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Abstract

This paper applies the methodology of Markov-switching models to describe the
inflation process in Australia in the period since the early 1960s. In contrast to
conventional modelling, the approach makes explicit allowance for the possibility of
structural change: inflation is modelled within a framework that allows endogenous
switching between simple inflation equations. The approach may be relevant to
understanding shifts in inflation expectations if the public also uses relatively simple
forecasting rules in formulating expectations. The results suggest that inflation is
reasonably well represented by relatively simple functions of past inflation and an
output gap term, with major regime changes occurring in the early 1970s and early
1990s.

JEL Classification Numbers C22, E31, O56.
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A MARKOV-SWITCHING MODEL OF INFLATION IN
AUSTRALIA

John Simon

1.  Introduction

Models of the inflation process typically specify inflation as a function of a wide set
of macroeconomic and policy-related variables including wages, import prices,
commodity prices and business cycle conditions, often involving complicated
dynamic structures. These models can be highly successful in tracking actual
inflation, given the behaviour of the explanatory variables. Recent work by de
Brouwer and Ericsson (1995), for example, shows that an error-correction model
including the variables listed above has good explanatory power for inflation in
Australia since 1977. An issue not addressed by this kind of modelling, however, is
that structural changes may have occured in the underlying processes generating
inflation, with possible implications for inflation expectations.

To address these issues, this paper applies an alternative modelling approach based
on some recent studies that use Markov-switching models to describe the inflation
process.1 The distinctive feature of this approach is the use of very simple equations
for inflation, within a framework that allows for discrete ‘regime shifts’ – ie shifts
among a set of alternative equations that can govern the inflation process at different
points in time. Specifically, Markov-switching models allow for two (or more)
processes to exist with a series of shifts between the states occurring in a
probabilistic fashion, so that shifts occur endogenously rather than being imposed by
the researcher. The modelling strategy thus imposes a simpler-than-conventional
structure on the inflation process within any given regime, but gains power to fit the
historical data by allowing regimes to change.

By removing many of the standard explanatory variables this approach clearly
ignores information contained in more conventional models. Nonetheless, the
approach may be relevant to understanding shifts in inflation expectations if it is true
that members of the public also use simple forecasting rules to formulate their
                                                                                                                                  
1 See Hamilton (1989, 1990) and Ricketts and Rose (1995).
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expectations, changing the rule when experience deviates significantly from an
established pattern. The analysis allows a number of relevant issues to be addressed.
These include the forms of simple rules that best fit the data in this kind of
framework, the frequency of regime changes and the issue of what constitutes
statistical evidence of a regime change from the point of view of an observer using
simple forecasting rules.

The results in this paper suggest that the 1970s and 1980s can be characterised by a
high-inflation process with relatively persistent deviations from the mean, although
the process is ultimately mean reverting. In contrast, the 1960s and 1990s can be
characterised as a process with a low mean and less persistent deviation from that
mean. The data choose this model in preference to one where the high inflation
1970s and 1980s are characterised by a random walk (and hence do not revert to
any particular long-run mean).

Section 2 introduces Markov-switching models and the particular model used in this
paper is specified in Section 3. Empirical results are reported in Section 4 and
Section 5 concludes.

2. Markov-Switching Models

There has been some debate in the literature about the correct characterisation of
inflation dynamics. A framework emphasising the integrated nature of inflation has
been popular for some time. An integrated process is one which is non-stationary:
shocks to the level of the series are permanent rather than temporary. This paper
makes use of an alternative time-series characterisation for inflation that allows for
distinct and differing periods of inflationary behaviour, each characterised by its
own time-series properties. This alternative approach has both intuitive and
empirical support. It describes the inflation process as being governed by two
different regimes where switches between them are based on a probabilistic
process. This approach is intuitively appealing, as the behaviour of economic time
series often seems to go through distinct phases. It is also consistent with the fact
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that inflation is often found to be integrated of order 1 (ie non-stationary) – breaks in
the mean of a series could lead to that series appearing to be non-stationary.2

The methodology employed is a ‘Markov-switching model’. A Markov process is
one where the probability of being in a particular state is only dependent upon what
the state was in the previous period. Transitions between differing regimes are
governed by fixed probabilities. Similar analysis in the literature has commonly been
univariate – no independent variables have been included in modelling the series of
interest. Initial work was done by Hamilton (1989,1990) with applications to
business cycles. Recent work by Evans and Wachtel (1993) and Ricketts and Rose
(1995) has applied the technique to inflation. This technique has several advantages,
including endogenising structural breaks and encompassing ARCH models, each of
which is discussed in more detail below. The technical details of the ‘Hamilton
filter’ estimation are discussed in the Appendix, and the particular Markov-model
specification is discussed in Section 3 below.

