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Abstract

This paper finds evidence that firms may manipulate their systematic risk. This
contrasts with previously held views that changes in estimates of systematic risk
were an artefact of the estimators used. The central finding is that firms take actions
which result in their equity betas adjusting toward unity, where equity betas are a
common measure of systematic risk. This convergence phenomenon appears to
result in older and larger firms having equity betas that are closer to unity than
smaller and younger firms. The relationship between equity beta convergence and
firm size is reconciled with the well documented negative correlation between
equity betas and firm size. Also, greater deviations of systematic risk from the
market average are found to be associated with a higher probability of being
delisted. Having refuted the hypothesis that observed changes in systematic risk are
an artefact of the estimation process, some implications for asset-market efficiency
are explored.

JEL Classification Numbers: G10, G11, G12
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SYSTEMATIC RISK CHARACTERISTICS OF
CORPORATE EQUITY

Geoffrey Shuetrim

1. Empirical Objectives

What can be inferred about the behaviour of publicly listed corporations from the
behaviour of their security returns? This paper develops a body of evidence
characterising the degree of co-movement between equity returns of individual firms
and the return on the entire equity market. The focus is on how the degree of
co-movement changes through time and on how it is related to observed
characteristics of the firms. The evidence strongly suggests that the degree of
co-movement associated with a given firm’s equity converges, through time, to the
market average degree of co-movement. Previously, this convergence phenomena
was thought to have been a statistical artefact of the estimation techniques. Robust
evidence in this paper refutes this hypothesis, suggesting instead that the driving
force behind convergence is the preferences of the managers or owners who control
firms.

The degree of co-movement between a firm’s equity return and the return on the
equity market is commonly referred to as systematic risk. In finance parlance,
systematic risk is that component of risk which cannot be diversified away by
investing across a wide variety of assets. In this sense, the systematic risk of an
individual asset return is that part of equity return volatility driven by economy-wide
shocks rather than idiosyncratic or asset-specific shocks. Generally, the systematic
component of equity risk is estimated using some normalisation of the covariance
between the return on a firm’s equity and the return on the market, however,
broadly the market is defined. A firm’s idiosyncratic equity risk is then defined as
the residual variation in the firm’s equity return.

In this paper, systematic risk is estimated using monthly equity returns on all stocks
listed on the New York Stock Exchange (NYSE) from January 1926 to
December 1992. The data are obtained from the Center for Research in Security
Prices (CRSP) database. Systematic risk is estimated for slightly fewer than
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4 000 firms. In estimating systematic risk, the ‘market’ return is measured as the
NYSE weighted-average equity return. This corresponds to the interpretation of
systematic risk as a measure of the degree of co-movement between the rate of
return on the individual firm and the rate of return on the entire equity market.

The evidence is presented in two stages. First, the law of motion governing the
systematic risk is estimated for various sub-samples. Second, the relationship
between systematic risk and both the age and size of firms is characterised. The
methodology for estimating both the law of motion and the relationships between
systematic risk and observed features of the firms is similar to that used by
Quah (1996) to examine macroeconomic convergence across nations. The
methodology characterises the entire distribution of observations rather than
focusing on the representative firm. This type of analysis is shown to deliver greater
insight, especially in the analysis of the link between firm size and systematic risk.

Aside from providing robust evidence that the convergence of systematic risk is
driven by the behaviour of firms rather than by flaws in the estimation techniques,
this paper develops several interesting relationships between the systematic risk of
equity returns and characteristics of firms. For example, firms with extremely high
systematic risk and firms with extremely low systematic risk both have a relatively
high probability of being restructured compared to firms with systematic risk that is
closer to the market average. This paper also shows that larger firms and older firms
tend to have systematic risk exposure that is closer to the market average than do
smaller and more recently listed firms. Together, the wealth of empirical regularities
are strongly suggestive that systematic risk is manipulated within firms. The
apparent relationships between systematic risk and firm characteristics reinforces
this message because they would not arise if the observed behaviour of systematic
risk was driven by estimation techniques alone.

The remainder of this paper is structured as follows. Section 2 examines the older
literature associated with tests of market efficiency and asset-pricing models. This
examination is necessary to understand many of the issues addressed by an
alternative methodology, presented in Section 4, for analysing systematic risk
convergence. Section 3 describes the techniques used to estimate systematic risk for
each month and firm in the dataset. It describes the data used and documents some
of the more elementary features of the systematic risk estimates. Section 4 presents
the key findings, beginning with a thorough characterisation of the time-series
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behaviour of systematic risk. The systematic risk estimates are then related to other
properties of equity returns and, importantly, to the size and the age of firms.
Finally, Section 5 summarises the findings and ties them into the conclusion that
systematic risk is being manipulated by firms.

2. Is Systematic Risk Convergence a Statistical Artefact?

To date, attention has focused on the behaviour of a particular estimator of
systematic risk, popularised in the late 1960s and early 1970s by empirical studies
of the Capital Asset-pricing Model (CAPM). Before describing the early evidence
of systematic risk manipulation, it is necessary to discuss how the CAPM as
developed by Treynor (1961), Sharpe (1964), Lintner (1969), Mossin (1969), and
Black (1972) is fundamentally related to measures of systematic risk.

The CAPM is a single-period model of asset returns, based on the mean-variance
optimisation of Markowitz (1959) and the equilibrium assumption that markets
clear. Mean-variance analysis delivers two-fund separation such that the expected
return on any minimum-variance portfolio can be expressed as a linear combination
of the expected returns on any two other distinct minimum-variance portfolios. In
the zero-beta CAPM of Lintner and Black, the two minimum-variance portfolios of
interest are the market portfolio and the zero-beta portfolio (the portfolio with zero
correlation with the market portfolio). Alternatively, in the standard CAPM, the two
minimum-variance portfolios of interest are the market portfolio and the risk free
security. The market clearing condition implies that the return on the market
portfolio is efficient in the sense that it is the portfolio with the minimum variance,
given its expected return.

