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Abstract

We address the question of whether and how a sovereign should reduce its external
indebtedness when default is a significant possibility, with a particular focus on whether
a sovereign should buy back or dilute existing long-term sovereign bonds. Our main
finding is that when reduction of debt is optimal, the sovereign should remain passive
in the long-term bond market during the deleveraging process, retiring long-term bonds
as they mature but never actively issuing or buying back these bonds. The only active
margin is the short-term bond market, which involves partial roll over of such debt.
Any active maturity management, as will typically be required to address rollover crisis
risk, will be delayed until the end of the deleveraging process. We also show that there
exist a set of Pareto improving debt restructurings in which maturities are shortened;
however, these cannot be implemented by trading in competitive secondary markets.
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1 Introduction

Short-term debt is often cast as the villain in sovereign debt crises, exposing fiscal budgets to

sharp swings in interest rates and raising the vulnerability to a rollover crisis. Nevertheless,

when faced with increased spreads on their bonds, sovereigns tend to lower their debt issuances

while tilting the composition of new bonds toward shorter maturities.1 This favoritism towards

short-term debt during periods of crisis is somewhat puzzling, as there is wide agreement

that short-term debt, if anything, introduces more risk by leaving the country vulnerable to

rollover problems. Understanding debt dynamics – and associated equilibrium prices – in

a crisis environment is of particular importance given the sovereign debt crisis in Europe.

Many peripheral European countries are currently paying a significant premium over German

debt on large quantities of sovereign bonds. The respective governments are contemplating

fiscal paths that lead to lower debt-to-GDP ratios, and correspondingly a lower risk of default

and associated spread. However, in a world of limited commitment, fiscal trajectories must

be time consistent, and it is an open question whether the vulnerability to default provides

sufficient incentive to deleverage and what role – if any – maturity plays.

In this paper, we introduce an environment which captures important elements of sovereign

debt markets. In particular, the environment features the risk of default; an incentive to

deleverage due to this risk of default; an inability to commit to fiscal trajectories; a dynamic

choice of maturity; and equilibrium bond prices that reflect and constrain the government’s

debt decisions. Given this framework, our goal is to clearly and completely analyze the

interaction of maturity choice, equilibrium prices, and the dynamic incentives to deleverage

under the threat of default.

A primary contribution of the paper is to provide a transparent analysis of how a

sovereign’s lack of commitment – to repayment as well as to future debt trajectories – plays

out in equilibrium. We solve for the government’s equilibrium budget set and explore how

it responds to the maturity of sovereign bonds. A major result is that the government’s

equilibrium budget set is maximized by not actively issuing or repurchasing long-term bonds

while deleveraging; and any lengthening of maturity, which may be required to mitigate

rollover risk, will be postponed until the completion of the deleveraging process. In particular,

a strategy that relies on issuing or repurchasing long-term bonds during deleveraging shrinks

1These facts have been documented for the emerging market debt crises of the 1990s and 2000s. Broner
et al. (2013) document that emerging markets reduce total debt issuances when spreads increase, but the
reduction is particularly pronounced for bonds with maturity greater than 3 years, sharply reducing the
average maturity of new issuances. Similarly, Arellano and Ramanarayanan (2012) document that during
crisis periods for four emerging market economies, the average maturity of new debt shortens. Perez (2013)
documents in a large sample of emerging markets that debt issuance drops when spreads are high, and the
maturity profile of debt shortens considerably.
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the government budget set. In this precise sense, using long-term bonds is more expensive,

even though all bonds are priced in an actuarially fair manner.

In the model, an infinitely-lived sovereign borrows in the form of non-contingent bonds of

differing maturity from global financial markets. When the sovereign is highly indebted, a

risk of default arises from the sovereign’s inability to commit to future payments coupled

with the presence of shocks to the sovereign’s costs of default. The sovereign, however, can

mitigate the resulting default risk by reducing its outstanding stock of external debt.

In equilibrium, bond prices reflect the probability of default through the life-time of the

bond. Short-term bond prices thus reflect the next period’s probability of default, while

long-term bond prices incorporate the equilibrium expectations of default in subsequent

periods as well. As a result, the price of the long-term bond depends on the equilibrium speed

at which the sovereign will reduce its debt. When auctioning long-term bonds, the sovereign

would like to promise bond holders a quick path to lower debt levels in order to generate

a high price for its bonds. However, as there is no mechanism to enforce such a promise, a

time-consistency problem arises. Short-term bond prices are not sensitive to expectations

of future fiscal trajectories, but rather reflect only the probability of default next period.

Because this probability depends on the amount of debt outstanding next period, which

is known at the time of issuance, the above time-consistency problem does not arise when

auctioning short-term bonds.

Our first main result leverages this distinction to argue that, in equilibrium, a deleveraging

strategy that relies only on issuances of short-term bonds is optimal. That is, an optimal

deleveraging policy is one where the sovereign services interest payments of existing long-term

bonds, pays off any maturing bonds, and all new issuances consist of short-term bonds only.

However, this result does not, by itself, rule out the possibility that an alternative strategy

that actively uses long-term bonds may be optimal as well. Our second main result establishes

the sub-optimality of auctioning or repurchasing long-term bonds. This implication relies

crucially on properties of equilibrium bond prices, and how they respond to maturity choice.

In particular, we show that the maturity composition affects equilibrium prices by altering

the speed of develeraging through a “price effect.” To see this price effect most transparently,

consider a sovereign that will repay unless a shock is realized, in which case it is almost

indifferent between repayment and default, but slightly prefers the latter. Before the shock is

realized, the sovereign must pay a premium on any new bonds it issues, as bond holders need

to be compensated for the possibility of default. However, the sovereign’s near indifference

implies that there is no associated benefit in exchange for this premium. In fact, the sovereign

would strictly prefer to be able to commit to repay. In equilibrium, the only way to achieve

this commitment is through a reduction in debt levels. Hence, market prices induce the
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sovereign to save. Note that this price effect is only relevant if the sovereign is issuing new

bonds as it deleverages. This is the case if a large amount of debt is short term and must be

rolled over at frequent intervals. The default premium in short-term bond prices is akin to a

variable cost that must paid each period until default risk is reduced or eliminated. Long-term

bonds also embed a default premium at the time of issuance, but from the perspective of

later periods, this premium is a sunk cost. This implies that the shorter the average maturity

of bonds, the faster the sovereign deleverages.

The fact that maturity affects the incentives to save raises the question of whether the

government has an incentive to actively adjust the maturity of its outstanding debt. From

the above discussion, any trade that attempts to lengthen the maturity of the outstanding

debt by issuing more long-term bonds reduces the incentive to save. Therefore, the sale of

long-term bonds drives down their price. An opposite trade, one that attempts to decrease the

maturity by buying back long-term bonds, increases the incentive to save. Thus repurchases

of long-term bonds drive up their price. We show that these adverse price movements of

active trading shrink the budget set of the government. This is our second main result.

By slightly altering the benchmark model (which features a unique equilibrium), we show

that our results are robust to the presence of coordination failures and rollover crises. That

is, during the deleveraging process, it remains optimal to issue only short-term bonds even in

this richer model. Importantly, active maturity management, with the goal of reducing the

risk of coordination failures, should be delayed until the end of the deleveraging period.

Finally, we show that the outcome of the competitive equilibrium is not efficient. If the

sovereign and its creditors could efficiently restructure debt, the outcome would be to shorten

the maturity of the outstanding debt in order to provide the best incentives to deleverage

quickly. However, this shortening of maturity cannot be implemented in equilibrium because

long-term bond holders have an incentive to hold out and reap a capital gain from the

increased speed of deleveraging associated with shorter maturities. Any lengthening of

maturity to mitigate rollover risk should occur at the end of the deleveraging process and

can be implemented at equilibrium prices.

Related Literature

Our paper relates to a large literature on maturity choice, both in corporate finance and

macroeconomics. We review key strands of analysis here, highlighting how our contribution

differs from and complements the existing literature. For expositional clarity, many of our

modeling choices are designed to isolate our mechanism from the more familiar economic

forces regarding maturity choice that have been established in the literature.
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In their seminal paper on optimal fiscal policy, Lucas and Stokey (1983) discuss at

length how maturity choice is a useful tool to provide incentives to a government that

lacks commitment. Our model emphasizes default risk, something absent from their work.

Moreover, the government in Lucas and Stokey (1983) has an incentive to manipulate the

risk-free real interest rate to alter the value of outstanding long-term bonds, something ruled

out by our small open economy framework. However, our model government can induce

a capital loss on long-term bondholders by altering fiscal policy and raising the likelihood

of default. A major theme of our analysis is how this affects bond prices and equilibrium

maturity choice. In particular, we explore why the government does not issue additional

long-term bonds, even though this would induce a capital loss on legacy bondholders.

Our model environment is closely related to the principal-agent framework analyzed by

Hopenhayn and Werning (2008), who study the financing of an investment project in a

long-term relationship between a lender and an entrepreneur. In particular, Hopenhayn and

Werning (2008) introduce unobservable outside option shocks to the entrepreneur, and show

that the efficient long-term contract features equilibrium default and can be implemented

with a sequence of non-contingent (but defaultable) short-term debt contracts, a result that

is closely related to our efficient restructuring analysis of Section 5. Our analysis modifies

this environment to study a different set of questions. Rather than studying the efficient

contract in a principal-agent problem, we consider the competitive equilibria that arises in

a market consisting of noncontingent (but defaultable) bonds of various maturities. Our

results highlight that the use of short-term debt is optimal even when the government has

legacy long-term bonds (an initial condition that makes the resulting equilibrium allocation

inefficient). In addition, we identify the sub-optimality of issuing or repurchasing long-term

bonds in equilibrium, as well as the perverse incentives that long-term bonds induce for future

governments to reduce their debt. Finally, we consider equilibrium maturity choice when

short-term debt makes the sovereign vulnerable to coordination failures among creditors.

There is a corporate finance literature on default building on the canonical model of

Leland (1994b). This literature typically focuses on the optimal default decision given a

constant capital structure (which, depending on the exercise, may or may not be chosen

optimally in the initial period). In contrast, our analysis emphasizes that the level and

maturity of outstanding debt is an endogenous variable that may vary over time. In fact,

these dynamics are the main focus.

The corporate finance and banking literature frequently builds on the fact that bankruptcy

involves partially liquidation of an asset. This influences maturity choice in a variety of

ways. The classic paper by Calomiris and Kahn (1991) demonstrates how short-term debt

and the threat of liquidation can be used to discipline a manger (see also Diamond and
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Rajan, 2001). In the international context, Jeanne (2009) notes that the threat to withdraw

liquid capital from an economy may provide a government with incentives to respect property

rights and enforce contracts. The fact that existing bondholders hold a claim on liquidated

assets also makes them vulnerable to dilution, the focus of a large literature since Fama and

Miller (1972). Sovereign default differs from bankruptcy in that there is no liquidation of

assets; to make the distinction with this mechanism even starker we abstract from partial

repayment after a default. The potential for dilution in our environment comes solely via the

role of maturity and prices in providing incentives to reduce debt. Partial liquidation also

endows short-term bonds with implicit seniority. Brunnermeier and Oehmke (2013) show

how this may induce a maturity rat-race that results in a collapse of the maturity structure.

Interestingly, their mechanism is not operative when the liquidation value in bankruptcy is

zero, which is the case of our environment.

The incentive to dilute existing long-term bond holders is also highlighted in recent

quantitative models with long maturity debt (Hatchondo and Martinez, 2009, Chatterjee and

Eyigungor, 2012, Arellano and Ramanarayanan, 2012). The Arellano and Ramanarayanan

paper is particularly relevant, as it contains an active margin for maturity management

at each period of time. Their analysis highlights that maturity structure plays two roles.

The first is that in an environment of incomplete markets, maturity choice determines how

the available assets span shocks, a feature which arises in incomplete-market models with

perfect commitment (for example, Angeletos, 2002 and Buera and Nicolini, 2004). The

second involves enforcement. In particular, maturity structure and the costs associated with

default can be used to support a richer set of state-contingent repayments by increasing

repayment incentives in certain paths. A main result of their quantitative analysis is that

maturities shorten as the probability of default increases. A recent paper by Dovis (2012)

sheds some light on this. Dovis generates a similar shortening of maturity through the

spanning motive alone, relying on trigger strategies to handle enforcement. Another recent

paper, Niepelt (2012), makes significant progress in casting maturity choice in an analytically

tractable framework. It derives closed-form solutions that highlight the role of insurance

via a covariance term. It also highlights that long-term bond prices are relatively elastic, a

feature which plays an important role in our framework as well as the quantitative literature

cited above. Another relevant paper is Broner et al. (2013), which was the first to focus

attention on the shift to short-term debt during crisis in emerging markets. They proposed

an explanation that is based on time varying risk premia, something that we rule out by

construction by assuming risk neutral lenders.2

2See also the work of Perez (2013) for a more recent data analysis, covering a larger sample of emerging
markets; as well for an alternative explanation based on asymmetric information.
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Our analysis complements these papers by providing a transparent and tractable framework

for analyzing maturity choice, by identifying the role of the maturity structure in the speed of

deleveraging, and by explaining why an active use of long-term bonds shrinks the budget set of

the sovereign. To do this, we consciously abstract from spanning by focusing on large shocks

with a constant hazard rate of arrival, rather than the small fluctuations associated with

business cycles. This simplification allows for a complete characterization of the equilibrium.

Moreover, within our framework, we can easily introduce rollover crises as well as perform

the analysis of Pareto efficient restructurings.

The sub-optimality of repurchasing long-term bonds on secondary markets is reminiscent

of Bulow and Rogoff (1988, 1991). Their analysis turns on a finite amount of resources

available to pay bond holders. In such a situation, a bond buyback concentrates the remaining

bondholders’ claim on this payout, and so drives up the price of bonds. Indeed, in this

environment the sovereign would like to dilute existing bond holders by selling additional

claims to this fixed recovery amount. The money raised would come in part at the expense of

the previous bond holders, thus subsidizing the bond issue. The Bulow-Rogoff environment

contains no incentive for the sovereign to pay down its debt, whether via a buy back or not

reissuing short-term debt, and its three-period structure offers little scope for debt dynamics.

In our environment, there is no liquidation value to debt which can be diluted; rather, the

behavior of bond prices is due solely to the incentive effects of maturity choice.