2.1 Structural Breaks

The Markov-switching model posits that two (or more) regimes could have
prevailed over the course of history. However, it differs from models with imposed
breaks in that the timing of breaks is entirely endogenous. Indeed, breaks are not
explicitly imposed, but inferences are drawn on the basis of probabilistic estimates
of the most likely state prevailing at each point in history.

Estimates of parameters for the two most likely regimes are generated using
maximum likelihood techniques. With the parameters identified, it is then possible
to estimate the probability that the variable of interest (in this case inflation) is
following one of the alternative regimes. This involves identifying where in the
probability distribution of each regime the observation falls at each point in time.

                                                                                                                                  
2 The point has been made by Perron (1989) and reiterated frequently within this literature.

Clearly, given enough breaks, any I(1) series could be indistinguishable from an I(0) series
around a broken trend. However, by allowing a finite number of processes, the Markov
methodology is not directly open to this sort of criticism. Also, it is still modelling the
time-series properties within each regime and obtaining estimates which are statistically
distinguishable from one I(1) series. If a series were truly I(1), it should be found to be I(1)
within each sub-period; it is only statistical error that would prevent definitive findings.
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That is, the likelihood is calculated for each possible state. The probability that a
particular state is prevailing is obtained by dividing the likelihood of that state by
the total likelihood for both states. Thus, the sum of all the probabilities will equal
one. With this estimate of the probabilities it is common to infer that a state is
prevailing when the probability estimate for that state is greater than 50 per cent. In
the models considered in this paper, values close to zero or one tend to occur,
making identification of the prevailing state relatively easy.

2.2 Inflation Uncertainty

In practice, univariate models of inflation have commonly been characterised as
having non-constant variance (commonly modelled as autoregressive
heteroskedastic errors (ARCH)).3 It is possible that these findings are related to the
common observation that inflation is more variable during periods of high inflation.
Ball (1992) posits a model where high inflation is associated with regime
uncertainty whereas low inflation is not. Consequently, he suggests that the
observation that high inflation has higher variance than low inflation reflects regime
uncertainty. Another angle on the correlation between inflation and inflation
variability is presented by Taylor (1981). His paper suggests that countries which
place a high weight on output and employment stabilisation will have
correspondingly higher and more variable inflation and vice versa. Thus, high
inflation may be associated with high variability because it is correlated with
choices by policy makers to focus on output and employment rather than inflation.

Whichever is the true explanation, regime switches, posited as the cause of higher
volatility in high-inflation periods, could result in the identification of ARCH errors
in single regime models. That is, ARCH processes suggest that volatility in one
period is related to volatility in previous periods and that this volatility changes over
time. If we allow for two possible states, one with a higher volatility than the other,
then single regime models (ie. traditional models) might incorrectly identify the
changes in volatility as symptomatic of ARCH. Instead, by correctly modelling the
regime shifts, one possible reason for the finding of ARCH errors is eliminated. The
estimation procedure thus allows us to investigate separately two questions with
respect to inflation uncertainty or variability. First, are high-inflation states

                                                                                                                                  
3 For example, Mishkin and Simon (1995) find significant ARCH in their investigation of

inflation in Australia.



5

associated with high variability of inflation? And second, are ARCH effects present
within regimes, implying that volatility within regimes tends to persist following a
shock? These issues are discussed in the light of the results obtained in Section 4.

3. Model Specification

The starting point for the model used in this paper is a simple autoregressive model
of inflation as used in earlier studies:4

πt = α + βπt − 1 + εt

(1)

where π t  is the inflation rate. Apart from the simplicity of the specification the
framework is also appealing as it can capture inflation expectations effects. The
long-run mean value of inflation in equation (1) is simply:

π =
1 − β  .

