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Abstract 

We outline a ‘workhorse’ affine term structure model of nominal and real interest rates in Australia. 

The model allows us to decompose observed yields paid on nominal and inflation-indexed 

government bonds into expectations for real and nominal interest rates, expectations for inflation, 

as well as real term premia and inflation risk premia. The results should not be interpreted too 

precisely given data limitations and the complexity of the model. Nevertheless, they suggest that 

medium- to long-term expectations for real interest rates, a market-based measure of the neutral 

real interest rate, have declined in recent years. At the same time, long-term inflation expectations 

have remained firmly within the Reserve Bank’s 2 to 3 per cent target band and have been more 

stable than suggested by measures of break-even inflation. Finally, the results suggest that real 

term premia have declined since the global financial crisis, which may reflect overseas factors 

given it has coincided with declines in US term premia. 

JEL Classification Numbers: E31, E43, G12 

Keywords: affine term structure model, joint real and nominal, survey data 
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1. Introduction 

Expectations of future nominal and real interest rates and inflation are crucial economic quantities. 

Expectations of nominal interest rates provide information about the expected path of monetary 

policy. Expectations for real interest rates, particularly a long way into the future, provide 

information about the economy’s expected potential growth rate and the neutral real interest rate: 

the real rate that is expected to prevail in the medium term once all transitory shocks have 

dissipated.1 In many economic models, monetary policy is deemed expansionary if current real 

rates are below this neutral rate, and contractionary if above. Finally, inflation expectations 

influence price- and wage-setting behaviour, and so affect observed inflation and economic 

outcomes more generally. Measures of expected inflation may also indicate if, and over what 

horizon, individuals believe that the central bank will meet its inflation target. 

Nominal and inflation-indexed bond yields contain information about market participants’ 

expectations for expected nominal and real rates, respectively. The difference between these two 

yields, referred to as break-even inflation, contains information about expected inflation. However, 

these yields also incorporate risk premia, which compensate investors for the various risks that 

they take on in buying a bond rather than investing in cash. This makes interpretation more 

difficult, as changes in yields could reflect changes in expectations or premia (or both). 

One way to separate these premia from the ‘pure’ expectations component is to use an affine term 

structure model (ATSM). These models are widely used by policymakers and academics, and have 

been estimated for a broad range of countries for each of the above variables separately as well as 

jointly. Some key papers in the literature include: Duffie and Kan (1996), Dai and Singleton (2000) 

and Duffee (2002) who introduce and popularise the class of ATSMs that we work with; Kim and 

Orphanides (2012) who argue for the inclusion of survey data to increase the robustness of 

estimation, as well as Kim and Wright (2005) and Chernov and Mueller (2012) who also work with 

survey data; Joslin, Singleton and Zhu ((2011); hereafter referred to as JSZ), Hamilton and 

Wu (2012) and Adrian, Crump and Moench (2013) who introduce efficient estimation methods for 

these models; and Krippner (2013, 2015) who introduces a tractable framework for enforcing the 

zero lower bound on interest rates, which is particularly important to account for when the short-

term nominal interest rate is near the lower bound, as has been the case in the United States, 

euro area and Japan recently (although not Australia). 

In this paper we estimate a joint model of the term structures of nominal and real yields, which 

allows us to extract information on expected future short-term nominal and real interest rates, as 

well as inflation. The model is intended to be a ‘workhorse’ model that can be used for ongoing 

analysis. We take this into account in our modelling choices, and try to ensure that the model is 

parsimonious and relatively easy to update. 

The results suggest that medium- to long-term expectations for the future short-term real interest 

rates, which some use as a measure of the neutral real interest rate, have declined somewhat over 

recent years. Meanwhile longer-term inflation expectations, having fallen over the 1990s as the 

Reserve Bank’s inflation-targeting framework gained credibility, have been reasonably stable more 

recently, particularly compared with what is implied by break-even inflation rates. The results also 

                                                      

1 For a further discussion in the Australian context, see McCririck and Rees (2017). See also Vlieghe (2017) for an 

excellent discussion of the determinants of real interest rates from a macrofinance perspective. 
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suggest that a large portion of the decline in yields on Australian government securities (AGS) 

since the global financial crisis has reflected lower real term premia – the risk premium associated 

with variation in real interest rates – rather than declines in inflation expectations or inflation risk 

premia – premia associated with variation in inflation. The decline has mirrored that in US term 

premia, suggesting that it reflects some global factor such as foreign central banks’ quantitative 

easing programs and the associated portfolio rebalancing flows. 

As well as the Australia-specific contribution, our paper also contributes to the broader literature 

on ATSMs. Most notably, we extend the technique JSZ use to estimate a nominal ATSM so that we 

can estimate a joint model of nominal and real yields.2 We also document how casting the model 

in terms of a Kalman filter and allowing the survey data to be fully exploited appears to aid 

estimation. This finding is somewhat counter to JSZ and Guimarães (2016), who find that filtering 

does not substantially change results. The difference likely reflects the fact that our zero-coupon 

real yield data contain a moderate amount of measurement error, given Australia has relatively 

few inflation-indexed bonds on issue, which makes filtering out the noise more important in our 

case. As such, the finding may be relevant for other countries with a limited number of inflation-

indexed bonds, such as Germany and New Zealand. Finally, we also add to the literature by 

applying these ATSM techniques to an advanced economy that has not been subject to the 

effective lower bound for interest rates, unlike the United States, United Kingdom or euro area, 

which are more commonly examined in the literature. 

2. The Model 

We start by outlining the model that we will use in this paper. It is a joint model of the nominal 

and real term structures of interest rates. As has been well documented in the literature (e.g. JSZ; 

Guimarães 2016), there are a number of difficulties associated with the estimation of ATSMs, 

namely: small-sample problems, and numerical and computational issues. We address the first by 

incorporating survey data into the estimation, and address the latter by employing a generalised 

version of the JSZ normalisation. Below we discuss exactly how these are incorporated into the 

model. We work in discrete time throughout. For a more detailed treatment and derivation of the 

model, see Appendix A. 

2.1 Deriving a Joint Affine Term Structure Model 

The basic structure of ATSMs is relatively simple. These models assume that there are underlying 

(latent or observable) ‘pricing’ factors that drive both observable economic variables, such as the 

short-term interest rate or the inflation rate, and also risk preferences via a so-called ‘price of risk’. 

They are called affine models because they imply that observable bond yields are linear functions 

of these factors. 

 

                                                      

2 Guimarães (2016) also estimates a joint model using an extension of the JSZ approach, although fewer details are 

given and this is not the main focus of the paper. 
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2.1.1 An ATSM of nominal interest rates 

Considering first an ATSM of nominal interest rates, we assume that the one-period nominal 

interest rate (rt) is given by 

 0 1t tr   ρ X  (1) 

where 0 is a scalar and 1 is a vector, so that rt is a linear function of the N pricing factors Xt. 

Moreover, we assume that the data-generating process (also called the ‘real-world distribution’ or 

‘P dynamics’) of these pricing factors is a vector autoregressive (VAR) process with one lag 

 1 1t t t    X μ θX Σε  (2) 

where  is an N  1 vector of intercepts,  is an N  N matrix describing the evolution of Xt, and 

the N error terms t + 1  N(0,IN).3 Combining Equations (1) and (2) shows that the evolution of 

the short-term rate is controlled by the P dynamics. 

As investors are risk averse, the price that they are willing to pay for a bond depends both on the 

expected level of interest rates over the life of the bond (governed by Equations (1) and (2)) and 

the risk that owning a bond entails, relative to rolling funds in short-dated securities. Following 

Duffee (2002), we assume that the market price of risk is also a linear function of the factors and 

is given by 

 0 1t t
 λ λ λ X  (3) 

where t is an N  1 vector that represents the price of risk associated with each of the factors at 

time t, 0 is an N  1 vector and 1 is an N  N matrix. The specification implies that for each 

factor i, the compensation demanded by investors for bearing the risk associated with that factor 

is a constant 0,i plus a linear combination of all the factors. 