Our discussion of rollover crises is related to the work of Calvo (1988), Cole and Kehoe

(2000), and Aguiar et al. (2012). Our model allows the sovereign to actively manage the

maturity structure of its debt, allowing us to analyze the tradeoff between saving (which

is featured in Cole and Kehoe as well as Aguiar et al) and maturity management in the

presence of rollover risk.

The remainder of the paper is organized as follows. Section 2 presents the general

environment. Section 3 studies the benchmark model, which features a unique equilibrium,

and states the main results. Section 4 shows how the results extend to an environment with

coordination failures and the possibility of rollover crisis. Section 5 discusses the Pareto

inefficiency of market equilibrium and how a restructuring can improve upon the market

outcome. Section 6 discusses how the results generalize to a more general portfolio of

maturities. A final section concludes.

2 Environment

We are interested in studying equilibria in which the economy faces uninsurable risk that may

lead to endogenous default. In particular, our focus is on scenarios in which the risk of default
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is a first-order concern for both consumption-saving decisions as well as maturity choice.

During tranquil periods sovereigns issue a range of maturities to smooth tax distortions; to

provide a source of safe assets for savers; to facilitate payments systems; and to insure against

fluctuations in tax revenues, output or interest rates. However, in the midst of a sovereign

debt crisis these considerations are to a large extent dominated by a sovereign’s need to issue

new debt to skeptical investors, to roll over outstanding debt, and to reduce the outstanding

stock of debt in a credible (that is, time consistent) manner. We therefore build a model that

transparently isolates the role of maturity choice in determining whether and how a sovereign

deleverages under the threat of default.

Consider a small open economy in a discrete time, infinite horizon environment, with time

indexed by t ∈ {0, 1, ..., }. There is a single, freely tradable, numeraire consumption good, of

which the economy receives a constant endowment of y each period.3

The sovereign makes economic decisions on behalf of the small open economy. The

sovereign’s preferences over consumption streams are characterized by the following utility

function:

U =
∞∑
t=0

βtu(ct), (1)

where β ∈ (0, 1) and u is bounded, strictly increasing, strictly concave, and satisfies the Inada

conditions.

The sovereign trades financial claims with the rest of the world, which is populated by

competitive, risk-neutral agents who share the sovereign’s discount factor β. We assume

that foreign agents (“creditors”) are willing to borrow and lend at an expected interest rate

R = 1 + r = β−1. Given the small open economy assumption, we assume that the rest of the

world’s resource constraint is irrelevant as long as the creditors break even in expectation.

Available international assets consist of two types of non-contingent bonds. There exists

a short-term bond which calls for the sovereign to pay R units of a numeraire tradable good

in the next period. There is also a long-term bond, in this case a perpetuity. In Section 6

we show that the results extend directly to the case with a more general maturity structure,

which will be important when considering empirical implications for the average maturity of

outstanding debt versus that of new issuances. This bond calls for the sovereign to pay r

3Note that the endowment stream is not subject to fluctuations. It is well known that in models with
incomplete markets and shocks to output or government expenditure, maturity choice can be used to partially
or fully replicate a full set of state contingent assets (Angeletos, 2002, Buera and Nicolini, 2004). As noted
above, our focus is on the role of maturity in providing incentives to save and in exposing the economy to
rollover risk. To maintain a clear distinction between incentives versus spanning, we abstract from income
fluctuations.
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every period, and never matures. The choice of a coupon equal to r is a normalization that

implies that the equilibrium risk-free price of the long-term bond is 1. We assume that debt

positions are non-negative.

There is limited enforcement of claims on the small open economy. The economy enters

period t with outstanding short- and long-term debt positions bS,t and bL,t, respectively. To

comply with the terms of the debt contract, the sovereign is obligated to pay in aggregate

(1 + r)bS,t + rbL,t. If the sovereign opts not to make this payment, the country is in default.

A fundamental issue in sovereign debt markets concerns the limited ability of creditors to

enforce contracts with a sovereign government. We assume that in case of the default, the

payoff to the sovereign is captured by the value V D, which we restrict to be such that

u(0)/(1− β) < V D < u(y)/(1− β).4 An important assumption is that V D does not depend

on the quantity of debt before default.5

We capture an important feature of real-world sovereign bond markets by allowing

the consequences of default to vary stochastically over time. Shifts in political sentiment

regarding default as well as the willingness of foreign courts to enforce bond contracts imply

that movements in V D can be a source of risk for creditors. Recent examples of shifts

in enforcement include the pressure put on euro-zone banks by regulators to write down

claims against Greece in 2012 as well as a string of US court decisions regarding Argentina’s

restructured debt and hold-out creditors.

We capture this risk by assuming that V D is a random variable with two possible outcomes,

V D ∈ {V D, V
D}, with V

D
> V D. The realization V

D
is one in which default is relatively

attractive, which we shall refer to as the weak enforcement regime, while V D represents a

strong enforcement regime. We assume that the initial state is V D, and the regime switches

to V
D

with a constant probability λ each period. Once V
D

is realized, V D = V
D

with

probability one thereafter.6

By slightly altering the timing of bond-issuances and default in this environment, we

can study equilibria with and without self-fulfilling debt crises. In the next section, we

characterize this environment with the Eaton and Gersovitz (1981) timing, a situation that

leads to a unique equilibrium (without rollover crises). With this benchmark in hand, in

4We could be more explicit and assume that the default is “punished” by financial autarky as well as an
output cost. There may also be (positive or negative) political consequences for the incumbent government
that chooses to default. In this way, we could write an explicit function for the value V D. However, the
default decision of the sovereign will be determined by comparing the value from repayment versus the
resulting value V D, and therefore the latter value is a sufficient statistic for the sovereign’s incentives prior to
default.

5While partial default and renegotiation are important issues in sovereign defaults, for tractability reasons
we leave these aside.

6The fact that V
D

is an absorbing state is not necessary for the results, but simplifies the exposition.
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Section 4 we consider self-fulfilling crisis equilibria by switching to the timing of Cole and

Kehoe (2000). We show that our results are robust to this extension, as well as generating a

stronger intuition for the role of the maturity structure in avoiding self-fulfilling runs.

3 The Benchmark Model

We consider Markov equilibria in which prices and policies are functions of outstanding debt

and the default value: (bS, bL, V
D), as well as whether the sovereign has defaulted in the past.

We shall use bold-face b ≡ (bS, bL) as short-hand for the outstanding portfolio of debt. The

timing of a period is depicted in Figure 1 and proceeds as follows. Unless otherwise noted,

we assume the sovereign has not defaulted in a previous period and omit the credit-history

state from the notation.

The sovereign enters the period with outstanding short-term and long-term debt b =

(bS, bL) ∈ B ≡ [0,∞)× [0,∞). At the start of the period, V D is realized and endowment y is

received. After observing V D, the sovereign decides whether it will default in the current

period or not. If it defaults, it receives V D. If it does not default, it auctions b′S short-term

and b′L − bL long-term bonds, pays interest and principal as necessary on outstanding bonds,

and consumes. This timing is that of Eaton and Gersovitz (1981) and a large subsequent

literature, but it does embed an important assumption. In particular, at the time of issuing

new bonds the sovereign has committed not to default within the current period. This timing

contrasts with that of Cole and Kehoe (2000), in which new bonds are issued before the

current period’s default decision is made. We shall take up a version of the latter timing in

Section 4 when we consider rollover crises. As we shall see, the Eaton-Gersovitz timing rules

out some equilibria that can be supported under the alternative timing.

3.1 Equilibrium Definition

Recall that the sovereign enters a period with b and observes V D. If it does not default, it can

issue bonds at equilibrium bond prices qj(b, V
D, b′), j = S, L, where b′ is the amount of debt

outstanding at the end of the period.7 Denote the value function of a sovereign which has not

previously defaulted and does not default in the current period by V (b, V D). In particular,

7Note that the sovereign is “large” in regard to its own sovereign debt and internalizes the fact that
equilibrium bond prices depend on the amount of bonds outstanding.
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Inherited
States:
(bS, bL)

V D

realized, y
received

No Default

Default

Auction
b′S, b′L − bL,
Payment
RbS + rbL

Consume

V D

Figure 1: Timing within a Period in the Benchmark Model.

for b ∈ B and V D ∈
{
V D, V

D
}

, this value function satisfies the Bellman equation:

V (b, V D) = max
{c≥0,b∈B}

{
u(c) + βE

[
max〈V (b′, V D′), V D′〉

∣∣V D
]}

(P1)

subject to:

c+ (1 + r)bS + rbL ≤ y + qS(b, V D, b′)b′S + qL(b, V D, b′)(b′L − bL).

where b′ = (b′S, b
′
L). The expectation operator on the continuation value is over next period

realizations of V D′, conditional on the current period’s V D, and the continuation value is the

maximum over the no-default and default values next period. Let C(b, V D), BS(b, V D) and

BL(b, V D) denote the optimal policies for c, b′S and b′L, respectively. The default decision

depends on whether the above value is greater or less than V D. Let D(b, V D) be the default

policy function. That is, D(b, V D) = 1 if V D > V (b, V D), and zero otherwise, where we

impose the tie-breaking assumption that the sovereign repays when indifferent. We will also

assume that the sovereign does not issue bonds at zero price, as that is never strictly optimal.8

The equilibrium value function at the beginning of the period is max〈V (b, V D), V D〉.
To characterize the sovereign’s problem fully, we need to know more about the bond

price schedules. In particular, competition among the foreign creditors guarantee that that

8That is, we rule out b′ such that qS(b, V D, b′) = 0. This assumption resolves an indeterminacy that
arises when the government is indifferent between defaulting today and tomorrow.
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creditors problem can be characterized by the break even (BE) conditions:

qS(b, V D, b′) = E
[
1−D(b′, V D′)

∣∣∣∣V D

]
(BE)

qL(b, V D, b′) = E
[(

1−D(b′, V D′)
)(r + q′L

1 + r

) ∣∣∣∣V D

]
,

where q′L in the long-term bond price is shorthand for the long-term bond price next pe-

riod conditional on no default, b′, and the equilibrium policy functions of the sovereign,

Bj(b
′, V D′), j = S, L, that determine debt positions at the end of next period. Note that

the timing from Figure 1 implies that bond purchasers are not vulnerable to default risk

in the period they purchase bonds and therefore the initial state b is not relevant for bond

prices, conditional on b′ and V D. We therefore can drop that state from the bond price

notation and simply write qj(V
D, b′), j = S, L, where b′ is the end-of-period bond portfolio.

Interior positions on the part of creditors require that the break even conditions hold with

equality. We rule out the possibility of bubbles in the perpetuities by considering equilibria

with qL ≤ 1, where 1 is the price of a risk-free bond with coupon r. We also rule out Ponzi

schemes.

We now proceed to define equilibrium in this environment:

Definition 1. A Markov Perfect Equilibrium consists of policy functions C, BS, BL, and D,

and pricing schedules qS and qL, such that for all debt positions b ∈ B and V D ∈ {V D, V
D},

and absent a prior default: (i) the policy functions C,BS, and BL, solve the sovereign’s

problem (P1) conditional on qS and qL and the No-Ponzi condition; (ii) D is an indicator

function that takes one if V (b, V D) < V D and zero otherwise; and (iii) the creditors’ break-

even conditions (BE) are satisfied with qi ∈ [0, 1], i = S, L, given the sovereign’s policy

functions.

Although, there are multiple Markov equilibrium in this environment, we will show below

that, in effect, they are all identical: that is, bond prices and consumption are uniquely

pinned down up to a tie-breaking assumption required by the discreteness of time. As we

discuss below, the multiple equilibria emerges because of the possibility that the portfolio

allocation may be (locally) indeterminate, an expected outcome given that the bonds’ payouts,

in principle, span each other.

3.2 Characterizing Equilibria

In characterizing equilibria, it is useful to divide the state space for debt into three regions.

For low levels of debt, the sovereign will not default regardless of the realization of V D. We
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shall refer to that region as the “no-default” zone, and denote it by ND:

ND = {b ∈ B
∣∣V (b, V D) ≥ V D,∀V D}.

Note that this region depends on the value function V and so is not independent of equilibrium

prices and policies. As we proceed, we shall explicitly define the equilibrium contents of ND.

At intermediate levels of debt, the sovereign will default if the outside option is high (that

is, V D = V
D

), but not if it is low. We shall refer to this region as the “crisis” region, given

that there is a positive probability of default, and denote it by C:

C =

{
b ∈ B

∣∣∣∣V (b, V D) ≥ V D & V (b, V
D

) < V
D
}
.

Finally, at high enough levels of debt, the sovereign finds it optimal to default even if the

default payout is low. If the initial debt is in this “default” zone, the sovereign immediately

defaults. Denoting this region by D, we have:

D =

{
b ∈ B

∣∣∣∣V (b, V D) < V D & V (b, V
D

) < V
D
}
.

This region is of little interest as in equilibrium there is no feasible path that allows the

sovereign to accumulate so much debt. The interesting demarcation is between the no-default

and crisis zones, and how debt and maturity structure evolves in each region.

Before proceeding to flesh out these regions, we first show that in any Markov equilibria,

the state space is partitioned into these three regions:

Proposition 1. In any Markov Perfect Equilibrium, the sets ND, C and D are non-empty,

disjoint, and ND ∪C ∪D = B.

Moreover, these regions have a natural ordering such that debt is increasing as we move from

ND to C to D. In particular, if (b0S, b
0
L) ∈ ND, then there exists b2S > b1S > b0S such that

(b1S, b
0
L) ∈ C and (b2S, b

0
L) ∈ D. Similarly, there exists b2L > b1L > b0L such that (b0S, b

1
L) ∈ C

and (b0S, b
2
L) ∈ D. This follows directly from the monotonicity and continuity of the value

function, which is proved in the appendix (Lemma A.1).

3.2.1 The No-Default Region

The no-default region is straightforward to characterize. If the sovereign begins the period

with b ∈ ND it has no incentive to exit. In particular, to exit the region it must fully

compensate new bondholders for the increased risk of default. The capital loss suffered by
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the existing long-term bond holders is of no benefit to the sovereign, a point we will discuss

in detail below. Therefore, for any realization of V D the sovereign will not default in a period

in which b ∈ND. This implies that qS(V D, b′) = 1 for all b′ ∈ND. It can therefore simply

stay put by rolling over its short-term debt at risk-free prices and paying r on its perpetuities.

