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Abstract

This paper proposes an empirical dynamic stochastic general equilibrium (DSGE)

framework to measure monetary policy when the nominal short-term interest rate is

zero. The framework assumes that there exists a shadow rate which represents the

monetary policy stance of a central bank. When the shadow rate is positive, it is

observed as the policy rate of the central bank. However, when it is negative, it

deviates from the policy rate which remains at its lower-bound of zero. It is not the

policy rate but the shadow rate that affects the economy when the two rates deviate.

With this framework, standard DSGE models can be fitted to data using a version of

particle filter, and the historical movements of the shadow rate can be estimated. As

an application, we estimate a small New Keynesian model using Japanese data. The

results suggest that the shadow rate was well below zero during the period of zero

policy rate in the 2000s.
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1 Introduction

Many central banks today use short-term nominal interest rates as their main policy instru-

ments. A potentially serious challenge caused by the use of nominal interest rate, however,

is the zero lower-bound of interest rate. Once the policy rate becomes zero, monetary policy

can become ineffective as long as the central bank does not do anything other than the

control of current policy rate.

Given the low inflation environment in many developed countries in recent decades, the

challenge caused by the zero lower-bound of interest rate has become not of mere academic

curiosity, but of practical importance to the central banks. A recent example of countries

that actually tackled such a situation is, of course, Japan. Japanese economy has experienced

a prolonged stagnation in the 1990s, and as a result of the deflationary pressures, Bank of

Japan (BoJ) lowered its policy rate to the lower bound of zero twice in recent 15 years.

However, one can argue that the view that monetary policy loses its effects on the econ-

omy once the policy rate reaches zero is too naive. Recent theoretical studies show that,

even when the policy rate has reached the lower-bound of zero, monetary policy can stimu-

late the economy by committing to keeping the policy rate at zero longer than usual (e.g.,

Reifschneider and Williams, 2000). Indeed, as summarized in the survey by Ugai (2006),

empirical studies on the Japanese experience suggest that policy measures of BoJ during the

periods of zero interest rate actually had at least some effects on the economy.

Motivated by such arguments, this paper proposes an empirical framework that can be

used to measure the degree of monetary policy accomodation during the periods of zero

interest rate. In so doing, we assume that there exists a ’shadow rate’ that represents the

policy stance of the central bank. While this shadow rate coincides with the policy rate in

normal circumstances where it is positive, when it becomes negative, they deviate from each

other. It is not the policy rate but the shadow rate that affects the economy when the two

rates deviate, i.e., when the policy rate has hit its lower-bound of zero.

Once we assume the presence of the shadow rate, standard dynamic stochastic general

equilibrium (DSGE) models can be fitted to data in a Bayesian framework. Normally,

estimating a DSGE model is not a very difficult task because the likelihood function of

the model can be easily evaluated using the Kalman filter. In our setup, however, since the

relationship between the shadow rate and the policy rate is non-linear, a direct application of

the Kalman filter is not possible. To overcome this problem, we employ a version of particle

filter.1 The particle filter allows us to approximate the distribution of the shadow rate, and

using the approximated distribution, we can estimate the model parameters. Finally, with

the parameter estimates, we can estimate the unobserved path of the shadow rate.

1For an overview of particle filters, see Arulampalam et al. (2002). As an application to macroecono-
metrics, Fernandez-Villaverde and Rubio-Ramirez (2005) also employ a particle filter to estimate a DSGE
model, but in a very different context than that of the present paper.
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The concept of shadow rate is not new in the literature (e.g. Black, 1995). Iwata and

Wu (2006) estimate a reduced-form model to evaluate the monetary policy effects during the

periods of zero interest rate in Japan, assuming the presence of the shadow rate. Also, Ichiue

and Ueno (2007, 2008) introduced a shadow rate in estimating a yield-curve model using

Japanese data. As we will see in Section 2, the distinctions between our approach and theirs

are two-fold. First, none of these studies employs a DSGE framework like ours. Second,

these studies do not fully take into account the possible effects of changes in the shadow

rate on the economy. In particular, the framework of Iwata and Wu (2006) assume that

the shadow rate affects the economy only contemporaneously, and thus imposes a restriction

that the lags of the shadow rate do not affect current variables including the current shadow

rate. But such a restriction does not generally hold in a rational-expectations model. For

example, when monetary policy represented by the shadow rate has some inertia, the shadow

rate depends on its own lags.

As an application of the framework, we fit a small New Keynesian DSGE model to

Japanese data whose sample period contains the experience of zero interest rate. The results

indicate the usefulness of our approach. The estimated shadow rate is well below zero during

the periods of zero interest rate, especially in the period in the 2000s. Overall, the estimated

parameters of the model seem to be reasonable compared with those of the existing studies

in the literature.