The market price of risk in turn determines the term premium, which is the compensation that 

investors receive/pay for locking in an interest rate for a long period, rather than rolling over 

short-dated securities. As discussed in Cochrane (2001), the size and sign of this premium will 

depend on two things: 

1. The amount of risk in the economy (i.e. the volatility/uncertainty around the future path of 

interest rates and the level of consumption). 

2. The covariance between bond returns and agents’ marginal utility of consumption in different 

states of the world. That is, whether the bond provides a hedge for consumption risk or adds 

to consumption risk. If the bond is expected to provide relatively high returns during bad 

economic times when consumption is low and the marginal utility of additional consumption is 

high, then the bond provides a hedge to agents’ consumption risk. In this case, owning bonds 

                                                      

3 The relatively restrictive error assumption used here, and throughout the paper, is unlikely to hold in the data. While 

we could allow for more complex error structures, doing so would significantly increase the complexity of the model. 

Moreover, Bibkov and Chernov (2011) find that doing so helps models match higher-order moments of the data, but 

not the first moments (i.e. yields). 
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is similar to owning insurance against bad states of the world. Similar to normal insurance 

contracts, agents will be willing to pay extra for this hedge and so the bond yield, which is 

inversely related to its price, will be below the average interest rate expected to prevail over 

the life of the bond, resulting in a negative term premium. If, on the other hand, the bond is 

expected to fall in value during bad economic times, then it adds to investors’ risk and 

investors will demand a higher yield, and therefore pay a lower price, resulting in a positive 

term premium.4 

If we impose a no-arbitrage condition and assume a particular functional form for how agents 

price risk (called the ‘stochastic discount factor’), Equations (1) to (3) imply a set of pricing 

equations for zero-coupon nominal bond yields. In particular, 

 n

t n n tn y A    B X  (4) 

where n

ty  is the yield at time t for an n-period zero-coupon nominal bond (i.e. a bond that 

matures in n periods), and An and Bn are functions of the underlying model parameters (see 

Appendix A for further details). Of note, these bond pricing equations turn out to be equivalent to 

what would be obtained by assuming that investors were risk neutral (so 0 = 0 and 1 = 0) but 

that the pricing factors followed some other risk-adjusted (or risk-neutral) dynamics, often referred 

to as the ‘Q dynamics’ 

 
1 1t t t    X μ θX Σε

Q  (5) 

for 0 μ μ Σλ , 
1 θ θ Σλ  and  +1 N0,t Nε I

Q
. In the literature  and  are often referred to as 

‘P parameters’ as they determine the real-world or P dynamics, while μ  and θ , or equivalently, 0 

and 1, are referred to as ‘Q parameters’. 

2.1.2 An ATSM of real interest rates 

Real zero-coupon bonds pay one unit of consumption good at time t + n, or Qt + n/Qt units of 

nominal value, where Qt is the price level at time t. This is in contrast to nominal zero-coupon 

bonds, which pay one unit of nominal income at time t + n. 

We define the one-period inflation rate t as 

  
1

expt
t

t

Q

Q




   

and, similar to the one-period nominal interest rate, assume it to be linear in the factors 

 0 1t t    π X  (6) 

                                                      

4 An example of government bonds providing a form of insurance is the global financial crisis, which saw bond yields 

fall (and therefore bond prices rise) amid deteriorating economic circumstances. An example of the opposite is the 

1970s, when relatively poor economic outcomes were accompanied by rising yields. 
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Using the same assumptions as above (i.e. those regarding the P dynamics, the nominal rates, the 

price of risk, the functional form of the stochastic discount factor and the lack of arbitrage 

opportunities) leads to a similar set of pricing equations for real zero-coupon bonds, where 

 ,n

t n n tn y A     B X  (7) 

for ,n

ty   the real yield at time t for an n-period zero-coupon inflation-indexed bond, and 
nA  and 

n


B  functions of the underlying model parameters (including those for inflation). 

2.1.3 Incorporating surveys 

As noted above, the bond pricing equations are the same in the case where investors are risk 

neutral and the pricing factors follow the Q dynamics, and the case where investors are risk 

averse, but the pricing factors follow the ‘true’ P dynamics. In practical terms, this means that the 

cross-section of bond yields only identifies the Q dynamics. To separate out the P dynamics we 

have to rely on the time series of interest rates, which follow the true P dynamics. 

The difficulty is that interest rates tend to be very persistent, and so even an apparently long 

sample (25 years) may only contain a small number of interest rate cycles, and only a small 

amount of information on the P dynamics. As such, ATSMs tend to be subject to small-sample 

problems. 

For example, Bauer, Rudebusch and Wu (2012) note that the first step of the JSZ estimation 

procedure (discussed in more detail below) involves estimating a VAR on the observed pricing 

factors, which, having been constructed from the yield data, are highly persistent. VARs estimated 

using highly persistent series tend to produce downwardly biased estimates of the persistence of 

the series in small samples. As such, the approach will tend to underestimate the persistence of 

the observable factors and therefore produce estimates of long-term expected interest rates that 

are too stable.5 

Two approaches have been suggested to address these small-sample issues. The first is to use 

statistical small-sample adjustments, such as bootstrapping, as proposed by Bauer et al (2012). 

The second is to incorporate surveys, as in Kim and Orphanides (2012). Guimarães (2016) argues 

that, as the issue fundamentally relates to a lack of information, the solution is to add more 

information on the P dynamics, and that this can be achieved by incorporating surveys as they 

provide additional cross-sections of expected future rates.6 We follow the latter approach and 

incorporate survey data on interest rate and inflation expectations, which we treat as unbiased but 

                                                      

5 Expected inflation and interest rates at long horizons are driven by the expected value, under the P dynamics, of the 

pricing factors. If the pricing factors mean-revert quickly under P dynamics, these values will simply converge to a 

constant. 

6 One potential concern with this approach is that the expectations of bond traders could differ from the expectations 

of survey participants. However, the literature tends to find that the two sets of expectations are consistent with 

each other (e.g. Chernov and Mueller 2012). 
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noisy readings on the underlying quantities.7 This can be done relatively easily. For example, the 

expected one-period inflation rate in n periods’ time is given by 

    0 1t t n t t nE E  
  π X   

which can be solved in terms of the model parameters by iterating forward using Equation (2); see 

Appendix B. 

2.2 The JSZ Normalisation 

The ATSM described above is not identified unless we apply some normalisations. For intuition, 

consider a model that matches a set of observed yields and survey expectations. If we were to 

multiply the pricing factors and appropriate model parameters by negative one, the model would 

still fit the observables, but the parameters and pricing factors would be different. 

Many papers follow Dai and Singleton (2000) in normalising the volatility matrix. This creates a 

strong link between the P and Q parameters because the volatility matrix appears in both the 

P and Q dynamics (Equations (2) and (5)), leading to an ill-behaved likelihood surface (i.e. one 

with multiple local maxima and flat areas), and therefore to computational difficulties, as these 

models are estimated by numerically maximising the likelihood function. 

JSZ propose a different normalisation that largely breaks the link between the P and Q parameters, 

leading to a better-behaved likelihood function.8 In particular, JSZ note that the nominal ATSM 

outlined above is observationally equivalent to another ATSM with a transformed state variable 

( ˆ tX ) that can be summarised as 

 ˆ1 0 1 1
ˆ ˆ

t t tX    X K K X Σ ε   

     ˆ1 1
ˆ ˆ,0, ,0t t tX

k  


   X J λ X Σ ε

Q Q Q
  

 ˆ0 1t tr   X  (8) 

where k

Q  is a scalar,  J λ
Q  is a diagonal matrix, 

X̂
Σ  is a lower triangular matrix and 1′ is a 

vector of ones. Moreover, JSZ show that if the original pricing factors (Xt) are taken to be some 

linear combination of the yields, such as the principal components, the normalisation delivers a 

complete bifurcation of the likelihoods of the P and Q dynamics. In this case one can estimate the 

P parameters by estimating a VAR on the observed factors using ordinary least squares (OLS). The 

remaining Q parameters can then be estimated by maximising the likelihood over the observed 

yields, conditional on the previously estimated P parameters. This significantly cuts down on the 

number of model parameters that must be estimated by numerical optimisation, and so makes 

estimation faster and more stable. 

