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Abstract

We use state-space methods to construct new estimates of Australian gross
domestic product (GDP) growth from the published national accounts estimates
of expenditure, income and production. Across a range of specifications, our
measures are substantially less volatile than headline GDP growth. We conclude
that much of the quarter-to-quarter volatility in Australian GDP growth reflects
measurement error rather than true shifts in the level of economic activity.
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A State-space Approach to Australian GDP Measurement

Daniel Rees, David Lancaster and Richard Finlay

1. Introduction

The level and growth of real economic activity is of great interest to economic
policymakers as well as the general public. Increases in activity are typically
associated with rising living standards. And economic activity influences other
economic outcomes, such as inflation and unemployment.

But measuring economic activity is difficult. In Australia, a key measure
of activity, gross domestic product (GDP), is measured using three different
approaches, based on expenditure (GDP(E)), income (GDP(I)) and production
(GDP(P)).1 Conceptually, the three measures should be equal, but in practice the
measures differ because they are constructed from different data sources and have
varying degrees of measurement error.2 It is important to emphasise that the term
measurement error does not imply any failure on the part of statistical agencies.
It is a statistical term that refers to the inherent errors that occur when one infers
aggregate quantities from a sample of observations.

In this paper, we use state-space methods to combine the three Australian Bureau
of Statistics (ABS) measures of GDP into an estimate of aggregate economic
growth. In contrast to existing approaches, our method allows us to capture three
salient features of GDP measurement. First, GDP(E), GDP(I) and GDP(P) should

1 GDP(E) is calculated as the sum of all expenditure by resident households, businesses and
governments on final production, plus exports and the change in inventories, less imports; it is
available at a quarterly frequency in both nominal and real terms. GDP(I) measures the income
received for providing labour and capital services as inputs to production, adjusted for indirect
taxes and subsidies, and is available in nominal terms; an estimate of real GDP(I) is obtained by
dividing nominal GDP(I) by the GDP(E) deflator. GDP(P) measures the value of production in
the economy as the difference between the value of outputs and the value of intermediate inputs
consumed in production, and is available at a quarterly frequency in real terms and annually in
nominal terms. For more detail on the data construction methods, see ABS (2007, 2011, 2012).
The Australian Bureau of Statistics is one of only a few statistical agencies in the world to
compile and publish all three measures of GDP.

2 See, for example, Bishop, Gill and Lancaster (2013) for a recent discussion of measurement
error associated with the various GDP estimates.
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be equal. Second, all three of these quantities are measured with some degree of
error. Third, because of overlap between the data sources that feed into the three
published estimates of GDP, these measurement errors are likely to be correlated.
Once we account for these features of the data, we generate an estimate of
economic activity which is smoother than suggested by conventional measures of
GDP. This suggests that many large quarterly fluctuations in the rate of economic
growth reflect errors in measurement rather than fundamental shifts in the pace of
economic activity.

In Australia, the most common alternative to our approach is to take a simple
average of the three measures, known as GDP(A).3 The ABS considers this to
be the most reliable estimate of final output, in part because independent errors
in the underlying measures are often offsetting (Aspden 1990; ABS 2011). More
broadly, the literature on model averaging suggests that if one possesses a set of
estimates for some quantity being measured, then a combination of the estimates
tends to perform better than any individual estimate.4

While using a simple average of the three GDP measures as an estimate for actual
GDP is simple and transparent, it does not fully exploit all available information.
For example, if one measure of GDP is particularly noisy, so that any given
observation is likely to be quite different from actual GDP, then it may make sense
to place less weight on that measure and more weight on the remaining two. The
technique we explore in this paper provides one way of achieving this: it uses the
time series properties of the three GDP measures to construct a composite GDP
measure that more fully exploits the available information.

Our paper builds on the existing literature on GDP measurement. Most directly, it
represents an application to Australian data of the techniques derived by Aruoba
et al (2013), who construct a state-space measure of US GDP.5 The Australian
dimension of our study is of interest for two reasons, aside from our natural
curiosity as Australian researchers. First, whereas the US statistical authorities

3 In many other countries a single measure of GDP is typically used.

4 See, for example, Timmermann (2006) for an overview of the literature, or Laplace (1818) for
an early application of model averaging.

5 In unpublished work using Australian national accounts data, Scutella (1996) also explored the
possibility of extracting underlying economic growth from the noisy expenditure, income and
production measures.
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only construct income and expenditure measures of GDP at a quarterly frequency,
the ABS also publishes a production measure. We show that the methods of
Aruoba et al (2013) extend to this environment. Second, the Australian economy
differs in several respects from that of the United States in ways that may make
GDP measurement more challenging. In particular, Australia is a smaller, more
trade-exposed economy with a large resource sector. Our results support the idea
that these variations in economic structure translate into a different pattern of GDP
measurement errors in Australia.

Our work is also related to research evaluating the relative merits of expenditure,
income and production as measures of economic activity. The primary focus of
the research to date has been on the US economy, for which the most widely
reported measure of output is derived from the expenditure side of the accounts.
Despite this, a common finding is that expenditure-side estimates of output in
the United States suffer from more severe measurement issues than income-
side estimates. For example, Nalewaik (2010) cites the imprecise source data for
personal consumption expenditure on services as a likely source of noise in the
US GDP(E) estimates. In contrast, movements in many US GDP(I) components
can be estimated reliably using tax data. Estimates of US GDP(I) tend to be
less variable than GDP(E), while also being more highly correlated with other
indicators of economic conditions (Fixler and Grimm 2006; Nalewaik 2010,
2011). Further, in the United States, GDP(E) tends to be revised towards GDP(I)
over time.

Research using Australian national accounts data favours the use of the
production-side rather than expenditure- or income-side estimates (Aspden 1990;
ABS 2012; Bishop et al 2013). The relatively large share of resources in Australian
GDP makes measures of output particularly responsive to trade data. Timing
differences in imports and exports and variability in trade prices can introduce
noise into estimates of expenditure and income (ABS 2012). In addition, GDP(I)
and GDP(E) are reliant on the ABS register of businesses, which is typically
updated with a delay. Bishop et al (2013) found that GDP(P) tends to be revised
less than the other two measures and is as reliable in real time as GDP(A). These
factors provide a case for applying a larger weight on GDP(P) in model averaging.

While it is useful to know the relative merits of expenditure, income and
production measures of economic activity, using just one measure is unlikely to
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be optimal. The techniques that we use in this paper allow information from all
three measures of GDP to be combined, and allow more weight to be placed on
the more reliable measures.