In fact, it cannot do better:

Proposition 2. No-Default Region: Define B by u(y−rB) = (1−β)V
D

. In any Markov

Perfect Equilibrium the no-default region is defined as:

ND =
{
b ∈ B

∣∣bS + bL ≤ B
}
.

Moreover, for all b = (bS, bL) ∈ND and V D ∈
{
V D, V

D
}

, the equilibrium value function is

V (b, V D) =
u(y − r(bS + bL))

1− β
;

equilibrium prices satisfy

qS(V D, b) = qL(V D, b) = 1;

and equilibrium policy functions satisfy

BS(b, V D) +BL(b, V D) = bS + bL.

This proposition contains a number of statements about equilibrium behavior in the

no-default region. In terms of pricing, the short-term bond price is one (the risk free price) by

definition: the no-default zone is defined as a region in which the sovereign will not default

the next period regardless of V D. The fact that long-term bonds are also risk free reflects

that the no-default zone is an absorbing region. Once there the sovereign will never exit, and

so long-term bonds issued in the no-default zone are never exposed to default risk over the

infinite life of the perpetuity. As both bonds are risk free, they are perfect substitutes, which

is reflected in the fact that the value function depends on the sum of short-term and long-term

debt. Moreover, this value is simply what the sovereign obtains by servicing interest payments

and keeping total debt stationary, which is reflected in the associated policy functions. The

optimality of this policy rests on the fact that β = R−1. The value function also pins down

the boundary of the no-default zone. Faced with risk-free pricing, the optimal policy is to

keep debt constant. The generated no-default value is u(y − r(bS + bL))/(1− β). Now note

that if this value is strictly less than V
D

, the sovereign will default if V D = V
D

and so this
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cannot be part of the no-default region. Similarly, if u(y − r(bS + bL))/(1 − β) > V
D

, a

continuity argument implies this cannot be the boundary of the no-default region.

Note that long-term bond holders experience a capital loss if the sovereign exits ND, but

this does not provide an incentive for the sovereign to borrow. The capital loss suffered if the

government were to exit the no-default region does not benefit the sovereign. This highlights

that the risk of default is not a zero-sum game. For example, suppose that bS + bL = B̄, and

thus the sovereign is indifferent to defaulting or not. Consider a one-time deviation from the

government’s equilibrium strategy in which it flips a coin to decide whether to default or not.

This imposes a cost on bond holders, but provides no benefit to the government given the

indifference between repaying and defaulting at B̄. This underlies why exiting ND at the

expense of existing bond holders is never optimal in equilibrium.

3.2.2 The Crisis Region

Having characterized the no-default region, we now turn to the crisis zone. Recall that the

crisis zone is defined as the region in which the sovereign defaults if the weak enforcement

regime, V D = V
D

, is realized, but not otherwise. Characterizing the equilibrium in the crisis

region when V D = V
D

is therefore straightforward, as by definition the country defaults if

this state is realized. In particular, for b ∈ B −ND (that is, the complement of ND in B),

qS(V
D
, b) = qL(V

D
, b) = 0.

The more complex case is when V D = V D.In what follows, we focus on this case and suppress

the notation that the initial state is V D = V D when possible.

The equilibrium price for short term bonds is straightforward to characterize:

qS(b) =


1 if b ∈ND

1− λ if b ∈ C

0 if b ∈D

(2)

where as mentioned above we suppress V D = V D and the argument b is the end-of-period

bond position. If end-of-period bonds are in the crisis region, the sovereign defaults next

period with probability 1− λ. The other two regions pose no uncertainty, and so the prices

are 1 in ND and 0 in D.

To characterize long-term bond prices in C, we will ignore the strategies whereby the

sovereign reaches the set D, as these can never be optimal, and thus restrict attention to

strategies that keep the debt portfolio in the set C or exit to ND. Let us consider then the
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break-even condition for creditors given the sovereign’s equilibrium policy functions. Starting

from an initial b, we can iterate on the debt-issuance policies Bi, i = S, L, assuming V
D

has not been realized, to determine the number of periods until the sovereign’s portfolio

reaches the no-default zone (if ever). Denote this time until exit from C by T (b). That

is, if b ∈ ND, then T (b) = 0; if b ∈ C, and (BS(b, V D), BL(b, V D)) ∈ ND, then T = 1;

and so on. Let Bτ
i (b), i = S, L, denote the bond positions reached by iterating on the policy

functions starting from b for τ times, along a path such that V D = V D at each step. Then,

T (b) = min {τ ∈ {0, 1, ...} |(Bτ
S(b), Bτ

L(b)) ∈ND} .

If no such minimum exists, then T (b) =∞.

To obtain prices, we solve the creditors’ break even constraints forward starting from

b ∈ C (that is, T ≥ 1) and, by Proposition 2, we can impose the boundary condition that

qL = 1 at the start of the T ’th period:

qL(b) =

(
1− λ
1 + r

)
(r + qL(BS(b), BL(b)))

= r

T (b)∑
t=1

(
1− λ
1 + r

)t
+

(
1− λ
1 + r

)T (b)
. (3)

Although the first line recursion assumes T (b) ≥ 1 (hence, the 1− λ in the discount factor),

nevertheless the final line correctly implies qL = 1 for T = 0.

Note that all that is relevant for bond prices is the speed with which the sovereign

eliminates the possibility of default, not the particular path (or maturity structures) chosen.

When auctioning off long-term debt, the sovereign would like to pledge a quick exit from the

crisis zone, so as to raise the value of the issuances. When buying debt back, the sovereign

would like to pledge the opposite, as to reduce the value of the outstanding bonds. However,

such a pledge must be credible in an environment of limited commitment. We will explore

below how the requirement of time consistency brings maturity choice back into the picture.

Why Save? The “Price Effect”

The first issue to establish is whether and why the sovereign would save at all from the Crisis

region to the No-Default region. In particular, suppose the sovereign is currently under the

strong enforcement regime (V D = V D) and b ∈ C. Would it be better off waiting for the

weak regime and then defaulting, rather than saving its way out of the region? To see why

this may be a tempting option, recall that by definition, V (b, V D) < V̄ D for b ∈ C, and

so the sovereign’s value is higher if V̄ D is realized and it chooses to default. Is there any
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incentive to save to remove this possibility?

To explore this question, consider the value of a sovereign that remains at b ∈ C. The

price of short-term bonds in the crisis zone is qS = 1− λ, and letting an infinity denote the

policy of remaining in C forever, the budget constraint implies consumption c∞ is:

c∞ = y − (1 + r)bS − rbL + (1− λ)bS

= y − r(bS + bL)− λbS.

To see whether the sovereign can improve on this policy, consider a policy in which the

sovereign pays down debt to reach the no-default zone next period. Let b′ = (b′S, b
′
L) ∈ND

denote end-of-period debt such that b′S + b′L = B̄. Define ∆ ≡ bS + bL − B̄ as the amount of

debt that needs to be repaid this period to reach ND. Recall that qi(b
′) = 1, i = S, L, for

b′ ∈ND. The consumption in the initial period for this one-step policy, c1, is:

c1 = y − (1 + r)bS − rbL + b′S + b′L − bL
= y − r(bS + bL)−∆.

Taking differences, we have:

c1 − c∞ = −∆ + λbS.

As ∆→ 0, we have c1 − c∞ > 0 as long as bS > 0. That is, if the sovereign has short-term

debt outstanding, it is clearly better off paying down its debt. Initial consumption is greater

(c1 → y − rB̄ > c∞) and the continuation value is greater.9 Therefore, saving is optimal in

the neighborhood just outside the no-crisis zone as long as short-term debt is not zero.10

The fact that the sovereign saves in an environment in which default occurs with an

increase in welfare reflects a “price effect.” In particular, in the crisis zone the sovereign

must compensate bond holders for the risk of default. The subtlety is that bond prices are

actuarially fair, so why does this matter? It is not risk aversion, as our analysis simply

compared the level of consumption under two alternative policies, and did not require

concavity. The answer is that the bond holders must be compensated for the loss of all (newly

9To see that the continuation value is greater, note that V (b, V D) = u(y− r(bS + bL))/(1−β) = V
D

is the

continuation value for c1. The continuation value for c∞ is
∑∞
t=1 β

t(1− λ)tu(c∞) + λ
∑∞
t=1 β

t(1− λ)t−1V
D

= u(c∞)
1−β(1−λ) + βλ

1−β(1−λ)V (b, V D) < V (b, V D), where the last inequality follows if c∞ < y − r(bS + bL).
10We have not established that exiting in one step is necessarily optimal, only that it dominates never

exiting in a neighborhood of the no-default zone. In what follows, we shall see that as we move further away
from the boundary of the no-default zone, the incentive to exit remains but the optimal number of steps to
exit increases.
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issued) debt claims: λbS. However, the gain for the sovereign in the event of default is not

this amount, but rather V
D − V (b, V D), which is arbitrarily small at the boundary of the

safe zone. Thus, the realization of V
D

and default is a large loss for bond holders, but a

small utility gain for the sovereign.

In the crisis zone, the sovereign is being forced to compensate short-term bond holders

for their potential loss, with no offsetting benefit to itself. The bondholders’ risk is priced

into short-term bonds on a continuous basis, while it is built into long-term bond payments

at issuance. In this sense, short-term debt presents a variable cost for remaining in the

crisis zone, while long-term bonds represent a sunk cost. If bS = 0, the only liabilities are

perpetuities and the steady state policy requires no new bond issuance. In this case, the

sovereign has no incentive to save out of the crisis zone as it never issues new debt. The fact

that short-term bonds provide a greater incentive to save than long-term bonds will reappear

throughout the analysis that follows.

Managing Maturity while Deleveraging

The preceding analysis established that the presence of short-term debt provides an incentive

to exit the crisis region. We now turn to the question of managing maturity structure during

the deleveraging process. The following is a major result of the analysis:

Theorem 1. In any Markov Perfect Equilibrium, never issuing or repurchasing long term

debt is part of a weakly optimal strategy. That is, a policy with b′L = bL achieves the maximum

of Problem (P1).

We use the proof of the theorem to highlight the forces at work in debt deleveraging in

our environment.11 It is useful to consider an alternative maximization problem whereby the

sovereign commits to an exit time, but is restricted to trading only short-term bonds along

the transition path. We first show that the value from this program weakly dominates the

equilibrium value when the exit time is the equilibrium exit time. That is, conditional on

exit time, remaining passive in long-term bond markets is without loss. This is Lemma 1.

Of course, commitment to an exit time is a strong assumption. The second lemma

shows that commitment to an exit time is superfluous when the sovereign does not issue or

11An alternative proof of this result can be obtained by extending the decentralization result in Hopenhayn
and Werning (2008) by adding legacy debt (and a legacy principal) and considering the optimal contract with
a new principal. We thank Ivan Werning for noting this connection. We pursue an alternative line of reasoning
using a replication argument for expositional reasons. Our approach highlights how the initial portfolio of
maturities affects the government’s equilibrium budget set for any equilibrium bond price schedules that
satisfy the break-even constraint. The argument also provides a bridge to the discussion of why trading
long-term bonds is sub-optimal and is easily adapted to the case with coordination failures in a subsequent
section.
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repurchase long-term bonds. This is because only long-term bonds are sensitive to promises of

future actions, while short-term bond prices are pinned down by debt positions chosen within

the current period. If the sovereign does not trade long-term bonds, then the commitment

solution remains time consistent in the absence of commitment. This is Lemma 2.

Before stating the lemmas, we introduce the sovereign’s problem conditional on exit time

T ≥ 1, imposing the constraint that bL,t is constant. In particular, let b = (bS, bL), and let

W (b, T ) =

max
{bS,T∈R,{ct}T−1

t=0 }

{
T−1∑
t=0

βt(1− λ)tu(ct) + βT (1− λ)T−1
(
u(y − r(bS,T + bL))

1− β

)

+
T−1∑
t=1

βt(1− λ)t−1λV
D

}
, (PW)

subject to:

bS ≤ (1 + r)−1

(
T−1∑
t=0

(
1− λ
1 + r

)t
(y − ct − rbL) +

(
1− λ
1 + r

)T−1
bS,T

)
,

bS,t > B − bL for all t < T,

bS,T ≤ B − bL.

and ct ≥ 0 for all t where bS,t is defined recursively as bS,t+1 = (y − ct − rbL −RbS,t)/(1− λ)

with bS,0 = bS.12 Note that we allow short-term debt positions be negative in the W problem.

We also allow for T =∞ in the W problem by taking the limit as T →∞, and replacing the

last constraint with a no-Ponzi condition.

The objective function through period T is akin to a “perpetual youth” problem in which

the sovereign “dies” with constant hazard λ and receives V̄ D, and otherwise receives the

no-default-region value if it survives to period T . The budget constraint is the discounted

sum of the sequential constraints ct = y − (1 + r)bS,t − rbL + (1− λ)bS,t+1 for t < T − 1, and

cT−1 = y − (1 + r)bS,T−1 − rbL + bS,T for t = T − 1. If T is not feasible starting from (bS, bL),

that is, requires negative consumption, then it suffices to set W (bS, bL, T ) = −∞.

The next lemma states that the solution to the above problem evaluated at the equilibrium

exit time weakly dominates the equilibrium value function.

Lemma 1. Suppose T (b) is an equilibrium time-until-exit. Then V (b, V D) ≤ W (b, T (b)) for

any b ∈ C.

12The constraint that bS,t > B − bL would not bind in a solution to the W problem.
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The proof of this lemma (see Appendix) uses the fact that the sovereign’s budget set

in both the W and V problems is determined by the initial discounted expected payments

to bond holders. Holding constant T and the initial debt position is the same as holding

constant expected discounted payments, and the precise path chosen is irrelevant for the

budget set conditional on T . Therefore, the sequence which keeps bL,t constant does just as

well as the candidate equilibrium sequence.

However, the premise of the W value function is that the sovereign can commit to T .

This begs the question of whether the sequence of bond positions is time consistent absent

commitment. Before showing this, let us argue that the optimal solution to the W problem

does not feature non-negative debt positions:

Claim 1. For any (bS, bL) ∈ C such that bL > B, it follows that {∞} = arg maxT W (bS, bL, T ).

This result implies that, starting from any (bS, bL) ∈ C, in the solution to the problem

maxT W (bS, bL, T ), if the sovereign chooses to save, then it must be that bL < B and thus,

the implied short-term debt positions from the W problem are reduced every period but will

always remain positive (that is, bS,t ≥ bS,T = B − bL > 0).