                                                      

7 We experimented with bootstrapping, but the estimated forward rates a number of years ahead appeared 

unreasonably volatile. 

8 For more details, see Appendix B. 
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Extending this approach to account for real bonds is relatively simple. With the transformed state 

variable, the equation for inflation becomes 

 ˆ ˆ0, 1,
ˆ

t tX X
   π X  (9) 

where the mapping between the parameters in Equations (6) and (9) is the same as the mapping 

between those in Equations (1) and (8). As such, we can simply add the recursive pricing equation 

for the real bonds to the Q optimisation and maximise the likelihood of the observed nominal and 

real yields, conditional on the P dynamics. 

3. Data and Estimation 

3.1 Estimation 

As discussed in JSZ, maximising the model likelihood conditional on the observed factors imposes 

the assumption that the factors are ‘priced correctly’ – essentially, that there are no (or limited) 

measurement errors or breaches of no arbitrage conditions – but has the benefit of exploiting the 

JSZ technique to significantly speed up estimation. This is likely to be a reasonably strong 

assumption in our case given the limited number of inflation-linked bonds trading at any one time. 

For this reason we use a two-step estimation procedure. First, we maximise the model likelihood 

conditional on the observed factors.9 In doing so we cannot separately estimate the P dynamics in 

this first estimation step, as the modelled counterparts of the surveys rely on both the 

P parameters and some other parameters used to price bonds, such as the inflation parameters. 

Instead, we jointly maximise the likelihood function of the observed factors, the observed yields 

and the surveys (all the while holding the pricing factors fixed as the principal components of the 

relevant yield data). We use VAR estimates of the P parameters as starting points for this 

optimisation. The model is more difficult to estimate than in the standard JSZ set-up without 

survey data, but it is still simpler to estimate than earlier approaches as the dependency between 

the P and Q parameters remains relatively weak under the JSZ normalisation. 

In the second step we relax the assumption that the factors are priced correctly by casting the 

model in terms of a Kalman filter and re-optimising using the parameter estimates from the first 

step as starting values.10 Relaxing the assumption that the factors are priced correctly has two 

benefits: it allows us to model estimates of real zero-coupon yields as being noisy and/or observed 

with error, which, as discussed above, is useful given the limited number of inflation-linked bonds 

trading at any one time; and it allows the survey data to affect the factors, as they should. The 

Kalman filter also gives us scope to drop real zero-coupon yields from the model if there are no 

inflation-indexed bonds with similar maturities outstanding. Such data points are likely to be 

                                                      

9 Consistent with papers such as Adrian et al (2013), Abrahams et al (2016) and Malik and Meldrum (2016), we 

constrain the steady-state level of the pricing factors to be their sample averages. This helps to avoid small-sample 

biases. 

10 We initialise the Kalman filter factors using the level of the observed principal component factors. We also use a few 

different starting points for the parameters based on the first step of the estimation to help ensure we find a global, 

not local, maximum. 
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particularly noisy and relatively more dependent on the interpolation method employed, and so 

dropping them should increase the robustness of our estimates.11 

The allowance for noise means that Equations (4) and (7) become 

 n n

t n n t tn y A     B X  (4a) 

 , ,n n

t n n t tn y A        B X  (7a) 

where  20,n

t measurementN   and  , ,20,n

t measurementN   . We also allow for errors/uncertainty in 

the survey responses. Instead of calibrating the variance of these errors, we allow them to be 

estimated alongside the other parameters. This approach is more common in the literature and 

allows the data to ‘speak for itself’. We assume that the errors are independent, homoskedastic 

and normally distributed, and allow the error variances to differ for each type of forecast data that 

we use. 

3.2 Data and Observable Factors 

For the first stage of the estimation we need a set of observable factors that are linear functions of 

the yields. Consistent with Abrahams et al (2016) we use the first K principal components from a 

panel of nominal interest rates. We also use the first L principal components from a panel of real 

yields that have been orthogonalised with respect to the nominal factors by regressing the real 

yields on the nominal factors using OLS; these factors will tend to capture divergences between 

the nominal and real yield data. Motivated by our findings with a purely nominal model, we use 

three factors extracted from the nominal yield data.12 We considered using two or three factors 

extracted from the real yield data, and found that two factors were preferable based on parsimony 

and likelihood ratio tests.13 Consistent with the vast majority of the literature, we impose that the 

P dynamics of the factors are stationary.14 

Our nominal data consist of nominal zero-coupon yields estimated using the methodology in Finlay 

and Chambers (2009), with maturities of n = 6, 12, 18, 24, 36,…, 120 months. Our real data 

consist of real zero-coupon yields bootstrapped using linear interpolation.15 For the initial stage of 

estimation we use maturities of n = 24, 36,…, 180 months.16 Descriptive statistics are contained in 

                                                      

11 The results are, in fact, reasonably robust to not dropping these yields. 

12 While a number of papers have argued that yields are not ‘spanned’ by the first three principal components of the 

yield curve (e.g. Cochrane and Piazzesi 2005; Joslin, Priebsch and Singleton 2014), Bauer and Hamilton (2017) show 

that standard tests lack power, and that properly accounting for this leads to less evidence that three factors are 

insufficient. 

13 One could also extract pricing factors from a joint panel of nominal and real yield data, although in practice both 

methods deliver factors that are essentially linear combinations of the other, and both sets of factors explain over 

99.9 per cent of the variation in the nominal and real yield data. 

14 Malik and Meldrum (2016) find that models that instead impose a unit root tend to perform poorly. 

15 See Appendix C for further details. Another approach would have been to use the indexed bond prices directly as in 

Finlay and Wende (2012). However, this approach is not well suited to the JSZ normalisation. It would also require a 

nonlinear Kalman filter. Given that we want the model to be simple enough to be used on an ongoing basis, we 

eschewed this option. 

16 Liaison suggests that inflation-linked bonds provide the most reliable information on expectations between around 

three and ten years. Nevertheless, we use a wider range of yields because of the sparsity of traded bonds. 
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Appendix D. For the second stage of estimation we only include real yield data if there is an 

inflation-indexed bond with a similar maturity outstanding. The sample period is July 1992 to 

December 2016, but we only show model estimates from 1993 onwards to abstract from issues 

related to the starting point of the Kalman filter. 

We use two sets of surveys: 

 Surveys on cash rate expectations obtained from the RBA survey of market economists and 

Bloomberg; and 

 Surveys of inflation expectations from Consensus Economics. These included forecasts of year-

average inflation a number of years into the future (available at a monthly frequency), forecasts 

of year-average inflation in the coming quarters (available at a quarterly frequency), and 

estimates of average inflation over a five-year period beginning in five years (‘five-year five-

year forward’; available semiannually). 

Figures 1 and 2 show the principal component loadings on the nominal and orthogonalised real 

yield data of various maturities. As is typically found in the literature, the nominal factors appear to 

reflect the level, slope and curvature of the nominal yield curve. Interpretation is more complicated 

for the factors extracted from the real data as they have been orthogonalised with respect to the 

nominal factors. Nonetheless, the loadings suggest that these factors are again related to level and 

slope. 

Figure 1: Loadings on Nominal Factors 

By maturity 
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Figure 2: Loadings on Real Factors 

By maturity 
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4.1 Parameter Estimates and Model Fit 

Table 1 contains the parameters estimates. Each column refers to the coefficients associated with 

one of the pricing factors, with columns 1–3 relating to the nominal factors, and 4–5 to the real 

factors. The implied steady-state rates of one-period inflation, nominal and real interest rates are 

all near their sample averages, at around 2.7 per cent, 4¾ per cent and 2 per cent, respectively. 