(2)

This might also be thought of as a central inflation expectation. Then, if we set
γ= 1 − β , a simple rearrangement of equation (1) into a partial adjustment
framework highlights the importance of inflation expectations:

πt = πt − 1 + γ(πe − πt − 1) + εt (3)

where πe  is the expectation of the average inflation rate as defined in Equation (2).
If people expect inflation to return quickly to its expected value then γ will be high
(putting price setting frictions to one side). If, however, people do not have firmly
anchored expectations γ will tend to be low. The extreme of this situation is when
expectations have no long-run anchor, and hence γ= 0  and inflation behaves as a
random walk.

                                                                                                                                  
4 For example, Evans and Wachtel (1993) and Laxton, Ricketts and Rose (1994).
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One justification for this interpretation is that it captures the effects of wage
demands on costs. If wage increases lead to price increases through a simple
markup model such that:

∆pt = φ∆wt + η
(4)

and wage demands are based upon expected inflation as given in equation (5):

∆wt = (1 − δ)πt − 1 + δπe + k (5)

we can see how inflation expectations should affect inflation. In equations (4) and
(5) η and k are constants that capture the influence of other variables on prices and
wages; for example, k should capture productivity effects. If people have a firmly
fixed inflation expectation then δ should be close to 1. If, however, they do not have
a firmly fixed expectation, then wage claims are likely to have a stronger
autoregressive element with δ close to 0. Reducing equations (4) and (5) yields
∆pt = (φδπ e + φk + η) + φ(1 − δ)π t − 1 which is exactly the same form as Equation
(1). Within this setup δ, which reflects expectations, has a direct analogue in
Equation (1) as the autoregressive coefficient.

The foregoing captures the central conceptual reason for regime changes within this
paper – that inflation expectations change, possibly reflecting changes in policy
objectives or in the nature of shocks hitting the system. As expectations change, the
autoregressive parameter in the above model will change. This paper identifies
periods with differing autoregressive parameters as coming from differing regimes.
Following on from this discussion we specify the general model used in this paper in
Equation (6) based on the general form of Equation (1):

π t = c(St ) + (1 − γ(St )) ⋅π t − 1 + ω (St ) ⋅Yt − 1
GAP + ε(S t )

ε t (St ) ~ N(0,σ(St )[η + φ⋅εt − 1 ])
(6)

where πt  is the quarterly underlying inflation rate, St  is the state variable (either 0
or 1), Yt

GAP  is the output gap and εt  is an ARCH process with a state-dependent
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scaling term, σ( St ) . The state variable is assumed to evolve following a standard
Markov process as described in equations (7) and (8):

Pr(St = 1 | St − 1 = 1) = p
(7)

Pr(St = 0 | St − 1 = 0) = q
(8)

3.1 Why This Form?

The form chosen is a slight modification of standard univariate models of inflation
used in previous applications of the Markov-switching methodology. An output gap
is included to improve the model by including a significant exogenous explanator,
and the ARCH process is included to capture information on the nature of inflation
uncertainty.

The inclusion of both a scaling term for the error and an ARCH process allows for
the separate identification of the reasons that errors would vary over time. A
significant scaling term would suggest that high inflation periods were associated
with higher volatility and, thus, that variability about the mean of the current regime
was proportional to the level of that mean. A significant ARCH term would seem
more indicative of regime uncertainty. That is, people would be unable to identify if
a particular shock was an example of random fluctuation or a change in regime.

3.2 Learning

When regime switches are considered, one question that can be asked is whether
people recognise the changes when they occur and modify their behaviour
accordingly. That is, how quickly do people learn about regime changes? To add to
the structure of the model and allow for a more flexible fitting of the data, a specific
learning process is introduced. This is implemented by imposing:

γ(St ) = P0β0 + (1 − P0 )β1 + β(St )
(9)
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where P0  is the estimate of the probability of being in state zero at time t and βi  is
the value of β in state 0 or 1. In this context β can be interpreted as the underlying
nature of the regime and the probability weighted terms as the expectational effect.
Thus, as the transition from one state to another occurs, more and more people learn
about the true regime and adjust their price setting accordingly. Thus, if a regime
change occurs (and β(St )  changes), yet no one recognises it, the autoregressive
parameter will move less than when a change occurs that everyone recognises.
Thus, the probability estimate generated by the model is also used as an estimate of
the proportion of people who recognise the regime change. This allows the
autoregressive parameter on the inflation process to adjust smoothly between the
two states, rather than in a discrete fashion. This should also allow the model to
accommodate some intermediate inflation state (where the probability of being in
either state is around 50 per cent). This is most useful for forecasting if we believe
that periods of intermediate inflation and regime uncertainty are possible.