2. Estimating GDP Growth

We treat GDP growth as an unobserved variable that follows a first-order
autoregressive (AR(1)) process:

∆yt = µ (1−ρ)+ρ∆yt−1 + εG,t (1)

where ∆yt represents the growth rate of real GDP, µ is the mean growth rate of
GDP, ρ indicates persistence and εG,t is a normally distributed innovation. It is
common to model GDP growth as an AR(1) process, as growth rates are typically
assumed to be homoscedastic and moderately persistent.

We then assume that the three observed GDP measures – GDP(E), GDP(I) and
GDP(P) – provide noisy readings of actual GDP. For example, in our model
the growth rate of GDP(E) is equal to the growth rate of actual GDP plus a
measurement error term:

∆yE
t = ∆yt + εE,t .

Stacking the three observed measures in matrix form gives us our measurement
equation:  ∆yE

t
∆yI

t
∆yP

t

=

 1
1
1

∆yt +

 εE,t
εI,t
εP,t

 (2)

where ∆yE
t , ∆yI

t , ∆yP
t represent growth in GDP(E), GDP(I) and GDP(P), and εE,t ,

εI,t and εP,t represent their measurement errors.

Using this basic framework, we estimate three models that differ in their treatment
of the observable variables, the shocks to GDP and the measurement errors.
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2.1 Model 1: No Correlation

Our first model assumes that all stochastic terms are independent, that is,
[εG,t ,εE,t ,εI,t ,εP,t ]∼ N(0,Σ) where

Σ =


σ

2
G

0 σ
2
E

0 0 σ
2
I

0 0 0 σ
2
P

 .

2.2 Model 2: Correlation

Next we allow for correlation between the various GDP measures, that is, for
[εG,t ,εE,t ,εI,t ,εP,t ]∼ N(0,Σ) where

Σ =


σ

2
G

σGE σ
2
E

σGI σEI σ
2
I

σGP σEP σIP σ
2
P

 .
This model allows the errors in the three observable GDP measures to be
interrelated, and for the size of the shock to actual GDP to affect the measurement
error in the observed measures of GDP. For example, large innovations in actual
GDP may be associated with less precise estimates of GDP(E), GDP(I) and/or
GDP(P) than is the case for small innovations.

As shown in Appendix A, however, in order to identify the model we must place at
least one restriction on the Σ matrix.6 In line with Aruoba et al (2013) we impose
this restriction by requiring that:

ζ =
Var(∆yt)

Var(∆yE
t )

=

1
1−ρ

2 σ
2
G

1
1−ρ

2 σ
2
G +2σGE +σ

2
E
= 0.5. (3)

6 The model is unidentified in the sense that with an unrestricted Σ, different model parameters
can give rise to identical distributions for the observable quantities.
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That is, we assume that the variance of actual GDP growth is equal to half of the
variance of the observed GDP(E) growth series. Although intuitively appealing,
the restriction is arbitrary, and any number of alternative restrictions would also
suffice.7

2.3 Model 3: Unemployment

Our third model includes an additional observable variable that depends on GDP
growth but whose measurement error is unrelated to that of the other observable
variables: the quarterly change in the unemployment rate.8 That is, we replace
Equation (2) with 

∆yE
t

∆yI
t

∆yP
t

∆Ut

=


0
0
0
κ

+


1
1
1
λ

∆yt +


εE,t
εI,t
εP,t
εU,t

 (4)

where ∆Ut is the change in the unemployment rate. In this case we assume that
[εG,t ,εE,t ,εI,t ,εP,t ,εU,t ]∼ N(0,Σ) with

Σ =


σ

2
G

σGE σ
2
E

σGI σEI σ
2
I

σGP σEP σIP σ
2
P

σGU 0 0 0 σ
2
U

 .

That is, we impose three restrictions on the Σ matrix – zero correlation between
the measurement error of the change in the unemployment rate (εU,t) and the

7 We experimented with alternative values of ζ , and with applying the restriction to GDP(P)
instead; all produced very similar results.

8 The unemployment rate is estimated in a monthly survey of households, known as the Labour
Force Survey (LFS). Measurement errors associated with these surveys are likely to be largely
unrelated to errors in the quarterly GDP series, which are mainly derived from surveys of
businesses and governments, although data from the LFS does feed into GDP(I). Relaxing the
assumption that the correlation between measurement errors in GDP(I) and the unemployment
rate is zero produces very similar results. We also estimated a model including the growth rate
of employment rather than the change in the unemployment rate. Once again, this exercise
produced very similar results.
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measurement error for growth of GDP(E), GDP(I) and GDP(P) (εE,t , εI,t and εP,t).
By a similar argument to that put forward in Appendix A, the model is identified
(in fact the model is over-identified).

3. Estimation

We follow the approach of Aruoba et al (2013) and estimate the models within a
Bayesian framework. We work with Model 3 in this section; Models 1 and 2 are
nested in Model 3 and can be recovered by setting appropriate parameters to zero.

First we express our model in state-space form. Let st = [∆yt ,εE,t ,εI,t ,εP,t ,εU,t ]
′,

mt = [∆yE
t ,∆yI

t ,∆yP
t ,∆Ut ]

′, M = [µ(1 − ρ),0,0,0,0]′, K = [0,0,0,κ], εt =

[εG,t ,εE,t ,εI,t ,εP,t ,εU,t ]
′,

A =


ρ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

and C =


1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
λ 0 0 0 1

 .
Then we can then express Model 3 as

st = M+Ast−1 + εt

mt = K +Cst .

For ease of notation, we collect the parameters in the vector Θ =

(µ, ρ, κ, λ , σ
2
G, σGE , σ

2
E , σGI, σEI, σ

2
I ,σGP, σEP, σIP, σ

2
P, σGU , σ

2
U).

We use the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm
to estimate model parameters.9 We first maximise the posterior distribution of Θ

given the observed data

p(Θ|m1:T ) ∝ p(m1:T |Θ)p(Θ)

where p(m1:T |Θ) is the density of the observable data given the model parameters
and p(Θ) is the density of the priors over the parameter draw. This gives us an
initial estimate of Θ, denoted Θ

0. We use the inverse Hessian at the maximum to

9 See An and Schorfheide (2007) for a description of these techniques.
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obtain an estimate of the covariance matrix of Θ, Σ0. Θ
0 and Σ0 are then used to

initiate the MCMC algorithm: at each iteration i we draw a proposed parameter
vector Θ

∗ ∼ N(Θi−1,cΣi−1). Here c is a scaling parameter set to achieve an
acceptance rate of around 25 per cent, where we accept Θ

∗ as Θ
i with probability

min

(
1,

p(m1:T |Θ
∗)p(Θ∗)

p(m1:T |Θ
i−1)p(Θi−1)

)

and set Θ
i = Θ

i−1 otherwise. We set p(Θ∗) = 0 if Θ
∗ is not a valid draw, for

example if it implies a covariance matrix that is not positive definite.