Table 1: Parameter Estimates 

(continued next page) 

Parameter 

Index number (i ) 

1 2 3 4 5 

 0.0028 0.0029 0.0006 0.0151 0.0088 

()1i 0.0091 

(0.0003) 

0 0 0 0 

()2i 0.0003 

(0.0004) 

0.0039 

(0.0040) 

0 0 0 

()3i –0.0008 

(0.0001) 

–0.0004 

(0.0002) 

0.0010 

(0.0000) 

0 0 

()4i –0.0022 

(0.0018) 

0.0124 

(0.0012) 

0.0000 

(0.0015) 

0.0130 

(0.0012) 

0 

()5i 0.0003 

(0.0011) 

0.0062 

(0.0006) 

0.0008 

(0.0010) 

0.0065 

(0.0008) 

0.0021 

(0.0001) 

()1i –0.0321 

(0.0096) 

–0.0569 

(0.0187) 

0.2452 

(0.1252) 

–0.0230 

(0.0199) 

–0.0303 

(0.1081) 

()2i –0.0152 

(0.0042) 

–0.0303 

(0.0064) 

–0.0432 

(0.0834) 

–0.0173 

(0.0072) 

–0.2026 

(0.0459) 

()3i 0.0075 

(0.0026) 

0.0083 

(0.0060) 

–0.2439 

(0.03146) 

–0.0040 

(0.0045) 

–0.0297 

(0.0222) 

()4i –0.1005 

(0.0065) 

–0.0179 

(0.00099) 

–0.3810 

(0.3707) 

–0.2119 

(0.0310) 

–1.0863 

(0.0817) 

()5i –0.0584 

(0.0028) 

–0.0337 

(0.0033) 

–0.1100 

(0.2027) 

–0.1027 

(0.0150) 

–0.6563 

(0.0343) 

k

Q  0.0011 

(0.0014) 

na na na na 

(J(
Q
))ii 0.0016 

(0.0005) 

0.0001 

(0.0000) 

–0.0569 

(0.0000) 

–0.0570 

(0.0000) 

–0.0571 

(0.0000) 

ˆ0, X
  0.9386 

(2.6301) 

na na na na 

 ˆ1, X i
π  –2.6314 

(0.9978) 

–5.2186 

(0.2289) 

13.0309 

(11.4786) 

0.6385 

(2.7922) 

–0.5257 

(2.9675) 
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Table 1: Parameter Estimates 

(continued) 

Parameter 

Index number (i ) 

1 2 3 4 5 

Measurement errors      

 100measurement   0.0382 

(0.0005) 

na na na na 

 100measurement    0.0396 

(0.0020) 

na na na na 

quarterly

  0.0036 

(0.0001) 

na na na na 

-year ended

  0.0045 

(0.0001) 

na na na na 

5 10 year


  0.0017 

(0.0002) 

na na na na 

cash rate  0.0037 

(0.0001) 

na na na na 

Selected additional parameters from standard representation 

0 0.0001 na na na na 

1 0.2198 0.7252 1.2052 0.0172 –0.0315 

1 ( std dev of factor) 0.0134 0.0084 0.0029 0.0003 –0.0001 

0 0.2924 na na na na 

1 –1.7944 –0.9260 –6.3268 –3.6458 –20.9081 

1 ( std dev of factor) –0.1092 –0.0107 –0.0152 –0.0623 –0.0573 

Notes: Standard errors in parentheses,  is calibrated to the sample mean of the pricing factors and so no standard errors are 

given; ,  and  in the top panel are under the standard representation while the other parameters are from the JSZ 

representation; no standard errors are given for the parameters in the bottom panel under the standard representation 

as they are subject to a number of complex cross-equation restrictions, as given by the mapping between the two 

representations – see Appendix B 

 

Focusing first on the parameters that drive the short-term nominal interest rate and inflation rate 

expressed under the standard representation (i.e. Table 1, bottom panel), 1 and 1, one can see 

that, perhaps unsurprisingly, the nominal interest rate is mainly affected by the nominal factors 

(factors 1–3).17 In particular, the factors associated with the level (factor 1) and, to a lesser 

extent, the slope (factor 2) of the yield curve play the largest roles once we account for the 

relative volatility of the factors. Meanwhile, all factors are important in explaining inflation.18 

The degree of persistence in the pricing factors is determined by the eigenvalues of the  matrix; 

in a univariate model for example, an eigenvalue of 0 indicates very high persistence (in fact, a 

                                                      

17 Although the pricing factors used in the final model are generated by the Kalman filter, and therefore, in principal, 

can differ substantially from the original factors (including in that we no longer enforce orthogonality), in practice 

they are very similar to the original factors and so for ease of exposition we refer to them interchangeably. 

18 Using the logic that ‘nominal = real + inflation’, one might expect the parameters associated with the nominal 

factors in 1 to be positive and the parameters associated with the factors extracted from real data to be negative, 

similar to how one calculates break-even inflation. This is not the case, as: (i) the situation is not quite as simple as 

the above equation implies as we are interested in specifying the short-term inflation rate, but we are using long-

term yield data that includes term and risk premia as well as expectations; (ii) the pricing factors themselves have 

both positive and negative loadings on the underlying yield data (see Figures 1 and 2); and (iii) the real data are 

first orthogonalised with respect to the nominal factors. 
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non-stationary random walk), and an eigenvalue of –1 indicates no persistence (white noise).19 

The largest eigenvalue of the  matrix is quite close to (but below) 0, indicating that some of the 

factors are very persistent. This is promising as it indicates that the model is accounting for 

gradual trends in interest rates or inflation that may not mean-revert for many years. Moreover, it 

suggests that the surveys are helping to ameliorate potential small-sample issues, which often 

manifest as pricing factors that are too quick to mean-revert, and suggests that expected future 

rates at longer horizons will not simply be flat. 

The estimated variance of the survey errors is much lower than in either Finlay and 

Chambers (2009) or Finlay and Wende (2012), where the variance was calibrated rather than 

estimated. As such, the model puts more weight on the surveys than was the case in these 

previous papers. This appears to be particularly important for long-term inflation expectations 

(discussed further in Section 4.2). 

To check how well the model fits the data, we calculate the root mean squared error between the 

modelled and observed yields at various maturities (Table 2). The model fits both the nominal and 

real yield data quite well, with a root mean squared fitting error of around 5 basis points at the 

12-month horizon (where the bond market can be relatively illiquid), and the fit generally 

improving for longer maturities. 

Table 2: Model Fit Diagnostics 

Root mean squared error, basis points 

 Maturity (months) 

 12 36 60 120 

Nominal bonds 5.3 3.4 3.4 2.8 

Real bonds na 7.7 3.2 1.9 

 

4.2 Expected Future Rates and Risk Premia 

In this section we focus on model-implied forward rates. This is because the x-year forward rate 

exactly represents expectations of the future short-term rate x years ahead and so is easy to 

interpret. By contrast, the x-year yield represents an average of expected short-term rates 

between now and x years ahead, which is harder to interpret. 

We can use the model to decompose risk-neutral forward rates (which incorporate risk premia) 

into expected future short-term rates and the various risk premia. The real risk-neutral forward 

rate observed at time t for time t + n in the future can be written as: 

  , ,

r r

t t n t t n t t nf E r tp

      

where  t t nE r  is the expected real short-term interest rate and ,

r

t t ntp   is the real term premium. 

The real term premium is paid to/by investors to lock in real rates for an extended period. Real 

term premia are generally found to be countercyclical to the business cycle and higher when there 

                                                      

19 Recall that  is defined via Xt + 1 =  + Xt + t + 1 rather than the more traditional Xt + 1 =  + Xt + t + 1; in the 

latter case, the estimated values of  would be one unit higher for all diagonal entries. 
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is more uncertainty regarding future growth and interest rates (e.g. Abrahams et al 2016). As 

specified here, the real term premium also incorporates a ‘relative liquidity premium’ to 

compensate investors for the fact that inflation-indexed bonds are not particularly liquid (discussed 

more below). 