The next lemma uses the fact that allocation that solves the best W problem is feasible

in any equilibrium to state a converse of Lemma 1:

Lemma 2. In any equilibrium, V (b, V D) ≥ supT≥1W (b, T ) for any b ∈ C.

There are two key elements to the proof of this lemma. The first is that an allocation that

solves problem W for a given T has the feature that the issuances of short term bonds are

strictly decreasing over time and hence the implied debt positions remains in region C until

exit. The second is that we know the equilibrium prices of the short term debt (they are

equal to 1− λ as long as we remain in C, and 1 when we exit). It follows then, that we can

compute the cost at equilibrium prices of an allocation that solves problem W and establish

that such an allocation is feasible for the equilibrium problem. Hence, the equilibrium value

function cannot be lower than W (b, T ). Note that we can ignore the prices of the long-term

bond in this argument, as the country does not issue them nor does it buy them back.

It is interesting to highlight how the above simple arguments fail if we were to restrict

attention to strategies that use only long-term bonds. In this case, a version of Lemma

1 will still hold: if the sovereign commits to an exit time it is irrelevant for its welfare

whether it uses short-term or long-term bonds to achieve this goal. However, we do not know

the equilibrium prices of the long-term bonds, and so cannot establish that the resulting

W -problem allocation is feasible in equilibrium. That is, Lemma 2 fails. And for good reason,

as we discuss in Section 3.5, the optimal consumption allocation in general cannot be afforded

in equilibrium with strategies that rely on trading long-term bonds.

20



Combining Lemmas 1 and 2, we have that in any equilibrium, V (b, V D) can be achieved

by setting bL,t+1 = bL,t until exit from the crisis zone, which is the result of Theorem 1.

3.3 The Equilibrium Value Function

Theorem 1 allows us to pin down the crisis zone value function for any equilibrium. In

particular, V (b, V D) = supT W (b, T ) for b ∈ C, and we can therefore characterize the

equilibrium value function by analyzing the W problem (PW).

The first thing to note is that at the time of exit, bS,T = B − bL. That is, the sovereign

does not “over save” in exiting the crisis zone.13 Conditional on T , problem (PW) is a simple

consumption-savings problem with an effective discount factor of β(1 − λ) = 1−λ
1+r

, which

equals the effective interest rate on short-term debt. Therefore, consumption will be constant

while in the crisis zone. In particular, define CT (b) as consumption conditional on exit in

T ≥ 1 periods starting from b ∈ C. Holding consumption constant and evaluating the

summation in the budget constraint of problem (PW) we have:

CT (b) = y − rbL +

(
1− β(1− λ)

1− βT (1− λ)T

)(
βT−1(1− λ)T−1(B − bL)− (1 + r)bS

)
. (4)

Substituting into the objective function in (PW), we have:

W (b, T ) =

(
1− βT (1− λ)T

1− β(1− λ)

)
u
(
CT (b)

)
+ βT (1− λ)T−1

(
u(y − rB)

1− β

)
+ λβ

(
1− βT−1(1− λ)T−1

1− β(1− λ)

)
V
D
. (5)

The value function V (b, V D) = supT W (b, T ), which is a maximization over one argument.

The usefulness of Theorem 1 here is that determining the equilibrium value function does

not require solving the fixed point between equilibrium long-term bond prices and policy

functions.

Moreover, if W (b, T ) has a strict maximizer, that is, if the sovereign is not indifferent be-

tween two exit horizons, then that maximizer characterizes equilibrium prices and consumption

policies. To see this, recall that in any equilibrium supT W (b, T ) = V (b, V D) = W (b, T (b)),

13To see this, suppose it did choose bS,T < B − bL. It could increase consumption in period T − 1
by a small amount. To satisfy its budget constraint, it increases bS,T by an equal amount. As long as
this increase is less than B − bL − bS,T > 0, the sovereign will exit the crisis zone on schedule. Note
that in the period of exit, the sovereign is saving. In particular, it faces risk free rates and chooses
c = y − rbL − (1 + r)bS,T−1 + bS,T < y − r(bL + bS,T ), where the last inequality follows from the requirement
that bS,T < bS,T−1. The latter quantity is consumption while in the safe zone, which therefore has a lower
marginal utility of consumption. Thus, shifting consumption into the crisis zone while maintaining the same
time-until-exit improves welfare.
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where the last expression uses the equilibrium time-until-exit associated with an equilibrium

V . If the first expression has a unique maximizer, than there is a unique equilibrium time-

until-exit T (b). In what follows, we use the tie-breaking assumption that when indifferent, the

sovereign exits sooner rather than later, and in this way, we can pin down unique equilibrium

prices and consumption paths.

Before proceeding, we can now let D = {b ∈ B| supT W (b, T ) < V D}. This region defines

the outer boundary of the equilibrium crisis zone. Note that V D < V
D

and continuity of V

implies the ND and D regions are always separated by a non-empty crisis region. We have

now characterized the equilibrium value function over the entire state space:

Proposition 3. Equilibrium Value Functions: In any Markov Perfect Equilibrium, we

have:

V (b, V D) =


u(y−r(bS+bL))

1−β if b ∈ND and all V D

supT≥1W (b, T ) if b ∈ C and V D = V D.

and where V (b, V D) < V D for all b ∈D, and V (b, V
D

) < V
D

for all b ∈ C ∪D.

With equilibrium value functions in hand, we now turn our attention to equilibrium bond

prices.

3.4 Iso-T Regions and Iso-V Curves

Equilibrium bond prices can be characterized from the optimal time-until-exit. In Figure 2

we plot “iso-T” loci in the space of short- and long-term debt. That is, along each of the

iso-T curves, the sovereign is indifferent between exiting in T and T + 1 periods, while within

each region there is a unique optimal exit time. Closest to the no-default region, we have

T (b) = 1, and as we add debt the time-until-exit increases. As implied by Claim 1, if the

sovereign holds only long-term debt, T (0, bL) =∞ is always optimal, as there is no incentive

to save. Thus the T =∞ locus originates from the horizontal edge of the no-default zone. If

bS = 0, then either T = 0 or T =∞.

We can characterize the slope of the equilibrium iso-T curves using the fact that along the

(outer) boundaries of each region the sovereign is indifferent between exiting in T and T + 1

periods. That is, {T, T + 1} ∈ argmaxT̃ W (b, T̃ ), and so W (b, T ) = W (b, T + 1). Using the

expression for CT from (4), the implicit function theorem, and some algebra, we have:

−dbS
dbL

∣∣∣∣
W (b,T (b))=W (b,T (b)+1)

>
qL(b)

qS(b)
, (6)
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bS

bL

T (b) = 1

T (b) = 2

T (b) = 3 T (b) =∞

−qL(b)
qS(b)

ND

Figure 2: Equilibrium Iso-T Regions. Lighter shaded areas represent
regions of higher equilibrium exit times. The vertical arrows represent the
infinity of different Iso-T regions that lie in that area until reaching the
boundary of T (b) =∞ region. The white linear segments represent prices
in the different regions, with regions with higher exit times having flatter
lines (that is, lower perpertuity prices).

where T (b) is the optimal exit time. Recall that if the sovereign is indifferent between exiting

in T and T + 1, equilibrium prices assume that the sovereign exits in T periods. Therefore,

the right-hand-side of (6) is the relative price of a long-term bond conditional on exiting in

T periods.

The implication of (6) for Figure 2, is that as we increase bS and decrease bL along a line of

constant market value (qSbS + qLbL), the optimal exit time is weakly decreasing. The straight
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lines in Figure 2 have slope −qL/qS, and within an iso-T region depict lines of constant market

value. As we cross the boundary of an iso-T region moving in the “northwest” direction, the

exit time falls by one period, and the ratio of equilibrium prices qL/qS increases.

We can use the ratio qL/qS to construct “iso-V” curves as well; that is, loci of (bS, bL)

such that V (b) is constant. These are depicted in Figure 3. Because of the discreteness of a

period, in the interior of an iso-T region, small movements in b will not change the optimal

exit time, and hence do not change prices. Therefore W and V are differentiable in bS and bL

in the interior of an iso-T region. Note that conditional on T , constant W implies a constant

CT , and differentiation of (4), and using the expression for qL from equation (3), delivers:

dbS
dbL

∣∣∣∣
V (b)=V

= −qL(b)

qS(b)
.

This slope reflects the fact that conditional on an equilibrium T , short-term and long-term

bonds can be traded at these relative prices, holding constant total market value. As such

(small) exchanges leave exit time unchanged, and market value represents expected payments

to bondholders, the sovereign is indifferent along this iso-market value lines. However, as

we shift the portfolio we eventually reach the boundary of the iso-T region. By definition,

the sovereign is indifferent between exiting in T and T + 1 periods at the boundary, and the

iso-V line is continuous but shifts slope to reflect the new region’s prices.

bS

bL

A

B

C
V (b) = V (B) = V (C)

V (b) = V (A)

qBL (bBL − bL) + qBS (bBS − bS) = 0

qCL (bCL − bL)+

qCS (bCS − bS) = 0

slope = − qL(b)
qS(b)

Figure 3: Equilibrium Iso-V curves and Zero-Cost Trades. Solid
lines represent two distinct equilibrium iso-V curves. Points B and C
represent possible zero costs trades from A.

Note that as we add debt, V decreases, and so the value function is quasi-convex in the
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crisis region. That is, a line connecting two points on an iso-V curve passes through regions of

weakly lower values. This facet is somewhat masked in Figure 3 as the iso-V curves look like

“standard” indifference curves from quasi-concave preferences. However, as debt is a “bad”

rather than a “good,” the iso-V lines are actually inverted relative to standard preferences. It

is important to note that the underlying preferences for the sovereign are standard, concave

preferences. The iso-V lines are equilibrium outcomes. As we move through the debt space,

the sovereign is facing different incentives to save (and hence different prices), which generates

the quasi-convexity of the value function in equilibrium. The iso-V curves also help clarify

that the sovereign is indifferent between transition paths that involve the same sequence of

iso-V curves; that is, there is a local indeterminacy regarding portfolio choice due to the

discreteness of time. The sovereign moves through the iso-T regions in consecutive fashion

(T , T − 1, ...), but within each iso-T region there is a line segment of constant market value

of debt along which the sovereign is indifferent.

The Yield Curve

Before moving on, let us discuss the implications of the results so far for the yield curve. This

is of particular interest as the yield curve inverts in emerging markets when bond spreads are

high (Broner et al., 2013). In our model, such an inversion occurs naturally, reflecting that

deleveraging implies the long-run risk of default is less than the short-run risk.

To see this formally, let rS and rL denote the effective yields for the short and the long

term bond, respectively. The yields can be written as:

rS =
R

qS
− 1, and rL =

r

qL
.

Note that when b ∈ND, qS = qL = 1, and both yields are equal to r, as expected (that is,

the yield curve is flat at risk-free yields). When b ∈ C, qS = 1− λ and

rS − rL =
r + λ

1− λ
− r

qL
.

For T (b) = ∞, qL = (1−λ)r
r+λ

and thus the above implies rS = rL. This reflects that if

the sovereign never exits C, long-run risks and short-run risks are equivalent. However, if

T (b) <∞, then there is a chance the government exits C in finite time, and therefore long-run

risk is lower than short-run risk. To see that this implies rS > rL, note that qL >
(1−λ)r
r+λ

for

T (b) <∞. Substituting into the above expression implies that rS − rL > 0.
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3.5 Zero-Cost Trades and Optimal Portfolio Management

Theorem 1 stated that a policy of passive long-term debt and active short-term debt man-

agement is consistent with optimality. This allows us to characterize any equilibrium by

using Problem PW. However, while Theorem 1 states it suffices to use short-term bonds, it

does not necessarily rule out an equally optimal alternative that involves long-term bonds.

Under commitment, short-term and long-term bonds span each other in our environment,

and the portfolio would be indeterminate (as it is in the no-default region). However, this

indeterminacy does not survive the absence of commitment. We now explain why limited

commitment implies that the use of long-term bonds may be strictly sub-optimal in equilib-

rium. In particular, we show that debt dynamics that involve active long-term bond policies

shrink the budget set at equilibrium prices.

We can use Figure 3 to discuss this. To do so, we first consider “zero-cost trades.” These

are portfolio shifts that require and generate no net payments. Specifically, suppose the state

at the end of a period is b, and the sovereign decides to engage in another round of trading,

moving to a new state b′ such that:

qL(b′) (b′L − bL) + qS(b′) (b′S − bS) = 0. (7)

Note that the prices are those of the new portfolio (b′), consistent with the equilibrium going

forward from b′. We claim the following:

Lemma 3. Suppose that b and b′ satisfy the zero-cost trade equation (7). If T (b′) /∈
argmaxT W (b, T ), then V (b′) < V (b). That is, if the equilibrium exit time at b′ is not

optimal for the sovereign at b, the zero-cost trade is strictly welfare reducing.

This lemma implies that any zero-cost trade that changes optimal exit time (and hence

long-term bond prices) is welfare reducing for the sovereign. Note that in a zero-cost trade,

the sovereign is actively trading long-term bonds. Importantly, the result is independent of

the sign of b′L − bL; that is, whether the sovereign is selling or buying its long-term bonds,

such trades are welfare reducing if they change the exit time.

The formal proof is in the appendix (and follows straightforwardly from the fact that T (b)

is chosen optimally), but the result can be discussed intuitively using Figure 3. Let point

b = A represent an initial state. Now consider a zero cost trade that buys long-term bonds in

exchange for short-term bonds. Such a move will necessary move the economy to a point such

as b′ = B, at which the exit time is lower. The line connecting A to B contains the possible

zero-cost trades under point-B prices. By construction, this line has slope −qL(B)/qS(B),

which makes it tangent to the iso-V line at B. Moreover, because B is in a lower exit-time
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region, this slope is steeper than the indifference curve at A. This implies that B is on a

lower iso-V curve than A. The intuition is that long-term bond prices are relatively high at

B, and buying back the long-term bonds involves a net transfer to bondholders via a capital

gain. The transfer arises from the greater incentives to exit quickly at point B.14

Similarly, point C is a zero-cost trade from A in which the sovereign issues long-term bonds

and buys back short-term bonds. Again, the line connecting A to C has slope −qL(C)/qS(C),

the equilibrium relative price at C. As C is in a region with longer time-until-exit than A, the

relative price of long-term bonds is lower at C. This implies the trading line is shallower than

the iso-V curve at A. This trade also leads to a lower iso-V line. In this case, the sovereign is

issuing long-term bonds at low prices. The existing bond holders do take a capital loss, but

the sovereign is no better off as the low price on the newly issued bonds implies it can retire

very little of the short-bonds (hence the shallow slope of the zero-cost line to point C).

