
DRAFT

SOLVING LINEAR RATIONAL EXPECTATIONS MODELS
WITH PREDICTABLE STRUCTURAL CHANGE

Adam Cagliarini and Mariano Kulish

Research Discussion Paper
2008-xx

November 2008

Economic Research Department
Reserve Bank of Australia

We would like to thank Malcolm Edey, Christopher Kent, Adrian Pagan,
Christopher Sims and John Taylor for their feedback and discussions.
Responsibility for any remaining errors rests with the authors. The views
expressed in this paper are those of the authors and are not necessarily those of
the Reserve Bank of Australia.

Authors: cagliarinia and kulishm at domain rba.gov.au

Economic Publications: ecpubs@rba.gov.au



Abstract

Standard solution methods for linear stochastic models with rational expectations
presuppose a time-invariant structure as well as an environment in which
shocks are unanticipated. Consequently, credible announcements that entail future
changes of the structure cannot be handled by standard solution methods. This
paper develops the solution for linear stochastic rational expectations models in the
face of a finite sequence of anticipated structural changes. These events encompass
anticipated changes to the structural parameters and anticipated additive shocks.
We apply the solution technique to some examples of practical relevance to
monetary policy.
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SOLVING LINEAR RATIONAL EXPECTATIONS MODELS
WITH PREDICTABLE STRUCTURAL CHANGE

Adam Cagliarini and Mariano Kulish

1. Introduction

Methods for solving linear stochastic models with rational expectations, like
Anderson (1997), Blanchard and Kahn (1980), Binder and Pesaran (1995),
Sims (2002), Klein (2000) and Uhlig (1995), assume a time-invariant structure;
the parameters that govern the behaviour of the system are taken to be constant.
Although the rational expectations solution has recently been extended so as to
allow some of the parameters to vary in accordance with an exogenous Markov
process with given transition probabilities – see Davig and Leeper (2007) and
Farmer, Waggoner and Zha (2007) – these methods do not handle credible
announcements that entail future variations to the structural parameters.

The situations we have in mind are not merely theoretical curiosities, but rather
real situations of practical importance. Take for instance the case of Chile
with respect to announcements regarding inflation targets. For example, the first
inflation target was announced in September 1990 for the 12 months of 1991;
later, in September 1999 the central bank announced a point target for 2000 and
also, starting in 2001, a stationary target range for the indefinite future.1 Other
examples include the announcement of the introduction of the goods and services
tax in Australia in 2000 and the recent announcement by the UK Government to
lower the VAT only to increase it again after 13 months. To the extent that such
announcements are credible, the behaviour of the economy in the periods between
the announcement of the policy and its implementation would be poorly captured
using available solution methods.

As emphasised by Marschak (1953), in the case of a foreseen change in structure,
the purely empirical projection of observed past regularities into the future cannot
be used reliably in decision-making. To produce meaningful forecasts, knowledge
of the past structure and of observed past regularities has to be supplemented by
the way the structure is expected to change.

1 See Morandé and Schmidt-Hebbel (2000)
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This paper establishes a rational expectations solution for linear stochastic models
in the face of predictable structural variations. The next section reviews the time-
invariant solution of Sims (2002) for linear rational expectations models upon
which we build to develop the solution under anticipated structural variations.
Section 3 states the problem formally and then develops the rational expectations
solution under predictable structural and additive variations. Section 4 illustrates
the solution with a set of numerical examples while Section 5 concludes.

2. The Time-invariant Rational Expectations Solution

The method to solve for equilibria in linear rational expectations (LRE)
models with predictable structural variations builds on the method proposed in
Sims (2002). We begin by introducing notation, then outline the solution in the
time-invariant case, and establish key results on existence and uniqueness.

2.1 Defining the Linear Rational Expectations Model

Define the state vector

yt =

 y1,t
y2,t

IEtzt+1


where: y1,t , (n1 × 1), contains exogenous and possibly some endogenous
variables; y2,t , (n2×1), contains those endogenous variables for which conditional
expectations appear in the LRE model; and zt+1, (k×1), contains leads of y2,t so
that zt+1 = (y′2,t+1, . . . ,y

′
2,t+s)

′ and k = s×n2. The dimension of yt is n×1, where
n = n1 +n2 + k.

The LRE model is typically given by n1 + n2 equations relating the elements of
y1,t and y2,t to each other and to IEtzt+1

Γ̃0yt = Γ̃1yt−1 +C̃ + Ψ̃εt (1)

where: εt is a l× 1 vector that is a random, exogenous and potentially serially
correlated process; Γ̃0 and Γ̃1 are (n1 +n2)×n matrices; C̃ is (n1 +n2)×1; and Ψ̃

is (n1 +n2)× l.