In order to sample Θ
∗ from the N(Θi−1,cΣi−1) distribution we need to evaluate

p(m1:T |Θ). To do this we use the standard Kalman filter and simulation smoother,
as described in Durbin and Koopman (2012). We take 50 000 draws from the
posterior distribution and discard the first 25 000.

3.1 Priors

Our prior for the mean growth rate of GDP, µ , follows a normal distribution with
mean 0.80 and standard deviation 10.10 The mean of this prior corresponds to the
average quarterly growth rate of GDP over our sample while the standard deviation
is extremely large relative to the volatility of the GDP series, indicating that this
prior places only a very weak restriction on the range of potential values. For
the persistence of shocks to GDP growth, ρ , we use a beta prior with mean 0.50
and standard deviation 0.20. The prior restricts the value of this parameter to lie
between 0 and 1, consistent with GDP growth being a stationary series.11

For the variances of the shocks to GDP and the measurement errors, we impose
inverse-gamma priors with mean 2 and standard deviation 4. These priors ensure
that the variances of all shocks are greater than 0. Finally, for the covariance terms,
the priors follow a normal distribution with mean 0 and standard deviation 5.

10 Our estimation procedure assumes that the trend growth rate of GDP has been constant over
our sample. To test whether this assumption is reasonable, we ran Bai-Perron tests for a break
in the mean growth rate of GDP(A) using an AR(1) model over the sample 1980:Q1–2013:Q2.
These tests did not point to any evidence of a break in the mean growth rate of GDP(A) over
our sample.

11 Imposing a normally distributed prior with a mean of zero produces almost identical results.
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In all cases, our priors are loose, ensuring that we place a large weight on
information from the data, but rule out unreasonable parameter values.

3.2 Data

Our data span 1980:Q1–2013:Q2. The starting date reflects the fact that, while
Australian national accounts data are available on a quarterly basis from 1959:Q3,
the quality of the underlying data sources has changed over time, so that the
pattern of measurement errors in the early years of each GDP series may be
unrepresentative of their current performance. The GDP and unemployment rate
data that we use in our estimation are all seasonally adjusted by the ABS.

4. Results

4.1 Model 1: No Correlation

In Model 1 we assume that shocks to GDP and the measurement errors are
independent of each other. Table 1 shows the parameter estimates.

Table 1: Prior and Posterior Distributions – Model 1
Prior Posterior

Parameter Distribution Mean Std dev Mode Median 5% 95%
GDP equation
µ Normal 0.80 10 0.79 0.78 0.62 0.95
ρ Beta 0.50 0.2 0.37 0.40 0.24 0.56
Exogenous processes
σ

2
G Inv Gamma 2 4 0.38 0.39 0.29 0.52

σ
2
E Inv Gamma 2 4 0.43 0.44 0.34 0.57

σ
2
I Inv Gamma 2 4 0.68 0.71 0.56 0.89

σ
2
P Inv Gamma 2 4 0.29 0.31 0.24 0.42

Marginal data density –516.61

The median estimate of µ is 0.78, which is close to the average growth rate
of GDP(A) over the sample. The estimate of ρ is 0.40. This implies that the
GDP growth process has relatively little persistence, although the parameter is
larger than estimates from an AR(1) model of GDP(A) growth over our sample.
Innovations to GDP growth are estimated to be similar in size to the measurement
errors in the expenditure and production equations, and smaller than the average
measurement errors in the income equation.
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Using the posterior distribution of the model’s parameter values, we can recover an
estimate of ‘true’ GDP growth over the sample. We call this series derived from
Model 1 GDP(M1). Figure 1 compares this estimate to the published quarterly
growth rates of GDP(A), GDP(E), GDP(I) and GDP(P). GDP(M1) is highly
correlated with GDP(A), but it is less volatile.12 That is, our model suggests that
some extreme readings of GDP(A) are likely to represent measurement error in
one or more of the individual measures of GDP. Our methodology also allows us
to construct confidence bands around the GDP growth estimates, which are also
shown in Figure 1. These are generally wide. For example, in the June quarter
of 2013, our model’s median estimate of GDP growth was 0.6 per cent, and the
95 per cent confidence bands spanned 0.1–1.2 per cent.

Figure 1: GDP Growth – Comparison with GDP(M1)
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Note: Shaded areas show 95 per cent confidence intervals around GDP(M1)
Sources: ABS; Authors’ calculations

4.2 Model 2: Correlation

In Model 2, we allow for correlation between innovations to GDP and the
measurement errors. Table 2 presents the parameter estimates.

12 Table 5 contains descriptive statistics for all of the estimated GDP series.
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Table 2: Prior and Posterior Distributions – Model 2
Prior Posterior

Parameter Distribution Mean Std dev Mode Median 5% 95%
GDP equation
µ Normal 0.80 10 0.79 0.79 0.63 0.94
ρ Beta 0.50 0.2 0.47 0.46 0.26 0.67
Exogenous processes
σ

2
G Inv Gamma 2 4 0.39 0.43 0.31 0.56

σGE Normal 0 10 –0.25 –0.27 –0.48 –0.09
σGI Normal 0 10 –0.17 –0.18 –0.46 0.10
σGP Normal 0 10 –0.13 –0.16 –0.35 –0.02
σ

2
E Inv Gamma 2 4 0.84 0.91 0.56 1.35

σEI Normal 0 10 0.37 0.39 0.10 0.74
σEP Normal 0 10 0.31 0.36 0.11 0.66
σ

2
I Inv Gamma 2 4 0.92 0.98 0.58 1.46

σIP Normal 0 10 0.17 0.20 –0.07 0.52
σ

2
P Inv Gamma 2 4 0.45 0.52 0.29 0.88

Marginal data density –514.53

The estimated parameters of the GDP process, µ and ρ , are similar to those in
Model 1. However, the variance of innovations to GDP and the measurement
errors are larger. This is most notable in the expenditure equation, where the
variance of the measurement errors is now similar in magnitude to the income
equation. This is not an artefact of the restriction imposed in Equation (3); varying
the restriction, or applying it to GDP(P) rather than GDP(E), leaves the value
of σ

2
E largely unchanged. In contrast, the variance of the measurement errors in

the production equation remains around the same size as for the estimated GDP
innovations.