One technical identification problem is introduced by the learning regime. The
model could find it hard to distinguish between an inflation process with a low
autoregressive parameter that has a low probability of occurrence and a regime with
a higher autoregressive parameter that has a high probability. Nonetheless, this is
only a problem at an instant in time. Given a longer history of observations and the
fact that maximum likelihood techniques are used, the model identifies the most
likely regimes which will, consequently, have a high estimated probability of
occurrence.

4. Empirical Results

In developing the final model reported in this paper, a number of different
specifications were estimated. The initial model (Model 1) imposes that one state is
a random walk. This is based on the work of Ricketts and Rose (1995) who found
that this was a good description of inflation for a number of G7 countries.
Importantly, it is based on their observation in Laxton, Ricketts and Rose (1994)
that ‘We tried to find a formulation that would estimate a ‘high and stable’ inflation
regime as one of the alternative states. We were not successful.’ It also addresses
the question of whether inflation, while stationary overall, has periods of non-
stationary behaviour.
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Model 2 relaxes the random walk assumption in specifying the high inflation state.
Instead, inflation is allowed to follow an autoregressive process in both regimes and
the data accept this as the preferred specification. The first regime has high and
persistent, yet stable, inflation; the second regime has low and less persistent
inflation. Even in periods of high inflation, people retain a longer-term anchor for
their inflation expectations. The work by Ricketts and Rose (1995) only identified
one G7 country with this kind of process – Germany. They comment that ‘This
result suggests that the Bundesbank does indeed have a special sort of credibility, in
that agents retain their confidence that there is a nominal anchor in the face of
inflationary pressures.’ Rickets and Rose estimate their models using annual data; it
may be that Germany is the only country that has sufficient control over inflation in
high inflation periods to be statistically distinguishable in the annual data. Our
estimates are on quarterly data, and are not strictly comparable with those in
Ricketts and Rose. Finally, unlike previous studies, we introduce the output gap as
an explanatory variable. In this way Model 3 addresses, at least in part, the criticism
that univariate models of inflation are inadequate. We also allow for learning in the
autoregressive parameter over regime shifts, which gives the model additional
flexibility in dealing with transitional periods.

The learning regime is only implemented in Model 3. This allows for the
comparison of results in Models 1 and 2 with previous international work and the
nesting of the models for hypothesis testing. All estimations are conducted over a
sample period from December 1959 to September 1995 and use an underlying
measure of inflation. The Treasury underlying measure (only available from March
1971) was spliced on to the consumption deflator to provide the longer run of data.
This was necessary because of the relatively few low inflation observations over the
period for which the Treasury underlying series is available.5 The model parameter
estimates are set out below; standard errors are in brackets. The notation follows the
standard for ARCH and st  denotes the state (either 0 or 1) in period t (state 1 is the
low inflation regime). The figures show actual inflation (grey line) and the
calculated probability that the process is in the random walk state (black line).

                                                                                                                                  
5 Qualitatively similar results were also generated using headline inflation.
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Model 1: Random Walk and AR(1)

State 0: Random walk State 1: Stable low inflation

π t
0 = π t − 1 + εt

0

εt
0 = z ⋅1.15 σt

2

(0.17)
p(st = 0 | st − 1 = 0) = 0.989

πt
1 = 0.52 + 0.25πt − 1 + εt

1

0.12( ) 0.15( )

εt
1 = z σt

2

p(st = 1 | st − 1 = 1) = 0.983

z ~ N(0,1) σt
2 = 0.13 + 0.38εt − 1

2

(0.03) (0.14)

Log likelihood = 23.92

Figure 1: Random Walk Imposed
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The autoregressive process of State 1 implies a steady-state rate of inflation of
around 2.8 per cent.6 The probability measure is quite volatile. It is possible to
smooth the series by using hindsight to estimate the most likely state in past periods;
however, this process can induce phase shifts in the probability measure. For this
reason it is not reported here. The increase in the probability of being in a random-
walk state early in the 1960s reflects the fact that inflation became too low to be
consistent with the estimated autoregressive model. That is, a random walk could
emerge at any level of inflation, not necessarily always at high levels.

