisation that structural shocks have unit 

standard deviation. The impulse responses that are obtained under this ‘standard deviation 

normalisation’ consequently represent impulse responses to a standard deviation shock. However, 

these impulse responses often do not answer the pertinent economic question. For instance, central 

bankers are interested in answering questions like ‘what are the effects of a 100 basis point increase 

in the policy rate?’ To answer this question, we need to know what happens following a monetary 

policy shock that results in a 100 basis point increase in the policy rate. The responses to a ‘unit 

shock’ – a shock that raises a particular variable by one unit – are therefore naturally more relevant 

in this setting (and many others). Such responses can be obtained under the ‘unit-effect 

normalisation’ (Fry and Pagan 2011; Stock and Watson 2016, 2018). In this paper, I explore the 

extent to which set-identifying restrictions are informative about impulse responses to unit shocks 

(or ‘unit impulse responses’). 

Set-identifying restrictions generate an ‘identified set’ for the impulse responses, which is the set of 

impulse responses that are consistent with the data given the identifying restrictions. The identified 

set for a unit impulse response may be unbounded (Baumeister and Hamilton 2015, 2018). This 

implies that set-identifying restrictions may be extremely uninformative about the effects of a unit 

shock, which is a point that appears to have been underappreciated in the literature.1 A contribution 

of this paper is to highlight this issue and explain why it arises. 

To provide some intuition about why the identified set for a unit impulse response may be 

unbounded, consider estimating the response of output to a monetary policy shock. The impulse 

response of output to a 100 basis point monetary policy shock can be defined as the impulse 

response of output divided by the impact response of the policy rate (the ‘normalising impulse 

response’), where both impulse responses are with respect to a standard deviation monetary policy 

shock. The identifying restrictions may admit the possibility that the policy rate does not respond on 

impact to the shock; in other words, the identified set for the normalising impulse response may 

include zero. In this case, it may be possible to make the impulse response of output to a 100 basis 

                                                      

1 If the VAR is stable, the identified set for the impulse response to a standard deviation shock is always bounded. The 

issue of unboundedness is therefore specific to the case where the impulse response of interest is to a unit shock. 
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point shock arbitrarily large in magnitude by considering a sequence of parameters converging to 

the point where the impact response of the policy rate is zero.2 

I discuss how researchers can draw useful inferences about unit impulse responses when the 

identified set is potentially unbounded, with a focus on the prior robust approach to Bayesian 

inference proposed in Giacomini and Kitagawa (2021). As elaborated on below, this is a natural 

approach to conducting Bayesian inference in set-identified models, because it eliminates the 

problem of posterior sensitivity to the choice of prior that arises in this setting. Section 2 describes 

the modelling framework and outlines the robust Bayesian approach to inference. The key feature 

of this approach to inference is that it replaces the prior distribution with a class of priors, which 

contains all priors that are consistent with the identifying restrictions. In turn, the class of priors 

generates a class of posteriors. Summarising the class of posteriors requires computing the lower 

and upper bounds of the identified set for each impulse response. Importantly, whether different 

summaries of the class of posteriors are bounded will depend on the posterior probability that the 

identified set is bounded. I therefore argue that it is crucial to understand how often the identified 

set is unbounded in any given application, since this helps to communicate transparently about the 

informativeness of the identifying restrictions. 

To make these issues clear, I use a bivariate SVAR in which I can analytically characterise identified 

sets under some sign restrictions on impulse responses (Section 3). I then explain how to verify 

whether identified sets for the impulse responses to a unit shock may be unbounded in an SVAR of 

arbitrary dimension identified using both sign and zero restrictions (Section 4). I show that a 

necessary condition for unboundedness of these identified sets is that zero is included within the 

identified set for the normalising impulse response. I then provide an easily verifiable sufficient 

condition under which the identified set for the normalising impulse response includes zero; 

specifically, if the number of sign and zero restrictions is no greater than the number of variables in 

the SVAR and the restrictions relate to a single structural shock, the identified set for the normalising 

impulse response always includes zero. When this sufficient condition is not satisfied (i.e. when there 

are more restrictions than variables in the SVAR and/or the restrictions relate to multiple shocks), 

the identified set for the normalising impulse response may or may not include zero. In this case, I 

explain how to numerically check whether the identified set for the normalising impulse response 

includes zero. Ultimately, I recommend that researchers report the posterior probability that the 

normalising impulse response includes zero, since this makes it clear which summaries of the class 

of posteriors are guaranteed to be bounded. 

To illustrate the importance of these issues in practice, I estimate the macroeconomic effects of a 

100 basis point shock to the federal funds rate under different combinations of identifying restrictions 

(Section 5): the sign restrictions on impulse responses to a monetary policy shock proposed in 

Uhlig (2005); the sign and zero restrictions on the systematic component of monetary policy 

proposed in Arias, Caldara and Rubio-Ramírez (2019); and the ‘narrative restrictions’ proposed in 

Antolín-Díaz and Rubio-Ramírez (2018). 

                                                      

2 I do not make a judgement about the plausibility of the non-response of the policy rate to a monetary policy shock. 

Rather, I highlight that typical set-identifying restrictions do not necessarily rule out this possibility, and I explore the 

implications that this has for learning about the impulse responses to unit shocks. Interestingly, conventional 

macroeconomic theory also does not rule out this non-response; in the textbook New Keynesian model 

(e.g. Galí 2008), there exists a value for the persistence of the monetary policy shock such that the nominal interest 

rate does not respond on impact to the shock. 
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Under the restrictions considered in Arias et al (2019), the sufficient condition described above is 

satisfied, so zero is always included in the identified set for the normalising impulse response; that 

is, the identifying restrictions never rule out models in which the federal funds rate does not respond 

on impact to a monetary policy shock. This indicates that identified sets for the impulse responses 

to a 100 basis point shock may always be unbounded. Numerical approximations of the bounds of 

the identified set suggest that this is indeed the case. These restrictions are therefore extremely 

uninformative about the effects of a 100 basis point shock. 

Combining the restrictions from Arias et al (2019) with the sign restrictions on impulse responses 

considered in Uhlig (2005) yields identified sets that are bounded with posterior probability close to, 

but less than, 100 per cent. Nevertheless, the class of posteriors is consistent with either relatively 

large decreases or increases in output following a 100 basis point shock, so the identifying 

restrictions appear to be fairly uninformative about the output response to the shock. 

Additionally imposing narrative restrictions on the monetary policy shock (as in Antolín-Díaz and 

Rubio-Ramírez (2018)) yields identified sets that are bounded at every posterior draw of the 

reduced-form parameters. The results under this set of restrictions are consistent with the peak 

effects of monetary policy on output lying towards the smaller end of the range of existing estimates 

summarised in Ramey (2016). 

Finally, I discuss the possibility of using alternative identifying restrictions to ensure that identified 

sets for unit impulse responses are bounded (Section 6). For instance, I consider directly bounding 

the normalising impulse response away from zero. However, I argue that it may be difficult to elicit 

a credible lower bound and inferences may be sensitive to changes in the imposed bound. I conclude 

that such restrictions are unlikely to be a satisfactory solution. 

1.1 Related literature 

An extensive literature uses set-identified SVARs to estimate the effects of macroeconomic shocks.3 

Under the standard approach to Bayesian inference in set-identified SVARs (e.g. Uhlig 2005; 

Rubio-Ramírez, Waggoner and Zha 2010; Arias, Rubio-Ramírez and Waggoner 2018), it is 

straightforward to transform from the standard deviation normalisation to the unit-effect 

normalisation; this transformation simply requires dividing the impulse responses obtained under 

the standard deviation normalisation by the normalising impulse response.4 Repeating this at each 

draw of the parameters from their posterior distribution generates a posterior distribution for the 

impulse responses to a unit shock. However, there are well-documented problems with the standard 

approach to Bayesian inference in set-identified models. In particular, because the model is 

set identified, the likelihood function is flat with respect to certain parameters. As a consequence, a 

                                                      

3 In their online appendix, Baumeister and Hamilton (2018) provide a list of close to 100 studies that estimate set-

identified SVARs. 

4 The transformation is not necessarily innocuous in the point-identified setting when conducting frequentist inference. 

In particular, if the sampling distribution of the estimator for the normalising impulse response has probability mass 

near zero, the sampling distribution of the estimator for the unit impulse response may be poorly approximated by 

the usual asymptotic normal distribution; see Stock and Watson (2016) for a heuristic discussion of this point. 
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component of the prior is ‘unrevisable’ in the sense that it is never updated, and posterior inference 

may be sensitive to the choice of prior (e.g. Poirier 1998).5 

Baumeister and Hamilton (2015) show that the ‘uniform’ prior that is used in the standard approach 

to Bayesian inference does not necessarily induce a uniform prior over the parameters that are 

typically of interest, such as impulse responses. They argue that this prior may therefore drive 

posterior inference despite not reflecting the researcher’s actual prior beliefs. As an alternative, they 

suggest that researchers should impose a prior directly over the structural parameters (see also 

Baumeister and Hamilton (2018, 2019)). It remains the case under this approach that a component 

of the prior will never be updated, so posterior sensitivity to the choice of prior may still be a concern. 

To address the problem of posterior sensitivity in set-identified models, Giacomini and 

Kitagawa (2021) propose conducting Bayesian inference using an approach that is robust to the 

choice for the unrevisable component of the prior. When applying this approach in a set-identified 

SVAR, they focus on the impulse responses to standard deviation shocks as the parameters of 

interest. Giacomini, Kitagawa and Read (2022b) describe an algorithm for conducting robust 

Bayesian inference in proxy SVARs (i.e. SVARs identified using an external instrument) under the 

unit-effect normalisation. They note that the identified set may be unbounded, but do not draw out 

the implications of this issue for conducting inference. Baumeister and Hamilton (2015, 2018) 

explicitly show that the identified set may be unbounded in a simple bivariate model identified with 

sign restrictions. My own bivariate example builds on their setting by: 1) explaining that the 

unbounded identified set arises due to the identifying restrictions not ruling out the possibility that 

a variable does not respond to its own shock; 2) drawing out additional intuition about this result; 

and 3) explaining some implications of an unbounded identified set for conducting inference. 

Unbounded identified sets for unit impulse responses will also arise in other settings, so some of the 

results in this paper are applicable more broadly. Existing approaches to frequentist inference in set-

identified SVARs focus on impulse responses to standard deviation shocks as the parameters of 

interest (e.g. Gafarov, Meier and Montiel Olea 2018; Granziera, Moon and Schorfheide 2018). If the 

maximum likelihood estimator (MLE) of the reduced-form parameters is such that zero is included 

within the identified set for the normalising impulse response, frequentist estimates of identified sets 

for impulse responses to a unit shock may be unbounded. Unboundedness of the identified set may 

also arise when imposing set-identifying restrictions in a local projection framework (Plagborg-Møller 

and Wolf 2021). 