The covariances between the measurement errors are positive, and generally
statistically significant. This is consistent with the fact that information from
some surveys feed into more than one measure of GDP. In contrast, covariances
between innovations to GDP and the measurement errors are generally negative
and statistically significant. This suggests that the characteristics of measurement
errors vary over the business cycle, perhaps because the types of challenges
the ABS faces in measuring GDP growth vary across the business cycle. In
general, the fact that the covariances of innovations to GDP and measurement
errors are statistically significant highlights the importance of controlling for these
correlations when evaluating the pace of economic growth.
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Figure 2 shows the plot of GDP derived from Model 2, GDP(M2). This measure is
considerably smoother than GDP(A). This reflects the fact that when we allow for
correlation between shocks some large changes in multiple measures are attributed
to measurement error rather than treated as signal.

Figure 2: GDP Growth – Comparison with GDP(M2)
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Sources: ABS; Authors’ calculations

4.3 Model 3: Unemployment

In Model 3 we include the quarterly change in the unemployment rate as an
additional observable variable. Table 3 presents the parameter estimates.

The estimated mean parameter for the GDP process is similar to the previous
models, although GDP growth has more persistence than in Models 1 and 2.
The coefficients in the unemployment equation suggest that a 1 percentage point
increase in the rate of quarterly GDP growth lowers the unemployment rate
by around 0.6 percentage points, which is slightly above existing Okun’s law
estimates for Australia (Borland 2011).

The parameter estimates for the shock processes differ from the previous models’
in two respects. First, the variance of GDP innovations is much smaller when we
include the unemployment rate as an observable variable in the model. Second,
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Table 3: Prior and Posterior Distributions – Model 3
Prior Posterior

Parameter Distribution Mean Std dev Mode Median 5% 95%
GDP equation
µ Normal 0.80 10 0.79 0.79 0.59 1.01
ρ Beta 0.50 0.2 0.65 0.62 0.46 0.77
Unemployment equation
κ Normal 0 10 0.54 0.51 0.38 0.82
λ Normal –0.50 10 –0.69 –0.64 –1.03 –0.50
Exogenous processes
σ

2
G Inv Gamma 2 4 0.24 0.28 0.19 0.46

σGE Normal 0 10 0.00 –0.01 –0.11 0.05
σGI Normal 0 10 –0.03 –0.04 –0.14 0.03
σGP Normal 0 10 –0.04 –0.05 –0.14 0.01
σGU Normal 0 10 0.12 0.12 0.07 0.21
σ

2
E Inv Gamma 2 4 0.63 0.70 0.54 0.88

σEI Normal 0 10 0.25 0.23 0.10 0.40
σEP Normal 0 10 0.19 0.22 0.11 0.34
σ

2
I Inv Gamma 2 4 0.80 0.87 0.69 1.10

σIP Normal 0 10 0.09 0.11 0.00 0.24
σ

2
P Inv Gamma 2 4 0.42 0.47 0.36 0.60

σ
2
U Inv Gamma 0.3 4 0.08 0.08 0.05 0.21

Marginal data density –510.43

the negative correlation between GDP innovations and measurement errors in the
GDP(M2) measurement equations largely disappears. However, the covariances
between the measurement errors remain positive and statistically significant.

Figure 3 compares this model’s estimate of GDP growth, GDP(M3), to the
published figures. Overall, the results for Model 3 are similar to those of Model 2
as, once again, our measure of GDP is smoother than GDP(A). The greatest
difference lies in the recessions of the early 1980s and 1990s and the slowdown
associated with the global financial crisis in the late 2000s. The inclusion of
the unemployment rate, which increased in all three episodes, lowers Model 3’s
estimate of GDP growth relative to the estimates in Models 1 and 2 that do not
include the unemployment rate.
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Figure 3: GDP Growth – Comparison with GDP(M3)
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4.4 How Do Our Measures Compare with the Published Trend Measure of
GDP?

Our methodology provides measures of GDP growth that incorporate information
about the degree of noise generated by measurement error in the published
estimates. The result is a smoother measure. The ABS also produces a smoother
measure of output growth, constructed by applying a Henderson moving average
to GDP(A). The ABS publish the resulting measure, known as ‘trend’ GDP, at a
quarterly frequency. Figure 4 compares the ABS trend GDP with the measures
introduced in this paper.

The histories of the series are generally quite similar, which is encouraging. Trend
GDP(A) has a disadvantage relative to our method, however, in that it suffers
from end-point problems. The Henderson trends used by the ABS apply moving
averages to past and future observations in a series. As the series approaches its
end point, there are fewer observations upon which to calculate these averages.
While the ABS takes steps to ameliorate this issue, recent trend GDP data remain
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subject to substantial revision as new data are received.13 In Section 5, we
demonstrate that the techniques presented in this paper appear to be less affected
by end point problems and so should provide users with a better indication of
output growth in real time.

Figure 4: Comparison of Models with Trend GDP Growth
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13 Of course, seasonally adjusted series may also feature end point problems if there are changes
in seasonal patterns over time.
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4.5 What are the Relative Contributions of GDP(E), GDP(I) and GDP(P)?

At its core, our methodology represents an alternative way of combining the
information in the three existing ABS measures of GDP growth. One might
wonder how our models weight each of the three measures and the extent to which
this differs from the simple average used to construct GDP(A). We answer these
questions in two ways: first we examine Kalman gains; and second we find the
weighted average of GDP(E), GDP(I) and GDP(P) that is closest to our measure
of GDP growth.

4.5.1 Kalman gains

Kalman gains govern the extent to which our models adjust their estimates of the
rate of GDP growth in light of new observations of GDP(E), GDP(I) or GDP(P). If
the Kalman gain on a particular measure of GDP is large then the model extracts
a large amount of signal from new data on that measure. For example, the model
will interpret a large increase in the growth rate of an observed GDP measure that
has a large Kalman gain as a signal that GDP growth has increased. In contrast,
it will consider a similar increase in the growth rate of an observed GDP measure
that has a small Kalman gain as being more likely to reflect measurement error.