Diagnostics

As the results from this model can encompass simple autoregressive models
(typically implying that inflation is integrated, or at least close to it) we test the
parameter restrictions involved.7 Unfortunately, the distribution of these statistics is
unlikely to be standard.8 Nonetheless, following the approach in other papers, we
use the likelihood ratio test statistic.9 The log likelihood of the one-state process is

                                                                                                                                  
6 That is, π ss = 0.52

1 − 0.25
 
  

 
  ∗4 ≈2.8 .

7 The simple alternative model is estimated to be πt = 0.2 + 0.85πt − 1 + εt  where εt is an ARCH
process as defined for the Markov model. This has an equilibrium inflation rate of around
5.5 per cent, the average of inflation over the estimation period.

8 The discussion of this issue revolves around the fact that some parameters are unidentified
under H0 . If this is the case, it is claimed, the usual regularity conditions justifying the χ 2

approximation do not apply. Hansen (1992) has proposed some asymptotically valid statistics
although they impose a large computational burden. Hamilton and Susmel (1994), noting the
results of Hansen, have suggested, of the χ 2  statistics, that ‘we regard these as a useful
descriptive summary of the fit of alternative models’. Nonetheless, it seems that the statistics,
provided the number of restrictions are counted properly, should be better than suggested by
Hansen. Hansen suggests that a χ1

2  test (or t-test) on the autoregressive parameter is invalid.
This is clearly true, but what is not discussed, in the context of this paper, is whether a χ3

2  test
on the joint hypothesis that p=1, q=0 and ratio=1 is invalid. With reference to Hansen (1992),
the difference between the one-state and two-state models is not the restriction µd = 0 , but the
addition of three new parameters; µd , p and q to the one state model. Based upon the
information provided in Tables 1 and 2 of Hansen (1992), a χ3

2  test would reject the Markov
model in favour of the one-state model (with a p-value of 0.19); the same result obtained from
the Hansen test and the opposite of the result from a simple t-test on µd .

9 See, for example, Hamilton and Susmel (1994).
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17.76; thus the likelihood ratio is 12.3 and should be compared with a χ3
2

distribution (with a 5 per cent critical value of 7.8 assuming standard
distributions).10 This test suggests that the Markov-switching model is a statistically
superior model of underlying inflation.

The model does, however, have difficulty choosing which state is prevailing in
recent periods (evidenced by intermediate probabilities rather than extreme zero or
one probabilities). Therefore, we relax Ricketts and Rose’s assumption that the
high-inflation regime follows a random walk. Instead, we freely estimate the
AR specification for both states (and test whether the coefficient on πt − 1  in state 0
is significantly different from 1). The results for this are presented below.

Model 2: Two Autoregressive Regimes

State 0: Stable high inflation State 1: Stable low inflation

π t
0 = 0.32 + 0.83πt − 1 + εt

0

(0.15) (0.08)

εt
0 = z ⋅1.16 σt

2

(0.15)
p(st = 0 | st − 1 = 0) = 0.987

πt
1 = 0.51 + 0.26π t − 1 + εt

1

(0.11) (0.14)

εt
1 = z σt

2

p(st = 1| st − 1 = 1) = 0.978

z ~ N(0,1) σt
2 = 0.12 + 0.38εt − 1

2

(0.03) (0.14)

Log likelihood = 27.09

                                                                                                                                  
10 The three variables which are allowed to vary in the switching model are the error variance

ratio, p and q. The error variance ratio is implicitly set at one in the single process model, p is
set to one (thus, once state 1 is entered it is never left) and q is implicitly zero (if state 0 is ever
entered it is immediately left).
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Figure 2: Two AR(1) Processes
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The model indicates a steady-state inflation rate in the ‘low inflation’ regime (State
1) of 2.8 per cent; mean underlying inflation is estimated to be 7.7 per cent in the
high inflation state. The implied probabilities of being in each state are very similar
to the previous model.