Lemma 3 concerns zero-cost trades, but the result helps evaluate the benefits of any

portfolio shift, including those involving a reduction in total debt. In particular, any trade

from state b to another state b′ can conceptually be decomposed into trading only short-term

bonds and then shuffling the portfolio in a zero-cost trade.

To see this, consider the original budget constraint in a period in which the sovereign

enters with b and exits with b′, conditional on no change in V D:

c+ (1 + r)bS + rbL = y + qS(b′)b′S + qL(b′)(b′L − bL). (8)

This situation is shown by the solid arrow in Figure 4.

For our conceptual decomposition, let us define b′′S as follows:

qL(b′)(b′L − bL) + qS(b′)(b′S − b′′S) = 0. (9)

That is, b′′ ≡ (b′′S, bL) is such that b′ represents a zero cost trade from b′′, at q(b′) prices. We

can then rewrite the budgetary impact of moving from b to b′ by conceptually breaking up

the movement into two trades within the period: (i) the sovereign moves to b′′ = (b′′S, bL)

by paying down (or issuing) short-term bonds and not trading long-term bonds, and then

immediately makes (ii) a zero-cost trade from b′′ to b′.

14This is reminiscent of the buyback “boondoggle” of Bulow and Rogoff (1988), although the mechanism is
via incentives in this case, while it is through liquidation value in the Bulow-Rogoff environment. In fact, in
the Bulow-Rogoff environment, the sovereign would be better off issuing long-term bonds to dilute exiting
bondholders’ liquidation claims. This is not the case in our environment, as trades to point C in Figure 3
demonstrate.
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bS

bL

b′

b′′

b

zero-cost trade

only short-term

Figure 4: A Decomposition. A movement from b to b′ can be decom-
posed as a trade from b to b′′ using only short-term debt, and a zero-cost
trade from b′′ to b′. The utility at b′′ is strictly higher than at b′.

Note that, using equations (8) and (9), the budget constraint can be rewritten as:

c+ (1 + r)bS + rbL = y + qS(b′)b′′S. (10)

Now consider an alternative policy of just trading to b′′, rather than to b′. From Lemma

3, we know that the continuation value at b′′ is weakly greater than b′ as the two points

are related by a zero-cost trade. Thus trading to b′′ weakly dominates trading to b′ if it

does not require lower current-period consumption. The required consumption for the trade

to b′′ is given by equation (10) with qS(b′) replaced by qS(b′′). But note that the weakly

greater equilibrium value at b′′ also implies that qS(b′′) ≥ qS(b′), with strict inequality if

b′′ ∈ND. Relative to (10), this weakly relaxes the current-period budget constraint, and

thus the required consumption to trade to b′′ is higher.15

Hence, the sovereign is weakly worse off trading to b′ than to simply trade to b′′ and stay

put, and strictly better off if moving to b′ involves different incentives to exit than b′′. Thus

an exit strategy that involves only short-term bonds weakly dominates alternative paths,

and strictly dominates those that involve changes in long-term bond prices. In a situation of

deleveraging under the risk of default, a sovereign will shy away from using the long-term

bond market: at equilibrium prices, it is too expensive to use it.

15More precisely, this relaxes the budget constraint as long as b′′S ≥ 0. However, if the implied b′′S < 0, then,
from Claim 1, it is optimal to just remain at b.
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We summarize the results of this subsection in the following theorem:16

Theorem 2. Let b ∈ C and suppose the sovereign decides to exit the crisis region in T

periods. Relative to the short-term-bond-only strategy that solves problem W (b, T ), any

alternative portfolio strategy starting from b that involves active long-term bond management

is weakly sub-optimal, and generically strictly sub-optimal if the equilibrium bond prices along

the transition differ from those along the W trajectory.

4 Maturity and Rollover Crises

In the preceding analysis, we were able to uniquely characterize equilibrium regions and

value functions. Moreover, bond prices were uniquely determined subject to the tie-breaking

assumption when the sovereign is indifferent over two exit times. Conditional on an exit

time, there is a local indeterminacy about portfolios, as small changes in maturity structure

may not induce a discrete change in exit time. This local indeterminacy aside, the fact that

the equilibrium is pinned down leaves no room for coordination failures and the resulting

self-fulfilling rollover crises. In this section we slightly modify the environment to allow for

such possibilities.

Given our focus on the choice of the maturity structure, this modification is an important

one, as it has been pointed out (see, for example Cole and Kehoe, 2000) that a longer maturity

structure mitigates the vulnerability to a self-fulfilling rollover crisis. In this section, we

consider how this insight applies to a model with active maturity management. We show that

the main result of the preceding analysis goes through; that is, long-term bonds are not used

during deleveraging, save for an extension of the maturities at the end of the process. That

is, the desired lengthening of maturities is delayed as long as possible in order to minimize

the costs of deleveraging.

As noted before, we need to alter the environment to allow coordination failures by the

lenders. To this end, we alter the timing within a period (see Figure 5). The start of the

period is the same as the benchmark. Specifically, assuming no default in a previous period,

the sovereign enters the period with b and draws V D. Before making a default decision,

the sovereign auctions newly issued bonds. The next step is bond-market settlement, which

involves the sovereign’s decision to repay outstanding claims or not. If the sovereign does not

default, it settles outstanding claims using a combination of endowment y and newly raised

money.17 In the no-default case, the environment is identical as in the benchmark.

16The term “generically” in the proposition refers to the possibility that the sovereign is indifferent between
exiting in T and T + 1 periods.

17See Lorenzoni and Werning (2013) for an alternative source of multiplicity along the lines of Calvo (1988).
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Inherited
States:
(bS, bL)

V D

realized, y
received

Auction
b′S, b′L − bL

Settlement

No Default

Default

Consume

V D

Figure 5: Timing within a Period in the Model with Coordination Failures.
Note the difference with Figure 1.

However, if the sovereign defaults during settlement, the money raised at auction is

distributed across all bond holders based on their respective positions. In particular, the

money raised from new bond holders is partially transferred to existing bond holders.18

Importantly, this exposes newly issued bonds to default risk within the period of issuance,

and, as we shall see, opens the door to rollover crisis.19

Given the new timing, we need to update the break-even conditions (BE) used to price

bonds in the benchmark environment. Specifically, the fact that contemporaneous default is

a possibility implies that:

qS(b, V D, b′) = (1−D(b, V D, b′))E
[
1−D(b′, V D′, b′′)

∣∣∣∣V D

]
(BE′)

qL(b, V D, b′) = (1−D(b, V D, b′))E
[(

1−D(b′, V D′, b′′)
)(r + q′L

1 + r

) ∣∣∣∣V D

]
,

where q′L as before is the long-term bond price next period given the government’s policy

functions. The important difference between (BE) and (BE′) is that the current period’s

b is a relevant state variable in the pricing equation. This reflects that the initial debt is

relevant for the sovereign’s current-period default decision, and this decision is relevant for

18This is consistent with the fact that all bondholders have equal seniority in the event of default.
19If money raised from newly issued bonds were instead returned in entirety to the new bond holders, the

environment would be equivalent to the benchmark. Note also that the environment is a slight departure
from that of Cole and Kehoe (2000). Cole and Kehoe differ from that of Figure 5 in that in the event of
default, the sovereign gets to keep the proceeds from the newly issued bonds. This requires keeping track
of off-equilibrium outcomes in which the sovereign issues a large amount of new bonds and consumes the
proceeds while defaulting, an unnecessary complication. The critical assumption is that new bond holders
are immediately at risk, not who receives the money.
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newly issued bonds.20

We now consider equilibria in which a rollover crisis shrinks the area of no default, leaving

the country vulnerable to default in regions of the state space that would otherwise be risk

free.

4.1 Coordination Failures

The definition of equilibria in this Rollover Crisis Environment is the same as the benchmark

(Definition 1), with (BE′) replacing (BE) in condition (iii). With the new timing, we no

longer have uniqueness in terms of equilibrium regions, values, or prices. However, it is

straightforward to verify that the benchmark equilibrium remains an equilibrium under the

new timing.21 We shall denote the benchmark equilibrium’s value function and prices as V ?

and q?j , j = S, L, respectively, and use them as references for the equilibrium with rollover

crises characterized in this section.

As in the benchmark we divide the state space into three regions: a no-default region

ÑD, a crisis region C̃, and an immediate default region D̃, where throughout the section a

tilde indicates a departure from the benchmark. The benchmark ND is the largest possible

no-default region. We now construct an equilibrium with the smallest possible no-default

zone:

ÑD =

{
b ∈ B

∣∣∣∣u(y − (1 + r)bS − rbL) + β
u(y − rbL)

1− β
≥ V

D

}
. (11)

To see how this region arises in equilibrium, suppose that creditors refuse to roll over

maturing bonds as they anticipate a default. The condition in (11) states that even if creditors

refuse to roll over maturing bonds and V D = V
D

, the sovereign would still prefer to repay

at all periods rather than to default. We contrast ÑD with the benchmark ND in Figure

6. The region ÑD is asymmetric with respect to maturity, with the boundary favoring

long-term debt. This reflects that only short-term debt is vulnerable to a roll over crisis. The

boundary of the benchmark ND is the dashed line with slope −1, the ratio of risk-free prices.

Note that ÑD is a strict subset of the benchmark ND, with the boundaries overlapping

only at bS = 0 (at which point the ND region is tangent to ÑD).

To clarify, we are constructing an alternative equilibrium with a smaller no-default region

ÑD. Within the equilibrium, there is no uncertainty about the strategies of bondholders.

In particular, we are not introducing a sunspot such that agents switch from one equilibrium

strategy to the other. The equilibrium features a coordination failure that generates a

20The break-even condition should allow for money raised in new bond issuances to be rebated to all
bondholders; since this is always zero in equilibrium, we omit it from the expressions.

21We omit the details of this argument in order to focus on equilibria with coordination failures.
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bS

bL

C̃

ÑD

ND boundary

A

B

Figure 6: No-Default Region with Rollover Crises. Shaded area
represents the C̃ region. In equilibrium, there would be an immediate
trade from any point such as A to point B, at risk free prices. Note that
point B lies in the boundary of ND, this is important for the equivalence
result of Proposition 4.

no-default region that is strictly smaller than ND.

Outside ÑD, the sovereign prefers to default when creditors are unwilling to roll over

maturing bonds. In particular, suppose the sovereign faces the following price schedules in

the weak enforcement regime:

qj(b, V
D
, b′) =


1 if b ∈ ÑD, b′ ∈ ÑD

p(b, b′S + b′L) ∈ (0, 1) if b 6∈ ÑD, b′ ∈ ÑD, and b′S + b′L < Bp(b)

0 otherwise,

(12)

for j = S, L, b′ = (b′S, b
′
L), and b, b′ ∈ B. The first line reflects that bonds can be rolled over

at risk free prices if the initial b ∈ ÑD. The second line defines “off equilibrium” prices

that rule out the government repurchasing long-term bonds at price zero and not defaulting,

which is inconsistent with equilibrium. The functions p and Bp ensure prices are consistent

with equilibrium over the entire debt state space, even for outcomes (b, b′) never chosen

in equilibrium.22 The final line of (12) reflects that for b /∈ ÑD, the government is not

22In particular, suppose the government could repurchase bonds at price zero to a point B′ = b′S +b′L, where

(b′S , b
′
L) ∈ ÑD. For this to be an equilibrium price, we require u(y−RbS − rbL) +βu(y− rB′)/(1−β) ≤ V D.
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afforded the opportunity to fully roll over its debt if V D = V
D

, and thus must choose between

immediately paying down its debt or default.

Faced with these prices, the sovereign’s value function in the weak enforcement state

conditional on no-default this period is:

V (b, V
D

) =
u(y − r(bS + bL))

1− β
if b ∈ ÑD (13)

and V (b, V
D

) ≤ V
D

if b 6∈ ÑD.

With prices and values determined for the weak enforcement regime, we now turn to

the strong enforcement regime. The main result of this section is that the prices and value

functions in the crisis equilibrium conditional on being in the strong enforcement regime are

the same as the benchmark without rollover crises:

Proposition 4. There exists a Markov Perfect Equilibrium of the Rollover Crisis Environment

that has the following characteristics: Let ÑD be defined by (11); D̃ = D be the default

zone as in the benchmark model; and C̃ the remaining region of B. The equilibrium value

function for V D = V
D

is given by (13); and for V D = V D satisfies V (b, V D) = V ?(b, V D)

for all b ∈ B, where V ? is the value function from the benchmark equilibrium.

This proposition states that the sovereign’s value is the same as in the no-rollover-crisis

benchmark, conditional on V D = V D. This is so despite the presence of rollover risk, which

is manifested in a strictly smaller no-default region and strictly larger crisis region. To

understand why the two environments are equivalent in the strong enforcement regime,

consider a point b ∈ND but not in ÑD. This is the region in which a “self-fulfilling crisis”

induces default in the current environment, but not in the benchmark. However, absent the

onset of the run this period (that is, if the current V D = V D), the sovereign can still trade

sovereign bonds. In particular, it can trade into ÑD at risk-free prices. More generally:

Proposition 5. The prices associated with the equilibrium of Proposition 4 are given by (12)

The threshold Bp(b) is the threshold for B′ such that this holds with equality, and so zero is an equilibrium price
for any B′ ≥ Bp(b). For B′ < Bp(b), p(b, B′) is constructed so that the sovereign is strictly indifferent between
default and not. That is p(b, B′) = p̃, where p̃ ∈ (0, 1) solves u(y−RbS−rbL+p̃(B′−bL))+βu(y−rB′)/(1−β) =

V
D

, and so the government is indifferent to default and bringing total debt down to B′ at price p(b, B′).
This indifference is then used to construct a mixing equilibrium, where the sovereign defaults with probability
1− p(b, B′), justifying the price.
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for V D = V
D

and for V D = V D and b /∈D are:

qS(b, V D, b′) =


1 if b′ ∈ ÑD

1− λ if b′ ∈ C̃

0 otherwise;

(14)

and

qL(b, V D, b′) =


1 if b′ ∈ ÑD

1− λ if b′ ∈ND − ÑD

q?L(V D, b′) otherwise,

(15)

where q?L is the price function of the benchmark equilibrium.