Since we allow zt+1 to potentially contain more than just one lead of y2,t , we
deviate from the terminology of Sims (2002) and define the vector of expectations
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revisions as follows
ηt = IEtzt− IEt−1zt (2)

where IEtηt+ j = 0 for j ≥ 1. When zt = y2,t , ηt becomes a vector of forecast
errors (ηt = y2,t − IEt−1y2,t). Note that IEtzt = (y′2,t , IEty2,t+1, . . . , IEty2,t+s−1)

′ so
IEtzt incorporates y2,t and the first (s− 1) elements of IEtzt+1. So expectation
revisions for y2,t+s do not appear in Equation (2). It is also important to note that
the information set in period t contains the value of all variables up to period t−1
as well as period t shocks.

We augment the system defined by Equation (1) with the k equations from
Equation (2) to obtain the following specification

(
Γ̃0

0k×n1
Ik 0k×n2

) y1,t
y2,t

IEtzt+1

=
(

C̃
0

)

+
(

Γ̃1
0k×(n1+n2) Ik

) y1,t−1
y2,t−1
IEt−1zt


+
(

Ψ̃

0

)
εt +

(
0
Ik

)
ηt

(3)

which is equivalent, in the notation of Sims (2002), to

Γ0yt = C +Γ1yt−1 +Ψεt +Πηt (4)

where the matrices Γ0 and Γ1 are both n× n, while C is n× 1, Ψ is n× l, and Π

is n× k. This system contains n equations – the same number as the number of
variables in the state vector, yt . It is worth noting that the vector of expectations
revisions, ηt , is determined endogenously as part of the solution.

2.2 Solving the LRE Model

The Generalised Schur (or QZ) decomposition of (Γ0,Γ1) yields

Q′ΛZ′ = Γ0

Q′ΩZ′ = Γ1
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where QQ′ = ZZ′ = I and both Λ and Ω are upper triangular. Q,Z,Λ and Ω are,
in general, complex valued. An important property of this decomposition, which
always exists, is that it returns the generalised eigenvalues of (Γ0,Γ1) as the ratios
of the diagonal elements of Ω and Λ, {ωii/λii}.

Premultiply Equation (4) by Q to get

Λwt = Ωwt−1 +Q(C +Ψεt +Πηt) (5)

where wt = Z′yt . Then rearrange the system so that the explosive eigenvalues
correspond to the lower right blocks of Λ and Ω and partition wt as follows

wt =
(

Z′1yt
Z′2yt

)
=
(

w1,t
w2,t

)
where w2,t is a m× 1 vector that is associated with the m explosive generalised
eigenvalues and w1,t is (n−m)×1.

According to this partition, Equation (5) reads(
Λ11 Λ12
0 Λ22

)(
w1,t
w2,t

)
=
(

Ω11 Ω12
0 Ω22

)(
w1,t−1
w2,t−1

)
+
(

Q1
Q2

)
(C +Ψεt +Πηt)

(6)

As the lower set of equations is not influenced by w1,t , the dynamics of w2,t are
isolated as follows

Λ22w2,t = Ω22w2,t−1 +Q2(C +Ψεt +Πηt) (7)

Let M ≡ Ω
−1
22 Λ22 and let x2,t ≡ Q2(C + Ψεt + Πηt). Since the eigenvalues of

Equation (7) are explosive, the equation can be solved forwards

w2,t = Mw2,t+1−Ω
−1
22 x2,t+1

= M2w2,t+2−MΩ
−1
22 x2,t+2−Ω

−1
22 x2,t+1

= . . .

= −
∞∑

j=1

M j−1
Ω
−1
22 x2,t+ j
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assuming lim j→∞ M jw2,t+ j = 0. Substituting back the definitions for M and x2,t
and expanding the expression above for w2,t yields

w2,t = (Λ22−Ω22)
−1 Q2C−

∞∑
j=1

M j−1
Ω
−1
22 Q2(Ψεt+ j +Πηt+ j) (8)

Equation (8) relates w2,t to future values of εt and ηt . This means that knowing w2,t
requires that all future events be known at time t. Taking expectations (conditional
on time t information) does not change the left-hand side of Equation (8), so

w2,t = (Λ22−Ω22)
−1 Q2C− IEt

∞∑
j=1

M j−1
Ω
−1
22 Q2Ψεt+ j (9)

since IEtηt+ j = 0 for j ≥ 1. The fact that the right-hand side of Equation (8) never
deviates from its expected value implies that expectations revisions must fluctuate
as a function of current and future εt’s to guarantee that the equality holds.