Diagnostics

By relaxing the restriction that the first state is a random walk the likelihood
function is improved. The results should be compared with a χ2

2  distribution with a
5 per cent critical value of 6.0; the test statistic is 6.3, indicating a statistically
significant improvement. As can be seen from the standard errors, the
autoregressive coefficient is approximately two standard deviations away from one.
This explains the nearness of the LM test to the 5 per cent critical value. However,
it would seem unreasonable to expect a stronger rejection of the random walk given
the expected high persistence of the high inflation state. The model is also a
significant improvement over a simple one-regime autoregressive model. The
appropriate test for this comparison is to add the likelihood ratios from the previous
two tests and compare them with a χ5

2  distribution. This gives a test statistic of
18.6, compared to the 5 per cent critical value of 11.1.
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Model 3: Output Gap Included in Both AR(1) Models

One criticism of the models developed above is that they are univariate – they do
not take account of other independent explanators. To address this shortcoming, we
estimate a third model that includes the output gap as an explanator. Import prices
were also included but these did not significantly improve the results and so were
omitted from the reported results. The output gap is measured with a Hodrick-
Prescott filter on GDP(A). In the results below, GAP is the output gap expressed as
a per cent deviation from trend. Another innovation is allowing for evolution in the
autoregressive parameter based upon learning. In the results reported below, the
autoregressive parameter is quoted as if it was certain that the relevant state was
prevailing, that is the coefficient is 1 − 2β  where β is the underlying nature of the
regime as identified earlier.

State 0: Stable high inflation State 1: Stable low inflation

π t
0 = 0.40 + 0.81πt − 1 + 0.09GAPt − 1 + ε t

0

(0.17) (0.07) (0.03)

εt
0 = z ⋅1.04 σt

2

(0.14)
p(st = 0 | st − 1 = 0) = 0.989

π t
1 = 0.54 + 0.34π t − 1 + 0.11GAPt − 1 + ε t

1

(0.12) (0.14) (0.03)

εt
1 = z σ t

2

p(st = 1| st − 1 = 1) = 0.980

z ~ N(0,1) σt
2 = 0.10 + 0.56εt − 1

2

(0.02) (0.19)

Log likelihood = 37.56
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Figure 3: Output Gap Included
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Diagnostics

Model 3 is a generalisation of Model 2 as we are allowing the parameters on GAP
to be non-zero. The introduction of learning is a change to the specification but does
not introduce any more parameters. Thus, we can compare the likelihood ratios for
these models to a χ2

2  distribution. The ratio is 20.95 – representing a statistically
significant improvement in the model. The introduction of the GAP parameter alone,
without the change in the specification to include learning, also leads to a significant
improvement in the fit of the model. To test the robustness of the parameters the
sample was stopped in 1989, before the major recent falls in inflation. The estimates
obtained were very similar to those estimated over the full sample period; the only
major difference was in the estimated probability of transition from a high inflation
state to a low inflation state. This transition probability was estimated as practically
zero, as no such transition occurs over the reduced sample period. This is hardly
surprising. Nonetheless, the other parameter estimates do not change much over the
past five years, which suggests that the results are quite robust.
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4.1 Discussion of Final Results

The results are very similar to those obtained from the univariate specifications of
Model 1 and Model 2, although an important difference is that the change to a low
inflation regime occurs about a year earlier. This provides an interesting comparison
with the Westpac-Melbourne Institute survey of inflation expectations (Figure 4) –
the only long-run series of directly measured inflation expectations available.

Figure 4: Comparison of Expectations
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It is clear that this estimated probability series precedes the change in survey
respondents' expectations (which occurred at the same time as headline inflation
fell) by around a year. It is also around a year ahead of previous models’ estimates.
Thus, this more sophisticated model picks the trend to lower inflation before the
survey respondents. While the probability estimate falls below 20 per cent in the
same period that underlying inflation falls below 1 per cent (on a quarterly basis),
this is not the sole reason for the change. Inflation had fallen to these levels before
without causing much change in the estimated probability of being in the high
inflation regime. One reason for the earlier estimated transition is the inclusion of
the output gap; the inference is that rational observers, seeing the strong growth in
output in the late 1980s without a corresponding increase in inflation, could have
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anticipated lower inflation rates if they based their forecasts on this particular
model. There is also a noticeable change in the dynamics of inflation around this
time, with shocks becoming less persistent. The survey results suggest that people
only adjusted their expectations when headline inflation fell sharply – a change
which suggests a strong backward-looking element in expectations. This model, by
including the output gap and modelling the inflation process, identifies the signs of a
changing regime much earlier than simple backward-looking expectations do.