The paper is organized as follows. Section 2 presents our DSGE framework that assumes

the presence of a shadow rate. Since the framework can be applied to a broader class of

DSGE models than the small model estimated in a later section in this paper, we describe it

based on a generic state-space representation of a DSGE model with shadow rate. Section

3 describes a version of particle filter which we employ to deal with the nonlinearity arising

from the zero lower-bound of interest rate. Section 4 discusses the estimation strategy based

on the particle filter. As an application of our proposed estimation method, Section 5 fits

a small New Keynesian model with the shadow rate to Japanese data. Section 6 concludes.

Appendix includes the derivations of some equations, relevant conditional densities, and

complete descriptions of the algorithms used to implement the estimation strategy of the

paper.

2 A DSGE framework with shadow rate

In this section, we sketch the DSGE framework in which a shadow rate is present. First we

present a generic state-space representation of a DSGE model with shadow rate, and point

out the nonlinearity caused by the zero lower-bound of interest rate. Then we compare our

framework with those of the existing literature on the zero lower-bound of interest rate.
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2.1 State-space representation

Let us consider an economy consisting of agents (including a government, if necessary) and

a central bank. We assume that the policy stance of the central bank is represented by a

shadow rate, r∗t . The central bank has a full control power over the shadow rate r∗t . This

shadow rate is the rate that affects the economy, and thus, enters in the objective functions

and the constraints of the agents in the economy.

When the shadow rate is positive, it coincides with the short-term nominal interest rate,

rt, which the central bank uses as its policy instrument in normal circumstances. When the

shadow rate is negative, however, the two rates deviate, and the short-term rate rt stays at

zero. Thus, the short-term rate and the shadow rate are related by the following observation

equation:

rt = max {0, r∗t } . (1)

Suppose that the optimization problems of the agents are specified and solved, that the

policies of the central bank and the government are specified, and that the equilibrium

is defined. By log-linearizing the resulting behavioral equations, policy functions, and the

resource constraints around the steady state, a DSGE model of the economy can be expressed

as a system of expectational difference equations:

AEt (St+1) = BSt + C +Dεt (2)

where St is the m × 1 state vector containing variables (possibly including expectational

variables and lagged variables) in the model, and εt ∼ N (0,Σ) is an n×1 vector of structural

shocks.

We assume that the shadow rate r∗t can be written as

r∗t = βr + ΛrSt (3)

for some scalar βr and some 1×m vector Λr.
2

Given the parameter values, the system of expectational difference equations in (2) can be

solved with standard methods (e.g., Klein, 2000, and Sims, 2002). Assuming the determinacy

of the system, the rational-expectations solution of (2) can be written as

St = α + ΠSt−1 + Ψεt (4)

where α, Π and Ψ are nonlinear functions of the structural parameters contained in A,B,C

2When the variables in the model are all expressed in terms of the deviation from the steady state value,
βr is the steady state value of the shadow rate. When the units are different between rt and the interest rate
in the model, Λr contains a unit transformation coefficient (which is, for example, 4 if the transformation is
from quarter-on-quarter basis to year-on-year basis).
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and D.3

Combining (4) with an observation equation which relates the observed data to the

state vector St, we have a state-space representation of the model. Let Yt ≡ (x′t, rt)
′ be a

observation vector containing rt as well as other observed data series xt. Then the observation

equation can be written as

Yt = F (β + ΛSt) ≡
[

βx + ΛxSt

max {0, βr + ΛrSt}

]
(5)

where β ≡ (β′x, βr)
′ is a vector of constants, Λx is a matrix, and Λ ≡ (Λ′x,Λ

′
r)
′.4 We assume

(i) there are as many observed series as structural shocks, i.e., Yt is an n× 1 vector, and (ii)

ΛΨ is invertible. The implication of these assumptions will be discussed in the next section.

The function F in the observation equation (5) is nonlinear. When such nonlinearity is

absent, estimation of the system and the state vector St is not a difficult task. The likelihood

of the system consisting of (4) and a linear observation equation can be easily evaluated via

the Kalman filter (see, e.g., Hamilton, 1994). Then the parameters can be estimated by

maximum likelihood or Bayesian method (see, e.g., An and Schorfheide, 2007). With the

parameter estimates, the state vector St can be estimated by the Kalman smoothing.

However, with the nonlinear observation equation (5), the standard Kalman filter is not

applicable. In the next section we will describe the difficulties caused by the nonlinearity in

detail and how a version of particle filter can be used to deal with the problem.

2.2 Comparison with the literature

To illustrate the novelty of our approach to deal with the nonlinearity caused by the zero

lower-bound, let us compare our framework with those of the previous studies.