This proposition says that if the end-of-period debt places the sovereign in the no-default

region, bonds carry risk-free prices absent a run. Thus, in the strong enforcement regime,

the sovereign can always trade into the no-default region. More importantly, such trades are

zero-cost trades if b ∈ND. To see this, suppose that b = (bS, bL) is such that bS + bL = B;

that is, b is on the boundary of the benchmark no-default region. This is depicted in Figure

6 by point as A. The cost to trade to point B = (0, B) ∈ ÑD from A is:

qS(b, V D, B)(0− bS) + qL(b, V D, B)(B − bL)

= −bS +B − bL = 0.

Note a key distinction between this zero-cost trade and those considered in the benchmark.

In the benchmark, the boundary of the no-default region had a slope of −1, which is the

ratio of risk-free prices. Thus it was never possible to trade into the no-default region at

these prices. However, in the current environment the no-default region is not a line of slope

−1, and thus it is possible that a zero-cost trade at risk-free prices can move the sovereign

into the no-default region. In fact, it is optimal for the sovereign to trade into the no-default

region ÑD as soon as it reaches the boundary of the benchmark no-default region. The value

at this boundary is therefore the same as in the benchmark. Moreover, the prices outside the

benchmark ND are the same as in the benchmark. This allows the sovereign to pursue the

same policies and achieve the same welfare as in the benchmark case without roll over crises.

The main distinction between the benchmark and the current environment with crises

is what happens at the boundary of ND. In the benchmark, the sovereign could simply

remain at the boundary, regardless of its maturity structure. In the current environment, the
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sovereign must lengthen maturities in order to reach the new no-default region ÑD. This

reflects the asymmetry of maturity choice in the presence of rollover risk. However, prior

to this reshuffling of maturity at the boundary, the sovereign’s incentives not to trade in

long-term debt markets remain the same as in the benchmark. The optimal sequencing is

therefore to remain passive in long-term debt markets while deleveraging, and then lengthen

maturity at the end of the process.

From the preceding analysis, it is clear that the model easily extends to arbitrary no-

default regions. Whatever the shape of this region in equilibrium, the relevant boundary is at

what point in the debt space can a zero-cost trade reach into the no-default region. Absent a

contemporaneous default, the sovereign will find it optimal to exploit such a trade. In terms

of welfare and risk, therefore, this extended boundary is the relevant frontier of the no-default

region and this boundary by definition is symmetric with a slope of −1.

5 Efficient Restructuring

The analysis thus far has concerned equilibrium debt management. That is, faced with

competitive prices, the sovereign optimally chooses its maturity structure. We now turn to

the question of whether there is a potential Pareto improvement in a non-competitive setting.

That is, if creditors and the sovereign could bargain over a debt restructuring, what would

be an efficient outcome of that process? Specifically, we consider a one-shot restructuring,

after which the sovereign and creditors resume equilibrium behavior.23

To answer this, we can appeal to Hopenhayn and Werning (2008), who derive a general

implementation result for the efficient contract between a lender and borrower when the

borrower is hit by outside option shocks. In particular, they find that (in an environment

without coordination failures) an efficient allocation can be implemented with contracts where

the entire stock of debt (in all periods) is of one-period maturity. To discuss this result, we

will restrict attention to the benchmark equilbrium,24 and turn to the iso-V curves introduced

in Figure 3, which we reproduce in Figure 7. We assume the initial state is in the crisis

region, as there is no incentive to restructure in the no-default region. We hold off on the

default region until after discussing restructuring in the crisis region.

The initial state is depicted by point A = (bAS , b
A
L) along with its associated iso-V curve.

23Hatchondo et al. (2013) study the introduction of debt exchanges in a quantitative sovereign debt model
with a long-term bond. They show that there are situations where a write-down of the debt can generate a
Pareto improvement ex-post. Differently from us, they abstract from maturity choice.

24Given the equivalence result of the previous section, what follows will also work for the equilibrium with
coordination failures, except that the efficient allocation will require the issuances of long-term bonds during
the final exit from the crisis region.
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bS

bL

B

C

A

V (b) = V (A)

qL(A)(bL − bAL) + qS(A)(bS − bAS ) = 0

slope = − qL(A)
qS(A)

Figure 7: Equilibrium Iso-V Regions and Restructuring. The line
segment from points B to C represents Pareto improvements over point A,
that cannot be achieved as a market outcome.

The dashed line tangent to point A has a slope equal to the ratio prices evaluated at the

initial state: −qL(A)/qS(A), where we suppress V D = V D in the price notation. Along the

dashed line, qS(A)(bS − bAS ) + qL(A)(bL − bAL) = 0, and so the total amount of debt evaluated

at point-A prices is constant. Of course, point-A prices are not equilibrium prices along the

entire dashed line, as the equilibrium price of the long-term bond is sensitive to maturity

structure. However, at point B, where the dashed line intersects the vertical axis (bL = 0),

the equilibrium market value of debt is the same as at point A. This is because bL = 0 and

qS(A) = qS(B) = 1− λ. Therefore, creditors are indifferent between point A and point B at

equilibrium prices. However, point B is a strict welfare improvement for the sovereign.

Similarly, we can follow the iso-V curve from point A until it also crosses the vertical axis

in Figure 7 at point C. By definition, the sovereign is indifferent between point A and C.

However, the market value of debt is greater at point C. This can be seen by recalling that

the market value of debt is the same at A and B, and noting that point C has more debt (at

the same short-term bond prices) as point B.

Therefore, a restructuring to the interval BC is a constrained Pareto improvement from

point A. The intuition for why this improves on the equilibrium outcome is that it provides

greater incentives for the sovereign to exit the crisis region. This helps mitigate the lack of

commitment to pursue deleveraging in an expeditious manner. Moreover, this improvement

cannot be implemented without coordination across creditors. In particular, long-term

bondholders would like to hold out if bonds are restructured to shorter maturities. This
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involves a capital gain for long-term bondholders given the greater incentives to exit the

crisis region after the restructuring. Note as well that there can be no improvement involving

lengthening the maturity, as this will involve a drop in the market value of debt. In particular,

lengthening maturity leads to a capital loss for bondholders after the restructuring, and so

points to the right of A along the dashed line are not sustainable in equilibrium. Given the

local indeterminacy, the constrained Pareto frontier extends from the vertical axis into the

region with positive long-term debt; in particular, the extended Pareto frontier is the set of

iso-T regions that contain the vertical axis.

We can extend the preceding analysis into the default zone. In the default zone, the

sovereign’s payoff is V D (continuing to assume the strong-enforcement regime). The sovereign

is therefore indifferent between any point in the default zone and the boundary between

D and C. Bondholders get zero in the default zone, and therefore are strictly better off

moving to the boundary of the crisis zone. The above analysis then implies that the Pareto

efficient restructuring in the default zone, D, adjusts debt to where the boundary of the

default region intersects the vertical axis. A similar point applies when the state is V D = V
D

.

The sovereign will default in the crisis region in the weak enforcement regime, and therefore

efficient restructuring will reach the boundary of the no-default region. Along this boundary,

maturity is irrelevant, and thus any point is an efficient outcome of restructuring.

The analysis of this section implies that efficient restructuring will shorten maturity.

This provides the greatest incentives for the sovereign to deleverage and minimizes the

length of time the sovereign and creditors are exposed to default risk. Lengthening of

maturities in empirical debt restructurings are often motivated by providing “breathing room”

for the sovereign. Within the context of the model with rollover crises, there is a point

where lengthening of maturities is efficient and does mitigate rollover risk, but it may be

better to delay such lengthening if another goal of the restructuring process is to induce the

sovereign to deleverage. Moreover, the lengthening of maturity to mitigate rollover risk can

be implemented at competitive equilibrium prices. Restructurings involving official lenders

(like the IMF) also involve conditions on fiscal policy going forward. There is an issue of how

enforceable such conditionality is, particularly as the official lender also lacks commitment

to punish the debtor. This issue does not arise in the competitive equilibrium we consider.

In particular, bond holders only demand to break even on average, which is always time

consistent. This provides the incentive for the sovereign to reduce short-term debt as quickly

as possible.
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6 A More General Portfolio of Maturities

The previous results were obtained in a set up with just two assets: a one period bond and

a perpetuity. In this section we show that the results can be extended to a more general

portfolio of maturities.

We use the benchmark timing stated in Section 3 and reuse the notation from that section.

We will now consider the case where we have N + 1 bonds: a one-period bond plus N bonds

of longer maturity. For tractability, we shall use the “random maturity” structure of Leland

(1994a) and Chatterjee and Eyigungor (2012), which is also equivalent to the geometrically

declining coupon formulation of Hatchondo and Martinez (2009).25 Specifically, each of the

bonds is indexed by n ∈ {0, 1, 2..., N} and matures with iid probability δn ∈ [0, 1] each

period. The one-period bond (n = 0) has δ0 = 1, and if there is a perpetuity it has δ = 0;

intermediate maturities set δn ∈ (0, 1), and have an expected maturity of 1/δn. To normalize

all bond prices to one in a risk-free environment, bonds of type n promise a coupon of r + δn

each period up to and including the date of maturity. For each bond of type n, there is a

continuum of independent maturity realizations, and we appeal to the law of large numbers

to state that a constant fraction δn of outstanding bonds bn matures each period.

Absent default this period, the budget constraint of the sovereign is:

c+
∑

n∈{0,1,...,N}

(r + δn)bn ≤ y +
∑

n∈{0,1,...,N}

qn(V D, b′)(b′n − (1− δn)bn)

where b = (b0, b1, ..bN ), and qn represents the equilibrium price schedule of bond n. The term

on the right represents net new issuances of each type of bond n, adjusting for the fraction

δn that matures that period.

Letting D denote the default policy, it follows that the break-even conditions for the

foreigners imply that:

qn(V D, b′) = E

[
(1−D(b′, V D′))

(
r + δn + (1− δn)q′n

1 + r

)]

where q′n denotes the equilibrium price of bond n the following period.26 As before, we impose

that qn(b, V D, b′) ∈ [0, 1] for all i and states to rule out bubbles. Also as before, we restrict

attention to bn ≥ 0 for all n ∈ {0, 1, ..., N}, and redefine B ≡ [0, 1)N+1.

Denoting by Bn the policy function for bond n, we can define a Markov Perfect Equilibrium

25While the random maturity formulation is tractable, our results hold for any bond portfolio with
non-contingent payment terms, as long as there exits a one-period bond.

26Where we input δn for the expected probability that the bond matures next period.
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in the same manner we did in Section 3. We can divide the state space into no-default region,

crisis-region and default-region just as before. We can also show that the no-default region in

this case remains the same: before:

ND =

{
b ∈ B

∣∣∣∣∑
n

bn ≤ B̄

}

where B is defined as in Proposition 2. Similarly, prices are one in this region, that is

qn(V D, b) = 1 for all n and b ∈ND; and the value function is V (b, V D) = u(y−r
∑

n bn)/(1−
β) for all b ∈ND.

With this in hand, we can now slightly redefine problem (PW) to account for the more

general portfolio of maturities as follows:

W (b, T ) = max
{b0,T∈R,{ct}T−1

t=0 }

{
T−1∑
t=0

βt(1− λ)tu(ct)

+ βT (1− λ)T−1

u
(
y − r

(
b0,T +

∑
n∈{1,...,N}(1− δn)T bn

))
1− β


+

T−1∑
t=1

βt(1− λ)t−1λV
D

}
,

subject to:

b0 ≤ (1 + r)−1

[
T−1∑
t=0

(
1− λ
1 + r

)t(
y − ct −

∑
n∈{1,...,N}

(r + δn)(1− δn)tbn

)

+

(
1− λ
1 + r

)T−1
b0,T

]
,

b0,T ≤ B −
∑

n∈{1,...,N}

(1− δn)T bn.

and ct ≥ 0 for all t. As in the benchmark, the solution to this problem will feature a constant

consumption, and where the last two constraints hold with equality.

Note that solution for problem W imposes the same requirement as before: the sovereign

does not issue new long-term bonds of any δn < 1, nor does it buy them back. For n such

that 0 < δn < 1, the sovereign simply lets the long-term bonds mature, and for a perpetuity

δ = 1, there is no change in the amount outstanding. We now state the extension of our

benchmark result to general portfolios:
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Proposition 6. In any Markov Equilibrium with a general portfolio, for any b ∈ C, we have

that V (b, V D) = supT≥1W (b, T ) as long as a solution to supT≥1W (b, T ) features b0,T ≥ 0.

The above Proposition says that versions of Lemmas 1 and 2 hold for the general maturity

case: that is, in any equilibrium, it is without loss of generality to restrict attention to

sovereign strategies that use only the one-period bond, and do not actively participate in

the long-term bond market. The last statement of the proposition just guarantees that the

optimal solution to the W is possible; that is, features non-negative debt positions.

The above also highlights an important point: our result is about issuances, that is, during

the periods of deleveraging, the country will not issue new long-term bonds. This is consistent

with the fact that countries tend to switch their issuances towards the short-term end during

periods where the interest rate spreads over risk free debt are high. However, whether or not

the maturity of the overall portfolio of outstanding debt shortens or not during deleveraging

depends on whether the pace at which long-term bonds come due is greater or less than the

pace of deleveraging.

7 Conclusion

In this paper we have shown that actively engaging in the long-term bond market during

periods of deleveraging entails costs for a sovereign. In particular, we have shown that shifts

in the maturity structure may affect the incentives to develerage and hence imply changes

in the equilibrium prices of long-term bonds. Such changes are always moving against the

borrower; that is, the price of the long-term bond rises when the sovereign buys them, while

it falls when the sovereign issues more. Quite generally, these actions will tend to shrink the

budget set of the borrower, generating an incentive to use only short-term bonds during a

period of deleveraging.