For each draw from the posterior distribution of model parameters, we can recover
an estimate of the Kalman gain for each observable variable. Figure 5 summarises
these Kalman gains for Model 3.14 In the figure, each blue dot compares the
Kalman gains of two measures of GDP for an individual draw from the posterior
distribution. The red dot and circle represent the posterior median and 90 per cent
probability interval for each pair. Intuitively, if most dots lie to the left of the
dashed 45 degree line, then the Kalman gain for the observed GDP measure on
the vertical axis is greater than that of the measure on the horizontal axis, and vice
versa. A mass of dots surrounding the dashed 45 degree line indicates that the
model puts roughly equal weight on the two observed measures of GDP.

Figure 5 confirms that the model places more weight on GDP(P) than on the
other two measures. It also places roughly equal weight on GDP(E) and GDP(I).
This is consistent with the fact that the estimated measurement errors in the

14 The distributions for the other models are similar.
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production equation are considerably smaller than those in the expenditure and
income equations.

Figure 5: Kalman Gain Pairs – Model 3
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4.5.2 Closest convex combination

The second way in which we gauge the relative importance of the three observed
measures of GDP is by calculating the fixed-weight combinations of the three
measures that come closest to replicating our measures of GDP growth. That is,
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we calculate the values of α1 and α2 that solve:15

[α∗1 ,α
∗
2 ] =arg min

α1,α2

T∑
t=1

[
α1GDP(E)t +α2GDP(I)t

+(1−α1−α2)GDP(P)t−GDPM,t

]2

.

Table 4 shows the weights for each model.

Table 4: Closest Convex Combination
Weight on Model 1 Model 2 Model 3
GDP(E) 0.30 0.09 0.22
GDP(I) 0.21 0.26 0.24
GDP(P) 0.49 0.65 0.54

Consistent with the results in the Kalman gain section, it appears that our models
extract more information from GDP(P) than from the other two measures of GDP.
However, there is some discrepancy in the relative weight attached to the other
two measures. Model 1 places relatively more weight on GDP(E) than GDP(I),
while Model 2 does the reverse and Model 3 places roughly equal weight on the
two measures.

4.6 GDP Behaviour during Slowdowns

Although our measures of GDP exhibit similar cycles to GDP(A), the quarterly
growth rates differ. These differences are most relevant around business cycle
turning points, when distinguishing signal from noise in GDP growth is of
greatest importance. In this section, we discuss the behaviour of our models
during the Australian economy’s two most recent slowdowns, which occurred in
2000–2001 and 2008–2009.

In both of these episodes, GDP(A) indicates that the Australian economy
experienced a large contraction in economic activity, followed by a strong recovery
in the subsequent quarter. In the earlier episode, the economy returned rapidly to

15 Note that constructing a measure of GDP using these weights will not recover GDP(M1),
GDP(M2) or GDP(M3) because the Kalman filter does more than a simple contemporaneous
averaging of the GDP measures in its extraction of actual GDP growth.
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trend growth. In contrast, in the third quarter of the 2008–2009 episode, GDP
growth slowed again, with GDP(A) expanding by a mere 0.1 per cent in the June
quarter of 2009.

In the presence of measurement error, large changes in economic activity make
policymaking difficult. Did the strong GDP growth recorded in the March quarters
of 2001 and 2009 accurately signal that the economy had recovered from the
declines of previous quarters? Or was it merely statistical noise that concealed
ongoing economic weakness?

Our models suggest that neither the slowdown of 2000–2001 nor the subsequent
recovery was as dramatic as the GDP(A) outcome suggests (Figure 6). Models 2
and 3 suggest that the economy experienced a period of two to three quarters
of substantially below-average growth, but did not actually contract. Model 1
displays a similar quarterly pattern to GDP(A), but with less extreme movements.
All of the models suggest that by early 2001 growth in economic activity had
begun to recover.

Figure 6: GDP Growth – December Quarter 2000
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In contrast, according to our models, the slowdown of 2008–2009 was more
prolonged than indicated by GDP(A) (Figure 7). Model 2 suggests that the
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economy experienced at least three quarters of growth substantially below average.
And Model 3 records two consecutive quarters of negative growth in the December
quarter of 2008 and March quarter of 2009. This is consistent with the beliefs of
policymakers at the time that the Australian economy was in recession in early
2009 (Stevens 2009). All three measures assign a large proportion of the recovery
in GDP(A) growth in the March quarter of 2009 to measurement error. This
is consistent with the fact that the increase in GDP growth in that quarter was
primarily observable in GDP(E) and GDP(I), to which the models apply relatively
less weight.

Figure 7: GDP Growth – December Quarter 2008
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4.7 Is Australian GDP Measurement Different?

A natural benchmark against which to compare our results is Aruoba, Diebold,
Nalewaik, Schorfheide and Song (2013), who conduct a similar exercise using US
data. Our results differ from theirs in two important respects.

First, across a number of specifications, Aruoba et al find that the average size of
measurement errors in US GDP(I) is smaller than in US GDP(E). Consequently,
their model places more weight on income than expenditure in constructing a



21

measure of US GDP growth. In contrast, we find that in the Australian data
measurement errors on the income side of the accounts tend to be a little larger
than on the expenditure side.

A second difference is that Aruoba et al find that innovations to US GDP are
on average larger than measurement errors. In contrast, we find larger relative
measurement errors in Australian GDP data.

While it is hard to reach firm conclusions as to the differences between
Aruoba et al (2013) and our work, we find it plausible that they could reflect
differences in the structure of the US and Australian economies. Relative to the
United States, Australia is a smaller and more open economy, and commodity
exports are relatively more important. Given that commodity prices are typically
more volatile than manufacturing or services prices, commodity exporters tend to
experience greater volatility in nominal GDP – the quantity of output multiplied
by its price – than other economies. This nominal volatility makes real GDP
measurement on the income side of the national accounts particularly challenging,
because of the need to determine appropriate deflators to apply to volatile
nominal GDP flows. Similar challenges apply when measuring expenditure, in
particular export and import volumes. To the extent that commodity prices and
exchange rates are observable, it should be possible to deflate export and import
values accurately. However, if prices and exchange rates are volatile, imposing
appropriate deflators is more difficult, creating the possibility of additional
measurement error. The volatility of Australian export prices could go some way
to explaining the relatively large measurement errors that we report for Australian
GDP(E) and GDP(I).