The nominal risk-neutral forward rate observed at time t for time t + n in the future is defined as: 

  , , ,

n r

t t n t t n t t n t t nf E r tp irp        

where  t t nE r   is the expected nominal short-term interest rate (which in turn can be decomposed 

as  t t nE r  plus expected inflation  t t nE   ), and irpt,t + n is the inflation risk premium which is 

paid to/by investors to lock in an exposure to a set rate of inflation for an extended period. These 

premia are also generally found to be countercyclical to the business cycle and higher when there 

is more uncertainty regarding future inflation (e.g. Abrahams et al 2016; Buraschi and 

Jiltsov 2005). As defined here, and mirroring the real term premium case, the inflation risk 

premium incorporates a negative relative liquidity premium to account for the fact that nominal 

bonds are more liquid than inflation-indexed bonds. A more negative relative liquidity premium will 

contribute to a lower measured inflation risk premium, as can be seen from the break-even 

inflation rate (often used as a measure of market-implied inflation expectations): 

    
 

, , ,

,

,

n r

t t n t t n t t n

t t n t t n t t n

t t n t t n

BE f f

E r E r irp

E irp

  



  

 

 

  

 

  

For a given level of  t t nE   , a more negative relative liquidity premium in nominal bonds will 

mean that all else equal, irpt,t + n is lower and so BEt,t + n is lower. 

Figure 3 shows the decomposition of five-year-ahead nominal forward rates. Nominal forward 

rates have declined consistently over the sample period, largely reflecting declining real term 

premia and inflation risk premia. In comparison, expected real and inflation rates have been more 

stable, although have nonetheless also declined somewhat relative to the levels in the 1990s. We 

discuss each of these in more detail below. 

Focusing first on expected short-term nominal interest rates, estimated expectations have declined 

since the early 1990s (Figure 4). The initial decline coincided with a shift lower in inflation, 

associated with the introduction of inflation targeting by the Reserve Bank, while rates declined 

further in the period following the global financial crisis. More broadly, expected nominal interest 

rates follow a generally procyclical pattern and ten-year-ahead expected rates tend to be less 

volatile than shorter tenor expectations, as anticipated. 
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Figure 3: Decomposition of Nominal Forward Rates 

Five-year-ahead 

 

Figure 4: Expected Future Nominal Interest Rates 

x-year-ahead 
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The estimates follow a very similar pattern to Jennison (2017), and also to that implied by a purely 

nominal model that we estimated using a similar methodology.20 This provides a good crosscheck. 

It also suggests that we don’t lose much information when using a simpler nominal model and so 

it may be preferable to use such a model when we are only interested in developments in nominal 

rates. 

Expected inflation was relatively high and volatile early in the sample, but has fallen and become 

more stable over time (Figure 5). In particular, inflation expectations decreased substantially after 

the introduction of the inflation-targeting regime in the mid 1990s, though, consistent with other 

analyses (e.g. Finlay and Wende 2012; Moore 2016), the results suggest that it took a number of 

years for expectations to become anchored around the target. The fact that inflation expectations 

jump prior to the introduction of the goods and services tax (GST) in July 2000 appears to, in part, 

reflect data issues. Specifically, there were no inflation-indexed bonds with relatively short 

maturities trading at this time. As such, the real yield data would not be providing any useful 

information to help the model evaluate the temporary nature of any increase in inflation 

expectations.21 The spike in ten-year-ahead inflation expectations in 2009 is somewhat surprising, 

although it is borne out in the survey data.22 The model suggests that expectations of future 

inflation a number of years out have declined a bit over recent years, but that the decline is 

modest and that expectations have remained entrenched in the target range of 2 to 3 per cent. 

Figure 5: Expected Future Inflation Rates 

x-year-ahead 

 

 

                                                      

20 Specifically, we estimated a model of nominal rates using the methodology outlined in Adrian et al (2013), but 

extended to include cash rate forecasts. 

21 Measures of unions’ long-term inflation expectations did increase sharply around this time, so it is conceivable that 

the spike is not purely a statistical artefact. 

22 Specifically, surveys of five-year five-year forward inflation expectations increase relative to expectations three to 

four years ahead; this implies a relatively large change in quite long-term expectations. 
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Interestingly, the estimates of expected inflation are more volatile than those from Finlay and 

Wende (2012), especially at long horizons. In part, this seems to reflect the fact that the model 

puts a greater weight on the five-year five-year forward survey data on inflation expectations, 

which were relatively volatile early in the sample. Nevertheless, the overall profile is similar 

between the two models. 

Estimates of expected future real short-term interest rates have also declined somewhat over 

recent years (Figure 6). For example, estimated five-year-ahead real rates have declined by 

around 1 percentage point since 2011, while ten-year-ahead real rates have declined by 

around ¼ percentage point. As these reflect expectations of real short-term interest rates in the 

relatively distant future, they can be interpreted as market measures of the neutral real interest 

rate (e.g. Christensen and Rudebusch 2017). As such, the results suggest that Australian neutral 

real interest rates have declined over recent years, though the decline implied by these market 

measures is muted relative to the decline implied by some other measures.23 

Figure 6: Expected Future Real Interest Rates 

x-year-ahead 

 

Shifting to term premia, the nominal term premia in Figure 7 (real plus inflation risk premium) 

declined in the early to mid 1990s, and remained low during the mid 2000s when uncertainty 

regarding inflation and growth, measured as the dispersion of analyst forecasts, was relatively low. 

This period is also referred to as the ‘Great Moderation’. The premia spike at the onset of the 

global financial crisis, a period of heightened economic uncertainty, and again in 2013 during the 

so-called ‘taper tantrum’ in the United States, when yields on US government bonds increased 

sharply in response to suggestions that the Federal Reserve would taper its quantitative easing 

program. Notwithstanding these episodes, premia have been particularly low for most of the 

period since the financial crisis. This could reflect spillovers from foreign central bank quantitative 

                                                      

23 For further analysis, see McCririck and Rees (2017). 
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easing programs, which have been found to affect Australian bond markets through the so-called 

‘portfolio balance’ channel (e.g. Bauer and Neely 2014; Neely 2015). 

Figure 7: Nominal Term Premia 

x-year-ahead 

 

The influence of overseas developments is more evident in Figure 8, where we plot our estimates 

of 10-year average nominal term premia alongside two sets of estimates for the United States: one 

produced by the New York Federal Reserve, using the methodology laid out in Adrian et al (2013); 

and the other produced by the Board of Governors of the Federal Reserve System, using the 

methodology laid out in Kim and Wright (2005).24 All three series follow broadly similar paths, 

though our estimates follow those from Kim and Wright particularly closely. The fact that our 

estimates of term premia for Australia are below those for the United States for at least part of the 

sample is somewhat surprising, though it is also the case for the estimates from Finlay and 

Chambers (2009) and Jennison (2017). One explanation could be the relative scarcity of AGS, 

particularly given there are relatively few other AAA-rated Australian dollar-denominated securities 

available. Another could be that the US models do not account for the zero lower bound, and this 

could be affecting estimated US term premia. In any case, one should not place too much weight 

on the precise estimated level of the series. 