Notation. For a matrix X ,  vec X  is the vectorisation of X . When X  is symmetric,  vech X  is 

the half-vectorisation of X , which stacks the elements of X  that lie on or below the diagonal into 

a vector. ,i ne  is the i th column of the n n  identity matrix, nI . n m0  is an n m  matrix of zeros. 

2. Framework 

This section describes the SVAR model, outlines the concepts of identifying restrictions and identified 

sets, and describes the robust Bayesian approach to inference. 

                                                      

5 The posterior density is the product of the likelihood and the prior density. Conditional on the reduced-form 

parameters, the likelihood function is flat with respect to the structural parameters, so the posterior will be proportional 

to the prior. 
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2.1 SVAR and orthogonal reduced form 

Let  1 , ,t t nty y y  be an 1n  vector of random variables following the SVAR( p ) process: 

 0 t t t A y A x ε  (1) 

where 0A  is an invertible n n  matrix with positive diagonal elements (which is a normalisation on 

the signs of the structural shocks) and  1, ,t t t p 
 x y y . Conditional on past information, tε  is 

normally distributed with mean zero and identity variance-covariance matrix. The ‘orthogonal 

reduced form’ of the model is: 

 t t tr t y Bx Σ Qε  (2) 

where   1
1 0, , p


 B B B A A  is the matrix of reduced-form coefficients, trΣ  is the lower-

triangular Cholesky factor of the variance-covariance matrix of the reduced-form VAR innovations, 

   1 1
0 0t tE    Σ u u A A  with t t t u y Bx , and Q  is an n n  orthonormal matrix (i.e. n QQ I ). 

The reduced-form parameters are denoted by     vec , vech tr


  B Σ Φ   and the space of 

n n  orthonormal matrices by  n . 

Impulse responses to standard deviation shocks can be obtained from the coefficients of the vector 

moving average representation of the VAR: 

 
0

t h tr t h

h







y C Σ Qε  (3) 

where hC  is defined recursively by 
 min ,

1

h p
h l h ll  C B C  for 1h   with 0 nC I . The  ,i j th 

element of the matrix h trC Σ Q  is the horizon- h  impulse response of the i th variable to the j th 

structural shock, denoted by    , , ,i j h ih j Q c q  , where   ,ih i n h tr c e C Σ  is the i th row of 

h trC Σ  and ,j j nq Qe  is the j th column of Q . 

The horizon- h  impulse response of the i th variable to a shock in the first variable that raises the 

first variable by one unit on impact is 

  
 

 

 ,1, , 1
,1,

1,1,0 1, 1

,
,

,

i h i h
i h

n tr







 



Q c q
Q

Q e Σ q

 



 (4) 

which is well-defined whenever  1,1,0 , 0 Q . I refer to  ,1, ,i h Q  as an ‘impulse response to a 

unit shock’ or a ‘unit impulse response’ and  1,1,0 , Q  as the ‘normalising impulse response’. I will 

sometimes suppress the dependence of the impulse responses on  ,Q . The assumption that the 
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normalising impulse response is the impact response of the first variable to the first shock is made 

to ease notation, but the discussion below extends straightforwardly to more general settings.6 

2.2 Identifying restrictions and identified sets 

Imposing identifying restrictions on functions of the structural parameters is equivalent to imposing 

restrictions on Q  given  ; for example, consider a sign restriction on an impulse response such 

that    , , , 0i j h ih j  Q c q  . This is a linear inequality restriction on jq , where the coefficients 

in the restriction are a function of  . More generally, let   1, sS Q 0  represent a collection of 

s  sign restrictions (including the sign normalisation  0 1diag nA 0 ). Similarly, represent a 

collection of f  zero restrictions by   1, fF Q 0 . For example, these sign and zero restrictions 

could include restrictions on impulse responses or elements of 0A .7 

Let if  represent the number of zero restrictions constraining the i th column of Q  with 1
n
i if f  . 

Assume that the variables are ordered such that if  is weakly decreasing and that if n i   for 

1, ,i n  with strict inequality for at least one i ; this is a sufficient condition for the model to be 

set identified under zero restrictions (Rubio-Ramírez et al 2010; Bacchiocchi and Kitagawa 2021). 

This ordering convention is also useful when using numerical algorithms to iteratively construct 
columns of Q  satisfying the identifying restrictions (as in Giacomini and Kitagawa (2021)). 

Given a collection of sign and zero restrictions, the identified set for Q  is 

         1 1, : , , ,s fQ S F n S F    Q Q 0 Q 0    (5) 

 ,Q S F  collects observationally equivalent parameter values, which are parameter values 

corresponding to the same value of the likelihood function (Rothenberg 1971). Note that the 

identified set may be empty. The identified set for a particular impulse response is the set of values 
of that impulse response as Q  varies over its identified set; that is, 

 
      

      

, , , ,

, , , ,

, , : ,

, , : ,

i j h i j h

i j h i j h

S F Q S F

S F Q S F

 

 

 

 

Q Q

Q Q

  

  
 (6) 

2.3 Robust Bayesian inference in set-identified SVARs 

The standard approach to conducting Bayesian inference in set-identified SVARs involves specifying 

a prior for the reduced-form parameters   and a uniform prior for the orthonormal matrix Q  

(Uhlig 2005; Rubio-Ramírez et al 2010; Arias et al 2018). To draw from the resulting posterior in 

practice, one samples   from its posterior and Q  from a uniform distribution over  Q F  and 

discards draws that violate the sign restrictions. Assume there is a scalar parameter of interest that 

is a function of the structural parameters,  ,  Q  (e.g. a particular impulse response). Draws 

                                                      

6 For example, when estimating the effects of news shocks, it may be natural to normalise a longer-horizon impulse 

response (Stock and Watson 2018). 

7 See Stock and Watson (2016) or Kilian and Lütkepohl (2017) for overviews of identification in SVARs. See Giacomini 

and Kitagawa (2021) for more information about the form of  ,S Q  and  ,F Q  under different types of 

restrictions. 
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of   are obtained by transforming the draws of   and Q , and the posterior is summarised using 

quantities such as the posterior mean and quantiles. 

Let    be a prior for Φ , where Φ  is the space of reduced-form parameters such that  ,Q S F  

is non-empty. A joint prior for the full set of parameters   , vec


θ Q  can be decomposed as 

  
Qθ  , where 

Q   is the conditional prior for Q  given   (which assigns zero prior density 

outside of  ,Q S F ). After observing the data Y , the posterior is   
Y Y Qθ   , where 

Y  is 

the posterior for  . The prior for   is therefore updated via the likelihood, whereas the conditional 

prior for Q  given   is not, because Q  does not appear in the likelihood. This raises the concern 

that posterior inferences may be sensitive to changes in 
Q  . It is therefore important for 

researchers to assess or eliminate this sensitivity.8 

To this end, I adopt the ‘robust’ (multiple-prior) Bayesian approach to inference in set-identified 

models proposed by Giacomini and Kitagawa (2021). In the context of a SVAR, this approach 

eliminates the source of posterior sensitivity arising due to the fact that 
Q   is never updated. The 

key feature of the approach is that it replaces 
Q   with the class of all conditional priors that are 

consistent with the identifying restrictions: 

    : , 1Q S F   Q Q Q     (7) 

Combining the class of priors with 
Y  generates a class of posteriors for θ : 

  :      θY θY YQ Q Q    (8) 

The class of posteriors for θ  induces a class of posteriors for  ,  Y . Giacomini and Kitagawa (2021) 

suggest summarising  Y  by reporting the ‘set of posterior means’, which is an interval that 

contains all posterior means corresponding to the posteriors in  Y : 

    ,d u d  
  Y Y
Φ Φ

    (9) 

                                                      

8 Inoue and Kilian (2022) and Kilian (2022) argue that posterior sensitivity to the choice of prior is typically not 

quantitatively important in SVAR applications. However, the evidence that they cite is based on comparing prior and 

posterior distributions. As discussed in Poirier (1998) and Giacomini, Kitagawa and Read (2021b, 2022a), this 

comparison is not informative about posterior sensitivity when models are set identified; instead, the relevant measure 

of posterior sensitivity is the extent to which the posterior changes when the unrevisable component of the prior 

changes. While the standard Bayesian approach to inference assumes a uniform prior for Q  on the basis that this is 

‘uninformative’, Baumeister and Hamilton (2015) show that the implicit prior over individual impulse responses is not 

necessarily uniform (i.e. it may be informative). Arias, Rubio-Ramírez and Waggoner (2022) show that the uniform 

prior for Q  implies a conditional (joint) prior over the vector of impulse responses that is uniform. Giacomini 

et al (2022a) argue that a uniform prior does not necessarily reflect the absence of prior information about the 

parameters, which may be better represented by ‘ambiguity’. 
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where       inf , : ,S F Q Q Q    is the lower bound of the identified set for   and 

      sup , : ,u S F Q Q Q    is the upper bound. Similarly, one can construct a ‘set of 

posterior  -quantiles’ as an interval with end points equal to the  th quantiles of    and  u  . 

Giacomini and Kitagawa (2021) also suggest reporting a robust credible region, which is an interval 

estimate for   that is assigned at least a given posterior probability under all posteriors in  Y . 

Additionally, the class of posteriors generates a set of posterior probabilities assigned to any given 

hypothesis (e.g. the output response to a monetary policy shock is negative at some horizon); this 

set can be summarised by the posterior lower and upper probabilities, which are, respectively, the 

smallest and largest posterior probabilities assigned to the hypothesis over all posteriors in  Y . 

Appendix C describes how I compute these quantities in the context of the empirical application in 

Section 5. 

3. The Unit-effect Normalisation in a Bivariate SVAR 

This section uses a stylised model to explain how identified sets for unit impulse responses can be 

unbounded, and to draw out some implications for conducting inference. The model is a bivariate 

SVAR with no dynamics, which is identified using sign restrictions on impulse responses. This simple 

setting allows me to analytically derive identified sets for the impulse responses. The features of this 

example extend straightforwardly to more general settings. See Appendix A for derivations of the 

results in this section. 

Baumeister and Hamilton (2015) use the same bivariate model to show that the standard uniform 

prior over Q  is informative about impulse responses (in the sense that the implied conditional prior 

over the impulse responses is generally non-uniform). In particular, the implicit conditional prior 

(and posterior) for the unit impulse response is a Cauchy distribution that is truncated by the sign 

restrictions, where the points of truncation depend on the reduced-form parameters. As part of this 

exercise, they show that the identified set for the unit impulse response is unbounded.9 

3.1 Identified sets for impulse responses to unit shocks 

The model is 0 t tA y ε  where  1 2,t t ty y y ,  1 2,t t t  ε  and   2t tE  ε ε I . The orthogonal 

reduced form of this model is t tr ty Σ Qε , where trΣ  is the lower-triangular Cholesky factor of 

 t tE Σ y y  and Q  is a 2 2  orthonormal matrix. The space of 2 2  orthonormal matrices can 

be represented as 

      
cos sin cos sin

2 : , : ,
sin cos sin cos

   
     

   

       
           

      
 (10) 

where the first set is the set of ‘rotation’ matrices and the second is the set of ‘reflection’ matrices. 