The CAPM defines a useful empirical measure of an asset’s systematic risk. This
measure of systematic risk is the coefficient, βi , on the market portfolio’s expected
return in the equation defining the equilibrium relationship between excess returns
on the firm and excess returns on the market:

( ) ( )E r r E r rit zt it mt zt− = −β (1)
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where rit  is the return on asset i, rzt  is the return on the risk free or zero-beta
portfolio and rmt  is the return on the market portfolio.

To estimate the relationship between returns (with its CAPM interpretation), several
substantial steps must be taken. First, Equation (1) must be converted from its
ex ante form by replacing the expected returns with observed data. This conversion
implicitly assumes that the rate of return on any asset is a ‘fair game’ so that, over
many realisations, the expected return will equal the average return. In other words,
expectations are not biased. With normally distributed returns and independent
expectation errors, this fair game assumption delivers an ex post equation:

( )r r r rit zt it mt zt it− = − +β ε (2)

It is also necessary to identify and measure the return on the market portfolio so that
it can be used as a regressor on the left-hand side of Equation (2). In this regard, rmt
is often approximated by an average return on the entire equity market. Then, in a
population regression, βit  is estimated by:

( )
( )

$ ,~
~βit

it mt

mt

Cov r r
Var r

= (3)

where ~rmt  is the proxy for rmt . Clearly $βit  is a positive linear transformation of the
covariance between firm i’s return and the proxy for the market return. In this way it
can be interpreted as a measure of systematic risk.

As Roll (1977) points out, the market portfolio includes all possible assets.
Specifically, it is not sufficient to use an average of returns within the equity market
alone. Roll shows that the only valid way to test the CAPM is to test whether the
true market portfolio is mean-variance efficient. Because the true market portfolio is
impossible to construct, Roll concludes that standard CAPM testing strategies, using
proxies for the market portfolio, are uninformative.

However, this caveat on the literature testing the CAPM does not interfere with the
usage of estimated betas in Equation (2) as measures of systematic risk. Interpreting
the betas in Equation (2) as measures of systematic risk does not depend on a
market-clearing condition or mean-variance efficiency of the approximation for the
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market return. Thus, approximating the market portfolio with the value-weighted
average return on the equity market does not interfere with the interpretation of the
betas, estimated from dynamic versions of Equation (2), as measures of
market-wide or systematic risk.

Given that the CAPM yields a useful measure of systematic risk, one would expect
variations in systematic risk to be evident in studies that attempt to estimate
Equation (2). During the period of intensive testing of the CAPM in the 1970s and
early 1980s it was widely observed that estimated equity betas evolve through time
to eventually exhibit systematic risk characteristics that are similar to those of the
entire equity market.1 More precisely, in sequential sub-samples, estimates of beta
tend towards unity.2 Black, Jensen and Scholes (1972), Blume and Friend (1973),
and Fama and MacBeth (1973) refer to this phenomenon as beta convergence.
These studies all test the CAPM in two stages because of a suggestion by
Blume (1970) that measurement error in estimates of equity betas for individual
securities is ameliorated to some extent by using the equity returns on portfolios
formed from groups of firms in the sample. First, equity betas are estimated for all
stocks individually. The stocks are ranked by these initial beta estimates and
grouped into a number of portfolios. The ranking process is intended to retain
variation in equity betas across portfolios of firms.

In the second stage, a subsequent sample period is used to compute betas for each
portfolio. These portfolio betas are then used in cross-section regressions explaining
excess rates of return using equity betas and a number of additional explanatory
variables that should not be significant under the assumptions of the CAPM model.
Typically, these and other studies have found that there is a consistent tendency for
the second-stage beta estimates to be less extreme than the first-stage beta
estimates. The first stage beta estimates of portfolios can be shown to be the
average of the first stage betas estimates of the firms comprising the portfolio.

The most popular explanation for this convergence phenomenon is that it is driven
by measurement error. This explanation has Bayesian foundations. Fama and
                                        
1 Contributors to this literature include Friend and Blume (1970), Black, Jensen and

Scholes (1972), Miller and Scholes (1972), Blume and Friend (1973), Blume and
Husic (1973), Fama and MacBeth (1973), Basu (1977), Reinganum (1981), Litzenberger and
Ramaswamy (1979), Banz (1981), Gibbons (1982), Stambaugh (1982) and Shanken (1985).

2 The beta for the market return is unity by definition.
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MacBeth (1973, p. 615) explain that forming portfolios of securities that have been
ranked by their estimated betas ‘causes bunching of positive and negative sampling
errors within portfolios’. The intuition is that, again from Fama and MacBeth, ‘in a
cross section of $βi , high $βi  tend to be above the corresponding true βi  and low

observed $βi  tend to be below the true βi ’. A firm is grouped into a low beta
portfolio either because it had a low beta or because its beta estimate had a negative
measurement error. Thus negative measurement errors are bunched in the low beta
portfolios. Similarly, the positive measurement errors tend to be bunched in the high
beta portfolios. When new betas are estimated for the portfolios in subsequent time
spans, the measurement errors within each portfolio have zero expected value and
so a convergence of extreme portfolios towards the market beta should be observed.

However, other authors have discovered a similar convergence phenomenon when
estimating the equity betas of individual firms rather than portfolios. Klemosky and
Martin (1975) show that naive, no-change forecasts of a firm’s beta often have
twice the mean-square forecasting error of methodologies that explicitly adjust
OLS beta estimates towards the market beta. This paper and other studies focus on
the betas of individual firms suggesting that portfolio formation is not the only
reason for the convergence witnessed in CAPM tests. This finding has provoked a
more focused study of the convergence phenomenon. Is beta convergence a
statistical artefact or a behavioural phenomenon?

The statistical artefact argument has been made rigorous in Blume (1975) and
Vasicek (1973) using the Bayesian concept of prior distributions. Both argue that in
the cross section we tend to observe equity betas that are normally distributed
around unity and concentrated between zero and two. Using this prior information
to form a Baysian estimator of equity betas should eliminate the measurement error
bias because it is a weighted average of the classical estimator and the prior
expected value of the equity beta.3 The weight placed on the classical estimator
depends on the information content in the data sample. With such short data
samples being used to estimate equity betas in tests of the CAPM, the sample
likelihood function does not dominate the prior information and so the prior
information will adjust estimates of equity betas toward unity. This adjustment

                                        
3 The weighted average property of the Baysian estimator requires the loss function to be

quadratic.
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should eliminate the measurement errors that have affected previous tests of the
CAPM.