                                                      

24 The Kim and Wright (2005) methodology incorporates surveys, while the Adrian et al (2013) methodology only uses 

yield data. For a more detailed comparison of the models and their estimates, see Li, Meldrum and 

Rodriguez (2017). 
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Figure 8: Nominal Term Premia – Australia versus US 

Average over coming ten years 

 

Sources: Authors’ calculations; Board of Governors of the Federal Reserve System; Federal Reserve Bank of New York; Federal 

Reserve Bank of St. Louis 

Our estimates of nominal term premia are broadly similar to those in Jennison (2017), although 

some differences exist: our measure spikes more sharply in 2009 during the peak of the financial 

crisis and in 2013 during the taper tantrum, and is slightly lower during the mid 2000s. It appears 

that these differences reflect the use of surveys to ameliorate the small-sample issues, rather than 

bootstrapping, and not the fact that we estimate a joint model of nominal and real yields instead 

of a purely nominal model.25 

To get a better understanding of the evolution of nominal term premia, we can examine its 

components: the real term premium and the inflation risk premium. Real term premia declined 

during the late 1990s and early to mid 2000s (Figure 9), which coincided with a period of relatively 

strong economic growth and falling unemployment. The particularly sharp decline in real term 

premia in the early to mid 2000s has been documented for the United States (Abrahams 

et al 2016) and the United Kingdom (Joyce, Kaminska and Lildholdt 2012). Some have attributed it 

to a global ‘search for yield’ associated with perceptions of greater macroeconomic stability and 

excess liquidity (Joyce et al 2012). Real term premia also declined sharply over the early years of 

the financial crisis, and appear to have driven most of the decline in nominal term premia seen 

during this period. This is consistent with Abrahams et al (2016) finding that the Federal Reserve’s 

quantitative easing program primarily lowered real term premia. 

                                                      

25 We estimated a purely nominal model incorporating surveys of cash rate expectations, and the estimated term 

premia were very similar to those produced by the joint model. 
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Figure 9: Real Term Premia 

x-year-ahead 

 

Estimated inflation risk premia (Figure 10) are reasonably similar to those estimated in Finlay and 

Wende (2012). Inflation risk premia declined sharply in the mid to late 1990s. This coincided with 

a sharp decline in survey measures of both uncertainty regarding future inflation and of 

expectations for the level of inflation as the Reserve Bank’s inflation target gained credibility. 

Inflation risk premia spiked temporarily around the introduction of the GST. They were also quite 

volatile around the start of the global financial crisis, with three-year premia in particular first 

falling sharply and then rising. Christensen, Lopez and Rudebusch (2010) observe a similar 

phenomenon around the crisis with US data, and suggest that, similar to the discussion above, a 

sharp fall in the relative liquidity premium associated with nominal bonds over inflation-indexed 

bonds manifested in a lower inflation risk premium, which was subsequently unwound as liquidity 

returned to the inflation-indexed bond market. We can also see that much (although not all) of the 

decline and subsequent reversal in break-even inflation rates around 2016 seems to have reflected 

movements in inflation risk premia (Figures 10 and 11). This could reflect changes in uncertainty 

regarding future inflation outcomes, or potentially changes in the relative liquidity premium for 

inflation-indexed versus nominal bonds. 

Overall, and similar to Abrahams et al (2016), our results suggest that while expectations for 

future short-term nominal, real and inflation rates vary over time, changes in risk premia tend to 

have a greater influence than changes in expectations on movements in observed yields and 

measures of break-even inflation, at least over short time horizons. This emphasises the 

importance of not taking changes in observed yields at face value when trying to infer market 

expectations. 
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Figure 10: Inflation Risk Premia 

x-year-ahead 

 

Figure 11: Break-even Inflation 

x-year-ahead 
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5. Robustness Checks 

5.1 Sample Starting in 1997 

The data sample used in Section 4 spans the period before and after the Reserve Bank adopted a 

formal 2 to 3 per cent inflation target. Therefore, there could be a structural break, or regime shift, 

for which the model does not adequately account. This would be of particular concern given that 

the model imposes stationarity. To check the robustness of the results, we estimate the model on 

a reduced sample beginning in 1997, once inflation expectations had become reasonably 

anchored.26 

Nominal and real interest rates, and term premia, follow fairly similar paths to those estimated 

using the full sample, although expected rates tend to be smoother, especially at longer horizons 

(Figures E1–E6). In particular, ten-year-ahead nominal and real forward rates are a bit less 

variable when estimated over the shorter sample, while three- and five-year-ahead real rates show 

larger declines in recent years. The same is broadly true of inflation expectations, although the 

smoothness occurs to an even larger degree. Given the results for nominal and real expectations, 

this last point is perhaps not surprising: expected inflation is calculated as the difference between 

nominal and real expectations; if these expectations follow similar trends and are relatively 

smooth, then their difference will tend to be even smoother and flatter still. 

More broadly, the smoothness is suggestive of a short-sample problem leading to insufficiently 

persistent pricing factors. In particular, Guimarães (2016) argues that discarding part of the 

sample due to changes in the structure of the economy is exactly the opposite of what we should 

do, as this variation can be extremely useful in separately identifying the P and Q dynamics. This 

argument could certainly be put forward here. By removing the early period we are potentially 

removing a period with a large amount of information about the dynamics of inflation 

expectations, and in particular how they become anchored (and therefore can potentially become 

unanchored). Nonetheless, both sets of results show broadly similar trends over time for a number 

of variables, which is reassuring. 

5.2 Filtered versus Unfiltered Results 

As noted in Section 3.1, we estimate the model in two steps: first we maximise the model’s 

likelihood conditional on the observed factors; second we cast the model in a Kalman filter and re-

optimise. The second step allows us to relax the assumption that the factors are priced correctly, 

and to drop any estimated zero-coupon real yield data that does not have a traded bond with a 

similar maturity and so is dependent on interpolation. Both of these generalisations are potentially 

important given the sparsity of inflation-linked bonds. Related to this, by using the Kalman filter 

and allowing for imperfect pricing in the factors, we allow the surveys to influence these pricing 

factors, which is also potentially important. 

It is interesting to consider what the results would look like if we did not incorporate the second 

step. Figures F1–F6 contain these results. Again, the estimates of real and nominal interest rates 

and risk premia are broadly similar, while the estimates of expected inflation show greater 

                                                      

26 Another approach would be to estimate a model with regime switching. However, the added complexity this would 

involve was not in keeping with our focus on estimating a usable ‘workhorse’ model. 
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differences. In particular, the inflation estimates are generally somewhat smoother, particularly the 

ten-year-ahead expectations, and there is a larger fall around the onset of the global financial 

crisis, although the broad trends are still reasonably similar and the results still suggest that 

inflation expectations are well anchored within the 2 to 3 per cent target band. 

The inflation expectation estimates from the first step are also more similar to those from Finlay 

and Wende (2012). As with the estimates from that paper, the difference seems to be that the 

Kalman filtered model puts a higher weight on the surveys, as it estimates the variance of the 

noise associated with the surveys to be lower.27 This appears to reflect the fact that the Kalman 

filter approach allows the surveys to affect the estimated pricing factors, rather than constraining 

the model to use the observed factors. The results are similar whether or not we drop some real 

yield data, suggesting that fully utilising the information contained in the survey data is the more 

important generalisation. 

The fact that the filtered model places a greater weight on the surveys is particularly evident in 

Figure F7, which plots the model-implied inflation expectations for both the filtered and unfiltered 

models alongside the (closest) matching surveys. This also highlights the fact that even in the 

filtered model, the model-implied expectations do not perfectly coincide with the surveys and that 

they are taking a substantial signal from the yield data. 

Overall, these results suggest that using a Kalman filter, and therefore allowing for pricing factors 

that diverge from the principal components of the yield data, can lead to a higher weight being put 

on surveys (though this will not necessarily be a general result). To the extent that we think 

surveys are good measures of market participants’ expectations, this will be preferable. This will 

be particularly true if we are concerned about the quality of the real yield data, as may be the case 

in countries with a scarcity of inflation-indexed bonds. However, if for some reason we think that 

the surveys are a poor measure of expectations, for the full sample or even for some sub-sample, 

it may be preferable to eschew the Kalman filter or to calibrate the model to place a lower weight 

on the surveys. 

6. Conclusion 

The model described in this paper can provide policymakers with market-implied measures of 

expectations for a number of key economic variables. The model provides plausible estimates, 

though it should be noted that the estimates are subject to a degree of uncertainty and so one 

should focus on the broad trends implied by the model rather than any specific point estimate. 

The model suggests that expected real rates a number of years in the future, a market-based 

measure of the neutral real interest rate, have declined since the global financial crisis. Meanwhile, 

longer-term inflation expectations have remained within the 2 to 3 per cent target band and have 

been more stable than suggested by other measures such as break-even inflation. 