Henceforth, I leave it implicit that  ,    . 

                                                      

9 Baumeister and Hamilton (2018) also note that the identified set may be unbounded (see their Footnote 4, p 50). 
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In the absence of any identifying restrictions, the identified set for 1
0
A  (the matrix of impact impulse 

responses) is 

 

11 111
0

21 22 22 21

11 11

21 22 21 22

cos sin

cos sin cos sin

cos sin

cos sin sin cos

   

       

   

       


   

  
   

  
  

   

A

 (11) 

and the identified set for 0A  (the matrix of structural coefficients) is 

 

22 21 11
0

21 22 1111 22

22 21 11

21 22 1111 22

cos sin sin1

cos sin cos

cos sin sin1

cos sin cos

     

      

     

      

   
  

   

   
  

   

A

 (12) 

Throughout, I impose the ‘sign normalisation’  0 2 1diag A 0 , which is a normalisation on the signs 

of the structural shocks (e.g. a positive value of 1t  corresponds to an increase in 1ty  holding 2ty  

fixed). 

Consider the case where the impact response of the first variable to the first shock is restricted to 

be non-negative ( 1
1,1,0 1,2 0 1,2 0  e A e ) and the impact response of the second variable to the first 

shock is restricted to be non-positive ( 1
2,1,0 2,2 0 1,2 0  e A e ). The identifying restrictions generate 

an identified set for  , which can in turn be used to obtain an identified set for 1,1,0 : 

 

22 21
11 11 21

21 22

1,1,0

21
11 21

22

cos arctan min , , if 0

0, cos arctan if 0

 
  

 



 



    
            


    

    
    

 (13) 

The identified set for 1,1,0  excludes zero when 21 0  , but it includes zero when 21 0  . The sign 

restrictions therefore do not rule out the possibility that the first variable does not respond to the 

first structural shock. 

The impulse response of the second variable to a unit shock in the first variable is 

 
2,1,0 21 22 21 22

2,1,0

1,1,0 11 11 11

cos sin
tan

cos

      
 

    


     (14) 
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The identified set for this impulse response is 

 



2
21 22

21

11 11 212,1,0

21

,0 if 0

,0 if 0

 


  



 
  

 
  

 (15) 

When 21 0  , the lower bound of this identified set is negative and finite, while the upper bound is 

zero. In contrast, when 21 0  , the identified set for 2,1,0  is unbounded below; 2,1,0  diverges to 

  as   approaches / 2  (the lower bound of the identified set for  ) from above, which is 

equivalent to 1,1,0  approaching zero from above. The upper bound of the identified set for this 

impulse response is equal to zero, so the sign restrictions are completely uninformative about 2,1,0  

outside of its sign (which is imposed). 

Figure 1 provides some geometric intuition behind this result. Since the identifying restrictions 

constrain 1q  only, they can be represented as three half-spaces (corresponding to the sign 

normalisation plus the two sign restrictions on impulse responses) in two-dimensional space. Since 

1q  has unit length, the identified set for 1q  is given by the intersection of these half-spaces with the 

unit circle. When the identified set includes the boundary of the half-space corresponding to the sign 

restriction 1,1,0 0  , 2,1,0  can be made arbitrarily large by considering a sequence for 1q  converging 

to the point of singularity, 1,1,0 0  . Whether it is possible to do this depends on the sign of 21 . 

When 21 0  , the intersection of the half-spaces always excludes the point of singularity (Panel A). 

In contrast, the point of singularity is included within the identified set when 21 0   (Panel B).10 

For alternative economic intuition, consider interpreting the bivariate model as a model of supply 

and demand, with 1ty  log price and 2ty  log quantity. The sign restrictions require price and quantity 

to move in opposite directions in response to a shock in the first equation of the model, which implies 

that this equation can be interpreted as a supply curve and 1t  as a supply shock. 2,1,0  is then the 

response of quantity to a supply shock that raises price by 1 per cent (i.e. the price elasticity of 

demand). When 21 0  , the identifying restrictions do not rule out the possibility that the demand 

curve is horizontal (which occurs when / 2   ). In the limit as the demand curve approaches 

being horizontal, it takes a larger shift in the supply curve and a larger fall in quantity for price to 

rise by 1 per cent (Figure 2). The fall in quantity required for price to fall by 1 per cent can be made 

arbitrarily large by making the demand curve arbitrarily flat. 

                                                      

10 When imposing only the sign normalisation, the identified set for 2,1,0  is always  ,  ; in this case, it is possible 

to approach the point of singularity 1,1,0 0   from the positive or negative direction regardless of the value of 21 . 

When imposing the sign normalisation and the sign restriction 1,1,0 0  , the identified set for 2,1,0  is always  , 0 ; 

in this case, the point of singularity can be approached from the positive direction only. 
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Figure 1: Identified Set for 1q  in Bivariate Model 

Panel A ( 21 0  ) Panel B ( 21 0  ) 

 

Notes: This figure depicts the identified set for  1 1,1 1,2,q q q  under the identifying restrictions described in the text and assuming 

that 11 1  , 22 1   and 21 0.5    (Panel A) or 0.5  (Panel B). The black circle is the unit circle. The coloured lines 

represent the boundaries of the half-spaces generated by the identifying restrictions: ‘ SN ’ corresponds to the sign 

normalisation 1,2 0 1,2 0 e A e ; ‘ 1SR ’ corresponds to the sign restriction 1,1,0 0  ; ‘ 2SR ’ corresponds to the sign restriction 

2,1,0 0  . The dashed arcs represent the sets of values of 1q  satisfying each individual restriction; the arc of the unit circle 

where the three dashed arcs overlap is the identified set for 1q . 

Figure 2: Unit Shock in a Model of Supply and Demand 

Panel A Panel B 

 

Notes: This figure depicts the shift in the supply curve (from S  to S  ) required to induce a 1 per cent increase in price under 

differently sloped demand curves ( D ). The corresponding decrease in quantity is the impulse response to a unit supply 

shock. This becomes arbitrarily large as the demand curve approaches the horizontal. 
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Note that unboundedness of the identified set also arises when imposing sign restrictions on multiple 
columns of Q  (i.e. on impulse responses to multiple shocks). When additionally imposing that the 

impulse responses of both variables to the second shock are positive, the identified set for 1,1,0  

continues to include zero when 21 0   and the identified set for 2,1,0  is unbounded (see 

Appendix A.2 for details). Unboundedness of the identified set also occurs when imposing sign 

restrictions with strict, rather than weak, inequality. Strict inequality restrictions yield identified sets 

that are open, rather than closed, intervals, but the identified set for 2,1,0  remains unbounded when 

21 0  . Finally, unboundedness of the identified set does not arise purely due to working in the 

orthogonal reduced-form parameterisation and defining the unit impulse response as the ratio of 

impulse responses to standard deviation shocks; that is, it also arises when using a parameterisation 

that imposes the unit-effect normalisation directly (see Appendix A.3). 

This stylised example highlights that the identified set for unit impulse responses may be unbounded 

if the identified set for the impact response of the normalising variable to a standard deviation shock 

includes zero. Whether this is the case depends on the values of the reduced-form parameters. The 

following sections discuss some implications of unboundedness for conducting inference about unit 

impulse responses.11 

3.2 Robust Bayesian inference under unboundedness 

This section discusses how unboundedness of the identified set affects different inferential outputs 

(e.g. sets of posterior means or quantiles) under the robust Bayesian approach to inference. To aid 

explanation, I continue to frame the discussion through the lens of the bivariate model. I also make 

the simplifying assumption that 
Y  is supported only on two values of the reduced-form 

parameters:  11 21 22, ,a a   
  and  11 21 22, ,b b   

 , where 21 210a b   . However, the results 

extend straightforwardly to more general settings. I denote the lower bound of the identified set for 

2,1,0  when a   by  a  and the posterior probability that 21 21
a   by  . The identified set 

for 2,1,0  is   ,0a 
 

  with posterior probability   and it is  , 0  with posterior probability1  . 

Set of posterior means. The set of posterior means, which has bounds equal to the posterior 

means of the bounds of the identified set, will be  , 0  unless 1  . Consequently, if 
Y  places 

positive posterior probability on the event 21 21 0b   , the set of posterior means is completely 

uninformative about 2,1,0  (other than its sign, which is imposed by the sign restrictions). 

Sets of posterior quantiles. The set of posterior medians is an interval with lower (upper) bound 

equal to the posterior median of the lower (upper) bound of the identified set. The median of the 

upper bound of the identified set is zero regardless of the value of  . When 0.5  , the posterior 

median of the lower bound of the identified set is  a . The set of posterior medians will therefore 

be bounded. In contrast, when 0.5  , the posterior median of the lower bound of the identified 

                                                      

11 Identified sets can also be unbounded when the parameter of interest is the structural coefficient on a particular 

variable after normalising the coefficient on another variable to equal unity (i.e. the ratio of elements of 0A ), which 

may be interpretable as a structural elasticity (e.g. Baumeister and Hamilton 2022). If the identified set for the 

normalising coefficient includes zero, the identified set for the ratio of coefficients may be unbounded. 
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set is  , so the set of posterior medians is unbounded. By similar logic, the set of posterior 

 -quantiles will be bounded so long as   . The class of posteriors may therefore still contain 

useful information about particular posterior quantiles even when the identified set is unbounded 

with positive posterior probability. 

Robust credible intervals. A robust credible interval with credibility 1   can be constructed by 

taking the / 2  quantile of    and the 1 / 2  quantile of  u  . Whether the robust credible 

interval is bounded will therefore depend on the credibility level and  . In particular, boundedness 

of the robust credible interval requires that the sets of / 2  and 1 / 2  quantiles are both bounded, 

which will be the case in the current example if 1 / 2   . 

Posterior lower and upper probabilities. Consider the hypothesis that 2,1,0 x   for some 0x  . 

The posterior lower probability of this hypothesis is equal to the posterior probability that the 

identified set is contained within the interval  , x . This probability is zero for all 0x  . The 

posterior upper probability of the hypothesis is equal to the posterior probability that the identified 

set intersects the interval  , x . The posterior upper probability is one for   0a x   and is 

1   for  ax   . The set of posterior probabilities for the hypothesis 2,1,0 x   is therefore  0,1  

for   0a x   and is  0,1   for  ax   . As   approaches zero, so that the identified set 

is almost always unbounded, the set of posterior probabilities converges to the unit interval for all 

values of x . In this case, the sign restrictions are not informative about the hypothesis regardless 

of the value of x . In contrast, as   approaches one, the set of posterior probabilities converges to 

zero for sufficiently negative values of x  (i.e. for  ax   ). In this case, ‘large’ responses are 

assigned low posterior probability regardless of the choice of conditional prior. 