Using portfolios of equity securities, Blume (1975, p. 785) tests whether the beta
convergence observed in the CAPM tests can be entirely explained by the omission
of prior information and finds that the convergence tendency of adjusted estimates
of equity betas remains significant at the five per cent level. The test is of the null
hypothesis that a cross-section regression of adjusted betas in period one on actual
betas in period two yields a slope coefficient equal to zero. Blume concludes that ‘a
major reason for the observed regression [to unity] is real non-stationarities in the
underlying values of beta and that so-called ‘order bias’ is not of dominant
importance’.4

Although this paper reaches similar conclusions, it does so using a substantially
different methodology. Beta estimates are obtained for individual firms rather than
for portfolios preventing measurement errors from being aggregated as in previous
studies. While betas for individual firms have large standard errors compared to the
betas of portfolios, this should not cause convergence. This paper is also
differentiated from previous work by the fact that the estimation of sequential betas
is done using the Kalman Filter which optimally updates the next beta based on the
current beta and the next observation on equity returns.

This approach, of formally modelling the variation in equity betas avoids the
contradiction, inherent in previous studies, of estimating betas under the assumption
that they are fixed in sample and then making inferences about their movements
through time. Obtaining a time series of equity betas for individual firms facilitates
characterisation of the law of motion governing the adjustments from the current
beta to the beta in the next period. It is the features of this law of motion, rather than
the types of tests conducted by Blume that form the basis of the conclusion that
equity betas tend to converge toward unity.

Despite these substantial differences, Blume’s Bayesian approach to incorporating
prior information is retained by applying a tight prior to the initial estimate of each
firm’s equity beta. The initial beta estimate is then updated using the Kalman filter
so that the prior information gets carried through to estimates of beta throughout the

                                        
4 Order bias is that bias in systematic risk estimates arising from measurement error.
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entire time dimension for each firm. This use of prior information prevents
measurement error from being related to the extremeness of beta estimates.

This paper also goes beyond the previous studies of equity beta convergence by
characterising the relationships between the distribution of equity betas across firms
and observed characteristics of firms. The measurement error view of beta
convergence cannot explain the increased probability of delisting for firms with
extreme betas or the relationship between the concentration of betas and the size
and age of firms. By demonstrating that such relationships are a robust feature of the
data, the view that beta convergence is a statistical artefact is more strongly refuted.

Remaining is the alternative hypothesis that beta convergence is behavioural. This
theory is strongly supported by Blume (1975) who finds that the order bias arising
from measurement error in the context of portfolios of securities explains less than
half of the observed convergence in equity betas. He concludes that firms with
extreme betas seem to take on investment projects with less extreme risk
characteristics. This conclusion ignores the many channels through which firms may
adjust the risk characteristics of their equity returns by manipulation of their
financial structures. Equity issues, leveraged buy-outs and equity carve-outs are
examples of such manipulations that will influence the systematic risk profile of the
income stream generated by equity holdings. Nonetheless, the essential point that
beta convergence is not merely a statistical artefact remains clear. The next two
sections investigate Blume’s results in a more sophisticated manner, avoiding the
many difficulties plaguing beta estimation using portfolios of securities.

3. Characterising Systematic Risk

Analysis of the systematic risk associated with equity returns begins by obtaining
minimum mean-square estimates of equity betas for each observation, indexed by i
for the firm and t for the month. The model is a generalisation of the CAPM type
relationship used to discern the systematic risk component in equity returns, βit mtr ,
from the idiosyncratic component, εit :

r rit it it mt it= + +γ β ε (4)
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where rit  is the equity return for firm i, rmt  is the value-weighted average return on
the NYSE, including all distributions of income such as dividends and bonuses.

How is it possible to estimate the separate equity betas for each observation as is
necessary to capture the cross-section and time dimensions of equity betas? The
answer is that a substantial structure needs to be placed upon the model defining
equity betas. Specifically, the coefficients, γit  and βit , are assumed to adjust
through time according to the transition equations:

γ γ
β β η

it it

it it it

=
= +

−
−
1

1
(5)

The intercept coefficient, γit , is time invariant in the sense that it is not affected by
a shock in each period whereas the slope coefficient, βit , is a random walk process,
adjusting by the shock, ηit , in each period. It is assumed that the idiosyncratic

shocks to returns are normally distributed with mean zero and variance, σ εi
2 .

Likewise, the shocks that change the beta coefficient from period to period, ηit , are

assumed to be normally distributed with mean zero and variance σ ηi
2 . Further, Both

shocks are assumed to be independently and identically distributed through time and
are independent of each other.

From an econometric perspective, Equations (4) and (5) define a state space form
that can be estimated using the Kalman filter to extract a sequence of betas for a
given vector of hyper-parameters (see Harvey 1989). Equation (4) is the
measurement equation and Equation (5) is the transition equation. Constrained
maximum likelihood methods are then applied to the log-likelihood function formed
from the resulting prediction-error decomposition. The model is an extension of the
random walk with noise model in Harvey (1989, p. 37) allowing for an explanatory
variable with a time-varying parameter. By imposing this structure on the betas, the
problem of estimating betas for every time period is reduced to one of estimating
only σ εi

2  and σ ηi
2 . When initialising the Kalman Filter, it is necessary to specify the

current ‘state’ of the system. This paper assumes that the initial intercept is zero
with a diffuse prior while the beta coefficient is unity with a prior variance of
0.25 which approximately matches the cross-sectional variance of betas around
unity observed by Vasicek (1973).
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It should be noted that the random walk transition equation for βit  prevents the beta
extraction model from imposing any form of mean reverting behaviour. Rather, the
equity betas have been estimated under the null hypothesis that betas do not
converge. This strengthens the conclusions, drawn in the next section, that betas do
exhibit convergence to unity.