5. Comparison with GDP(A)

It is natural to compare the performance of our models against GDP(A). We first
describe the statistical properties of our GDP measures, and we then examine
whether our GDP measures are better able to explain and forecast unemployment
and inflation.
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5.1 How Volatile is GDP Growth?

Visual inspection suggested that our measures of GDP growth smooth out some of
the volatility in the published ABS series. A statistical analysis of the alternative
GDP measures confirms this conjecture.

Table 5 compares moments of the published GDP series to those of our models.
The mean of our models is similar to those of the published series. However,
other moments of the distributions differ. All three of our constructed measures
are considerably less volatile than the ABS series, with the standard deviation of
GDP growth being around one-third lower in our series than in GDP(A).

Table 5: Descriptive Statistics
ABS series GDP(M) series

Parameter GDP(A) GDP(E) GDP(I) GDP(P) Model 1 Model 2 Model 3
Moments
Mean 0.79 0.80 0.78 0.80 0.79 0.79 0.79
σ 0.76 0.93 1.03 0.84 0.57 0.56 0.49
ρ1 0.21 –0.03 –0.19 0.31 0.47 0.79 0.68
Results from an AR(1) regression
RSE 0.74 0.93 1.02 0.80 0.51 0.34 0.36
R2 0.04 0.00 0.04 0.10 0.22 0.63 0.47
Notes: The sample period is 1980:Q1–2013:Q2; model-based statistics are for the posterior median estimate of

true GDP; σ = standard deviation, ρ1 is the first-order correlation coefficient, RSE = residual standard
error from a fitted AR(1) model

Our measures of GDP growth are also more persistent, with the correlation
coefficients on our measures of GDP growth far larger than on the ABS series.
As a consequence, our measures of GDP growth are also more predictable; an
estimated AR(1) model of our constructed GDP series produces a far closer fit
than it does for standard measures of GDP.

5.2 Real-time Performance

In order to produce timely estimates, statistical agencies publish GDP before all
information sources are available. They then revise these preliminary estimates as
more information comes to light.16 Bishop et al (2013) find that initial estimates
of Australian GDP often differ substantially from later, more informed estimates.

16 See Bishop et al (2013) for a discussion of the revisions process.
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Knowing this, users may prefer measures that are less subject to revision, as long
as those measures are close approximations to ‘true’ output growth.

We use real-time estimates of GDP(E), GDP(I) and GDP(P) to construct a history
of real-time model estimates from 2001:Q1 to 2013:Q2.17 We evaluate the real-
time performance of our models using two common metrics: ‘mean absolute
revision’ and ‘mean revision’. Mean absolute revision measures the average size
of revisions regardless of sign. Mean revision is the average of revisions and can
be interpreted as a tendency for GDP to be revised in a particular direction, that is,
whether it is biased. Table 6 presents these statistics for GDP(A) and our models
over the period 2001:Q1 to 2009:Q3. Final GDP is defined as the estimate after
four years, consistent with Bishop et al (2013).

Table 6: Revisions to GDP
Percentage points

Measure GDP(A) Model 1 Model 2 Model 3
Mean absolute revision 0.29 0.20 0.19 0.18
Mean revision 0.13 0.11 0.10 0.05
Notes: The sample period is 2001:Q1–2009:Q3; revisions are calculated as the difference between each measure’s

growth estimate after four years and its initial growth estimate

Our models are more reliable than GDP(A) in real time, with the mean
absolute revisions statistically smaller than for GDP(A) at the 5 per cent
level. These differences are economically meaningful as well; revisions to our
models are around a third smaller than revisions to GDP(A). Consistent with
Bishop et al (2013), over this sample period there has been a slight upward
tendency to revisions, and this is evident across the measures, although slightly
less so for the model estimates.

In addition, our models’ GDP growth estimates are also easier to forecast in
real time. The root mean squared errors for out-of-sample AR(1) forecasts are
0.39 percentage points for Model 1 and 0.35 percentage points for Models 2
and 3, compared with 0.52 percentage points for GDP(A). This suggests that
contemporaneous estimates from our models may provide a better indication of
future outturns than GDP(A).

17 Due to the time required for estimation, we re-estimate the model every four quarters using
real-time data. We use these parameter estimates, combined with real-time national accounts
data, to produce estimates for the subsequent three quarters.
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Table 7 shows that our models also converge to their final values more quickly than
GDP(A). The performance of Model 1 is particularly noteworthy as this model is
highly correlated with GDP(A).

Table 7: Error Relative to ‘Final’ Estimate
Mean absolute error, percentage points

Measure GDP(A) Model 1 Model 2 Model 3
Initial 0.29 0.20 0.19 0.18
One year 0.25 0.17 0.16 0.11
Two years 0.22 0.15 0.12 0.08
Three years 0.17 0.10 0.09 0.06
Notes: The sample period is 2001:Q1–2009:Q3; errors are calculated as the difference between each measure’s

growth estimate after four years and its growth estimate at the specified horizon

5.3 Explaining Macroeonomic Relationships

In this section we examine whether our measures of GDP display a closer
relationship with unemployment and inflation than GDP(A).

5.3.1 Unemployment

Macroeconomic theories typically predict a close relationship between output
growth and unemployment, a relationship known as ‘Okun’s law’. Figure 8
illustrates the Okun’s law relationship for Australia for GDP(A) and Models 1
and 2.18 As theory would suggest, for all three measures, lower output growth
is associated with an increase in the unemployment rate. But the relationship
between changes in unemployment and changes in GDP appears stronger for
Models 1 and 2 than for GDP(A), represented by steeper fitted lines and higher
adjusted R2s.

We confirm this result more formally by examining the in-sample fit of our models
and GDP(A). To do this, we estimate the specification:

∆Ut = α + γ∆Ut−1 +
2∑

i=0

βi∆yt−i + εt (5)

18 We exclude Model 3 because it is identified using the unemployment rate.
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where ∆yt−i is the quarterly growth rate of a measure of GDP in quarter t − i.
The long-run response of unemployment to changes in output, known as ‘Okun’s
coefficient’, can be approximated by:

C = Σ
2
i=0βi/(1− γ).