The model we have described however does not completely rule out the use of long-term

bonds, as there is a local indeterminacy in the optimal portfolio allocation in equilibrium due

to the discrete time environment. That is, generically, small changes in the portfolio do not

generate changes in the discrete exit times or prices, and hence, are also optimal. However, it

is important to highlight that this result is driven by the discrete time assumption. Although

we have refrained from presenting this formally, in the continuous-time limit the iso-T regions

collapse to lines, and the deleveraging portfolio is uniquely pinned-down. In particular, any

policy that involves long-term bonds is strictly suboptimal. Note however, that away from

the region of deleveraging, in the interior of the T (b) = ∞ region, the portfolio remains

locally indeterminate, as small variations in the portfolio do not change the optimality of

never exiting.
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An important caveat in the above analysis is our focus on outside option shocks, with and

without rollover crises. The literature has primarily focused on income (or endowment) shocks

as the main source of uninsurable risk.27 We have made this choice to transparently highlight

how the incentives to deleverage, and the corresponding budgetary implications, are sensitive

to maturity choice along the transition. In particular, maturity choice is not used to hedge

risk in our environment. A hedging motive would arise if shocks affected consumption absent

default, and if these changes in consumption had a non-zero covariance with bond prices.

Our environment abstracts from this hedging motive as shocks do not change equilibrium

consumption in periods of no default. The bonds in our environment are therefore not useful

to hedge the risks we consider. In practice there are a richer set of assets to hedge risk beyond

non-contingent bonds, and we do not want the absence of these assets influencing the core

results. Finally, the desire to hedge is also operative in models of full commitment under

incomplete markets, while our results arise exclusively due to limited commitment involving

the speed of deleveraging and repayment. It is questionable how effectively the cyclical shifts

in the slope of the yield curve can be exploited to insure the risks facing economies on the

brink of default. For example, in the context of full commitment, Buera and Nicolini (2004)

found the positions required to hedge are implausibly large (see also Faraglia et al., 2010,

for a more recent analysis showcasing several problems with this approach). That said, we

acknowledge that the desire to hedge may influence maturity choice, particularly in relatively

tranquil periods in which the normal business cycles is the primary source of risk. We view

our results as isolating an alternative force that also operates through equilibrium prices,

but involves how maturity choice affects the incentives to deleverage and the corresponding

equilibrium prices.

27There are important exceptions, see for example Cooley et al. (2004) and the more recent work of
Hopenhayn and Werning (2008). For a more detailed summary of the literature, see the discussion in Aguiar
and Amador (2013).
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A Appendix: Proofs

A.1 Auxiliary Results

Many of the results exploit the fact that the value function conditional on repayment in the

current period is continuous and monotonic in debt. Using standard arguments, we establish

this result in part (a) of the following lemma. Part (b) of the lemma is useful in proving

Proposition 2, which states that the no-default region is an absorbing region. The lemma uses

the lenders’ break-even conditions to establish an upper bound on the government’s value for

debt positions in this region. Moreover, the lemma establishes that any equilibrium strategy

starting from this region that leads to default with positive probability generates a strictly

lower utility. The proof uses the fact that the break-even conditions require that equilibrium

prices compensate lenders for the possibility of default, as well as that endogenous default

implies that V (b, V D) < V D. The strict inequality statement in part (b) omits the case of

(bS, bL, V
D) = (0, B, V

D
), which is easier to handle directly in the proof of Proposition 2.

Lemma A.1 (Continuity, Monotonicity and an Upperbound). In any Markov Perfect

Equilibrium, for any V D ∈ {V D, V
D} we have:

(a) For a given V D, the function (bS, bL) 7→ V (bS, bL, V
D) is strictly decreasing and contin-

uous in each argument; and

(b) Define B by u(y − rB) = (1− β)V
D

. For any (bS, bL) such that bS + bL ≤ B, we have

V (bS, bL, V
D) ≤ u(y − r(bS + bL))

1− β
.

This last inequality is strict if there is a default along some equilibrium path starting from

(bS, bL, V
D) and any of the following three conditions hold: (i) bS > 0, (ii) bS + bL < B,

or (iii) default occurs at V D.

Proof. Part (a): For monotonicity, consider a point b0S, b
0
L, and let εS ≥ 0, εL ≥ 0 with one

and only one inequality strict. Then it follows that

V (b0S − εS, b0L − εL, V D)

≥ u(y − (1 + r)b0S − rb0L + qSb
′
S + qL(b′L − b0L) + (1 + r)εS + rεL) + βEV

> u(y − (1 + r)b0S − rb0L + qSb
′
S + qL(b′L − b0L)) + βEV

= V (b0S, b
0
L, V

D),

where b′S and b′L represent the equilibrium debt policy when the state is (b0S, b
0
L, V

D); qS and
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qL, represent the associated equilibrium price schedules evaluated at the debt policy choices;

and EV is short-hand for the expected continuation value conditional on V D and (b′S, b
′
L).

The first line uses the fact that choices made for (b0S, b
0
L) are feasible (but not necessarily

optimal) for (b0S + εS, b
0
L + ε). The feasibility uses the fact that prices depend on (b′S, b

′
L, V

D)

but not on b0j , j = S, L, so the choices (b′S, b
′
L) have the same budgetary consequences from

either initial debt state. The second line uses the fact that εj ≥ 0, j = S, L, with one strictly

greater than zero. The final line uses the fact that (b′S, b
′
L) represent the optimal choices at

(b0S, b
0
L, V

D).

Continuity follows from a similar argument. Let bA and bB be two points in the state

space. Let bA′ and bB′ be their respective optimal debt policies. Let qA and qB be the

equilibrium vector of prices at which the optimal debt policies are traded. Let C̃(b, b′, q) ≡
y − (1 + r)bS − rbL + qSb

′
S + qL(b′L − bL) denote the consumption implied by the initial debt

b and the new debt policy b′ issued at prices q. Note that |C̃(bA, b′, q) − C̃(bB, b′, q)| ≤
(1 + r)|bAS − bBS |+ (r+ qL)|bAL − bBL | ≤ (1 + r)

(
|bAS − bBS |+ |bAL − bBL |

)
. Then optimality implies:

V (bA, V D) = u(C̃(bA, bA′, qA)) + βV (bA′, V D) ≥ u(C̃(bA, bB′, qB)) + βV (bB′, V D).

Similarly:

V (bB, V D) = u(C̃(bB, bB′, qB)) + βV (bB′, V D) ≥ u(C̃(bB, bA′, qA)) + βV (bA′, V D).

Taking differences we have that:

u(C̃(bA, bA′, qA))− u(C̃(bB, bA′, qA)) ≥

V (bA, V D)− V (bB, V D) ≥ u(C̃(bA, bB′, qB))− u(C̃(bB, bB′, qB)).

Concavity implies that |u(c′)−u(c)| ≤ κ|c′− c| where κ = u′(min(c, c′)). This implies that as

the distance between bA and bB goes to zero, so do the bounds above, implying the continuity

of the value function.

Part (b): Starting from a b = (bS, bL) that satisfies the hypothesis of part (b), we

can iterate forward on the equilibrium policy functions conditional on the path of V D. In

particular, denote histories of V D realizations by ht ≡ (V D
0 , V

D
1 , ..., V

D
t ), with V D

0 representing

the current period realization. Let π(ht) denote the probability ht is realized. Let c(ht) and

d(ht) represent equilibrium consumption and default decisions conditional on ht, where d(ht)

equals one if the sovereign defaults at history ht (but not before) and zero otherwise. It is

convenient to define the “survival” indicator: s(ht) ≡
∏

hs∈ht(1− d(hs)), which equals one if
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there is no default along the path up to and including ht and zero otherwise. Starting from b,

let (b′S, b
′
L) denotev the end-of-period equilibrium debt portfolio with associatedv equilibrium

prices (q′S, q
′
L).

Equilibrium pricing for new debt requires:

q′L =
∞∑
t=1

R−t
∑
ht

π(ht)s(ht)r, (16a)

q′S =
∑
h1

π(h1)s(h1). (16b)

The value function can be written as:

V (b, V D) = u(c(h0)) +
∞∑
t=1

βt
∑
ht

π(ht)
(
s(ht)u(c(ht)) + d(ht)V D(ht)

)
. (17)

The budget constraint, after using the equilibrium pricing at each history as well as the

no-ponzi condition, is:

y − rbL − c(h0) +
∞∑
t=1

R−t
∑
ht

π(ht)s(ht)(y − rbL − c(ht)) = RbS. (18)

Equation (18) is a necessary condition in any equilibrium, and reflects the fact that new

bondholders break even in expectation. This condition allows us to compute an upper bound

for the value in (17). In particular, maximizing the right hand side of (17) over consumption

processes, subject to (18), one obtains an upper bound to the value function given by:

V (b, V D) ≤ u(c?) +
∞∑
t=1

βt
∑
ht

π(ht)(s(ht)u(c?) + d(ht)V D(ht)) (19)

where c? = y − r
r+q′L

RbS − rbL. Given that c? ≤ y − r(bS + bL) as q′L ≤ 1 and that

V D(ht) ≤ u(y − r(bS + bL))/(1 − β) (for bS + bL ≤ B), it follows then that V (b, V D) ≤
u(y − r(bS + bL))/(1− β), generating the upperbound.

Note that if there exists an ht such that d(ht) = 1, then q′L < 1, and c? < y − r(bS + bL)

if bS > 0, implying that V (b, V D) < u(y − r(bS + bL))/(1− β). Note that if bS + bL < B, or

if V D(ht) = V D, the upperbound is also strict.
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Proof of Proposition 1

The following is the proof of Proposition 1, where in addition, we show that, in any Markov

equilibrium, ND = {b ∈ B|bS + bL ≤ B}:

Proof. First note that the sets are disjoint by definition. Note that ND is non-empty as

V (0, 0, V D) ≥ u(y)/(1− β) > V D for any V D. Now, Lemma A.1 implies that ND ⊂ {b ∈
B|bS+bL ≤ B}, as strict monotonicity implies that V (bS, bL, V

D
) < V

D
for bS+bL > B. Now,

note that for any b ∈ND, qs(b) = 1, which implies that V (b, V D) ≥ u(y−r(bS+bL))/(1−β),

as the sovereign could choose to roll over its short-term debt at a risk free price while

remaining in ND forever. Hence the bound of Lemma A.1 part (b) binds, and V (b, V D) =

u(y − r(bS + bL))/(1− β) for all b ∈ND and all V D. Continuity and strict monotonicity of

the no-default value function (as established by Lemma A.1 part a), implies that the boundary

of the ND region is such that V (b, V D) = V
D

, which delivers ND = {b ∈ B|bS + bL ≤ B}.
On the complement of ND, strict monotonicity of V delivers that V (b, V D) < V

D
for

any V D, hence the complement of ND can be partitioned into C and D. Given that

V D < V
D

, by continuity, there exists a non-empty C region. Finally, the assumption that

u(0) < (1− β)V D implies that for sufficiently high b, the no-default value will necessarily lie

below V D, establishing a non-empty D.

A.2 Proof of Propositions 2

We first consider the absorbing state V D = V
D

, and prove the following Lemma.

Lemma A.2. In any Markov Perfect Equilibrium, for (bS, bL) ∈ND we have

V (bS, bL, V
D

) =
u(y − r(bS + bL))

1− β
;

qS(bS, bL, V
D

) = qL(bS, bL, V
D

) =

0 if (bS, bL) /∈ND

1 if (bS, bL) ∈ND;

D(bS, bL, V
D

) =

1 if (bS, bL) /∈ND

0 if (bS, bL) ∈ND;

BS(bS, bL, V
D

) +BL(bS, bL, V
D

) = bS + bL,

Proof. The first equality was established in the proof of Proposition 1. The definition

of the regions, imply the default policy above, as well as the prices of the short-term

bond. The default policy also implies that the price of the long-term bond, qL = 0 for

b 6 inND. Our tie-breaking assumption in footnote 8 states that the government does not
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issue bonds at zero prices, which implies that bond policy functions on b ∈ ND satisfy

BS(b, V
D

) +BL(b, V
D

) ≤ B. This implies that ND is an absorbing state, and thus qL = 1

on ND. Given the above, the only way to achieve the upper bound in ND is to maintain a

stationary level of total debt bS + bL. To see this, note that:

V (bS, bL, V
D

) = max
(b′S ,b

′
L)∈ND

u(y − r(bS − bL) + b′S − bS + b′L − bL) + β
u(y − r(b′S + b′L))

1− β
.

By strict concavity of u, the maximum is only achieved when bS + bL = b′S + b′L, establishing

the final claim in the lemma.

We now turn to the case of V D = V D, and prove the following lemma:

Lemma A.3. In any Markov Perfect Equilibria, for (bS, bL) ∈ND, we have that:

V (bS, bL, V
D) =

u(y − r(bS + bL))

1− β
;

qS(bS, bL, V
D) = qL(bS, bL, V

D) = 1;

D(bS, bL, V
D) = 0;

BS(bS, bL, V
D) +BL(bS, bL, V

D) = bS + bL.

Proof. The first equality was established in the proof of Proposition 1. The definition of the

regions, imply the default policy above, as well as the prices of the short-term bond.

We now show that default does not occur along the equilibrium path starting from (b, V D)

for b ∈ ND. Part (b) of Lemma A.1 establishes that if either bS + bL < B, or bS > 0, or

default occurs at V D, it follows that the upper bound cannot be achieved in equilibrium,

contradicting the result that V (b, V D) achieves this upper bound on ND. For these cases,

the no-default region is absorbing and qL(bS, bL, V
D) = 1.

This leaves one remaining case; namely, the case of (bS, bL) = (0, B) and default occurs

when V D = V
D

. To show that default in this case is strictly dominated by the upper

bound, suppose that the government defaults at the start of period t + 1 at some history

{ht, V D} starting from the initial state (bS, bL, V
D) = (0, B, V D). We can state a number

of facts about values and debt positions at the start of period t + 1. First, for default

to be optimal at {ht, V D}, the tie-breaking assumptions requires V ({ht, V D}) < V
D

. By

strict monotonicity of V , this implies that the debt position at the start of period t+ 1 lies

outside ND. Moreover, we have that in the alternative strong-enforcement continuation

from ht, namely {ht, V D}, default would not have occurred in period t + 1. This follows

from the tie-breaking assumption that the sovereign will not borrow into a region where

it will default with probability one, as this will never be strictly optimal (see footnote
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8). That is, the history {ht, V D} occurs with strictly positive probability starting from

the initial state and debt lies outside ND at this history. The fact that debt lies outside

ND at the end of period t plus strict monotonicity implies that V ({ht, V D) < V
D

. By

definition of B, this last inequality also implies that V ({ht, V D) < u
(
y − rB

)
/(1 − β).