A generalisation of the model would allow the intercept to vary over time as well as
the equity beta coefficient. This generalisation is rejected by the data which cannot
distinguish between shocks to the intercept and the idiosyncratic shocks to returns in
the measurement equation, εit . Stationary processes for the equity betas were also
explored. However, in the majority of cases, the auto-regressive coefficient on the
lagged slope coefficient in the state equation approaches unity when maximising the
log-likelihood function. While the density of betas appears to be stationary, the
samples used for firms are too short and high frequency to capture their mean
reversion.

Given estimates of the hyper-parameters and applying the fixed-interval smoother of
Jazwinski (1970, pp. 216–217) to condition on the full set of observations, t=1… T,
yields estimates of $βit  for all observations. The smoothing process is required to
ensure that the precision with which betas are estimated is independent of their
placement in the time dimension of the sample.

3.1 The Data

The time-varying parameter model described above is estimated for every firm with
consecutive data for one year or more. This reduces the number of firms in the
sample from 4 343 to 3 992. It also means that inferences from this study are only
applicable to firms that survive the first year after their initial public offering (IPO).
Using firms with only twelve months of data could give beta estimates that are very
imprecise given that 1 004 firms in the sample have between 12 and
60 observations. However, the imprecision in their beta estimates should not lead to
evidence of beta convergence. While the imprecision will overstate the mobility of
equity betas, it will not bias the results toward beta convergence because of the tight
initial prior around unity. The tight prior will tend to force firms with uninformative
data to have equity betas that start close to unity and diverge through time.
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To implement the beta estimation process, the market return is proxied by the
value-weighted average return on the NYSE. In light of Roll’s (1977) critique, using
the value-weighted average return on the NYSE as a proxy for the market limits the
implications of this work for the CAPM. However, this paper does not attempt to
advance the literature on CAPM testing. Rather, the estimates of the equity betas
are interpreted as measures of covariation between the return on an individual firms’
equity and the returns on the equity market. To the extent that these equity betas are
related to features of firms, the use of the value-weighted average return on the
NYSE does not flaw the analysis.

There are several reasons why using the value-weighted average return on the
NYSE is preferable to using more complex measures of market performance. First,
managers and investors can easily compare firm performance to that of the
value-weighted average return on the NYSE. This makes direct endogenous
responses of firms to their equity betas more plausible. More complex
characterisations of the market portfolio (e.g. incorporating fixed income assets, real
estate and even non-marketable assets) which should be used to test the CAPM,
may not be as relevant to the investigation of firm behaviour precisely because they
are not easily observed by firms. Alternative covariation benchmarks like that used
in Breeden’s (1979) consumption CAPM, are also less relevant, despite their
sophistication, because of the difficulties in adjusting consumption data to obtain a
reasonable measure of consumption flow. A second point in favour of using the
value-weighted average return on the NYSE is that Fama and French (1992) report
that it yields similar results to using the broader valued weighted equity return on
NYSE, AMEX and NASDAQ listed firms.

One way in which this paper differs from the literature testing the CAPM is that
betas are constructed using raw, rather than excess, returns. Before presenting these
betas, it is worth emphasising how small an effect this has for each firm. Figures 1
and 2 graph the standard errors for the measurement equation and transition
equation respectively. They show the estimates computed using raw returns on the
horizontal axis against those computed using excess returns on the vertical axis.
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Figure 1: σ εi  Comparison
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Figure 2: σ ηi  Comparison
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The fact that both of these figures approximately form a 45° line suggests that the
choice of using raw or excess returns is not going to influence results significantly.
This suggestion was verified by explicitly generating the reported results using
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excess returns. Raw returns have been made the focus of attention to clarify the
interpretation of equity betas as measures of co-movement between firm
performance and the performance of the entire equity market. Estimating equity
betas using raw returns also de-emphasises any contribution being made to the
asset-pricing literature.

3.2 Estimates of the Equity Beta Models

Although reporting the maximum likelihood estimates for each of the firms is
uninformative, it is possible to estimate density functions showing how each of the
hyper parameters, σ εi  and σ ηi , is distributed across firms. These estimated density

functions are shown in Figures 3 to 5. To interpret the density functions, it is
important to know how they have been constructed.

The density functions are estimated by pooling across firms and using
non-parametric kernel-density estimation as discussed in Silverman (1986).
Intuitively, the density estimate is a smoothed histogram wherein each observation
in the histogram is replaced by the kernel function. The kernel function is simply a
continuous, differentiable function that integrates to unity. In other words, it is a
density function itself. In this paper, the standard normal distribution is used as the
kernel function. The individual kernel functions, one for each observation, are
integrated to obtain the estimate of the population density from which the sample
has been drawn. By replacing each observation with the kernel function, this density
estimate is continuous, smooth and it integrates to unity.

Formally the kernel density estimate at x of random variable X is given by:

( )$f x
nh

K x X
h

i

i

n
= −



=

∑1

1
(6)

where, Xi is the ith realisation in the sample, h is the window width, n is the number
of observations in the sample and K(⋅) is the kernel function.

The smoothness of the density estimate depends upon the choice of the smoothing
parameter, h, referred to as the window width. This parameter is a scalar value for
univariate density estimation. It defines the extent to which the probability mass
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associated with each observation is smoothed out over the support of the density.
The larger the window width the more smoothing occurs in the estimation procedure
because each observation is spread over a wider region of the support. In most cases
greater smoothing reduces the variance of the density estimate while increasing the
bias.

When constructing the density estimates, a subjective approach to window width
selection is adopted. The subjective approach is recommended by Silverman (1986)
in situations where interest focuses on the shape of the density rather than on
applying more formal non-parametric inference techniques. Experimentation
suggests that the information content of the univariate density estimates is
unaffected over a wide range of window widths.