Summary. This discussion illustrates that it is possible to extract useful information about the 

impulse responses to a unit shock using the robust Bayesian approach to inference when the 

identified set is unbounded with positive posterior probability. Moreover, understanding how often 

the identified set is unbounded (in terms of posterior probability) is valuable for understanding which 

inferential outputs themselves will be unbounded, and thus for gauging the informativeness of the 

identifying restrictions. 

3.2.1 Frequentist validity 

For general set-identified models, Giacomini and Kitagawa (2021) provide high-level conditions 

under which their robust Bayesian approach to inference has a valid frequentist interpretation, in 

the sense that the set of posterior means is consistent for the true identified set (i.e. the identified 

set when   is equal to its true value, 0 ) and the robust credible interval has correct frequentist 

coverage for the true identified set. In the context of SVARs and when the parameter of interest is 

an impulse response to a standard deviation shock, Giacomini and Kitagawa provide sufficient 

conditions under which these high-level conditions will hold. In particular, the set of posterior means 

can be interpreted as a consistent estimator of the true identified set if the identified set is convex 

and continuous at  0  . Additionally, if the end points of the identified set are differentiable in   

at  0   and have non-zero derivatives, the robust credible interval has valid frequentist coverage 

of the true identified set. 
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When the parameter of interest is a unit impulse response, the high-level conditions for frequentist 

validity of the robust Bayesian approach are not necessarily satisfied. For example, these conditions 

include the assumption that the true identified set is bounded. Consequently, the robust Bayesian 

approach to inference is not guaranteed to have an asymptotically valid frequentist interpretation 

when the parameter of interest is a unit impulse response. 

To illustrate, consider the bivariate model and assume that 0  is such that 21 0  , so the true 

identified set is unbounded. For values of   in a small neighbourhood of 0 ,      and 

  0u  , so naively applying the robust Bayesian approach in this case will almost surely yield a 

robust credible interval of  , 0  asymptotically. Clearly, this interval always (weakly) includes the 

true identified set, so the asymptotic frequentist coverage probability will be trivially equal to one 

(i.e. the robust credible interval is conservative).12 

3.3 Frequentist estimation under unboundedness 

Unboundedness may also arise when estimating or conducting inference about unit impulse 

responses in a frequentist framework. Let  11 21 22
ˆ ˆ ˆ ˆ, ,     be the MLE of  . If ̂  is such that 

21ˆ 0  , a frequentist estimate of the identified set for 2,1,0  – which simply plugs the MLE of ̂  into 

the expression for the identified set given in Section 3.1 – will be bounded. In contrast, if ̂  is such 

that 21ˆ 0  , a frequentist estimate of the identified set for 2,1,0  will be unbounded. 

4. Checking for Unboundedness in SVARs 

Understanding how often the identified set is bounded is crucial for understanding which inferential 

outputs (e.g. robust credible intervals) are themselves bounded, and thus for gauging the 

informativeness of the identifying restrictions. This section explains how to check whether identified 

sets for unit impulse responses may be unbounded in the general setting of an n -dimensional SVAR 

with dynamics and where there are both sign and zero restrictions on the structural parameters. In 

this general setting, analytical expressions for identified sets are not usually available and it is 

necessary to approximate the bounds of the identified set numerically. In practice, I recommend 

that researchers compute and report the posterior probability that zero is included within the 

identified set for the normalising impulse response, since this tells us which inferential outputs are 

guaranteed to be bounded. 

In the n -variable SVAR (described in Section 2), assume that the sign restrictions   1, sS Q 0  

include the restriction that the impact response of the first variable to the first shock is non-negative, 

1,1,0 1, 1 0n tr  e Σ q . For example, in the context of estimating the effects of monetary policy shocks, 

                                                      

12 In the current bivariate example and when 0  is such that 21 0  , the true identified set is bounded, but the robust 

credible interval has an asymptotic frequentist coverage probability equal to 1 / 2 1     (i.e. the robust credible 

interval is conservative). This arises because the upper bound of the identified set is degenerate and is therefore not 
differentiable in   with non-zero derivative. When there are additional sign restrictions on the impulse responses to 

the second shock, both the lower and upper bound are differentiable in   at  0   (see Appendix A.2), and the 

robust credible interval has correct coverage asymptotically. 
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this restriction would require that a positive monetary policy shock (the first shock) does not 

decrease the federal funds rate (the first variable) on impact. Such a restriction seems natural in 

empirical settings. The identified set for ,1,i h ,  ,1, ,i h S F  , will be unbounded only if the identified 

set for 1,1,0 ,  1,1,0 ,S F  , includes zero (or, equivalently,  ,1, ,i h S F   is guaranteed to be 

bounded if  1,1,0 ,S F   does not contain zero).13 This will be the case if there exists Q  satisfying 

the zero restrictions, a ‘binding’ version of the sign restriction on 1,1,0  ( 1, 1 0n tr e Σ q ) and any 

remaining sign restrictions. The following proposition formalises this claim. 

Proposition 4.1. (Necessary condition for unbounded  ,1, ,i h S F  .) Assume interest is in the 

impulse response to a unit shock in the first variable, ,1,i h , at some fixed and finite horizon h . The 

identified set for ,1,i h ,  ,1, ,i h S F  , is unbounded only if  1,1,00 ,S F  . 

Proposition 4.1 provides a necessary condition for  ,1, ,i h S F   to be unbounded. Intuitively, if the 

identified set for 1,1,0  does not contain zero, it is not possible to construct a sequence for Q  

converging to the point where 1,1,0 0   such that ,1,i h  diverges. If the identified set for 1,1,0  includes 

zero, it may be possible to construct such a sequence. However, this condition does not guarantee 

that  ,1, ,i h S F   is unbounded and hence is not sufficient. To give an example, consider extending 

the bivariate model of Section 3 to allow for dynamics: 

 1 1t t tr t y B y Σ Qε  (16) 

Assume that 1B  is diagonal with diagonal elements    1 11 22diag ,b b B . When 21 0  , the 

identified set for 1,1,0  includes zero. However, the identified set for 1,1,h  is 11
hb , which is finite for 

any 11b  and finite h .14 

In what follows, I discuss how to check whether  1,1,0 ,S F   includes zero, in which case 

 ,1, ,i h S F   may be unbounded. First, consider imposing a set of sign and zero restrictions 

constraining 1q  only,     1 1, sS S  Q q 0   and     1 1, fF F  Q q 0  . The following 

proposition states a sufficient condition for the identified set for 1,1,0  to include zero in this setting. 

Proposition 4.2. (Sufficient condition for  1,1,0 ,S F   to include zero.) Assume that any sign and 

zero restrictions constrain 1q  only, 1,1,0 1, 1 0n tr  e Σ q  is contained within the set of sign restrictions 

  1 1sS q 0  and the number of zero restrictions in   1 1fF q 0  satisfies 0 1f n   . If 

s f n  , then  1,1,00 ,S F  . 

The sufficient condition in Proposition 4.2 is easily verifiable; it simply requires counting the number 

of identifying restrictions imposed. When the total number of identifying restrictions is no more than 

                                                      

13 I abstract from the possibility of imposing sign restrictions with strict inequality (i.e.   1sS  0 ). In that case, 

identified sets will be open intervals (as noted in Section 3.1). Consequently, the identified set for ,1,i h  could be 

unbounded without the identified set for 1,1,0  including zero. When allowing for strict inequalities, the identified set 

for ,1,i h  will be unbounded only if the closure of the identified set for 1,1,0  includes zero. 

14 I thank Thorsten Drautzburg for suggesting this example. 
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the number of endogenous variables in the VAR, the identifying restrictions cannot rule out the 

possibility that the first variable does not respond to its own shock on impact. Proposition 4.1 then 

implies that the identified set for a unit impulse response may potentially always be unbounded, and 

the identifying restrictions may be extremely uninformative about these impulse responses. 

The assumption that 0 1f n    rules out point identification of 1q  (and thus any impulse response 

to the first shock).15 If the set of sign restrictions were to exclude the restriction 1,1,0 0  , a sufficient 

condition for  1,1,00 ,S F   would be 1s f n   , because one could augment the sign 

restrictions with 1,1,0 0   and then apply Proposition 4.2. Although Proposition 4.2 only applies when 

the identifying restrictions constrain a single column of Q , this is the case in many empirical 

applications; examples include Uhlig (2005) and Arias et al (2019) (see also the references in Gafarov 

et al (2018)). While the condition s f n   is unlikely to hold in applications that impose dynamic 

sign restrictions (i.e. sign restrictions at multiple horizons), these restrictions are not always imposed. 

For example, the condition is satisfied in Arias et al (2019), who identify a monetary policy shock by 

imposing sign and zero restrictions on elements of 0A  (see Section 5). To identify an unconventional 

monetary policy shock, Gafarov et al (2018) impose four restrictions (one zero restriction and three 

signs restrictions) in a four-variable system. Beaudry, Nam and Wang (2011) identify an ‘optimism’ 

shock by imposing two restrictions (one zero restriction and one sign restriction) in a five-variable 

system. 

When s f n  , whether it is possible to construct 1q  satisfying 1, 1 0n tr e Σ q  and the remaining 

identifying restrictions depends on the reduced-form parameters. Geometrically, the condition 

1, 1 0n tr e Σ q  and the zero restrictions are jointly satisfied when 1q  lies in an  1n f  -dimensional 

hyperplane that is orthogonal to 1,n tre Σ  and the rows of  F  , while the remaining sign restrictions 

require 1q  to lie within the intersection of 1s   half-spaces. The identified set for 1,1,0  will include 

zero if and only if the intersection of this hyperplane and these half-spaces is non-empty. When 

s f n  , the hyperplane and half-spaces are not guaranteed to intersect; whether they intersect 

depends on the values of the reduced-form parameters, which determine the orientations of the 

hyperplane and half-spaces. 

As a simple example of applying Proposition 4.2, consider the bivariate model of Section 3. Here, 

3 2s n   , so the condition in Proposition 4.2 is not satisfied and zero is not necessarily included 

within the identified set for 1,1,0 ; in particular, zero is excluded when 21 0  . Removing the 

restriction 2,1,0 0   means that 2s n  , so the condition in Proposition 4.2 is satisfied and the 

identified set for 1,1,0  includes zero regardless of the sign of 21 0  . Geometrically, when s n , 

the intersection of the half-spaces generated by the sign restrictions always includes the boundary 

of the half-space representing the restriction 1,1,0 0   (i.e. the hyperplane 1,1,0 1, 1 0n tr  e Σ q ). 

Graphically, one can see this by deleting the line ‘ 2SR ’ in Figure 1. 

When the conditions in Proposition 4.2 do not hold (i.e. when s f n   or the identifying restrictions 

constrain multiple columns of Q ), it is necessary to check whether  1,1,0 ,S F   includes zero to 

determine whether  ,1, ,i h S F   may be unbounded. The following proposition formulates a 

                                                      

15 When   rank 1F n  , the identified set for 1,1,0  (which, given the sign normalisation, is a singleton when non-

empty) excludes zero if   rank F n . This condition would be violated in the (unrealistic) instance where the zero 

restrictions in  F   include the restriction that 1,1,0 0  . Note that the condition 0 1f n    implicitly rules out 

the possibility that 1n  , in which case the impulse responses would be trivially point identified. 
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necessary and sufficient condition for  1,1,0 ,S F   to include zero. I subsequently discuss how to 

check this condition in practice. 