This implies that consumption is not always y − rB for every continuation history starting

from {ht, V D}. More formally, let {c(hi)}∞i=0 denote the sequence of consumption starting

from (bS, bL, V
D) = (0, B, V D). Then there exists some history hτ , τ ≥ t + 1, following

history {ht, V D}, such that c(hτ ) 6= y − rB. Using strict concavity of u, together with (19),

this implies that the value function V (0, B, V D) < u(y − rB)/(1 − β). This implies that

equilibrium default along any history starting from (bS, bL, V
D) = (0, B, V D) yields a value

strictly less than the upper bound. The fact that the upper bound is feasible implies that

default will never occur in equilibrium starting from this initial state, and qj(0, B, V
D) = 1,

j = S, L, completing the characterization of the no-default region.

Given that ND is an absorbing state (as default cannot occur in the equilibrium path),

we have that

V (bS, bL, V
D) = max

(b′S ,b
′
L)∈ND

{
u(y − r(bS − bL) + b′S − bS + b′L − bL)

+ β
u(y − r(b′S + b′L))

1− β

}
.

The maximum is only achieved when bS + bL = b′S + b′L, establishing the final claim in the

lemma.

A.3 Proof of Lemma 1

Proof. Let’s do the case where T (b) < ∞ (the case where T (b) = ∞ works in a similar

fashion). Let {ct}T−1t=0 denote the consumption stream associated with V (b, V ), with associated

sequence of debt positions {bS,t, bL,t}Tt=0. By definition, (bS,0, bL,0) = (bS, bL) = b and define

BT ≡ bS,T + bL,T as the bond position on entry to the safe zone. In the safe zone, maturity is

irrelevant and all that matters is the total stock of debt. Thus BT is a sufficient statistic for

welfare at the start of t = T . For t ≤ T − 1, utility depends on the risk of default and the

consumption stream absent default. Exit time T is sufficient to pin down the risk of default

regardless of the detailed allocation. We therefore focus on the consumption allocation absent

default while in the crisis zone.
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Letting qi,t+1 = qi(bt, V
D, bt+1), i = S, L, the budget constraint for t is:

ct = y − (1 + r)bs,t − rbL,t + qS,t+1bS,t+1 + qL,t+1(bL,t+1 − bL,t).

For t < T − 1, (2) and (3) imply qS,t+1 = 1− λ and r =
(
1+r
1−λ

)
qL,t − qL,t+1. Substituting in,

we have

ct = y −
(

1 + r

1− λ

)
(qS,tbS,t + qL,tbL,t) + (qS,t+1bS,t+1 + qL,t+1bL,t+1), t < T − 1.

This is a difference equation in the total market value of debt at the end of period t:

qS,t+1bS,t+1 + qL,t+1bL,t+1. Solving forward to t = T − 2 starting from t = 0, we have:

qS,0bS,0 + qL,0bL,0 =

(
1− λ
1 + r

) T−2∑
t=0

(
1− λ
1 + r

)t
(y − ct)

+

(
1− λ
1 + r

)T−1
(qS,T−1bS,T−1 + qL,T−1bL,T−1) .

The budget constraint at t = T − 1 is cT−1 = y − (1 + r) (bS,T−1 + bL,T−1) + BT , where

BT = bS,T + bL,T is the market value of debt on entry into the no-default zone. Using this

plus qi,T−1 = 1− λ, i = S, L, to replace qS,T−1bS,T−1 + qL,T−1bL,T−1 in the above, we have

qS,0bS,0 + qL,0bL,0 =

(
1− λ
1 + r

) T−1∑
t=0

(
1− λ
1 + r

)t
(y − ct) +

(
1− λ
1 + r

)T
BT .

From (2) we have qS,0 = 1− λ. From (3) we have

qL,1 = r

T−1∑
t=1

(
1− λ
1 + r

)t
+

(
1− λ
1 + r

)T−1
,

where qL,1 is the price of bonds issued at the end of period zero. Using qL,0 =
(
1−λ
1+r

)
(r + qL,1),

we have after re-arranging:

bS,0 =

(
1

1 + r

)(T−1∑
t=0

(
1− λ
1 + r

)t
(y − ct − rbL,0) +

(
1− λ
1 + r

)T−1
(BT − bL,0)

)
.

Thus the allocation {ct} satisfies the budget constraint for the W problem (PW). As W is

the maximum over all such feasible consumption streams, the result follows.
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A.4 Proof of Claim 1

Proof. Using that V
D

= u(y − rB)/(1− β), together with equation (5), we have that:

(1− β(1− λ))(W (b,∞)−W (b, T )) = u(y − rbL − (r + λ)bS)

−

[
(1− βT (1− λ)T )×

u

(
y − rbL −

(1− β(1− λ))(bS(1− λ) + (bL −B)βT (1− λ)T )

β(1− λ)(1− βT (1− λ)T )

)
+ βT (1− λ)Tu(y − rB)

]
.

Using concavity of u it follows that:

(1− β(1− λ))(W (b,∞)−W (b, T )) ≥ u(y − rbL − (r + λ)bS)

− u

(
(1− βT (1− λ)T )

[
y − rbL −

(1− β(1− λ))(bS(1− λ) + (bL −B)βT (1− λ)T )

β(1− λ)(1− βT (1− λ)T )

]

+ βT (1− λ)T
[
y − rB

])
= u(y − rbL − (r + λ)bS)− u

(
y − (r + λ)bS − rbL + (B − bL)λβT−1(1− λ)T−1

)
≥ 0,

where the last line follows from bL > B. So it follows then that T =∞ is an optimal solution

of Problem (PW) as long as bL > B and b ∈ C.

A.5 Proof of Lemma 2

Proof. Consider the case where T < ∞. Let {ĉt}T−1t=0 and b̂S,T be the solution to Problem

(PW) for a given T and b = (bS, bL) ∈ C. Let {b̂S,t}T−1t=1 be defined recursively as:

b̂S,t =
1

1− λ

(
y − ct − rbL −Rb̂S,t−1

)
where b̂S,0 = bS. Note, as argued before, an optimal solution (b̂S,t, bL) ∈ C for t ≤ T − 1.

The sovereign’s problem in any equilibrium satisfies the following Bellman equation:

V ((bS, bL), V D) = max
{c,b′S ,b

′
L}
u(c) + β

(
1− λ1{b′S+b′L>B}

)
V (b′, V D) + βλ1{b′S+b′L>B}V

D
,
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subject to

c ≤ y − (1 + r)bS − rbL + qS(b′)b′S + qL(b′)(b′L − bL). (20)

Let c = ĉ0, b
′
S = b̂S,1 and b′L = bL. Those choices satisfy the budget constraint, as long as

(b̂S,1, bL) ∈ C, given that qS(b̂S,1, bL) = 1− λ, and it follows then that such choice provides a

lower bound on the utility from the Bellman equation:

V ((bS, bL), V D) ≥ u(ĉ0) + β(1− λ)V ((b̂S,1, bL), V D) + βλV
D

But now consider, the value function V (b̂S,1, bL, V
D). It is the case that for that state, the

choice of ĉ1 and b′S = b̂S,2 and b′L = bL satisfies the budget constraint (as long as (b̂S,2, bL) ∈ C),

and hence it follows that this provides a lower bound as well:

V ((b̂S,1, bL), V D) ≥ u(ĉ1) + β(1− λ)V ((b̂S,2, bL), V D) + βλV
D

Keeping iterating, we have that in the last period before exiting, T − 1, the value function is

bounded below by:

V ((b̂S,T−1, bL), V D) ≥ u(ĉT−1) + β(1− λ)V ((b̂S,T , bL), V D) + βλV
D

Now, note that V ((b̂S,T , bL), V D) = u(y − r(b̂S,T + bL))/(1− β), given that b̂S,T + bL ≤ B. It

follows then that:

V ((bS, bL), V D) ≥
T−1∑
t=0

βt(1− λ)u(ĉt)+

+ βT (1− λ)T−1
u(y − r(b̂S,T + bL))

1− β
+

T−1∑
t=1

βt(1− λ)t−1λV
D

= W (b, T )

by putting all the inequalities above together.

So we have that V (b, V D) ≥ W (b, T ) for any finite T ≥ 1. A similar argument, together

with boundedness of V , shows that V (b, V D) ≥ W (b,∞). And the result of the lemma

follows.

A.6 Proof of Theorem 1

Proof. The proof of Theorem 1 follows from Lemmas 1 and 2.
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A.7 Proof of Lemma 3

Proof. Consider a zero-cost trade from point b to b′. Note that if b ∈ C, then b′ ∈ C, as the

sovereign cannot enter the no-default zone through a zero-cost trade at risk-free prices. Thus

qS(A) = qS(B) = 1− λ. Define qL(T ) for a given T from equation (3) and substitute into

equation (4) to obtain:

CT = −
(

1− β(1− λ)

β(1− λ)(1− βT (1− λ)T )

)
[qL(T )b′L + qS(T )b′S] + y −

(
1− β(1− λ)

1− βT (1− λ)T

)
B.

Note that a zero-cost trade implies qL(b′)b′L + qS(b′)b′S = qL(b′)bL + qS(b′)bS, thus we can

substitute b for b′ in the above bracketed expression if T = T (b′). This implies that it is

feasible for the sovereign to exit in T (b′) periods from b without changing consumption. Thus

W (b, T (b′)) = W (b′, T (b′)) = V (b′). However, V (b) = maxT ′W (b, T ′) ≥ W (b, T (b′)), with

strict inequality if the sovereign has a unique optimal T (b) 6= T (b′).

A.8 Proof of Proposition 3

Proof. Lemma A.2 obtains the value function for b ∈ND region, when V D = V
D

. For the

rest of the domain in this case, we can use the strict monotocity obtained in Lemma A.1 to

argue that the value function must be below V
D

for b /∈ND; given that at the boundary of

ND, the value function equals V
D

.

Lemma A.3 obtains the value function for b ∈ ND region, when V D = V D. Using

Proposition 1 allows to characterized the value function as equal to supT W (b, T ) for b ∈ C

and when V D = V D. Finally, exploiting the strict monotonicity of the value function, as

given by Lemma A.1, it follows that the value function is strictly less than V for b ∈D and

V D = V D; which completes the proof of the Proposition.

A.9 Proof of Propositions 4 and 5

Proof. The proof for prices and values when V D = V
D

is done in the main body of the

text. Let us now argue that the conjectured prices and value functions are an equilibrium as

well when V D = V D. To do this, note that the equilibrium value of reaching bS + bL = B̄

equals u(y − rB̄)/(1− β). This follows because, as explained in the body of the text, for any

b′S + b′L = B̄, there exist a zero cost trade that moves the country debt position to (0, B̄),

guaranteeing the maximum possible payoff in that region, u(y − rB̄)/(1 − β). Hence, the

arguments of Lemma 1 and 2 hold and we can pinned down the value function in the C

region by supT W (b̄, T ), just as before. Note that the same way that we defined D in the
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previous equilibrium is consistent with an equilibrium in this environment as well.

It remains to show that that when b ∈ ND − ÑD, the equilibrium value is the same

as in the previous case. To see this, just note that for such a b, there exists a zero cost

trade that at prices of 1 moves the debt position to the ÑD region, guaranteeing a payoff of

u(y − r(bS + bL))/(1− β), which is again, the maximum possible value in equilibrium in that

region.

Finally, the price of the long term bond needs to be adjusted for the one period risk that

country has of defaulting when b ∈ ND − ÑD, which only lasts for one period, as the

country will immediately trade to the no default region ÑD.

A.10 Proof of Proposition 6

Proof. Equilibrium prices for a bond with “maturity” δn satisfies the difference equation

(where qn = qn(V D, b′)):

qn = (1− λ)β(r + δn + (1− δn)q′n),

if b′ ∈ C, and qn = 1 if b′ ∈ND. Solving forward from t = 0 to t = T ≥ 1, we have:

qn,0 = β(1− λ)(r + δn)
T−1∑
t=0

βt(1− λ)t(1− δn)t + βT (1− λ)T (1− δn)T qn,T . (21)

If T is the exit time, then qn,T = 1.

The budget constraint for the equilibrium problem (where T = T (b)) satisfies (for

t ≤ T − 1):

ct = y −
N∑
n=0

(r + δn)bn,t +
N∑
n−0

qn,t+1 (bn,t+1 − (1− δn)bn,t)

= y −
N∑
n=0

(r + δn + (1− δn)qn,t+1)︸ ︷︷ ︸
qn,t

β(1−λ)

bn,t +
N∑
n=0

qn,t+1bn,t+1.

Rearranging:

N∑
n=0

qn,tbn,t = β(1− λ)(y − ct) + β(1− λ)
N∑
n=0

qn,t+1bn,t+1

Define MVt ≡
∑N

n=0 qn,tbn,t to be the market value of debt at the end of period t− 1. The
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above expression becomes

MVt = β(1− λ)(y − ct) + β(1− λ)MVt+1.

Solve forward from t = 0 to t = T − 1:

MV0 = β(1− λ)
T−1∑
t=0

βt(1− λ)t(y − ct) + βT (1− λ)TMVT . (22)

Using the pricing equation (21), we also have:

MV0 =
N∑
n=0

qn,0bn,0

= (1− λ)b0,0+

N∑
n=1

bn,0

(
β(1− λ)(r + δn)

T−1∑
t=0

βt(1− λ)t(1− δn)t + βT (1− λ)T (1− δn)T

)
.

Substituting into (22) and rearranging, we have:

b0,0 = β

[
T−1∑
t=0

βt(1− λ)t

(
y − ct −

N∑
n=1

bn,0 (r + δn) (1− δn)t

)

+βT−1(1− λ)T−1

(
MVT −

N∑
n=1

bn,0(1− δn)T

)]
.

Note that by definition of T = T (b), we have MVT =
∑N

n=0 bn,T ≤ B̄. Thus, equilibrium

consumption satisfies the budget constraint for the W (b, T (b)) problem with b0,T = MVT −∑N
n=1 bn,0(1− δn)T ≤ B̄ −

∑N
n=1 bn,0(1− δn)T . Thus, W (b, T (b)) ≥ V (b, V D) for b ∈ C.

Going the other way, any consumption sequence and b0,T that satisfies the constraints

of the W (b, T ) problem for any T that is feasible also satisfies the sequence of budget

constraints for the V problem. Thus the W (b, T ) value is feasible in equilibrium, and so

V (b, V D) ≥ W (b, T ) for all T .
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