The estimated density functions in Figures 3 to 5 are suggestive of the range of
parameter values obtained across the sample of firms. For example, Figure 3
indicates that for most firms, the standard deviation of idiosyncratic shocks to equity
returns is less than 0.15. Likewise, from Figure 4, the shocks to equity betas for
most firms have a standard deviation below 0.025. The density functions provide a
feel for the location and dispersion of the hyper-parameter estimates. It is clear from
Figure 5 that the majority of firms have very low signal-to-noise ratios, σ ση εi i/ ,

implying that betas generally adjust very slowly compared to the overall volatility of
equity returns. However, the estimated signal-to-noise density has a substantial
upper tail with a few extreme firms having signal-to-noise ratios above one. The
hyper parameters in these cases are usually very imprecisely estimated.
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Figure 3: Density of σ εi
The window width is 0.01
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Figure 4: Density of σ ηi
The window width is 0.01
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Figure 5: Density of σ ση εi i/
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3.3 Equity Betas and Other Characteristics of Equity Returns

Additional information about firms’ equity returns is provided in the form of
densities of equity betas and the standard errors of estimated equity betas. The
standard errors of the equity beta estimates are computed directly from the sequence
of state variance-covariance matrices obtained for each firm. The data has been
arbitrarily broken up into the sub-samples: 1926–50, 1951–75 and 1976–92. A
visual comparison of the densities in Figure 6 and in Figure 7 is an informal means
of examining the assumption that it is valid to pool observations across the entire
time dimension.

The density functions generated for different time periods are fairly homogenous,
confirming the validity of pooling across time. Stability of the densities through time
was formally tested using the Kolmogorov (1933) and Smirnov (1939) test for
which critical values are tabulated in most textbooks on non-parametric testing
methods. These tests contradict the visual message that the densities are similar by
powerfully rejecting the null hypothesis that the densities are stable through time
even at the one per cent level in a two-sided test. The importance of the rejection of
the null hypothesis is difficult to assess because it is driven by the extremely high
power afforded by the large dataset. The rejection of the null hypothesis is a
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common phenomenon with large datasets and is an implication of the fact that null
hypotheses are statements of equality that are almost never going to be true.

Figure 6: Equity Beta
The window width is 0.1
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Figure 7: Standard Errors of Estimated Equity Return Betas
The window width is 0.02
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Figure 6 shows that the vast majority of betas lie between zero and two, though
extreme observations are observed on both sides of this range. The concentration of
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beta estimates around unity is consistent with the statistics on portfolio betas
discussed in Fama and French (1992). It is also consistent with the cross-sectional
densities described in Vasicek (1973). These consistencies support the validity of
the adopted beta estimation methodology.

Figure 7 shows the precision with which betas of individual firms have been
estimated. With standard errors averaging 0.25 for the entire sample and having a
standard error themselves of 0.13, it is clear that the betas are imprecisely estimated.
It should be noted that this lack of precision in individual beta estimates will affect
the conclusions to be drawn about beta mobility. This is because, although
individual firm’s betas may be estimated with substantial error, these measurement
errors will be highly correlated through time for given firms. In the extreme case
where the measurement error is constant through time, for a given firm, the
measurement errors will have no impact on the representations of beta mobility in
the next section. As the serial correlation of beta measurement errors declines, the
estimated laws of motion for betas will overstate beta mobility. However, it will not
lead to an overstatement of the extent to which betas have a tendency to converge to
unity given the tight prior around unity imposed on the beta estimation procedure.

4. The Stylised Facts

The next analytical stage is intended to estimate the relationships between equity
return behaviour and both previous equity return behaviour and observed firm
characteristics. This section presents non-parametric representations of these
relationships. Bivariate and conditional densities are estimated, relating equity betas
both to their own lagged values and to observed characteristics of the firms. These
densities are estimated by pooling across both firms and time. A key benefit of using
estimated densities is that many of the econometric difficulties encountered in trying
to model the ‘representative’ firm or portfolio can be avoided. Banz (1981)
describes and addresses many of these difficulties within a linear regression
structure.

4.1 Computing the Law of Motion for Beta

The law of motion for equity betas is characterised as a first-order Markov process
with the current equity beta defining the current state. This law of motion describes
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the density from which the next period’s equity beta is drawn, conditioning on the
value of the equity beta today. The entire law of motion is then just the full set of
conditional densities, one for each possible value of the current equity beta.

The conditional densities are obtained by using the standard kernel density
estimation techniques described in Silverman (1986). First, the bivariate density of
( , )β βit it k+  is estimated where k is the number of months taken for a single
transition from one value of beta to another. The marginal density of βit  can then be
obtained by integrating out βit k+  from the joint density. Next, the densities of
βit k+  conditional on a particular value of βit  can be computed by dividing the joint
density at ( , )β βit it k+  by the value of the marginal density at the chosen value of
βit . Obtaining this conditional density of the next period’s equity beta, for each
possible value of the current equity beta, yields the desired law of motion.5

A substantial complication arises in estimating the bivariate densities for the current
and future equity betas because of the possibility that firms get delisted. Before
presenting the estimated laws of motion, the method for handling firms that get
delisted must be understood. This complication is discussed below.

4.2 Delisting: The Absorbing State

Firms are delisted for a variety of reasons. These reasons include:

1. merger with another company;

2. share issue exchanged for share issue trading elsewhere;

3. liquidation of the firm; and

4. being dropped from the exchange for a variety of reasons, generally with a high
probability of management upheaval.

                                        
5 As in the univariate case, the window width needs to be selected when estimating the bivariate

density. In the most general case for bivariate densities, the window width is defined by a
2×2 smoothing matrix. For most applications, only the diagonal elements of this smoothing
matrix need be non-zero. Following standard practice, the smoothing matrix is diagonal for the
density estimates presented below. The diagonal elements of the smoothing matrix determine
the amount of smoothing across the two dimensions of the data. Again, the window widths
have been chosen subjectively following the recommendations of Silverman when estimating
densities for purposes of visual inspection.
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Figure 8 shows the number of observed delisting in each category.

Figure 8: Number of Occurrences of Each Type of Delisting
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In all cases, the delisting marks the end of equity return observations from which
betas can be estimated. This means that, given the current beta, the firm can either
have an equity beta in the next period or be delisted. The possibility of being
delisted adds an extra element to the distribution of possible outcomes for the firm
in the next period. Because this extra element is discrete, special care must be taken
in estimating the laws of motion for equity betas because the kernel density
estimation techniques are only useful for distributions with continuous support.