Proposition 4.3. (Necessary and sufficient condition for  1,1,00 ,S F  .) Let    1 1, fF  Q 0  

represent an augmented set of zero restrictions that includes a ‘binding’ version of the sign restriction 

1,1,0 0   (i.e. 1, 1 0n tr e Σ q ) with 0 1f n    and let    1 1, sS  Q 0  collect the remaining sign 

restrictions. The identified set for 1,1,0  includes zero if and only if the identified set for Q  given the 

augmented set of restrictions,  ,Q S F , is non-empty. 

The rationale underlying Proposition 4.3 is straightforward, so I omit a formal proof. If  ,Q S F  

is non-empty, there exists a value of Q  satisfying the identifying restrictions (i.e. within  ,Q F S ) 

such that 1,1,0 0  . If  ,Q S F  is empty, there cannot be a value of Q  within  ,Q F S  such 

that 1,1,0 0  . An implication of the proposition is that one can check whether  1,1,0 ,S F   contains 

zero by applying existing numerical algorithms to check whether  ,Q S F  is non-empty. For 

example, in the case where there are sign and zero restrictions constraining 1q  only, Algorithm 4.1 

in Read (2022) can be applied.16 In the general case where the identifying restrictions (potentially 

nonlinearly) constrain multiple columns of Q , one can check whether  ,Q S F  is non-empty by 

drawing from a uniform distribution over  Q F  (e.g. using the algorithms in Arias et al (2018) or 

Giacomini and Kitagawa (2021)) until a draw is obtained satisfying the remaining sign restrictions. 

If no such draw can be obtained after a large number of draws, this suggests that  ,Q S F  is 

empty, in which case  ,1, ,i h S F   must be bounded. 

Given draws of   from its posterior distribution and having checked whether  1,1,0 ,S F   contains 

zero at each draw, one can determine whether different inferential outputs are guaranteed to be 

bounded. Remark 4.1 relates the posterior probability that  1,1,0 ,S F   includes zero to the 

boundedness of different summaries of the robust Bayesian class of posteriors for ,1,i h . 

Remark 4.1. Let      1,1,0: , 0S F   
Y    be the posterior probability that 

 1,1,0 ,S F   excludes zero (in which case the identified set for ,1,i h  is guaranteed to be bounded 

by Proposition 4.1) and assume the parameter of interest is ,1,i h . Let  0,1  . Then: 

a) if 1  , the set of posterior means is bounded; 

b) if   , the set of posterior  -quantiles is bounded; and 

c) if 1 / 2   , the robust credible interval with credibility 1  , constructed by taking the / 2  

quantile of    and the 1 / 2  quantile of  u  , is bounded. 

                                                      

16 If 2f n   and   rank 1F n  , the unit-length vector 1q  satisfying    1 1 1fF  q 0  is pinned down up to 

sign; such a vector can be found by computing an orthonormal basis for the null space of  F  ,   N F  . If either 

      1 1sS N F   0   or       1 1sS N F    0  , then  ,Q S F  is non-empty. For 0 2f n   , 

Algorithm 4.1 in Read (2022) can be applied. 
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In practice, I recommend that researchers report  , since doing so makes it clear which inferential 

outputs are guaranteed to be bounded, and thus is important for understanding the informativeness 

of the identifying restrictions. For example, if 0.1  , the 68 per cent robust credible interval is 

guaranteed to be bounded, whereas the 90 per cent robust credible is not necessarily bounded. In 

this example, reporting a 68 per cent (robust) credible interval (as is common in the literature using 

set-identified SVARs) may be misleading about the informativeness of the restrictions; presumably, 

some researchers would be interested in knowing that there is potentially non-trivial posterior 

probability assigned to infinitely large responses. 

5. The Effects of a 100 Basis Point Federal Funds Rate Shock 

This section illustrates the empirical relevance of the issues discussed above by estimating the 

macroeconomic effects of a 100 basis point shock to the federal funds rate under different sets of 

identifying restrictions that have been used in the literature. 

I use the reduced-form VAR considered in Uhlig (2005), Antolín-Díaz and Rubio-Ramírez (2018) and 

Arias et al (2019). The model’s endogenous variables are real GDP ( tGDP ), the GDP deflator 

( tGDPDEF ), a commodity price index ( tCOM ), total reserves ( tTR ), non-borrowed reserves 

( tNBR ) (all in natural logarithms) and the federal funds rate ( tFFR ). I order the variables such that 

 , , , , ,t t t t t t tFFR GDP GDPDEF COM TR NBR y , so 1,1,0  is the impact response of the federal 

funds rate to a monetary policy shock. The data are monthly and run from January 1965 to 

November 2007.17 The VAR includes 12 lags of the variables and a constant. I assume a Jeffreys’ 

prior over the reduced-form parameters, so 
 1 /2n


 

Σ . This means that the posterior for   is 

a normal-inverse-Wishart distribution, from which it is straightforward to obtain independent draws 

(e.g. Del Negro and Schorfheide 2011). 

The papers listed above conduct Bayesian inference under a uniform prior for Q  and primarily 

present impulse responses to a standard deviation monetary policy shock.18 In contrast, I focus on 

the impulse responses to a 100 basis point monetary policy shock and assess the sensitivity of 

posterior inferences to the choice of prior by conducting robust Bayesian inference. Appendix C 

describes the numerical algorithms used to implement the inferential procedures applied in this 

section. 

First, I consider the identifying restrictions proposed in Arias et al (2019), who impose sign and zero 

restrictions on the structural equation for the federal funds rate, which they interpret as a monetary 

policy reaction function. The restrictions impose that the coefficients on tTR  and tNBR  in the 

structural equation for tFFR  are zero, which means that the Federal Reserve does not react to 

changes in reserves when setting the federal funds rate. They also impose sign restrictions on the 

coefficients of tGDP  and tGDPDEF  such that the Federal Reserve does not increase the federal 

funds rate in response to lower output or prices, which is consistent with the types of policy rules 

                                                      

17 I use the dataset from Antolín-Díaz and Rubio-Ramírez (2018). The monthly series for tGDP  and tGDPDEF  are 

obtained by interpolation; see Arias et al (2019) for details. 

18 Uhlig (2005) and Arias et al (2019) present impulse responses to a standard deviation shock. Antolín-Díaz and 

Rubio-Ramírez (2018) present impulse responses that are normalised such that the median impact response of the 

federal funds rate is 25 basis points; this differs to the unit-effect normalisation, where the impact response of the 

federal funds rate is normalised at every draw from the posterior. 
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typically specified in New Keynesian dynamic stochastic general equilibrium (DSGE) models. The 

impact response of tFFR  to the monetary policy shock is restricted to be non-negative, so that a 

monetary policy shock does not decrease tFFR  on impact, which seems natural. I denote this set 

of identifying restrictions as Restriction (1). 

Figure 3 presents the impulse responses of tFFR  and tGDP  to a 100 basis point monetary policy 

shock obtained under Restriction (1) and a conditionally uniform prior for Q . The 68 per cent (equi-

tailed) credible intervals include declines in output of close to 4 per cent and the 90 per cent 

confidence intervals include declines in output exceeding 10 per cent, so there is considerable 

posterior probability assigned to very large declines in output. 

Figure 3: Impulse Responses to 100 Basis Point Shock – Restriction (1) 

 

Note: Results obtained under the identifying restrictions in Arias et al (2019); based on 10,000 draws from the posterior of the 

reduced-form parameters. 

The very wide credible intervals suggest that the identifying restrictions are quite uninformative 

about the output response to a 100 basis point monetary policy shock. However, even these very 

wide credible intervals severely overstate the informativeness of the restrictions. The restrictions 

include four sign restrictions (including the sign normalisation on the  1,1  element of 0A ) and two 

zero restrictions, so the total number of restrictions is equal to the number of variables in the VAR. 

This means that the sufficient condition in Proposition 4.2 is satisfied, and zero is always included 

within the identified set for the impact response of the federal funds rate; in other words, the 

identifying restrictions cannot rule out the possibility that the federal funds rate does not respond to 

a standard deviation monetary policy shock on impact. In turn, this suggests that identified sets for 

unit impulse responses have the potential to be unbounded for all draws of  . Examining the 

approximated bounds of the identified sets for the output responses to a 100 basis point shock 

suggests that these identified sets are indeed unbounded at every draw, which in turn suggests that 
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the robust credible intervals are unbounded at all credibility levels.19 The shape of the posterior 

distribution under the standard approach to inference therefore appears to be driven entirely by the 

conditional prior. 

Next, I combine the restrictions from Arias et al (2019) with the sign restrictions on impulse 

responses proposed in Uhlig (2005). These sign restrictions impose that the impulse response of 

t hFFR   to the monetary policy shock is non-negative and the impulse responses of t hGDPDEF  , 

t hCOM   and t hNBR   are non-positive for 0,1, ,5h  .20 I refer to this set of restrictions as 

Restriction (2). Under a conditionally uniform prior, the additional sign restrictions appreciably 

tighten the posterior distribution of the impulse responses to a 100 basis point shock (Figure 4). The 

posterior median suggests that output falls by a maximum of around 0.4 per cent about two years 

after the shock and the 68 per cent credible intervals no longer contain extremely large output 

responses; for example, at the two-year horizon the credible intervals span declines in output of 

0.1–0.6 per cent. However, I discuss below that these results are highly sensitive to the choice of 

conditional prior. 

Figure 4: Impulse Responses to 100 Basis Point Shock – Restriction (2) 

 

Note: Results obtained under a combination of the identifying restrictions in Uhlig (2005) and Arias et al (2019); based on 

10,000 draws from the posterior of the reduced-form parameters. 

                                                      

19 For example, the minimum width of the identified set for the impact response of output across the posterior draws is 

on the order of 100 percentage points and the maximum width is on the order of 108 percentage points. 

20 Uhlig (2005) also considers restricting the impulse responses at shorter and longer horizons than six months. The 

choice of horizon here does not affect whether the sufficient condition in Proposition 4.2 applies. However, the 

proportion of draws where the identified set for 1,1,0  includes zero varies across the different sets of restrictions, as 

does the width of the sets of posterior medians and robust credible intervals. Appendix D presents the output responses 

obtained when the impulse responses are restricted up to horizon  2,11,23H  . 
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Under these restrictions, there are 2 zero restrictions and 27 sign restrictions, so the sufficient 

condition in Proposition 4.2 is not satisfied. This means that the identified set for the impact response 

of the federal funds rate does not necessarily include zero. I therefore numerically check whether 

the identified set for 1,1,0  includes zero at each draw from the reduced-form posterior. The identified 

set for 1,1,0  includes zero in only 0.06 per cent of draws from the posterior, which implies that the 

identified sets for the impulse responses to a 100 basis point shock are guaranteed to be bounded 

with very high posterior probability. It follows that the set of posterior medians is guaranteed to be 

bounded, as are robust credible intervals at conventional credibility levels (see Remark 4.1). 