Taking expectations at time t +1 gives

w2,t = (Λ22−Ω22)
−1 Q2C− IEt+1

∞∑
j=1

M j−1
Ω
−1
22 Q2Ψεt+ j−Ω

−1
22 Q2Πηt+1 (10)

Expressions (9) and (10) are equal if and only if the vector of expectations
revisions satisfies

Q2Πηt+1 = Ω22

∞∑
j=1

M j−1
Ω
−1
22 Q2Ψ(IEtεt+ j− IEt+1εt+ j) (11)

The system’s stability depends on the existence of expectations revisions ηt to
offset the effect that the fundamental shocks εt have on w2,t . To see this, assume
IEtεt+i = 0 for i≥ 1 and C = 0. The equation for w2,t becomes

w2,t = Λ
−1
22 Ω22w2,t−1 +Λ

−1
22 Q2(Ψεt +Πηt) (12)

Since this equation has explosive eigenvalues, stability requires that w2,t = 0 for all
t. This means that Q2Ψεt +Q2Πηt = 0 must hold in each period to ensure that the
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effect on w2,t of any fundamental shock (εt) is offset by revisions to expectations,
ηt ; if this condition does not hold, w2,t will behave explosively.

The existence of a stable solution relies on expectations revisions (ηt) to adjust so
that the system remains on its stable saddle path (SSP). This means that from any
arbitrary starting point, expectations revisions must be able to get the system onto
its SSP and then keep it there. Proposition 1 states the condition under which this
is possible.

Proposition 1. For any initial starting value y0, a stable solution exists for the
following linear rational expectations system

Γ0yt = C +Γ1yt−1 +Ψεt +Πηt

if and only if rank(Q2Π) = m.

For a proof of Proposition 1, see Appendix A.

Since Q2Π is m×k, rank(Q2Π)≤min{m,k}, so the existence of a stable solution
requires that m ≤ k; that is, the number of explosive eigenvalues cannot be larger
than the dimension of ηt .

Proposition 1 states the conditions for existence with arbitrary initial conditions.
Should the system already be on its stable saddle path, the rank condition is only
sufficient for existence. If initial conditions place the system on its SSP, then the
conditions for existence of a stable solution are weaker. Existence, in this case,
requires that there is a vector of expectations revisions capable of offsetting the
effect of new information on w2,t . For this to occur, it is both necessary and
sufficient that

span
({

Ω22M j−1
Ω
−1
22 Q2Ψ

}m

j=1

)
⊆ span(Q2Π) (13)

Regardless of what process εt follows, the existence of a rational expectations
solution requires solving a system of the form: Q2Πηt = Bt , where Q2Π ∈ Cm×k,
ηt ∈ IRk and Bt ∈ Cm. The span condition is both necessary and sufficient for the
vector Bt to be expressed as a linear combination of the columns of Q2Π and
guarantees that a solution exists for ηt .
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The kind of parameter variations that we consider in the next section typically
alter the SSP of the system. Therefore, it is the rank condition that ensures
stability. Announcements about future changes to the structure give rise not only
to changes to the SSP, but also to arbitrary ‘initial conditions’ from the perspective
of the new SSP. Although the span and rank conditions for existence of a stable
solution would typically agree, it is the rank condition which is appropriate if
initial conditions are indeed arbitrary.

Existence does not imply uniqueness. In general, it is possible that knowing Q2Πηt
may not be enough to calculate Q1Πηt , which is needed in order to solve for w1,t
and to completely solve the LRE model. This requires that the row space of Q1Π

be contained in the row space of Q2Π, both of which are subspaces of IRk. It turns
out that checking the row span condition for the uniqueness of an equilibrium is
equivalent to checking the rank of the matrix Q2Π as the following proposition
states.

Proposition 2. Suppose a solution exists for the following linear rational
expectations system

Γ0yt = C +Γ1yt−1 +Ψεt +Πηt

Then the solution is unique if and only if rank(Q2Π) = k.

For a proof of Proposition 2, see Appendix A.

Since rank(Q2Π) ≤ min{m,k}, this implies that m ≥ k is a necessary condition
for a unique solution. For arbitrary initial conditions, existence and uniqueness of
a solution requires that m = k.