Figure 8: Okun’s Law
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y = –31.79x + 0.25
Adj R 2 = 0.31

y = –39.47x + 0.31
Adj R 2 = 0.35

Sources: ABS; Authors’ calculations

Table 8 presents our results. The estimated coefficients are mostly statistically
significant and are of the expected sign. The regressions including Models 1 and 2
appear to fit the data better than those including GDP(A), as shown by the adjusted
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R2s, although the difference is not statistically significant. The coefficients on
the lagged changes in unemployment are smaller in the regressions with our
model measures, suggesting that our measures contribute more information than
GDP(A) or a random walk. Finally, the coefficients on contemporaneous and
lagged values of output growth are larger for our models than for GDP(A),
reflected in larger Okun’s coefficients. This may indicate attenuation bias in the
regressions including GDP(A), caused by the presence of measurement error.

Table 8: Unemployment Rate – Okun’s Law
Parameter GDP(A) Model 1 Model 2
α 0.23** 0.32** 0.34**
∆Ut−1 0.36** 0.29** 0.25**
∆yt –0.12** –0.17** –0.11*
∆yt−1 –0.13** –0.14** –0.27**
∆yt−2 –0.04 –0.08* –0.05
Implied Okun’s coefficient –0.45 –0.56 –0.59
Adj R2 0.54 0.57 0.60
Notes: The sample period is 1980:Q4–2013:Q2; ** and * represent significance at the 1 and 5 per cent levels,

respectively; the models were estimated using robust (White 1980) standard errors

Despite the better in-sample fit, we find that our models do not improve real-time
forecasting. Table 9 presents root mean squared errors for one-step-ahead forecasts
of the unemployment rate, incorporating either GDP(A), Model 1 or Model 2. We
find that over the sample period, root mean squared errors were broadly similar
across the measures, suggesting that the models are similarly useful at forecasting
unemployment.19

Table 9: Unemployment Rate – Real-time Forecast Errors
Measure GDP(A) Model 1 Model 2
Root mean squared error 0.20 0.20 0.20
Mean error 0.02 0.03 0.04
Note: The sample period is 2001:Q1–2013:Q2

19 The similar forecasting performance of the models may be the result of timing issues. In Table 9
we use the timing of the RBA’s Statement on Monetary Policy to simulate the RBA staff’s
forecasting experience, where applicable. At that time, GDP for the previous quarter is not
available because the ABS release the national accounts with a delay of a little over two months.
The forecast specification of Equation (5) includes lags that are a fair way down the lag structure
and, therefore, lack forecasting power.
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5.3.2 Inflation

We now examine whether our model measures of GDP are useful for explaining
inflation. We estimate an expectations-augmented mark-up model of inflation,
following Norman and Richards (2010). The model includes terms for bond
market inflation expectations (E(π)), unit labour costs (ulc), import prices (mp)
and the output gap (gap). The dependent variable is the rate of inflation (π). Like
Norman and Richards, we choose a polynomial distributed-lag specification as
follows:

πt = α +βEt−1(πt+s)+
9∑

j=0

λ j∆ulct− j +
12∑

k=1

γk∆mpt−k +ϕgapt−1 + εt . (6)

Our model measures of GDP enter the mark-up model through the output gap,
where potential GDP growth is derived using a Hodrick-Prescott (HP) filter.20

Table 10 presents the results. Our GDP measures seem to fit about as well as
GDP(A). The coefficients on the output gap terms for all of the measures are
statistically significant and of a similar magnitude.21 The models appear to fit the
data similarly well, with the adjusted R2 for each model around 0.6. Overall, our
GDP measures appear about as useful as GDP(A) in explaining inflation.

Table 10: Inflation Rate – Mark-up Model
Parameter GDP(A) Model 1 Model 2 Model 3
α 0.00** 0.00** 0.00** 0.00**
Et−1(πt+s) 0.16** 0.17** 0.17** 0.16**
∆ulct− j 0.36** 0.35** 0.34** 0.33**
∆mpt−k 0.12** 0.12** 0.11** 0.12**
gapt−1 0.07** 0.08** 0.08** 0.07**
Adj R2 0.60 0.60 0.60 0.60
Notes: The sample period is 1990:Q1–2013:Q2; ** represents significance at the 1 per cent level; where multiple

lags are included, coefficients are the sum of the lags

20 The output from the estimation procedures outlined in Section 3 is in one-quarter changes. The
HP filter is run over a levels index constructed using these quarterly growth rates. We introduce
levels versions of our model measures in Appendix B.

21 One explanation for the similarity of coefficients is that, since our measure of the output gap is
based on the accumulation of quarterly growth rates, quarter-to-quarter errors in GDP(A) will
wash out to some degree, leaving all gap estimates quite similar.
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6. Conclusion

In this paper we have constructed several new measures of Australian GDP
growth that use state-space methods to extract a measure of underlying economic
activity from the noisy published measures of expenditure, income and production.
Although our measures are highly correlated with published GDP growth, they are
noticeably less volatile and easier to forecast. Moreover, they explain variations in
inflation and unemployment as well as or slightly better than the published GDP
growth measures. Our measures also perform well in real-time.
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Appendix A: Identification

We use the results contained in Appendix A of Aruoba et al (2013) and Section 4
of Komunjer and Ng (2011) to prove that the model presented in Section 2.2
is identified with a single parameter restriction. In particular, and ignoring the
constants, the model can be written as

st+1 = Ast +Bεt+1

mt+1 =Cst +Dεt+1

where st = ∆yt , mt = [∆yE
t ,∆yI

t ,∆yP
t ]
′, A = ρ , B = [1,0,0,0], C = [ρ,ρ,ρ]′ and

D =

1 1 0 0
1 0 1 0
1 0 0 1

 ,Σ =


σ

2
G

σGE σ
2
E

σGI σEI σ
2
I

σGP σEP σIP σ
2
P


where εt = [εG,t ,εE,t ,εI,t ,εP,t ]∼ N(0,Σ).