However, the set of posterior medians for the output response includes zero at essentially all 

horizons, and the 68 per cent robust credible intervals for the output response include both large 

negative and large positive responses. Hence, the data and identifying restrictions are consistent 

with either relatively large decreases or increases in output following a 100 basis point shock, and 

the identifying restrictions are reasonably uninformative about the output response. 

These results indicate that much of the apparent information in the standard Bayesian posterior 

under Restriction (2) is contributed by the conditional prior rather than the data and identifying 

restrictions, and posterior inferences are sensitive to the choice of conditional prior. To quantify the 

information contributed by the conditional prior, Giacomini and Kitagawa (2021) suggest reporting 

the ‘prior informativeness’ statistic; this measures the fraction that the credible interval is tightened 

(relative to the robust credible interval) by choosing a particular conditional prior. The prior 

informativeness statistic for the output response is around 70 per cent for the horizons considered 

(i.e. the 68 per cent credible intervals are around 30 per cent as wide as the 68 per cent robust 

credible intervals). 

Finally, I add the ‘narrative restrictions’ proposed in Antolín-Díaz and Rubio-Ramírez (2018) to 

Restriction (2). I refer to this set of restrictions as Restriction (3). Narrative restrictions are 

restrictions on functions of the structural shocks in specific periods (as opposed to restrictions on 

functions of the structural parameters) that represent information about the nature of the shocks 

hitting the economy during particular historical episodes.21 The specific narrative restrictions imposed 

are that the monetary policy shock was positive and was the ‘overwhelming’ contributor to the 

forecast error in the federal funds rate in October 1979. This is the month in which the Federal 

Reserve unexpectedly and dramatically raised the federal funds rate following Paul Volcker becoming 

chairman, and is widely considered an example of a monetary policy shock (e.g. Romer and 

Romer 1989). 

Under Restriction (3), the identified set for the impact response of the federal funds rate excludes 

zero in 100 per cent of draws from the reduced-form posterior. Consequently, the set of posterior 

medians and the robust credible intervals are bounded at all credibility levels. The set of posterior 

medians for the output response excludes zero at most horizons and the 68 per cent robust credible 

intervals are substantially narrower than under Restriction (2) (Figure 5). Nevertheless, the robust 

credible intervals continue to include zero at all horizons and the choice of conditional prior 

contributes a large share of the information contained in the posterior; the prior informativeness 

                                                      

21 The narrative restrictions are functions of the data through the reduced-form VAR innovations that enter the 

restrictions (i.e. they do not only depend on  ). Consequently, the standard definition of an identified set does not 

apply; Giacomini, Kitagawa and Read (2021a) instead introduce the concept of a ‘conditional’ identified set, which is 

the identified set that would be obtained after conditioning on the data that directly enter the narrative restrictions. I 

refer to the identified set interchangeably with the conditional identified set. 
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statistic for the output response ranges from around 70 per cent at shorter horizons to around 50 per 

cent at longer horizons. 

Figure 5: Impulse Responses to 100 Basis Point Shock – Restriction (3) 

 

Note: Results obtained under a combination of the identifying restrictions in Uhlig (2005), Antolín-Díaz and Rubio-Ramírez (2018) 

and Arias et al (2019); based on 1,000 draws from the posterior of the reduced-form parameters. 

Table 1 tabulates the posterior lower and upper probabilities that output falls by more than a given 

threshold x  at selected horizons. Under Restriction (2), the posterior lower and upper probabilities 

that the output response is negative include both small values and values close to one at all horizons, 

which indicates that the data and identifying restrictions are fairly uninformative about the sign of 

the output response. In contrast, under Restriction (3), the posterior lower probability that the 

output response is negative at the two-year horizon is around 75 per cent and the posterior upper 

probability is 100 per cent. The hypothesis that output declines following a 100 basis point monetary 

policy shock therefore receives reasonably high posterior probability uniformly over the class of 

posteriors that are consistent with Restriction (3). Both sets of identifying restrictions effectively rule 

out relatively large declines in output following a 100 basis point shock; for example, under 

Restriction (3), the posterior lower probability that output declines by more than 1 per cent two 

years after the shock is zero and the posterior upper probability is only 6 per cent. 

The existing literature contains a wide range of estimates for the output effects of a 100 basis point 

shock to the federal funds rate; for example, Ramey (2016) reports a range of existing estimates 

for the trough in the response of output under different samples, specifications and approaches to 

identification. These estimates range from as low as 0.6 per cent to as high as 5 per cent. The results 

in Table 1 are broadly consistent with the output effects of monetary policy lying towards the smaller 

end of the range of existing estimates, in the sense that relatively large output declines are assigned 

low posterior probability regardless of the choice of conditional prior. 
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Table 1: Posterior Lower and Upper Probabilities that Decline in Output Exceeds 
Threshold Following 100 Basis Point Shock 

Horizon Threshold 

Lower probability (%)  Upper probability (%) 

0 –0.25 –0.5 –1  0 –0.25 –0.5 –1 

Restriction (2) 

Impact 0.00 0.00 0.00 0.00  0.95 0.75 0.48 0.10 

One year 0.13 0.01 0.00 0.00  0.99 0.84 0.48 0.06 

Two years 0.27 0.11 0.03 0.00  1.00 1.00 0.93 0.07 

Three years 0.23 0.11 0.04 0.00  1.00 0.99 0.88 0.11 

Four years 0.23 0.12 0.05 0.00  1.00 0.98 0.80 0.15 

Restriction (3) 

Impact 0.00 0.00 0.00 0.00  0.95 0.73 0.45 0.04 

One year 0.27 0.03 0.00 0.00  0.99 0.84 0.47 0.04 

Two years 0.76 0.36 0.08 0.00  1.00 1.00 0.93 0.06 

Three years 0.64 0.33 0.11 0.01  1.00 0.99 0.88 0.10 

Four years 0.57 0.30 0.12 0.01  1.00 0.98 0.79 0.13 

Note: Posterior lower (upper) probability is the smallest (largest) posterior probability obtainable within the class of posteriors 

consistent with the identifying restrictions. 

 

6. Ruling Out Unboundedness Using Alternative Restrictions 

In the context of estimating the effects of monetary policy, the identified set for the impulse 

responses to a 100 basis point shock may be unbounded when the identified set for the impact 

response of the federal funds rate to a standard deviation monetary policy shock includes zero. 

Imposing sign, zero or narrative restrictions of the types considered in Section 5 can indirectly rule 

this possibility out. This section discusses alternative restrictions that could potentially be used to 

rule out the possibility that the monetary policy shock has no impact effect on the federal funds rate. 

Although this discussion is framed in the context of monetary policy, it also applies more generally 

to other settings. 

6.1 Direct bounds on impulse responses 

One possibility is to directly restrict the impact response of the federal funds rate to a standard 

deviation monetary policy shock so that it is greater than some (strictly positive) number 

(i.e. 1,1,0  , where 0   is a specified scalar). However, it seems difficult to justify such 

restrictions on the basis of economic theory – what is the smallest plausible impact effect of a 

‘standard deviation’ monetary policy shock on the federal funds rate? Restrictions of this type could 

potentially be justified on the basis of prior estimates (e.g. from other SVARs or from estimated 

DSGE models), but these prior estimates may themselves be based on assumptions that lack 

credibility. Alternatively, one could impose bounds on the responses of variables to a unit shock such 

that unbounded impulse responses are ruled out by assumption (e.g. 2,1,0  ).22 However, it 

seems similarly difficult to come up with hard bounds on the responses of variables to a 100 basis 

point shock without these bounds being somewhat arbitrary. Moreover, in either case, when 

                                                      

22 These types of restrictions are sometimes referred to as ‘elasticity restrictions’ (as in Kilian and Murphy (2012)). 
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identified sets are unbounded in the absence of such restrictions, inferences may be highly sensitive 

to changes in the imposed bounds. 

To illustrate, return to the bivariate example of Section 3 and consider additionally imposing that 

1,1,0   for some 0  . When 21 0   and 110    , the identified set for 2,1,0  is23 

 

2

21 22
2,1,0

11 11

1 ,0
  


  

             

 (17) 

The additional restriction therefore results in the identified set being bounded; in the absence of this 

restriction (or in the limit as   approaches zero from above), the identified set is  , 0 . However, 

the lower bound of the identified set is sensitive to the choice of  , particularly when   is small; 

the derivative of the lower bound tends to   as   approaches zero from above. Setting   to some 

small positive number to rule out an unbounded identified set for 2,1,0  may therefore yield an 

identified set that is highly sensitive to the choice of  . 

6.2 Bounds on the forecast error variance decomposition 

Rather than directly restricting the impact effect of the monetary policy shock on the federal funds 

rate, one could instead consider restricting the one-step-ahead forecast error variance 

decomposition (FEVD) of the federal funds rate with respect to the monetary policy shock. This is 

the contribution of the monetary policy shock to the one-step-ahead forecast error variance (FEV) 

of the federal funds rate. Such restrictions may indirectly rule out the possibility that the monetary 

policy shock has no impact effect on the federal funds rate; intuitively, a strictly positive lower bound 

on the contribution of the monetary policy shock to the one-step-ahead FEV of the federal funds 

rate means that the impact effect of the shock itself must be strictly positive. 

More formally, the horizon- h  FEVD of the i th variable with respect to the j th shock is 

  
   

   

1

0
, , 1

0

,

h

il j j ill
i j h h

il ill

FEVD









 








c q q c
Q

c c

 


 
 (18) 

The impact effect of the j th shock on the i th variable (  0 ,i j i n tr j c q e Σ q ) is zero if and only if 

 , ,0 , 0i jFEVD Q , so bounding  , ,0 ,i jFEVD Q  away from zero indirectly bounds the impact 

response away from zero. However, as in the case where the normalising impulse response is directly 

bounded away from zero, the identified set obtained under some small lower bound on the FEVD 

will also be sensitive to the choice of this lower bound when the identified set is unbounded in the 

absence of this restriction (see Appendix A.5 for an analysis of this case in the context of the bivariate 

model). Volpicella (2022) proposes imposing bounds on the FEVD, where the bounds are elicited 

from a range of estimated DSGE models. However, if the assumptions underlying the DSGE models 

that are used to elicit these bounds lack credibility, the derived bounds on the FEVDs will also lack 

credibility. 