If a unique solution exists, then there exists a matrix Φ such that

Q1Π = ΦQ2Π (14)

Pre-multiplying equation (6) by [In−m,−Φ] yields

(
Λ11 Λ12−ΦΛ22

)( w1,t
w2,t

)
=
(

Ω11 Ω12−ΦΩ22
)( w1,t−1

w2,t−1

)
+(Q1−ΦQ2)C

+(Q1−ΦQ2)Ψεt +(Q1Π−ΦQ2Π)ηt

(15)
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When such a Φ exists, the term involving ηt drops out. Combining Equations (15)
and (9), it is not difficult to show that the reduced-form of the LRE model becomes

yt = S0 +S1yt−1 +S2εt +SyIEt

∞∑
j=1

M j−1
Ω
−1
22 Q2Ψεt+ j (16)

where

H = Z

(
Λ
−1
11 −Λ

−1
11 (Λ12−ΦΛ22)

0 I

)
; S0 = H

(
Q1−ΦQ2

(Λ22−Ω22)
−1Q2

)
C;

S1 = H
(

Ω11 Ω12−ΦΩ12
0 0

)
Z′; S2 = H

(
Q1−ΦQ2

0

)
Ψ; and

Sy =−H
(

0
Im

)

3. The Rational Expectations Solution with Predictable
Structural Variations

In this section, we propose a method to solve LRE models when there is a sequence
of anticipated events. These events encompass anticipated changes to the structural
parameters of the model or anticipated additive shocks. We assume that within
a finite period of time, the structural parameters of the model converge and no
further shocks are anticipated.

At the beginning of period 1, agents know the previous state of the
economy y0, the fundamental shock ε1, they anticipate a sequence of shocks
{εa

t }
T
t=2, and know how the structural parameters will vary in the future,

{C̃1, Γ̃0,1, Γ̃1,1,Ψ̃1,Π,{Ct ,Γ0,t ,Γ1,t ,Ψt}
T
t=2,(C̄, Γ̄0, Γ̄1,Ψ̄,Π̄)}. That is, the system

evolves as follows

Γ̃0,1y1 = C̃1 + Γ̃1,1y0 + Ψ̃1ε1 t = 1

Γ0,tyt = Ct +Γ1,tyt−1 +Πηt +Ψt(ε
u
t + ε

a
t ) 2≤ t ≤ T

Γ̄0yt = C̄ + Γ̄1yt−1 + Π̄ηt + Ψ̄εt t ≥ T +1

(17)

where ε
u
t represents unanticipated shocks to the system and IEtε

u
t+ j = 0 for j ≥ 1.

The reason for identifying these shocks separately is because as time unfolds,
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actual shocks may be different from what was originally expected so that in any
period, we can decompose a shock as the sum of its anticipated and unanticipated
components εt = ε

a
t + ε

u
t . We could alternatively include Ψtε

a
t as part of Ct , but

we identify the shocks separately to illustrate how the solution for predictable
structural variations encompasses anticipated additive shocks as a special case.

Assuming a unique solution exists for t ≥ T + 1, the reduced form of the system
can be computed as discussed in the previous section

yt = S̄0 + S̄1yt−1 + S̄2εt + S̄yIEt

∞∑
j=1

M̄ j−1
Ω̄
−1
22 Q̄2Ψ̄εt+ j t ≥ T +1 (18)

where M̄ = Ω̄
−1
22 Λ̄22. This solution helps us compute yt for t ≥ T + 1, given yT .

The aim of this section is to solve for y1,y2, . . . ,yT given all anticipated structural
variations and additive shocks.

Since yt is (n1 + n2 + k)× 1, we require at least T × (n1 + n2 + k) independent
equations to obtain a unique solution for {yt}

T
t=1. Notice that:

• for each period, we have (n1 + n2) equations as defined by Equation (1). This
gives us T × (n1 +n2) equations;

• for t = 2, . . . ,T , rational expectations requires ηt = 0. From the perspective of
period t = 1, there should be no forecast errors or revisions to expectations. This
gives us (T −1)× k equations; and

• if a stable solution exists for t = T + 1 onwards, then Z̄′2yT = w̄2,T , where w̄2,T
is given by

w̄2,T =
(
Λ̄22− Ω̄22

)−1 Q̄2C̄− IE1

∞∑
j=1

(Ω̄−1
22 Λ̄22)

j−1
Ω̄
−1
22 Q̄2Ψ̄εT+ j (19)

Equation (19) gives m̄ equations where m̄ represents the number of explosive
eigenvalues of the final (bar) system. Z̄′2 is from the QZ decomposition of
(Γ̄0, Γ̄1) and therefore has m̄ independent rows. The last condition is effectively
a terminal condition that guarantees that the system is on its SSP for t ≥ T +1.
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In total, we get T × (n1 + n2 + k) + m̄− k equations that can be summarised as
follows

Γ̃0,1 0 . . . . . . 0
−Γ1,2 Γ0,2

. . . ...
0 −Γ1,3 Γ0,3

. . . ...
... . . . . . . . . . 0
0 . . . 0 −Γ1,T Γ0,T
0 . . . . . . 0 Z̄′2


 y1

...
yT

=


C̃1 + Γ̃1,1y0 + Ψ̃1ε

a
1

C2 +Ψ2ε
a
2

...
CT +ΨT ε

a
T

w̄2,T

 (20)

The condition that η2, . . . ,ηT = 0 implies that Πηt = 0 for t = 2, . . . ,T . Also notice
that the structure of {Γ0,t ,Γ1,t ,Ct ,Ψt}

T
t=2 guarantees that IEtzt+1 = zt+1 since the

last k rows of Ct and Ψt are zero for all t.