The potential that firms get delisted means that the bivariate density must be
constructed from two components. First, the joint density is estimated using all of
the observations for which firms are not delisted. Second, the density of current
equity betas is estimated for all firms that are delisted in the next period. The mass
in each these two densities is then scaled by the number of observations used in
their construction relative to the total number of observations available to ensure
that full joint density, taking into account the possibility of being delisted, integrates
to unity.



21

4.3 The Laws of Motion

The one-month-ahead law of motion, for firms that are not delisted, is shown in
Figure 9. It is represented using a contour plot where the contours are numbered to
indicate their height (three dimensional surfaces fail to represent these functions
informatively because of their extreme slope in some regions). In most figures, the
shape of the function will be a diagonal peak running from lower left to upper right.
The one-month-ahead law of motion, for firms that are delisted in the next period
has been graphed separately in Figure 10. Figures 9 and 10 together describe the full
law of motion.

Figure 9: One-month-ahead Law of Motion
The window width is 0.1
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If the evolution of equity betas is not dependent upon the current beta then any
horizontal cross-section taken through Figure 9 for a given current value of beta
would look identical to each other. A vertical ridge running down Figure 9 with a
peak on unity would be an extreme example of convergence, with the beta in one
month’s time being unrelated to the beta today. A ridge along the 45° line from
lower left to the upper right would indicate no convergence.
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Figure 10: One-month-ahead Probability of Being Delisted
The window width is 0.1
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The law of motion depicted in Figure 9 is much closer to the latter characterisation
with the main feature being a ridge along the 450 line. However, the contour lines do
exhibit some skewness in the conditional densities of equity betas next month for
firms with extreme equity betas today.

For example, consider a firm with a beta of 3 today. Then, reading horizontally
across the contour plot from 3 on the vertical axis suggests that the probability
density for that firm’s beta next month is negatively skewed, toward unity. This can
be inferred from the fact that the contour lines are wider apart on the left of the ridge
running diagonally across Figure 9 in the vicinity of the beta equals 3 horizontal
cross-section. This evidence is consistent with beta convergence toward unity. This
is because extreme betas today imply a greater probability of less extreme betas
next month compared to the probability that the beta next month will be more
extreme.

Figure 10, showing the probability of being delisted within the next month
conditioned on today’s equity beta, underpins the claim that firms with more
extreme betas have a higher probability of being delisted in the near future.
Although the risk associated with betas below unity is greater, the U-shape of this
component of the law of motion is clear even within the more typical beta range,
0–2.
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Assuming that delistings are detrimental to management because of the potential
loss of incumbency, Blume’s (1975, p. 794) conclusion that ‘part of this observed
regression tendency represented real nonstationarities in the betas of individual
securities’ may well have a substantive underpinning. Managers may be driving the
beta of their firm toward unity in an effort to reduce the probability of delisting. The
evidence in this paper goes further than Blume who was unable to identify potential
driving forces behind the convergence of systematic risk characteristics. Figure 10
embodies a motive for this observed convergence behaviour.

Note also that, even though the risk of delisting is small, this is the risk of being
delisted over a very short time horizon. The U-shaped relationship between betas
and the risk of delisting is made more remarkable by recognising that most firms
rapidly shift their beta back towards unity. By reacting to the risk of being delisted,
firms increase the expected time to delisting, conditional upon the current beta. If
firms did not react endogenously to their betas, the fraction of firms being delisted
from the extreme beta states would be considerably greater.

The skewness of next period’s conditional equity beta density for extreme current
equity betas manifests itself as a pair of kinks in the ridge running along the 45° line
in the laws of motion. The more sharply kinked the ridge becomes for extreme
current betas, the more powerful the tendency toward convergence.

The kinks indicating convergence tendencies are much more prominent in the one
and five-year-ahead laws of motion shown in Figures 11 and 13. These components
of the laws of motion have been estimated directly from the data rather than by
iterating forward the one-month law of motion to determine the conditional densities
of future betas after undergoing the transitions implied by the one-month law of
motion. This has been done because of a bias in the estimation of the laws of motion
for betas currently in the vicinity of unity. The mobility of betas near unity is very
low, as indicated by the fact that the ridge in the law of motion is nearly degenerate
between 0.5 and 1.5. The bias arises from the fact that a fixed window width is used
when estimating the bivariate density functions for current and future equity betas.
There is a trade-off between using a window width wide enough to give an
informative characterisation of the relatively diffuse densities for extreme betas and
using a window width narrow enough to accurately represent the near degenerate
density for betas near to unity. A consequence of this bias is that iteratively applying
the laws of motion gives a misleadingly rapid adjustment rate.
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In both of these laws of motion, there continues to be high persistence for betas near
unity and very low persistence for more extreme betas. Outside the 0–2 range for
beta today, there is almost no persistence evident over a 5-year time horizon. This is
powerful evidence of beta convergence, despite the lack of a formal statistical test
against the null hypothesis that the conditional beta densities of extreme betas are
not skewed toward unity.

Figure 11: One-year-ahead Law of Motion
The window width is 0.1
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Finally, note that Figures 12 and 14 confirm the U-shaped relationship between
equity betas and the probability of being delisted in the next period.
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Figure 12: One-year-ahead Probability of Being Delisted
The window width is 0.1
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Figure 13: Five-year-ahead Law of Motion
The window width is 0.1
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Figure 14: Five-year-ahead Probability of Being Delisted
The window width is 0.1
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4.4 The Ergodic Beta Density

As a secondary check on the density dynamics described above, it is possible to
estimate the ergodic density of equity betas across firms from the law of motion.
The ergodic density can be interpreted as the long-run cross-sectional density of
betas that would obtain if the estimated law of motion were the true law of motion.
It is constructed by iteratively applying the one-step-ahead law of motion to obtain
the infinite step ahead law of motion. Under certain regularity conditions on the
estimated law of motion, this iterative process converges such that the conditional
density of the infinite step ahead equity beta is independent of the current equity
beta. This conditional density is the ergodic density. If this ergodic density is similar
to the sample density of betas, then the ergodic density provides corollary evidence
that the density dynamics, described in the previous subsection, are a reasonable
characterisation of publicly listed firms’ equity returns.