                                                      

23 If 11  , the identified set is empty. See Appendix A.4 for details about this example. 



25 

  

7. Conclusion 

In SVARs that are set identified using sign and/or zero restrictions, the identified set for the impulse 

responses to a unit shock may be unbounded. These restrictions therefore have the potential to be 

extremely uninformative about the effects of unit shocks. However, it may still be possible to draw 

useful inferences about impulse responses to a unit shock when the identified set is unbounded with 

positive posterior probability. Ultimately, I argue that researchers should transparently communicate 

about the extent to which identified sets are unbounded and what this means about the 

informativeness of their identifying restrictions. 

The empirical exercise in this paper demonstrates the importance of these issues. The identifying 

restrictions on the systematic component of monetary policy considered in Arias et al (2019) never 

rule out the possibility that the federal funds rate does not respond on impact to a standard deviation 

monetary policy shock. As a consequence, the identified set for the output response to a 100 basis 

point monetary policy shock appears to be unbounded at all horizons and for all values of the 

reduced-form parameters. The identifying restrictions are therefore extremely uninformative about 

the magnitude of these impulse responses, standard Bayesian inference is misleading about the 

information contained in the data given the identifying restrictions, and posterior inferences are 

sensitive to the choice of conditional prior for the orthonormal matrix. 

After additionally imposing the sign restrictions on impulse responses from Uhlig (2005), the 

identified set is bounded with very high posterior probability; nevertheless, the identifying 

restrictions are quite uninformative about the output effects of a 100 basis point monetary policy 

shock and posterior inferences remain sensitive to the choice of prior. Adding the narrative 

restrictions from Antolín-Díaz and Rubio-Ramírez (2018) yields a bounded identified set in 100 per 

cent of draws from the reduced-form posterior and leads to more informative inference about the 

output effects of the shock; however, it remains the case that a large share of the information in 

the posterior is contributed by the unrevisable component of the prior. The latter two sets of 

restrictions effectively rule out large declines in output following a 100 basis point shock. It is 

therefore possible to draw useful inferences about the effects of US monetary policy under set-

identifying restrictions even though these restrictions may sometimes be extremely uninformative. 
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Appendix A: Derivations for Bivariate SVAR 

A.1 Sign restrictions on impulse responses 

This appendix derives the identified sets for the impulse responses to a unit shock under the sign 

restrictions on impulse responses presented in Section 3. 

In the absence of any identifying restrictions, the identified set for 1
0
A  (the matrix of impact impulse 

responses) is 

 

11 111
0

21 22 22 21

11 11

21 22 21 22

cos sin

cos sin cos sin

cos sin

cos sin sin cos

   

       

   

       


   

  
   

  
  

   

A

 (A1) 

and the identified set for 0A  is 

 

22 21 11
0

21 22 1111 22

22 21 11

21 22 1111 22

cos sin sin1

cos sin cos

cos sin sin1

cos sin cos

     

      

     

      

   
  

   

   
  

   

A

 (A2) 

The impact response of the second variable to a shock that raises the first variable by one unit is 

 
2,1,0 21 22 21 22

2,1,0

1,1,0 11 11 11

cos sin
tan

cos

      
 

    


     (A3) 

Consider the sign restrictions that the impulse response of the first variable to the first shock is non-

negative ( 1
1,1,0 1,2 0 1,2 0  e A e ) and the impact response of the second variable to the first shock 

is non-positive ( 1
2,1,0 2,2 0 1,2 0  e A e ), plus the sign normalisation  0 2 1diag A 0 . Under this set 

of restrictions,   is restricted to lie within the following set: 

 
 

 

11 21 22 22 21

11 21 22 22 21 11

: cos 0, cos sin , cos sin

: cos 0, cos sin , cos sin , cos 0

           

            

    

      
 (A4) 

There are two cases to consider depending on the sign of 21 . If 21 0  , the second set is empty. 

The first set is equivalent to 

 21 22

22 21

: cos 0, tan , tan
 

   
 

 
    

 
 (A5) 
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This set of inequalities implies that the identified set for   is 

 22 21

21 22

arctan ,arctan
 


 

    
     

    
 (A6) 

which lies within the interval  / 2, / 2  . The impact response of the first variable to the first 

shock is 1,1,0 11 cos   . The lower bound of the identified set for   is negative and the upper 

bound is positive, so zero lies within this identified set and cos  attains its maximum of one. The 

upper bound of the identified set for 1,1,0  is therefore 11 . The lower bound is attained at one of 

the end points of the identified set for   and therefore satisfies 

 

  22 21
11 11

21 22

22 21
11

21 22

22 21
11

21 22

min cos arctan , cos arctan

min cos arctan ,cos arctan

cos min arctan ,arctan

 
 

 

 


 

 


 

        
        

        

        
        

        

    
     

   



 
  

 

 (A7) 

where: the second line uses the fact that arctan  is an odd function and cos  is an even function; 

and the third line uses the fact that cos  is increasing over  / 2,0 . Since arctan  is an increasing 

function, it follows that: 

 22 21
1,1,0 11 11

21 22

cos arctan min , ,
 

  
 

    
     

     

 (A8) 

This identified set excludes zero. Since 2,1,0  is strictly increasing in   over the interval  / 2, / 2  , 

its lower and upper bounds are attained at the end points of the identified set for  . Plugging the 

end points of the identified set for   into the expression for 2,1,0  yields the identified set for 2,1,0 : 

 
2

21 22
2,1,0

11 11 21

,0
 


  

 
  
 

 (A9) 

which is bounded. 

Similarly, if 21 0  ,   is restricted to lie in the set 

 21 22

22 21

: cos 0, tan , tan
2

  
    

 

   
         

  
 (A10) 
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The second inequality implies that tan 0  , so the last inequality never binds. The identified set 

for   is therefore 

 21

22

,arctan
2

 




  
    

  
 (A11) 

The upper bound of the identified set for   is negative. 1,1,0  is therefore strictly increasing over the 

identified set for  , and the bounds of the identified set for 1,1,0  are attained at the end points of 

the identified set for  : 

 21
1,1,0 11

22

0, cos arctan


 


   
    
    

 (A12) 

If 21 0  ,   is restricted to the set 

    22 22 11: cos 0,0 sin :0 sin ,cos 0, cos 0                     (A13) 

The first set implies  / 2,0    and the second implies / 2   , so  1,1,0 110,  . The 

expression for the identified set for 1,1,0  when 21 0   therefore also applies when 21 0  . 

tan   as   approaches / 2  from above. tan  is strictly increasing over the identified set 

for  , so the upper bound for the identified set for 2,1,0  is obtained by evaluating 2,1,0  at the upper 

bound of the identified set for  . Consequently, 2,1,0 ,0   . 

A.2 Sign restrictions on impulse responses to multiple shocks 

If we additionally impose the sign restrictions that 1
1,2,0 1,2 0 2,2 0  e A e  and 1

2,2,0 2,2 0 2,2 0  e A e , 

the parameter   is restricted to lie within the following set: 
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 (A14) 

Using working similar to that in Appendix A.1, the identified sets for  , 1,1,0  and 2,1,0  are given 

by: 
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 
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 (A15) 
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 (A16) 
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2
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  

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

 
  

 
  

 (A17) 

As in the case where there are sign restrictions on the impulse responses to the first shock only, the 

identified set for 1,1,0  includes zero when 21 0   and the identified set for 2,1,0  is unbounded.24 In 

the case where 21 0  , the additional sign restrictions tighten the identified set. In particular, the 

upper bound is now strictly less than zero (and is a differentiable function of  , as discussed in 

Section 3.2.1). 

A.3 Alternative parameterisation 

Consider an alternative parameterisation of the bivariate model that directly imposes the unit-effect 

normalisation: t ty Hε , where  2 1,t N ε 0 Ω , 

 
12 11

21 22

1 0
and

1 0

H

H





   
    
   

H Ω  (A18) 

Let  t tE  y y Σ  and    11 21 22vech , ,    Σ . The structural parameters  12 21 11 22, , ,H H     and 

reduced-form parameters  11 21 22, ,     are related via Σ HΩH . Eliminating 11  and 22  from 

the system of equations yields a single equation in  12 21,H H : 

    2 2 2
21 12 11 12 21 11 22 12 21 22 12 21 0H H H H H H         (A19) 

Solving for 21H  as a function of 12H  (using the quadratic formula) yields: 
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          


 
 (A20) 

Figure A1 plots the two solutions. Under the sign restrictions 21 0H   and 12 0H  , the identified 

set for  12 21,H H  lies in the lower-right quadrant. When 21 0   (Panel A), the identified set for 

21H  is bounded. When 21 0   (Panel B), the identified set for 21H  is unbounded, so unbounded 

identified sets may also arise when the unit-effect normalisation is directly imposed. 

                                                      

24 The identified set for 1,2,0  is unbounded when 21 0   and bounded when 21 0  . 
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Figure A1: Identified Sets Under Alternative Parameterisation 

Panel A ( 21 0  ) Panel B ( 21 0  ) 

 

Notes: This figure depicts the solutions to Equation (A19) assuming that 11 1  , 22 1   and 21 0.5    or 0.5 . The part of the 

solution set depicted in the lower-right quadrant of each panel represents the identified set for  12 21,H H  under the sign 

restrictions 21 0H   and 12 0H  . 

A.4 Magnitude restrictions 

In addition to the sign restrictions considered in Section 3 and Appendix A.1, consider the restriction 

that 1,1,0   for some 0  . Under this set of restrictions,   is restricted to lie within the set: 
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             

    

      
 (A21) 

The second set is always empty, since 11 cos    and 11 cos 0    cannot hold simultaneously 

when 0  . The identified set for   is empty if 11  , since cos 1   for all  . 

If 21 0  , the first set is equivalent to 

 21 22

11 22 21

: cos , tan , tan
  

    
  

 
     
 

 (A22) 

The last inequality never binds and the identified set for   is 

 21

11 22

arccos ,arctan
 


 

    
      

    
 (A23) 

which is contained within the interval  / 2,0 . 2,1,0  is strictly increasing over this interval, so the 

bounds of the identified set for 2,1,0  are attained at the end points of the identified set for  . The 

identified set for 2,1,0  is therefore 
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 21 22
2,1,0

11 11 11

tan arccos ,0
  


  

   
     
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 (A24) 

The lower bound of this identified set,  , , can be expressed as25 

  
2

21 22

11 11

, 1
  


  

  
       

  (A25) 

which converges to   as   approaches zero from above. The derivative of  ,  with respect 

to   is 
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
 (A26) 

In the limit as   approaches zero from above, this derivative approaches  , which implies that the 

lower bound is extremely sensitive to small changes in   when   is close to zero. 