Solving for y1, . . . ,yT involves solving a linear system of the form Ay = b, where
y = (y′1, . . . ,y

′
T )′ and A stands for the matrix on the left while b stands for the

vector on the right hand side of Equation (20). Propositions 1 and 2 imply that for
the final (bar) system to have a unique solution, m̄ = k; in this case, Equation (20)
has as many equations as there are unknowns. However, if the final bar system
has many solutions, m̄ < k, then Equation (20) forms a system with less equations
than unknowns, in which case, if there is a solution, there are infinitely many.
Obviously, the existence of a solution to the structurally invariant final system is a
necessary condition for Equation (20) to have a solution. We summarise these two
observations with the following propositions.

Proposition 3. Existence of a solution to the final bar system

Γ̄0yt = C̄ + Γ̄1yt−1 + Ψ̄εt + Π̄ηt

is necessary for the existence of a solution to Equation (20).

Proposition 4. Uniqueness of a solution to the final bar system

Γ̄0yt = C̄ + Γ̄1yt−1 + Ψ̄εt + Π̄ηt

is necessary for the uniqueness of a solution to Equation (20).
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The propositions above state necessary but not sufficient conditions for the
existence and uniqueness of a solution for {yt}

T
t=1. The existence and uniqueness

of a solution for {yt}
T
t=1 ultimately depend on the properties of the matrix A. We

have shown that if a unique solution exists for the final structure, A is a square
matrix. Next, we argue that A will generally be a full-rank matrix for the following
reasons:

• The rank of the matrix (−Γ1,t Γ0,t) is n for t = 2, . . . ,T . If not, there are linearly
dependent and possibly inconsistent equations; a sort of ill-specified problem.

• The block bi-diagonal structure of the matrix A implies that none of the rows
associated with period t can be obtained as a linear combination of rows
associated with non-adjacent periods. If this is the case, this implies that for
some period, the rank of the matrix (−Γ1,t Γ0,t) will be less than n for some t,
violating the preceding point.

• For a well-defined system, the rows of Γ̃0,1 will be linearly independent. So the
first n1 +n2 rows of A will be linearly independent.

• The rows of Z̄′2 are linearly independent because Z̄ is unitary. So the last k rows
of A will be linearly independent.

• In general, no row, for a given period, can be expressed as a linear combination
of the rows associated with that period and from an adjacent period. This would
mean that Γ1,t and Γ0,t+1 are rank deficient. Even if this were the case, suppose
for non-zero vectors, w and v, wΓ1,t = vΓ0,t+1 = 0, then we would also require
that wΓ0,t−vΓ1,t+1 = 0 if there were a linear dependency in rows associated with
periods t and t +1. Although this is possible, we argue that this seems unlikely.

• The last k rows are linearly independent of the first nT −k rows. Clearly, the last
k rows are linearly independent of the rows associated with periods 1, . . . ,T −1,

for the same reasons we discussed earlier for non-adjacent periods. But, in
general, the last k rows of A are linearly independent of the preceding n rows. If
a linear combination of the rows of Z̄′2 reproduce a row of Γ0,T , that same linear
combination of zero vectors must reproduce the corresponding row of −Γ1,T ,
which may not necessarily be zero. Z̄′2 is typically unrelated to Γ0,T because it
comes from the QZ decomposition of (Γ̄0, Γ̄1). But even if Z̄′2 came from the QZ
decomposition of (Γ0,T ,Γ1,T ), it relates to Γ0,T in a non-linear fashion.
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The arguments above imply that the matrix A will be invertible, in which case,
the solution for {yt}

T
t=1 will be unique. However, it is possible that A is not

invertible under some perverse parameter variations. Under such circumstances,
the existence of solution requires b to be contained in the column space of the
matrix A; but this is not a guarantee that any such solution will be unique. The
invertibility of A obviously guarantees that there is a unique solution.

This suggests that the way in which parameters vary can determine whether a
unique solution exists or not. For instance, should a policy maker decide to change
the parameters of the policy rule over a set length of time, it might matter how this
policy change is implemented over time for a unique equilibrium path to exist.

So we conclude that, in general, the existence and uniqueness of a solution for
{yt}

T
t=1 will hinge on the existence and uniqueness of a solution to the final

structure.