To generate the ergodic density, assumptions must be made regarding the betas of
newly listed firms because the laws of motion include a probability that firms get
delisted. According to the estimated law of motion, some mass of firms becomes
delisted in each period. Without introducing new firms to offset those that are
delisted, the probability mass of listed firms would dwindle to zero and the ergodic
density would just indicate that all firms end up being delisted which is
uninformative. To replace the mass of firms that get delisted with every iteration of
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the law of motion several assumptions need to be made. Specifically, it is assumed
that:

• new firms exactly replace old firms so that the total number of firms is unaltered;
and

• the betas of new firms are drawn from the empirical density of equity betas for
newly listed firms shown below.

Note that the probability density is slightly tighter around unity for newly listed
firms (Figure 15). This is an artefact of the tight prior around unity imposed on the
beta state vector at time zero in the estimation process. This result is reversed if a
diffuse prior is used. Imposing the artificially tight prior strengthens the empirical
evidence for beta convergence, given that betas are held artificially close to unity at
the beginning of the sample. Without beta convergence being a feature of the data,
this mild bias imposed on the initial betas would generate a finding of beta
divergence. Also note that the density of betas for firms just prior to delisting (also
shown in Figure 15) is more diffuse than the equity beta density estimated using all
available data. This is the feature in the data driving the U-shaped probabilities of
delisting conditioned on beta, shown in the laws of motion.

Figure 15: Beta Densities
The window widths are 0.1
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Thus, the ergodic density is estimated by iterative application of the
one-month-ahead law of motion, augmented by the equity beta density of newly
listed firms. This procedure yields the estimated ergodic beta density in Figure 16.

Figure 16: Ergodic and Actual Beta Densities
The window widths are 0.1
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This estimated steady-state suggests that the density of betas is unimodal and highly
concentrated around unity. This pattern is very similar to the prior density suggested
by Vasicek (1973) and it closely matches the empirical density of equity betas
obtained by Fama and French (1992) using quite different estimation techniques.
These similarities represent corollary evidence that the equity beta estimation
methods used in this paper are not capturing a substantially different aspect of
equity return behaviour to that captured in the previous literature. It is also
confirmatory to observe that the limiting density predicted by the estimated laws of
motion is almost exactly the same as the observed cross-section density. It is clear
that the forces for convergence do not collapse the cross-section density to a mass
point at unity. Instead, the convergence tendency is offset by shocks to existing
firms and by the listing of new firms.

What can be inferred from the estimated laws of motion for equity return betas?
Clearly, the equity beta convergence found by Blume (1975) is strongly supported.
The laws of motion also suggest a quite robust relationship between betas and the
risk of being delisted in the near future. The remainder of this section explores some
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more obvious relationships between equity betas and characteristics of firms that
further emphasise that equity beta convergence is not a statistical artefact caused by
measurement error.

4.5 Firm Size and Betas

In the same way that the density of next period’s beta can be computed, conditional
on the current beta, densities of current betas can be estimated, conditioning on firm
size. As in Banz (1981), firm size is measured as the market capitalisation of a firm
in period t relative to the average market capitalisation of all NYSE listed firms in
period t.
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(7)

where Sit  is firm i’s size in period t and Cit  is the firm’s market capitalisation and
Nt  is the total number of firms in existence in period t. This normalisation of market
capitalisation means that firm sizes are directly comparable across the time
dimension, unlike the logarithmic transformation to market capitalisation applied in
Chan and Chen (1988) and Fama and French (1992).

Figure 17 shows that larger firms have a tighter density of equity betas around unity.
The key feature in Figure 17 is the contrast between the conditional equity beta
density for large firms and the conditional equity beta density for small firms. This
contrast is very clear in the comparison of the conditional densities for firms that are
25 per cent of average firm size and 175 per cent of average firm size (Figure 18).

The relationship between equity betas and firm size will be partly driven by the
process of extreme beta firms self-selecting themselves out of the sample by being
delisted with a higher probability. Indeed, the relationship appears to be driven
largely by the adjustment of newly listed firms. Figure 19 is constructed in the same
way as Figure 17 using just observations occurring five or more years after the
initial listing of a corporation. Therefore, it only captures the beta/firm size
relationship for relatively mature firms. While there is still some tendency for the
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beta density to be more concentrated for larger firms, the differences are smaller
than in the case where data on immature firms is included.

Figure 17: Equity-beta Densities Conditioned on Firm Size
The window width is 0.1 for beta

The window width is 0.05 for firm size
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Figure 18: Equity-beta Densities Conditioned on Firm Size
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Figure 19: Equity Beta Densities Conditioned on Size
(Mature Firms Sub-sample)

The window width is 0.1 for betas
The window width is 0.05 for firm size
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The regularity between systematic risk and firm size appears, at first glance, to be
contrary to the evidence in Banz (1981), Chan and Chen (1988), Fama and
French (1992), and others, all of whom find that firm size and systematic risk are
strongly negatively correlated. Chan and Chen (Table I, p. 316 and Table II, p. 317)
report a correlation between beta and firm size in excess of -0.9. Fama and
French (Table I, Panel B, p. 435) document a similarly strong negative relationship.
In Figure 17, however, the dominant regularity is that firm size is negatively related
to the dispersion of equity betas around unity. A negative relationship seems, at first
glance, quite dissimilar to a collapsing density of equity betas around unity.

How do the findings reconcile? The observed negative correlation can be explained
by considering Figure 18. The cross-section equity beta density of the smaller firms
has a slightly higher modal value than that for the larger firms. More importantly,
however, the density for the small firms has a thick upper tail. This positive skew is
substantially reduced for the larger firms. In combination, the modal shift and
reduced skew explain the negative correlation. The strength of the negative
correlation arises from the portfolio formation techniques used in the previous
studies which disguise variation across betas. Consequently, these studies downplay
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the dominant feature of the data which is the reduction in the spread of the equity
beta density for larger firms.