First, compared to the frameworks of most theoretical studies on the zero lower-bound

of interest rate, our framework does not suffer from the lack of analytical solution method

for nonlinear difference equation. In the theoretical studies, the presence of the shadow

rate is not assumed, and the short-term rate is the rate that affects the economy. In other

words, the shadow rate is assumed to always coincide with the short-term rate, even when

the short-term rate is zero. These studies normally assume that the short-term rate evolves

according to an interest rate rule with the zero lower-bound constraint. In our notation, the

rule can be written as

rt = r∗t = max {0, c+ φSt} ,

3We do not consider sunspot shocks. Lubik and Schordheide (2004) show how a DSGE model without
any nonlinearity can be estimated allowing for the possibility of indeterminacy. Although it is beyond the
scope of the current paper, whether the estimation strategy proposed here can be extended to allow for the
possibility of indeterminacy is an interesting question.

4As is evident in the equation, we do not consider any measurement error in this paper.
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where c is a constant and φ is an 1×m vector. Typically, the equation is based on a Taylor-

type rule with interest rate smoothing, and thus φSt is a sum of the inflation term, the

output gap term, and the term of the lagged short-term rate. Note that the above nonlinear

equation implies that the dynamics of r∗t are affected by the nonlinearity caused by the zero

lower-bound constraint. Thus, the system of the structural equations can not be written

in a linear form. Currently, no analytical solution method for such a nonlinear system is

available.5 As a result, the estimation techniques used for linear DSGE models can not be

applied to such models. In contrast, the structural equation (2) in our framework is linear.

Thus, in our case, the model can be solved by the standard solution methods. As a result,

it can also be estimated as long as the nonlinearity of the observation equation is taken care

of with particle filtering, as we will show later.

We do not claim that our approach is the ideal solution to deal with the nonlinearity

caused by the zero lower-bound. One might argue that the concept of the shadow rate has

little theoretical foundations. However, a benefit from assuming the presence of the shadow

rate can be, in our opinion, large enough to pay the cost of losing the theoretical coherence

of the framework. The benefit is that we can estimate a DSGE model and the policy stance

during the periods of zero interest rate.

Next, compared to the frameworks of the empirical studies which assume the presence of

the shadow rate, there are two major improvements in our framework. First, our framework

is based on a fully-structural DSGE model while the previous studies are based on reduced-

form models.6 Second, our framework allows for the possibility that the lags of the shadow

rate affect the current variables in the system. To see this point, let us look at the framework

of Iwata and Wu (2006). They employ a reduced-form system

A0Y
∗
t = A (L)Yt + µ+ ut

where Y ∗t ≡ (x′t, r
∗
t )
′, A0 is a matrix, A (L) ≡ A1L − · · · − ApL

p, L is the lag operator,

µ is a vector of constants, and ut is a vector of shocks. Note that the shadow rate r∗t is

included not in the right-hand side but only in the left-hand side. This implies that the

shadow rate can affect the variables in the economy only contemporaneously, and that the

lags of the shadow rate can not have any effect on the current variables. In particular, the

shadow rate can not depend on its own lags, and thus monetary policy inertia is assumed

to be lost once the shadow rate becomes negative. In contrast, the state-transition equation

(4) in our framework allows for the effects of the lags of the shadow rate on the current

5There are some methods which can handle certain types of nonlinearities in state transition equation.
An example is the Markovian Jump Linear Quadratic approach proposed by Svensson and Williams (2007,
2008). However, such methods have not been applied to the problem of zero bound of interest rate.

6In fact, our framework does not have to be based on a DSGE model, and can be based on a reduced-
form model. Without considering the underlying DSGE model (2), one can base the whole analysis on the
reduced-form equation (4) treating α, Π and Ψ instead of A, B, C and D as the parameters to be estimated.
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variables. Regarding this point, Ichiue and Ueno (2007, 2008) also allow for the dependence

of the current shadow rate on its own lags. Their framework, however, is based on a partial-

equilibrium yield curve model with the shadow rate. Therefore, unlike us, they ignore the

effects of shadow rate on the other variables in the economy.

3 The filtering method

We propose to employ a version of particle filter to deal with the nonlinearity in the ob-

servation equation (5). Particle filters are sequential Monte Carlo filtering methods which

are applicable to any state-space model. The key idea of the methods is to represent the

conditional density function of the state vector by a set of random samples (”particles”) with

associated weights. It is shown in the literature that as the number of samples increases,

this approximate representation approaches the true conditional density.

In this section, we consider the situation in which all the parameter values are given. The

estimation of the parameters will be discussed in the next section. The focus of this section

is on how the distribution of the shadow rate can be approximated with particles. We also

assume that, when the particle filter is invoked, the initial value of S0 is given.