The solution method we propose has a number of advantages: it is simple to
implement as it only requires solving a matrix inversion problem; even in the
absence of structural changes, it enables us to forecast over finite horizons without
resorting to loops; and it can be used recursively to produce stochastic simulations
in the face of fully predictable structural variations.

4. Numerical Examples

4.1 The Model

We illustrate the solution method outlined above with a series of examples
using a version of the New-Keynesian model presented in Ireland (2007). Unlike
Ireland (2007), we assume, for simplicity, that the gross inflation target is a
policy-determined constant, that the deviation of the technology process from
its steady state, ẑt , follows a stationary process, and that there are no habits in
consumption. Under these assumptions it is easy to show that the equilibrium
obeys the following set of log-linear equations
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ŷt = −σ
−1(rt−Etπt+1)+Et ŷt+1 +

(1−ρa)
σ

ât−
1
σ

lnβ (21)

πt =
1

(1+βα)

(
(1+βα−α−β )π

∗+απt−1 +ψσ ŷt

−ψ ẑt +βEtπt+1− êt

)
(22)

rt = (1−ρr)r +ρrrt−1 +ρπ(πt−π
∗)+ρyŷt +ρgĝt + εr,t (23)

ĝt = ŷt− ŷt−1 (24)
ât = ρaât−1 + εa,t (25)
êt = ρeêt−1 + εe,t (26)
ẑt = ρzẑt−1 + εz,t (27)

Equations (21),(22), (23), and (24) are the ‘IS-curve’, Phillips curve, Taylor-rule,
and definition of the growth rate of output, while (25),(26), and (27) govern the
behaviour of the exogenous shock processes to demand, ât , the mark-up, êt , and
technology, ẑt . In the equations above, πt is the log gross rate of inflation between
periods t−1 and t; π

∗ stands for the log of the target rate of inflation; ŷt = ln(Yt/Y )
is the percentage deviation of output from its steady state level, Y ; ĝt is the growth
rate of output; rt = lnRt stands for the log of the gross nominal interest rate
between periods t and t + 1.; r = π

∗− lnβ is the steady state level of rt ; β is
the household’s discount factor; σ is the inverse of the intertemporal elasticity of
substitution; α ∈ [0,1] governs the degree to which price-setting is ‘backward-
looking’; the parameters ρa,ρe, and ρz all ∈ [0,1); and ψ = (θ −1)/φ is defined
for convenience, where θ is the steady state elasticity of substitution between
intermediate goods and φ controls the magnitude of price adjustment costs.
Finally, εa,t , εe,t , εr,t and εz,t are all assumed to be independent and identically
distributed (iid) disturbances with mean zero and standard deviations σa, σe, σr,
and σz respectively.

While some variables are expressed in percentage deviations from their steady
state values, others, like πt and rt , are left expressed in log-levels. The only reason
for this is that it aids in the interpretation of the numerical examples that follow
– in particular, those that involve changes in the steady state values of these same
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variables. For example, a change of the inflation target alters the steady state values
of inflation and the nominal interest rate.

The set of equations given by (21), (22), (23), (25), (26), and (27), together with
the definitions for the one-period ahead forecast errors can be easily put in the
form Γ0yt = C +Γ1yt−1 +Ψεt +Πηt .

We set the model’s parameters to obtain a benchmark calibration for the numerical
examples that follow. The parametrisation (Table 1) is inspired empirically and
in cases borrows values from the literature of similarly estimated models. The
parametrisation itself is, for our purposes unimportant.

Table 1: Parameter Values
Parameter Description Value
π

? Inflation target 0.0125
β Household’s discount factor 0.9925
1
σ

Intertemporal elasticity of substitution 1.0
α Backward-looking price-setting 0.25
ψ Elasticity of substitution adjusted for price adjustment costs 0.1
ρr Persistence of nominal interest rate 0.65
ρπ Policy rule inflation coefficient 0.5
ρy Policy rule output gap coefficient 0.1
ρg Policy rule output growth coefficient 0.2
ρa Persistence of demand shocks 0.9
σa Standard deviation of demand disturbance 0.02
ρz Persistence of technology shocks 0.9
σz Standard deviation of technology disturbance 0.007
ρe Persistence of mark-up shocks 0.9
σe Standard deviation of mark-up disturbance 0.001
σr Standard deviation of monetary disturbance 0.002

4.2 An Increase in ρπ

We start by considering the impact of announcing a more aggressive policy
towards inflation. The announcement refers to the future value of ρπ . In particular,
the two structures differ only with respect to their value of ρπ . Both structures,
however, share the same steady state. The initial structure is that of the benchmark
parametrisation which sets ρπ to 0.5. The final structure sets ρπ to 1.
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The announcement of a different future value for ρπ has no effect on the evolution
of the non-stochastic steady state; the dynamics are uninteresting if the system
begins and remains at its steady state. To study the implications of an anticipated
structural change we consider a persistent demand shock and assume that the
economy is away from its steady state when this information is known.