The results also show that nominal term premia declined over the sample and that this occurred in 

two distinct phases. The decline over the mid-to-late 1990s and early 2000s reflected declines in 

both real and inflation risk premia, and coincided with the implementation of the Reserve Bank’s 

                                                      

27 On the flip side, it estimates the variance of the noise associated with the real yields to be higher. The estimates of 

the variance of the noise associated with the nominal yields are similar in the filtered and unfiltered models. 
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inflation-targeting regime as well as reasonably strong and stable economic performance. The 

decline since the crisis mainly reflects lower real term premia and may reflect overseas factors 

given it has coincided with declines in US term premia. 
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Appendix A: The Affine Term Structure Model 

This section documents the mathematics of the ATSM that we use, and follows the expository style 

and terminology of Ang and Piazzesi (2003) closely. 

First we derive pricing equations for the general class of ATSM that we use. Let n

tP  be the price of 

a nominal bond at time t that pays one dollar at time t + n. The no-arbitrage assumption implies 

that an equivalent martingale (or risk-neutral) measure, denoted by Q, exists such that 

  1

1
trn n

t t tP e P
 

 Q  (A1) 

where rt is the nominal short rate (Harrison and Kreps 1979). Assume that the nominal short rate 

is given by 0 1t tr   ρ X , where Xt is a stochastic process that describes all economic and 

financial factors relevant to bond pricing and which evolves according to 

 1 1t t t    X μ θX Σε  (A2) 

for  a vector,  and  matrices, and  1 N0,t Nε I . Now denote the Raydon-Nikodym 

derivative, which converts the risk-neutral measure to the real-world measure, by t + 1; for any 

random variable Zt + 1, 

    1 1 1 /t t t t t tZ Z   Q
 (A3) 

where  without a superscript is understood to be under the real-world measure. In our case, we 

assume that the so-called market price of risk is given by 

 0 1t t
 λ λ λ X  (A4) 

for 0 a vector and 1 a matrix, and that the Raydon-Nikodym derivative linking the real-world and 

risk-neutral measures is given by 

 
1 1

1
exp

2
t t t t t t  

 
    

 
λ λ λ ε  (A5) 

Note that  1 1 1

1
exp / exp

2
t t t t t t t t tm r r   

 
       

 
λ λ λ ε  is often referred to as the pricing 

kernel or stochastic discount factor, which summarises how agents discount pay-offs under 

different states of the world. 

Given the above, we now show by induction that bond prices are exponentially affine in Xt. 

Assume that  1

1 1 1 1expn

t n n tP A

   
 B X ; we will show that this implies that  expn

t n n tP A  B X . 

Starting from Equation (A1), 
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 
           

 

 
            

 

  

λ λ λ ε B X

λ λ λ ε B μ θX Σε

λ λ B μ θX λ B Σ ε

λ

Q

    

   
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1
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n n n n n n t

A

A

   

     

             
 

 
               

 

λ B μ θX λ B Σ λ B Σ

B μ Σλ B ΣΣ B ρ B θ B Σλ X

 (A6) 

where line 2 follows from Equations (A3) and (A5) and the assumption that 

 1

1 1 1 1expn

t n n tP A

   
 B X , line 3 follows from Equation (A2), line 5 follows from the moment-

generating function of a multivariate N(0,IN) random variable, and line 6 follows from 

Equation (A4) and the assumed functional form of rt. Line 6 has the desired functional form of 

 exp n n tA B X , and so by equating coefficients that do and do not depend on Xt we can deduce 

that 

  0 1 1 0 1 1

1

2
n n n n nA A    

       B μ Σλ B ΣΣ B  

  1 1 1n n
     B ρ B θ Σλ   

To start the induction and also provide starting values for the above recursion, note that 

  1 exp 1t t tP r  Q
, which implies that A0 = 0, B0 = 0. One can also directly calculate 

   1

0 1exp expt t tP r      ρ X  so that A1 = –0 and B1 = –1. 

Next consider an inflation-indexed bond ,n

tP   that pays one unit of consumption good, or Qt + n/Qt 

units of nominal value, at time t + n. Here Qt is the price level, we define inflation t by 

Qt /Qt – 1 = exp(t), and we assume that 

 0 1t t    π X  (A7) 

for 0 a scalar and 1 a vector. As with the nominal case, start by assuming that 

 1,

1 1 1 1expn

t n n tP A   

   
 B X . We will show by induction that this implies that 

 , expn

t n n tP A   B X . The no-arbitrage condition for an inflation-indexed bond is given by 
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  

          
  

λ λ λ ε B X

λ λ λ ε B X

Q

  

where, using the fact that 1 0 1 1t t  
  π X , we define  0 0 1t tr     ρ X  and 

1 1 1n n

 

  B B π . 

But, given these re-definitions, the last line now matches line 2 from the nominal bond case, so 

that 

  0 0 1 1 0 1 1

1

2
n n n n nA A     

   
       B μ Σλ B ΣΣB   

  1 1 1n n

 


    B ρ B θ Σλ   

To provide starting values for the above recursion, note that   1,

1exp /t t t t tP r Q Q

  Q
, which 

implies that 
0 0A  , *

0 0B . 

Two things are worth noting. First, in the pricing equations above, the price of risk parameters 0 

and 1 are confounded with the factors describing the evolution of Xt, being ,  and . As such, 

a cross-section of bond prices is not enough to fully identify the model. Second, and related to the 

first point, one would obtain the same pricing equations if one assumed that investors were risk 

neutral (so that 0 = 0, 1 = 0) and 
1 1t t    X μ θX Σε  for 0 μ μ Σλ  and 

1 θ θ Σλ . 
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Appendix B: The JSZ Normalisation 

To estimate the model we need to impose some parameter restrictions to ensure econometric 

identification. There are a number of different normalisations one can use; we use that from JSZ 

for the reasons outlined in the main text. The JSZ normalisation is formulated for standard nominal 

ATSMs rather than joint nominal–real models, and is not set up to incorporate survey data. As 

such, we need to adapt JSZ to deal with real yields and survey data, which we do now. 

Focusing first on the result from JSZ regarding estimation with observable factors in which 

separation of P and Q parameters in estimation is achieved (‘Case P’ in JSZ), Proposition 1 of JSZ 

gives the key result that any standard ATSM with the representation 

 1 1t t t    X μ θX Σε   

 
1 1t t t    X μ θX Σε

Q   

 0 1t tr   ρ X   

is equivalent to a re-parameterised model with the representation 

 ˆ1 0 1 1
ˆ ˆ

t t tX    X K K X Σ ε   

     ˆ1 1
ˆ ˆ,0, ,0t t tX

k  


   X J λ X Σ ε

Q Q Q   

 ˆ0 1t tr   X   

where k

Q  is a scalar, J(Q) is a diagonal matrix, 
X̂

Σ  is a lower triangular matrix and 1  is a vector 

of ones. The nominal part of our model fits within this framework. To incorporate the real part of 

our model we need to know how the inflation equation (Equation (A7)) maps between the 

standard and JSZ representations. But Equation (A17) of JSZ shows how to map from JSZ 

parameters ( ˆ ˆ0, 1,X X
 ρ ) to standard parameters (0, 1): 

    1

ˆ ˆ0 1 10, 1,
, ,

X X
   

   
 

ρ Cρ D ρ  (B1) 

where C and D are functions of the model parameters (see also Equations (15) and (16) in 

Proposition 2 of JSZ). The inflation equation 0 1t t    π X  has the same functional form as 

0 1t tr   ρ X , and so the mapping is given by Equation (B1) also. Reversing the mapping, if one 

starts with  0 1 1,   π C Dπ  in the JSZ representation, that is  0 1 1
ˆ

t t     π C D π X , this maps 

back to (0, 1) in the standard representation so that 0 1t t    π X  as desired. 

The survey data are assumed to be noisy observations on the true underlying expectations for 

short-term interest rates or the inflation rate. Focusing on the inflation rate (the short-term 
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interest rate case is the same), we have that 0 1t t    π X  so that    0 1t t n t t n  
  π X . 