Another interesting point about the results is that ARCH is clearly identified.
Indeed, the scaling factor on the errors is not significantly different from one. This
may suggest that the greatest cause of volatility in inflation is uncertainty about the
regime rather than uncertainty about the mean level of the current regime. This
highlights the potential that announced inflation targets have to reduce the volatility
of inflation, in that they are associated with less uncertainty about the true regime. If
people are more certain about the true state, then shocks should be recognised,
rather than interpreted as signals that inflation is moving to a new regime.

Another important point about the inflation variability results is that conditional
volatility is no higher in the high-inflation period than the low-inflation period, but
inflation is more variable. The reason for this is the explicit allowance for differing
regimes with differing shock persistence. That is, periods of high inflation are
associated with longer shock persistence, which implies that the measured variance
will be higher in these periods.11

                                                                                                                                  
11 The variance of a simple autoregressive process is σ2 (1 − β 2)  where σ2  is the variance of the

errors and β is the autoregressive parameter. As shock persistence rises the measured variance
will as well. Even if an autoregressive  model is estimated for inflation, high inflation periods
would still be identified with higher variance. This occurs because the high inflation period has
greater shock persistence than the low inflation period (as estimated in this paper) which means
that any adjustment to the variance would be biased against the high inflation period.
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The final test of this model is to check its forecasting performance. To do this, the
probability that inflation is in state 0 is projected into the future using the estimated
transition probabilities. That is:

Pt + 1
0 = Pt

0 ⋅P(st = 0 | st − 1 = 0) + Pt
1 ⋅P(st = 0 | st − 1 = 1) (10)

This is then used in conjunction with the inflation equation and actual output gap to
generate forecasts. That is, we are assuming knowledge of the path of the output
gap into the future. For the forecasts out to September 1996 it is assumed that the
output gap linearly closes to zero. The results are shown in Figure 5 below.

Figure 5: Inflation Forecasts
Quarterly percentage change
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The performance would seem to be relatively good. The only period where it misses
significantly is the transition to low inflation in the late 1980s. The reason for this is
that the late 1980s were also associated with a high output gap. Thus, when making
the forecasts, evidence had not yet arrived suggesting that the regime was changing.
On the basis of the high output gap (output above trend), inflation would have
tended to rise, hence the high forecasts. Indeed it is this divergence that leads to the
change in the estimate of the most likely state.
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4.2 Possible Extensions

While this model has achieved good results within the simple framework used, a
number of extensions are possible. The inclusion of more exogenous variables
would be one obvious extension. However, it should be noted that wages are not an
exogenous variable in the framework used in this paper – wage demands are based
upon inflation expectations. Another possible extension is to look at modelling the
transition probabilities in different ways. This would be most useful for the purposes
of forecasting. The estimates of the transition probabilities in this paper are quite
small, since there are only two transitions over the entire sample period. Other
papers have made use of time-varying transition probabilities and such an extension
of this model may yield better results and improve the forecasting ability of the
model.12 That said, the forecasting properties of the model seem relatively good, as
they are not solely based upon realised inflation rates, they incorporate the
flexibility of the learning specification and they can deal with regime shifts.

5. Conclusion

By focusing on relatively simple equations in a framework that allows regimes to
change, Markov-switching models would appear to provide a useful supplement to
conventional modelling strategies for inflation. The results suggest that, within this
framework, inflation in Australia since the early 1960s is reasonably well modelled
by a two-regime specification, with regime changes occurring in the early 1970s and
early 1990s. Within each regime, inflation in the preferred model is characterised by
a simple autoregressive process supplemented by information about the output gap.
The analysis may provide some insight into the behaviour of expectations,
suggesting that within this limited-information framework it may be rational for
imperfectly informed observers to change the forecasting rule only infrequently.