Figure 1 shows impulse responses of output, inflation, the nominal interest rate,
and output growth to a one standard deviation demand shock, εa,t . The dashed blue
lines show conventional impulse responses given the initial structure: the impulse
responses that would have prevailed in the absence of any known future change
in policy. Similarly, the dashed red lines show the conventional impulse responses
under the final structure: the responses that would have prevailed had the new rule
always been in place. The green solid lines show the equilibrium responses of a
credible announcement made in period 4 that in period 8 a new policy that sets ρπ

equal to 1.0 would be in place.

Figure 1: IRF to a demand shock with an anticipated future change of ρπ
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For the first three periods, the economy behaves according to the initial structure.
At the time of the announcement, inflation, output and the interest rate jump to
their new stable saddle path. Because of forward-looking price-setting behaviour,
the credible announcement of a more aggressive policy towards inflation in the
future serves to reduce inflation relative to the response in the absence of any
announcements. In period 4, annualised inflation would have been around 5.7
per cent, but the announcement has the effect of bringing inflation down to 5.5
per cent. In period 7, prior to the actual implementation of the new policy rule,
inflation is already at 5.2 per cent, close to where inflation would have been had
the final structure always been in place.

The way the economy evolves between the announcement and the implementation
is essentially a function of the length of the intervening period and also of
the ‘distance’, so to speak, between the initial and final reduced forms. If, for
example, the announcement involves a change which is far into the future, then
its contemporaneous impact would be small. In fact, for the first few periods the
economy’s response would be fairly similar to those of the prevailing structure.
This is illustrated in Figure 2 which compares the response of inflation in Figure
1 with the one that would prevail if the new policy is implemented in period 24
(instead of period 8).

The more the announcement alters the future reduced form of the system, relative
to its present one, the more strongly the economy reacts in the intervening period.

4.3 A Change of the Inflation Target

We consider the impact of announcing a lower inflation target. The announcement
refers to the future value of π

∗. As before, we assume that a demand shock hits
the economy in period 1 and that at the beginning of period 4 the central bank
announces that it will implement a lower inflation target from period 8 onwards.
In this case, notice that the two structures differ only with respect to the steady
state value of their nominal quantities. The impulse response functions for output
are invariant to the level of the inflation target (Figure 3). However, because of the
presence of nominal rigidities, the announcement has real effects.

As Figure 3 shows, both inflation and output fall after the announcement is made.
The central bank conducts policy as governed by the initial policy, however, which
implies a departure of inflation well below its initial inflation target. Although
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Figure 2: Length of Intervening Period: IRF of inflation to a demand shock
with an anticipated future change of ρπ
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the central bank cuts the nominal interest rate, the real interest rate increases and
output growth consequently falls.

4.4 Announced Shocks

Figure 4 shows the responses of inflation, output and the nominal interest rate to
an announced sequence of monetary policy shocks (as shown in the bottom right
panel). In period 2, the monetary authority announces that a sequence of deviations
from the prevailing rule will occur. In particular, these are expansionary shocks to
the policy rule and consequently inflation and output increase in the announcement
period. Inflation and the nominal interest rate reach their peaks in period 3 before
the announced shocks take place. Unlike the case with unanticipated shocks, as
these fully anticipated shocks occur, output, the nominal interest rate and inflation
are already gradually returning towards their steady state values.
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Figure 3: IRF to a demand shock with an anticipated change of π
∗ from 5 to

2.5 per cent per annum
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4.5 A Stochastic Simulation: Announcing a New Monetary Policy Rule

As we have discussed above, the solution method described in Section 3 can be
used recursively to conduct stochastic simulations. The green lines in Figure 5
show a stochastic simulation with the following characteristics: the benchmark
parametrisation with an inflation target of 15 per cent per annum until period 50;
at which time it is announced that in 12 periods time, a lower inflation target
of 2 per cent per annum and a more aggressive long-run response to inflation
deviations from that the new target will be in place: ρ̄π = ρ̄r = 1. The different
policy rules give rise to different dynamics, as one would expect. It is interesting
to note, however, that the properties of the new regime seem to be inherited shortly
after the announcement is made.
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Figure 4: Response to an announced sequence of policy shocks
Announcement made in period 2