But iterating forward Equation (A2),         
1n n

t t n t



        X I θ I θ I μ θ I X  and so 

we can express the survey data in terms of underlying model parameters (representing true 

expectations) and some (assumed) normally distributed error term. We include the likelihood of 

the survey data along with those of the pricing factors and the bond yields in the numerical 

optimisation. For the case of estimation with observable factors, the survey data is allowed to 

affect estimates of the parameters but not the factors themselves, as these are constrained to be 

the principal components of the bond yields (for a yield-only model this is actually no constraint at 

all, but for a model with surveys it does impose constraints). But in fact, since expectations of 

short-term interest rates and the inflation rate depend on the future expected value of the pricing 

factors, the survey data also contains information on these pricing factors. We allow for this in the 

Kalman filter framework where factors are not directly observable and must be estimated (‘Case F’ 

in JSZ). This means that we no longer achieve separation of P and Q parameters in estimation, but 

the dependence is nonetheless relatively weak which, combined with good starting values from the 

estimation using observable factors, results in a relatively easy-to-estimate model. 



30 

  

Appendix C: Estimating the Real Zero-coupon Yield Curve 

Unlike nominal bonds, there are relatively few inflation-indexed bonds on issue for the majority of 

our sample period, which makes estimating a zero-coupon real yield curve difficult. In particular, 

between 1992 and 2011 there are between two and three inflation-indexed bonds with residual 

maturity between 1 and 15 years outstanding at any one time, while from 2012 there are four to 

five such bonds outstanding at any one time. This low number makes fitting a flexible yield curve 

problematic, as arbitrary choices in yield curve modelling can have a non-negligible impact on the 

estimated curve shape. 

To alleviate this problem we choose a particularly simple and transparent yield curve fitting 

method: interpolating the forward rate between outstanding bonds. So, for example, if the 

shortest-to-maturity inflation-indexed bond has two years until maturity and a yield of 1 per cent, 

we set the forward rate out to two years at 1 per cent. We then calculate what forward rate is 

required to price the next bond on the yield curve correctly, taking into account the previously 

estimated forward rates, continuing until all bonds are priced. This delivers estimated zero-coupon 

forward and yield curves that minimise spurious ‘wiggles’ and that price all outstanding bonds 

correctly. 

For the ATSM we only use yield data for tenors where we have an outstanding bond, and do not 

use yield data interpolated between bond maturities, which further minimises the effect of the 

zero-coupon yield curve estimation on our final results. 

In addition, we adjust the estimated zero-coupon real yield curve for the effects of known, lagged 

inflation on bond prices. The observed price, and so yield, of inflation-indexed bonds depends on 

past inflation a little. In particular, the cash flows of an inflation-indexed bond are determined by 

realised inflation ending two quarters before the quarter of the cash flow (so if the bond pays a 

coupon in November – that is, the December quarter – then the payout is based on inflation up 

until the end of the June quarter). Similarly, the bond price formula linking quoted real yields to 

bond prices in dollar terms depends on a cumulative inflation factor that is updated daily but is 

predictable up to a quarter and a bit in advance, with the degree of predictability determined by 

where in the quarter one is. This predictability will be incorporated into market prices and so will 

distort observed real yields: for example, a high inflation read will boost the nominal value of a 

real bond (since the bond’s payouts will be boosted by the high inflation read once the pricing 

formula fully updates), and so will tend to push down the observed real yield relative to a ‘true’ 

real yield based on only forward-looking expectations. We correct for this by pushing the real yield 

back up a bit. 

Consider an inflation-indexed bond paying real coupons Si at time i (where the final face value 

payment is included in the Si), let P be the price of this bond today, let a,b be the cumulative 

inflation between a and b, where time is measured relative to today, let yi be the nominal yield, 

and let ir
  be the unobserved ‘true’ real yield that would be observed if inflation-indexed bonds did 

not suffer from indexation lag. We will recover 
ir
  by writing the observed bond price P as a 

function of known inflation and nominal yields, and the unknown true real yield, and solving for 

the latter. In particular, by summing up nominal cash flows we can write 
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 
   

where the first two terms in the sum on the right give the nominal value of the real coupons after 

adjusting for cumulated inflation, and the third term is the nominal discount factor, where  is the 

indexation lag. Now for i ≤ , – ,i –  is known and we write ,

k

i   to distinguish this. For i > , 
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where the last line follows from expressing the real yield in terms of the expected value of 

cumulated inflation discounted by a nominal yield. As such, letting k

iS  represent coupons that are 

currently known and 
iS   represent coupons that depend on future inflation, we can write the 

inflation-indexed bond price P as 

     exp expk

i i i i

i i

P S y i S r i 

          

where ,

k k

i i iS S     for those coupons where inflation is known, and we define 

  ,0 expi i i iS S y i y i

         for those coupons that depend on future unknown 

inflation (as well as some lagged inflation). As the yi can be estimated from nominal yield curve 

data, *

ir
 is the only unknown quantity above and we can solve for it numerically; differences 

between the observed real yield and the ‘true’ real yield that we estimate will be driven by 

(i) observed inflation via –,0, and (ii) the level and slope of the nominal yield curve via yi. 

In practice, the inflation-indexed bond pricing formula linking quoted real yields to actual bond 

prices is updated with half the increase in the past two quarters’ CPI reads, so as well as knowing 

one or two pricing formula updates perfectly in advance, we also know an additional ‘half’ of a 

pricing formula update. We treat the case as we do for the known formula updates ( k

iS  above), 

but in this case the –,i –  factor is half known and half solved for in estimation, with the unknown 

inflation component taken as the relevant nominal yield less the fitted real yield, using the identity 

that nominal = real + inflation. 
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Appendix D: Descriptive Statistics 

Table D1: Summary of Selected Zero-coupon Yields 

Maturity (months) 

 6 12 18 24 36 48 60 84 120 180 

Nominal 

Mean (ppt) 4.75 4.80 4.85 4.91 5.06 5.20 5.32 5.49 5.66 na 

Standard 

deviation (ppt) 

1.62 1.69 1.74 1.77 1.81 1.83 1.84 1.84 1.81 na 

Autocorrelation 0.988 0.985 0.984 0.984 0.986 0.987 0.988 0.988 0.988 na 

Real 

Mean (ppt) na na na 2.63 2.67 2.71 2.75 2.81 2.86 2.91 

Standard 

deviation (ppt) 

na na na 1.35 1.37 1.39 1.39 1.32 1.36 1.27 

Autocorrelation na na na 0.990 0.991 0.992 0.992 0.992 0.991 0.990 

 

Figure D1: Zero-coupon Yields 

 

Sources: Authors’ calculations; RBA 
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Appendix E: Estimated Forward Rates for Reduced Sample 

Figure E1: Expected Future Nominal Interest Rates 

x-year-ahead 

 

Figure E2: Expected Future Real Interest Rates 

x-year-ahead 
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Figure E3: Expected Future Inflation Rates 

x-year-ahead 

 

Figure E4: Nominal Term Premia 

x-year-ahead 
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Figure E5: Real Term Premia 

x-year-ahead 

 

Figure E6: Inflation Risk Premia 

x-year-ahead 
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Appendix F: Estimated Forward Rates for the Unfiltered Model 

Figure F1: Expected Future Nominal Interest Rates 

x-year-ahead 

 

Figure F2: Expected Future Real Interest Rates 

x-year-ahead 
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Figure F3: Expected Future Inflation Rates 

x-year-ahead 

 

Figure F4: Nominal Term Premia 

x-year-ahead 
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Figure F5: Real Term Premia 

x-year-ahead 

 

Figure F6: Inflation Risk Premia 

x-year-ahead 
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Figure F7: Inflation Expectations 

x-year-ahead, survey and model 

 

Note: Ten-year-ahead survey observations are taken as five-year five-year forward expectations 

Sources: Authors’ calculations; Consensus Economics 
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