To what extent is this relationship between the concentration of the beta density and
the size of firms driven by adjustment of firms as they age? The next subsection
explores this issue by conditioning beta densities on the time since firms first listed
on the NYSE.

4.6 Firm Age and Betas

This paper uses the number of months between the initial listing of a firm and the
current return observation as a measure of age. Firms that were already listed before
the first period of the sample are omitted in this section of the analysis. Having
established that larger firms tend to have betas near unity, it is reassuring to observe
in Figure 20 that more established firms (ones that have been listed for longer)
exhibit the same patterns. This is evidenced by the higher peak (reduced dispersion)
in the horizontal cross-sections for older firms. To the extent that older firms are
generally also larger firms, this evidence matches that of the previous subsection.

Figure 20: Equity-beta Densities Conditioned on Firm Age
The window width is 0.1 for beta

The window width is 20 for firm age (measured in months)
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The horizontal axis, representing equity betas, has been restricted to the range 0–2
to increase the informativeness of the contours. As with the relationship between
equity betas and firm size, the conditional density spreads fall as the age of firms
rises. This is clearly seen in the comparison of two conditional densities in
Figure 21.

Figure 21: Equity-beta Densities Conditioned on Firm Age
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The approximation involved in the measurement of firm age since listing ignores the
fact that many firms have a long and successful existence prior to listing. Without
this measurement error less firms would be measured as being young when in fact
they are mature. By wrongly classifying such firms, the density of equity betas for
‘young’ firms will be made more concentrated than it actually is. Thus, the
measurement error reduces the extent to which the relationship between the
dispersions of betas and the age of firms is apparent in the data.

The evidence in Figure 21 is not as convincing as that relating equity betas to firm
size because a greater fraction of observations on older firms occur in the latter part
of the sample. This is also the part of the sample that has the lowest measurement
errors in betas, based on the standard error density functions shown in Figure 7.
This, reduces the variance of cross-sectional densities of betas for older firms
compared to beta densities for younger firms. However, because the differences in
measurement error across time periods are quite small, it is unlikely that the fairly
pronounced relationship in Figure 21 is entirely spurious.
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For the youngest firms, the cross-section beta density is more concentrated than for
slightly older firms. This is a reflection of the artificially tight priors imposed on
betas in the estimation procedure. The fact that the data works against this
artificially tight prior for young firms supports the view that the relationship between
beta dispersion and firm age is not driven by measurement error issues.

5. Conclusion

The results in this paper have established the following points. There is robust and
convincing evidence that equity beta convergence is a behavioural phenomenon.
Evidence for this conclusion takes the form of estimated laws of motion for equity
betas of individual firms. By dealing with firm level data rather than portfolio data,
this study has sidestepped the complications introduced by portfolio formation while
emphasising the connection between the characteristics of individual firms and their
systematic risk.

The empirical analysis of the previous section strongly suggests that equity returns
follow a particular pattern over the corporate life cycle of publicly listed
corporations. Upon listing, a firm’s beta tends to be relatively mobile and is more
likely to be extreme relative to unity compared to firms that have been listed longer.
However, over time, newly listed firms tend to drive their betas toward unity. Those
that are not successful in forcing their beta into the range between about 0.5 and 1.5
have a substantially greater risk of being delisted than would otherwise be the case.
This life-cycle view of equity betas reinforces the behavioural interpretation of
equity beta convergence. The explanation of systematic risk convergence based on
measurement error aggregation is strongly refuted by the direct evidence from firm
level data of convergence and the robust relationship between the extent of
convergence and observed characteristics of firms.

These results raise a series of questions. While many features of equity beta (and
thus systematic risk) behaviour have been established, no behavioural model has
been provided to explain the observations about equity returns. Why should extreme
equity betas be associated with a higher risk of reduced managerial entrenchment
(delisting)? Is equity beta convergence in the interests of investors? If not, why are
investors unable to constrain the actions of those that do determine betas? Because
of the separation between the asset-pricing literature and the corporate finance
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literature, these questions are difficult to frame and answer within existing
theoretical frameworks.

The asset-pricing literature has generally taken the firm as an exogenous feature of
the economy (with notable exceptions being Brock (1982) and Cochrane (1996)
who develop asset-pricing models that explicitly incorporate profit maximising
behaviour within firms). From this perspective, there has been little point asking
why firms should alter their earnings characteristics in response to the equity pricing
consequences of their investment profile and their financial structure.

The literature exploring the economic structure of the firm has, for the most part,
developed models with asset-pricing consequences that are insufficiently rich to
capture concepts like systematic risk. In most cases, these limitations arise directly
from the partial equilibrium framework used to study the forces operating within
firms.

Models that address systematic risk convergence need to make explicit the
instruments through which firms manipulate their systematic risk. The models must
also solve the optimisation problems of the agents controlling the firms to show why
these instruments are used to drive the observed convergent behaviour in systematic
risk. The development of such models is a fruitful direction for future research.
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Data Appendix

All firm related data is drawn from the CRSP database. The market index is the
value-weighted return including all distributions (labelled VWRETD). Individual
firms’ returns, RET(t), also include all distributions such as dividends. Prices are
captured using the absolute value of the price series labelled by PRC. Note that
zeros, when no price is observed, are replaced by the mean of the next observations
on either side. Also, the absolute value of the price is used because negative values
are introduced to signal whenever the closing price is the mean of the bid ask spread
rather than an actual trading price. The number of shares outstanding is obtained
from the series labelled by CURSHR. The Standard Industry Classification (SIC)
uses the SICCD code applicable for each month.

The US three-month treasury bill rate is used as an approximation to the risk-free
rate of return because it is available at a monthly frequency back to 1934. Before
that date, it has had to be approximated by assuming no change in the risk-free rate
until the first available observation in 1934. This assumption is fairly reasonable, in
the context of this research, because interest rates on short maturity debt issues in
the US between 1925 and 1934 were extremely low. For the purposes of estimating
betas for excess rates of return on equity, the variations in these rates is of
secondary importance compared to the variation in the raw equity returns.
See Banz (1981, p. 7) for discussion of these issues.
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