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6
x 10

−3 Output

0 2 4 6 8 10 12 14 16
5

5.5

6

6.5
Inflation

0 2 4 6 8 10 12 14 16
7.5

8

8.5

9

9.5

10
Nominal Interest Rate

0 2 4 6 8 10 12 14 16
−2.5

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
2.5

x 10
−3 Announced Policy Shocks

Figure 5: A Stochastic Simulation: Change in the inflation target from
15 per cent to 2 per cent, and in ρπ to 1 and ρr to 1
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5. Conclusions

We have outlined a technique to solve linear rational expectations models in the
face of anticipated changes to the parameters or exogenous variables. This solution
has a number of important applications. Pre-announced changes to a policy rule
can be examined using the techniques discussed in this paper. Variations in the
response of monetary policy to the state of the economy, adjustments to the
monetary policy objectives or anticipated deviations from a policy rule can all be
analysed using the methods outlined in this paper. In more fully specified models,
one can examine the consequences of shifting from one policy regime (such as
monetary targeting) to another policy regime (inflation targeting). Of course, the
method we propose also deals with other anticipated changes to the structure of an
economy.

We have shown that the properties of the final structure are crucial for the way
the system behaves between the time agents become aware of a forthcoming event
and the time that the event occurs.

The results have implications to the application of policy rules. For example, if a
policy maker uses a monetary policy rule that does not satisfy the Taylor principle,
then a unique rational expectations equilibrium typically does not exist. These
rules are considered “bad” as they lead to multiple equilibria. However, if the
policy maker makes a credible announcement that they will adopt a better rule,
one that satisfies the Taylor principle, at some point in the future, then a unique
equilibrium will exist for the economy – regardless of exactly when this will occur
or how bad the policy rule is in the intervening period.

We have assumed that all announcements, for instance of an impending policy
change, are credible. Further research could extend these techniques to examine
the effect of such announcements when credibility is less than perfect.
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Appendix A: Proof of Propositions 1 and 2

Proof of Proposition 1:

Proof.
Sufficiency: If rank(Q2Π) = m, then the columns of Q2Π span IRm. This means
that for arbitrary initial conditions and for any fundamental shock, expectation
revisions can keep the system on its SSP.

Necessity: w2,t must satisfy:

Λ22w2,t = Ω22w2,t−1 +Q2(C +Ψεt +Πηt) (A1)

To be on the SSP, w2,t must also satisfy

w2,t = (Λ22−Ω22)
−1Q2C−

∞∑
j=1

(Ω−1
22 Λ22)

j−1
Ω
−1
22 Q2(Ψεt+ j +Πηt+ j)

= (Λ22−Ω22)
−1Q2C− IEt

∞∑
j=1

(Ω−1
22 Λ22)

j−1
Ω
−1
22 Q2Ψεt+ j

and more specifically

w2,1 = (Λ22−Ω22)
−1Q2C− IE1

∞∑
j=1

(Ω−1
22 Λ22)

j−1
Ω
−1
22 Q2Ψε j+1

Now suppose the initial condition of the system, y0, is arbitrary, so that the
economy may not necessarily be on the SSP. We can then write w2,0 = Z′2y0 as
the sum of a component that is on the SSP and some deviation from the SSP value

w2,0 = (Λ22−Ω22)
−1Q2C− IE0

∞∑
j=1

(Ω−1
22 Λ22)

j−1
Ω
−1
22 Q2Ψε j +∆0

where ∆0 ∈ IRm. We can look at Equation (A1) from the perspective of period 1 to
show that in order for equality to hold (that is, for the system to be on the stable
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saddle path in period 1), the following condition must be satisfied

Q2Πη1 =−Ω22∆0 +Ω22

∞∑
j=1

(Ω−1
22 Λ22)

j−1
Ω
−1
22 Q2Ψ(IE0ε j− IE1ε j)

since ∆0 is arbitrary, we require the columns of Q2Π to span IRm. Since Q2Π is
m× k, this is equivalent to requiring rank(Q2Π) = m.

Proof of Proposition 2:

Proof.
Sufficiency: Suppose that rank(Q2Π) = k, then the rows of Q2Π span IRk.
Therefore, rowspace(Q1Π)⊆ rowspace(Q2Π), since the rows of Q1Π necessarily
span some subspace of IRk.

Necessity: Suppose that the solution is unique. This means that rowspace(Q1Π)⊆
rowspace(Q2Π).

We know that Q is a full rank n×n matrix. Post multiplying by Π extracts the last
k columns of Q. Since Q was full rank, QΠ must have rank k. If the solution is
unique, then this means that the rank of(

Q1Π

Q2Π

)
should have the same rank as that of Q2Π. But since the matrix above is exactly
QΠ, this implies that the rank of Q2Π is k.
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