                                                                                                                                  
12 See, for example, Durland and McCurdy (1994).
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Appendix A: The Hamilton Filter and Maximum Likelihood
Estimation

The estimation method used in this paper makes use of the algorithm described by
Hamilton (1989).13 The section below provides a brief description of the procedure.
For technical details, please refer to the paper by Hamilton.

The Hamilton filter is an iterative procedure which provides estimates of the
probability that a given state is prevailing at each point in time given its previous
history. These estimates are dependent upon the parameter values given to the filter.
A by-product of this process is the likelihood function for the given parameter
estimates. Running the filter through the entire data, provides a log likelihood value
for the particular set of estimates used. This filter is then repeated to optimise the
log likelihood to obtain the MLE estimates of the parameters. With the maximum
likelihood parameters, the probability of state 0 at each point in time is calculated
and these are the probabilities that are reported in the paper.

The Hamilton Filter

The Hamilton filter starts with a vector of estimates of the probability that a
particular sequence of states has led to period t-1. That is, it starts with a 2 r ×1
vector P[St − 1 = st − 1, St − 2 = st − 2,… ,St − r = st − r | yt − 1,yt − 2,… ], where r is the length of
the path. The length that it is necessary to keep track of is dependent upon the
specification of the model dynamics. For example, in Hamilton’s paper it is
necessary to keep track of the past four states as he specifies a fourth order moving
average process. In this paper it is only necessary to keep track of the past two
states as a first order ARCH process is being used. From this vector, the probability
that St = st  is calculated by making use of the

                                                                                                                                  
13 The procedure was coded in GAUSS based on a program obtained from Thomas Goodwin,

Claremont Graduate School.
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Markov-switching probability estimates. Thus, if P St − 1 = 0 St − 1 = 1[ ]= x y[ ]
then:

P

St = 0,St − 1 = 0
St = 0,St − 1 = 1
St = 1,St − 1 = 0
St = 1,St − 1 = 1

 

 

 
 
 
 

 

 

 
 
 
 

=

q⋅x
(1 − p) ⋅y
(1− q) ⋅x

p⋅y

 

 

 
 
 
 

 

 

 
 
 
 

 . (A.1)

The next step is to calculate the likelihood that yt  occurs given the previous path of
states and variables. That is, evaluate the value of the normal distribution at the
point given by the residual. Consider, for example, the simple autoregressive model:

f (yt | St = st ,… ,yt − 1,…) =

1
2πσ

exp − 1
2σ2

(yt − α 0yt − 1) 
  

 
  

1
2πσ

exp − 1
2σ2 (yt − α1yt − 1) 

  
 
  

 

 

 
 
 

 

 

 
 
 

 . (A.2)

Here the top element of the matrix is the likelihood in state 0 and the bottom
element is the likelihood in state 1 (the difference is in the alpha parameter). This is
then multiplied by the probability estimate (A.1) to give the joint conditional density
distribution of yt  and (St ,St − 1,… ). The overall likelihood of yt , f (yt | yt − 1,… ) , is
just the sum over all possible state paths of the joint conditional density function.
That is, the probability-weighted likelihood for all possible paths. This is saved and
used in calculating the likelihood of a particular set of estimates. This is:

log f (yT , yT − 1,… , y1) = log f (yt | yt − 1,… )
t =1

T

∑  . (A.3)

To generate the estimate of the probability that various paths lead to period t,
P[St = st ,St − 1 = st − 1,… ,St − r = st − r | yt, yt − 1,… ], divide the conditional likelihood for
each path by the total likelihood for all the paths. To obtain the input for the next
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iteration of the filter, collapse the probability matrix by summing over the possible
states at time t-r. Thus, for example:

P

St = 0,St − 1 = 0
St = 0,St − 1 = 1
St = 1,St − 1 = 0
St = 1,St − 1 = 1

 

 

 
 
 
 

 

 

 
 
 
 

⇒ P
St = 0
St − 1 = 1

 
  

 
  

 . (A.4)

This can then be used to run through the filter to get estimates for t+1 and so on. At
each point in time the estimate of the probability that the current state is 0, given
information available up to that time, is obtained by summing the probability vector
in the same way as is illustrated in (A.4).
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