A.5 Bounds on the FEVD 

The FEV of 1ty  is 2
11  and the contribution of 1t  to the FEV of 1ty  is 2 2

11 cos  . The FEVD of 1ty  

with respect to 1t , 1

1

t

t

yFEVD , is therefore 2cos  . Consider imposing the restriction that 

1

1

t

t

yFEVD   for some 0 1   in addition to the sign restrictions considered in Section 3 and 

Appendix A.1. Under this set of restrictions,   is restricted to lie within the following set: 
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             
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 (A27) 

When 21 0  , the first set is equivalent to 
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 

 (A28) 

The inequalities 22 21tan /    and arccos   never bind and the identified set for   is 

 21

22

arccos ,arctan


 


  
    

  
 (A29) 

                                                      

25 This follows from the fact that   1 2tan arccos 1x x x  . 
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which is contained within the interval  / 2,0 . 2,1,0  is strictly increasing over this interval, so the 

bounds of the identified set for 2,1,0  are attained at the end points of the identified set for  . The 

identified set for 2,1,0  is therefore 

   21 22
2,1,0

11 11

tan arccos ,0
 

 
 

 
   
 

 (A30) 

The lower bound of this identified set,  , , can be expressed as 

   21 22

11 11

1
,

  


  


   (A31) 

The lower bound converges to   as   approaches zero from above. The derivative of  ,  

with respect to   is 

 
 

 
3 1

22 2 2

11

, 1
1

2

 
 

 

 
 




 (A32) 

In the limit as   approaches zero from above, this derivative approaches  , which implies that the 

lower bound is extremely sensitive to small changes in   when   is close to zero. 

To summarise, under the additional restriction on the FEVD, the identified set is bounded; in the 

absence of this restriction (or as   converges to zero from above), the identified set is  , 0 . 

However, as in the case where the normalising impulse response is directly bounded away from 

zero, the lower bound of the identified set is sensitive to the choice of  , particularly for small 

values of  ; the derivative of the lower bound tends to   as   approaches zero from above. 

Setting   to some small positive number to rule out an unbounded identified set for 2,1,0  will 

therefore yield an identified set that is highly sensitive to the choice of  . 
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Appendix B: Proofs of Propositions 

Proof of Proposition 4.1. Assume  1,1,00 ,S F  , so there exists 0   such that 

 1,1,0 , Q  for all  ,Q S FQ  . Given that the impulse response horizon h  is fixed and finite, 

 ,1, ,i h  Q  for all  ,Q S FQ  .26 There thus exists   such that  ,1, ,i h Q  for all 

 ,Q S FQ  . It follows that  ,1, ,i h





  Q  for all  ,Q S FQ  , so  ,1, ,i h S F   is 

bounded. □ 

Proof of Proposition 4.2. Assume that the sign restrictions are ordered such that the first row of 

 S   corresponds to the sign restriction 1,1,0 1, 1 0n tr  e Σ q . Let       ,G S F


     collect the 

coefficient vectors of the sign and zero restrictions. 

First, consider the case where   rank G n  and let   N G   represent an orthonormal basis 

for the null space of  G  . By the rank-nullity theorem,   N G   has dimension 

  rank 1n G  . Thus, it is always possible to construct 1
nq  satisfying    1 1s fG  q 0  by 

taking any column of   N G  . Such a vector clearly satisfies the identifying restrictions with 

1,1,0 0  , so  1,1,00 ,S F  . 

Now, consider the case where   rank G n . Let      1, ,n trF F
    

 
e Σ   represent the 

coefficients of the zero restrictions augmented with a ‘binding’ version of the sign restriction on 1,1,0  

(i.e. 1, 1 0n tr e Σ q ), and let  S   represent the coefficients of the remaining sign restrictions (i.e. the 

last 1s   rows of  S  ). Since   rank G n ,   rank 1F f  . Proposition 4.1 in 

Read (2022) states that the system of zero and sign restrictions,    1 1 1fF  q 0  and 

   1 1 1sS  q 0 , can be transformed into a set of sign restrictions in 1n f  . Let    1 1 1sS  q 0  

represent the transformed sign restrictions, where 1
1

n f q  and  S   is obtained from  S   

using the transformation described in Read. Corollary 4.1 of Read states that the set 

        1 1 11 1 1 1: ,n
f sF S     q q 0 q 0   will be non-empty if and only if the set 

    1
1 1 1 1:n f

sS 
  q q 0  is non-empty, in which case  1,1,00 ,S F  . I proceed by 

showing that the set     1
1 1 1 1:n f

sS 
  q q 0  is always non-empty. 

If   rank 1 1S s n f     , then   N S   has dimension   1 rank 1n f S    , so it is 

always possible to construct 1
1

n f q  satisfying    1 1 1sS  q 0  by taking any column of 

                                                      

26 Allowing for arbitrarily large impulse response horizons h  would require restricting the support of the reduced-form 

parameter space Φ  such that the infinite-order vector moving average representation of the VAR exists; this will be 

the case if the eigenvalues of the companion matrix lie inside the unit circle (e.g. Hamilton 1994; Kilian and 

Lütkepohl 2017). By avoiding this assumption I allow for mildly explosive processes. 
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  N S  , and the set     1
1 1 1 1:n f

sS 
  q q 0  is non-empty. If 

  rank 1 1S s n f     , there cannot exist  1 1n f  x 0  such that    1 1n fS   
 x 0  (since 

 S   has full rank), so by Gordan’s Theorem (e.g. Mangasarian 1994; Border 2020) there must 

exist 1
1

n f q  such that    1 1 1sS  q 0 , so the set     1
1 1 1 1:n f

sS 
  q q 0  is non-

empty. □ 
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Appendix C: Description of Numerical Algorithms 

This section describes the numerical algorithms that I use in the empirical application of Section 5. 

I first describe at a high level a general algorithm used to conduct robust Bayesian inference. I 

subsequently provide details about how the algorithm is implemented under the different sets of 

identifying restrictions. 

Algorithm C1 (robust Bayesian inference). Assume the parameter of interest is  ,1, ,i h Q . 

For 1, ,k K : 

Step 1: Draw k  from 
Y . 

Step 2: Check whether  ,kQ S F  is empty. If so, return to Step 1. If not, proceed to Step 3. 

Step 3: Record whether  1,1,00 ,S F  . 

Step 4: Compute  
 

 ,1,
,

min ,
k

k i h k
Q S F





Q

Q


   and  
 

 ,1,
,

max ,
k

k i h k
Q S F

u 



Q

Q


  . 

Given the output of Algorithm C1, the set of posterior medians can be approximated by an interval 

with lower bound (upper bound) equal to the posterior median of  k  (  ku  ). A robust credible 

interval with credibility 1   can be approximated by an interval with lower bound equal to the 

/ 2  quantile of  k  and upper bound equal to the 1 / 2  quantile of  ku  .27 If D  is some 

hypothesis about ,1,i h  (i.e. that it lies within a specified interval), the posterior lower probability 

assigned to the hypothesis can be approximated by the posterior probability that the identified set 

is contained entirely within the interval D  (i.e.   1
1 ,1,1 ,K

k i h kK S F D
  , where  1 .  is the 

indicator function). The posterior upper probability can be approximated by the posterior probability 

that the identified set intersects the interval D  (i.e.   1
1 ,1,1 ,K

k i h kK S F D
   ). To give an 

example, if the hypothesis of interest is that the output response is weakly negative at horizon h , 

 ,0D   . 

How Steps 2, 3 and 4 of Algorithm C1 are implemented depends on whether the identifying 

restrictions constrain a single column or multiple columns of Q . When the restrictions constrain a 

single column of Q  only (i.e. under Restrictions (1) and (2)), I check whether the identified set is 

non-empty at each draw of   using Algorithm 4.1 in Read (2022).28 I also check whether  ,Q F S  

is non-empty (and thus whether  1,1,0 ,S F   includes zero) using this algorithm. I approximate 

the bounds of the identified set at each draw of   by obtaining 10,000 draws of Q  from a uniform 

distribution over  ,Q S F , computing  ,1, ,i h Q  at each draw of Q  and taking the minimum 

and maximum over the draws of Q .29 I draw from the uniform distribution over  ,Q S F  using 

the Gibbs sampler described in Read (2022). 

                                                      

27 This construction of the robust credible interval differs to the shortest robust credible interval in Giacomini and 

Kitagawa (2021); computing the shortest credible interval requires searching over a grid of possible values, which can 

be computationally difficult when the identified set is sometimes unbounded. The two constructions of the robust 

credible interval are similar under Restriction (3) (where the identified set is bounded at every posterior draw). 

28 This algorithm extends an algorithm proposed in Amir-Ahmadi and Drautzburg (2021) to additionally allow for zero 

restrictions, and requires solving a simple linear program. 

29 Under Restriction (2), the set of posterior medians and robust credible intervals are similar, but a little wider, when 

approximating the bounds of the identified set using a gradient-based numerical optimisation routine. 
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Restriction (3) includes restrictions on the historical decomposition. The contribution of the j th 

structural shock to the one-step-ahead forecast error in variable i  in period t  is 

  1
, , , ,0 , ,,i j t i j j t i n tr j j tr tH     Q e Σ q q Σ u .The restriction that the monetary policy shock was the 

‘overwhelming’ contributor to the observed unexpected change in the federal funds rate means that 

the absolute contribution of the monetary policy shock to the forecast error in the federal funds rate 

is greater than the sum of the absolute contributions of all other shocks, or , , , ,i j t k j i k tH H  . 

This is a restriction on the historical decomposition that simultaneously constrains all columns of Q . 

Consequently, it is necessary to numerically approximate whether  ,Q S F  and  ,Q F S  are 

empty using simulation-based algorithms. I approximate identified sets as being empty if I cannot 
obtain a draw of Q  satisfying the (augmented) identifying restrictions after 100,000 draws. When 

approximating the bounds of the identified set for  ,1, ,i h Q , draws of Q  from the uniform 

distribution over  ,Q S F  are obtained using the accept-reject algorithm described in Giacomini 

et al (2021a). The numerical methods used to obtain the results under these restrictions are 

computationally burdensome, so I base the results on 1,000 (rather than 10,000) draws of   such 

that the identified set is non-empty. 

In generating the results under the conditionally uniform prior, I obtain a single draw of Q  from the 

uniform distribution over  ,Q S F  at each draw of   using the algorithms described above and 

transform the draws of  ,Q  into impulse responses via  ,1, ,i h Q . 
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Appendix D: Additional Empirical Results 

Figure D1 presents additional results obtained under Restriction (2) when the horizon over which 

the sign restrictions are imposed ( H ) is varied. For 2H  , the identified set for 1,1,0  includes zero 

in only 1.2 per cent of draws from the posterior. However, the set of posterior medians and 68 per 

cent robust credible intervals for the output response are extremely wide. Increasing H  reduces 

the proportion of draws where the identified set for 1,1,0  includes zero: for 5H   (the assumption 

in the main text), the identified set includes zero in 0.6 per cent of draws; and for  11,23H , 

there are no draws where the identified set includes zero. Increasing the number of sign restrictions 

also appreciably tightens the set of posterior medians and robust credible intervals. 

Figure D1: Output Responses to 100 Basis Point Shock – Alternative Horizons 

 

Note: Results obtained under a combination of the identifying restrictions in Uhlig (2005) and Arias et al (2019); H  is the horizon 

over which the impulse responses are restricted; results based on 10,000 draws from the posterior of the reduced-form 

parameters. 
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