Assuming that 0≤ ρ < 1 and that Σ is positive definite, and noting that the rows of
D are linearly independent, ensures that Assumptions 1, 2 and 4-NS of Komunjer
and Ng (2011) are satisfied, while Appendix A of Aruoba et al (2013) shows that
Assumption 5-NS of Komunjer and Ng is satisfied. Then by Proposition 1-NS of
Komunjer and Ng, two models (with the second model indexed by a ∗ subscript)
are observationally equivalent if and only if ρ∗ = ρ and

p∗CC′+DΣ∗D
′ = pCC′+DΣD′ (A1)

p∗ρC′+BΣ∗D
′ = pρC′+BΣD′ (A2)

σ
2
G∗ = σ

2
G +(p∗− p)(1−ρ

2) (A3)

where p solves p = pρ
2 +σ

2
G− (pρC′+BΣD′)(pCC′+DΣD′)−1(pρC+DΣB′).

If p∗ = p then the above equations imply that Σ∗ = Σ and the models are identical.
If p∗ 6= p we can write p∗ as p∗ = p + δ for some δ 6= 0, in which case
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Equation (A3) becomes σ
2
G∗ = σ

2
G +δ (1−ρ

2). From Equation (A2) we have

BΣD′ =
[
σ

2
G +σGE σ

2
G +σGI σ

2
G +σGP

]
= BΣ∗D

′+δρC′

=
[
σ

2
G +σGE∗+δ σ

2
G +σGI∗+δ σ

2
G +σGP∗+δ

]
so that σGE∗ = σGE−δ , σGI∗ = σGI−δ and σGP∗ = σGP−δ . Finally,

DΣD′=

 σ
2
G +2σGE +σ

2
E σ

2
G +σGE +σGI +σEI σ

2
G +σGE +σGP +σEP

σ
2
G +σGE +σGI +σEI σ

2
G +2σGI +σ

2
I σ

2
G +σGI +σGP +σIP

σ
2
G +σGE +σGP +σEP σ

2
G +σGI +σGP +σIP σ

2
G +2σGP +σ

2
P


so that from Equation (A1) we have

0 = DΣ∗D
′−DΣD′+δCC′

=

 σ
2
E∗−σ

2
E−δ σEI∗−σEI−δ σEP∗−σEP−δ

σEI∗−σEI−δ σ
2
I∗−σ

2
I −δ σIP∗−σIP−δ

σEP∗−σEP−δ σIP∗−σIP−δ σ
2
P∗−σ

2
P−δ


so that σ

2
E∗ = σ

2
E + δ , σEI∗ = σEI + δ , σEP∗ = σEP + δ , σ

2
I∗ = σ

2
I + δ ,

σIP∗ = σIP + δ and σ
2
P∗ = σ

2
P + δ . Hence the ‘star’ model is observationally

equivalent to the ‘non-star’ model if and only if

Σ∗ =


σ

2
G +δ (1−ρ

2)

σGE−δ σ
2
E +δ

σGI−δ σEI +δ σ
2
I +δ

σGP−δ σEP +δ σIP +δ σ
2
P +δ


for some δ . As such, we need to place at least one restriction on Σ to ensure an
identified model.
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Appendix B: Levels or Differences?

Our baseline models relate the growth rate of GDP to its expenditure, income
and production measures. We focus on growth rates because it is the growth
rate of GDP (and its implications for the output gap), rather than its level in
dollars, that is of day-to-day interest to policymakers. However, even if we
are most interested in GDP growth, the level of GDP may still contain useful
information, particularly as the three ABS measures should be cointegrated. To
examine whether accounting for the level of GDP affects our results, we modified
our models to allow for cointegration between GDP and the expenditure, income
and production measures. To do this, we augment our basic measurement equation
to include an error correction term:

∆y j
t = ∆yt−η j

(
y j

t−1− yt−1

)
+ ε j,t (B1)

for j ∈ {E, I,P} where y j
t and yt are the log-levels of a measure of GDP and the

unobserved ‘true’ measure of GDP. The parameter η j tells us how quickly the
levels of a measure of GDP and its ‘true’ value converge.

The state-space form and estimation procedure of this model is similar to our
baseline models, although we adjust the Kalman filter to account for the fact that
the level of GDP is non-stationary. We do this using the methods of Koopman and
Durbin (2003).

Table B1 shows the results for Model 2 estimated in error correction form (ECM).
In most cases, the parameter estimates are similar to those in the equivalent model
estimated in growth rates. However, the variances of some of the shocks are
smaller in the ECM model. And the negative relationship between innovations to
GDP and the measurement errors ceases to be statistically significant. The error
correction term in the GDP(I) equation is larger than those in the equations for the
other two observed measures of GDP. That is, deviations of the level of GDP(I)
from the true GDP appear to close more rapidly than those of other measures.
Most of these deviations, however, are likely to have occurred in the early years of
the sample. The ABS reconciliation process ensures that for all years since 1994,
and before the latest financial year, the sums of GDP(E), GDP(I) and GDP(P) over
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Table B1: Prior and Posterior Distributions – ECM Model 2
Prior Posterior

Parameter Distribution Mean Std dev Mode Median 5% 95%
GDP equation
µ Normal 0.80 10 0.73 0.74 0.56 0.91
ρ Beta 0.50 0.2 0.55 0.54 0.36 0.73
Exogenous processes
σ

2
G Inv Gamma 2 4 0.25 0.28 0.17 0.39

σGE Normal 0 10 –0.10 –0.09 –0.22 0.03
σGI Normal 0 10 –0.11 –0.07 –0.28 0.12
σGP Normal 0 10 –0.15 –0.14 –0.26 –0.03
σ

2
E Inv Gamma 2 4 0.57 0.58 0.39 0.81

σEI Normal 0 10 0.18 0.19 0.02 0.38
σEP Normal 0 10 0.24 0.24 0.08 0.42
σ

2
I Inv Gamma 2 4 0.46 0.56 0.36 0.80

σIP Normal 0 10 0.15 0.15 –0.03 –0.34
σ

2
P Inv Gamma 2 4 0.48 0.50 0.34 0.69

Error correction terms
ηE Beta 0.5 0.2 0.37 0.43 0.27 0.70
ηI Beta 0.5 0.2 0.87 0.70 0.38 0.92
ηP Beta 0.5 0.2 0.23 0.24 0.15 0.33
Marginal data density 249.22

a financial year are equal.22 Hence, it is unlikely that any of these series could
deviate from true GDP for a substantial period of time.

Figure B1 compares the GDP series from the ECM model with the equivalent
series derived from our baseline model. Compared with the baseline model, the
ECM model smooths some of the peaks and troughs in GDP growth. This is
particularly noticeable in the 1980s and early 1990s. The 1986 growth slowdown
is hardly noticeable in the ECM series while the early 1980s and 1990s recessions
are shallower but more prolonged.

22 The ABS reconcile the measures of GDP using annual supply-use tables. Due to lags in
compiling the tables, the measures of GDP are not equal for the most recent financial year
(or two years in the case of the June quarter).
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Figure B1: GDP Growth – Baseline and ECM Models
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