Below, to motivate the introduction of the particle filter, we first consider the filtering

problem in a general form. Then, we describe the specific version of particle filter which we

implement for our framework. We also discuss the implications of the assumptions which we

made on the system for our implementation of the particle filter.

3.1 The filtering problem

Consider the filtering problem for the system of (4) and (5). Let us denote the history of

observations by Y t ≡ {Ys}ts=0. Filtering problem is to compute f (St|Y t), the density of the

state vector St conditional on the history Y t. Appendix A shows that the following recursive

formula for f (St|Y t) holds:

f
(
St|Y t

)
=

∫
f (St|St−1, Yt) f

(
St−1|Y t

)
dSt−1, (6)

where

f
(
St−1|Y t

)
=

f (Yt|St−1)∫
f
(
Yt|S ′t−1

)
f
(
S ′t−1|Y t−1

)
dS ′t−1

f
(
St−1|Y t−1

)
. (7)

This formula is different from the standard recursive formula of filtering problem often used

in the literature.7 We find this version more helpful to clarify the idea of our particle filtering

method.

7The standard formula often used in the literature involves f (Yt|St) and f (St|St−1) instead of f (Yt|St−1)
and f (St|St−1, Yt) in our formula. See, e.g., Equation (4) of Doucet et al. (2000).
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According to (6) and (7), observing the new data Yt, f (St|Y t) can be updated from

f (St−1|Y t−1) using two densities. The first is f (Yt|St−1), the probability of observing Yt

when St−1 is the true state in t − 1. Since this probability represents the plausibility of

St−1 as the true state in t − 1 given the new information Yt, reweighting the old density

f (St−1|Y t−1) with them as in (7) yields f (St−1|Y t), the new density of St−1 updated with

the new information. The second is f (St|St−1, Yt), the probability of St being the next state

when St−1 is the old state. The product of this probability and the new density of St−1

gives the probability that the state evolved from St−1 to St. Integrating this over all possible

starting states St−1 yields the density of the current state, f (St|Y t).

When there was no nonlinearity and shocks were all Gaussian, there would be no need

to employ any approximation method. In that case, f (St|St−1, Yt) and f (Yt|St−1) would

be Gaussian, and f (St|Y t) would take the same simple Gaussian form as f (St−1|Y t−1).

This is the case to which the Kalman filter can be applied. In such a case, we could easily

compute the exact distribution f (St|Y t), which can be completely characterized by only two

parameters, mean and variance.

However, things are not that easy when we have the nonlinearity in the observation equa-

tion in (5). Once r∗t becomes negative, f (St|Y t) takes a different form than f (St−1|Y t−1), and

no simple analytical solution like the Kalman filter is available. This is because f (St|St−1, Yt)

and f (Yt|St−1) involve nonstandard distributions, as we show in Appendix B. As (6) says,

the density of St conditional on the history of the observations is an integral of the product

of the two nonstandard densities over St−1. The nonnormalities of the two densities make it

impossible to express the resulting integral in (6) in any analytically simple form. Therefore,

some approximation must be employed to conduct filtering based on (6) in this case.

3.2 Particle filtering

Particle filters approximate the conditional density f (St|Y t) with a set of particles {Sit}Ni=1

and the associated weights {wit}Ni=1. Our version of particle filter belongs to a class called

Sequential Importance Sampling (SIS) filter. In this class of particle filters, the particles

are sequentially sampled from a density called importance density, and the weights are also

sequentially updated.

Within the class of SIS filters, it has been shown in the literature to be optimal to sample

Sit and update wit given Sit−1 and wit−1 by

Sit ∼ f
(
St|Sit−1, Yt

)
, (8)

wit ∝ wit−1f
(
Yt|Sit−1

)
. (9)

These are optimal in the sense that they minimize the variance of the weights {wit}Ni=1
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conditional on {Sit}Ni=1 and Y t.8

Note that the two conditional densities in (8) and (9) are the same as those in (6) and (7).

In fact, the particle filter based on (8) and (9) simply implements the idea embodied in the

recursive formula (6) and (7). Suppose that we have particles and weights
{
Sit−1, w

i
t−1

}N
i=1

approximating f (St−1|Y t−1). Observing Yt, we can first update the weight assigned to each

particle of the previous period using f
(
Yt|Sit−1

)
, the plausibility of Sit−1 as the true state

in t − 1 given the new information Yt. Also, for each particle of the previous period, we

can generate particles of the current period using f
(
St|Sit−1, Yt

)
, the probability of St being

the next state when Sit−1 is the old state. The resulting particles and weights {Sit , wit}Ni=1

approximates f (St|Y t).

We use the optimal importance density function (8) and the optimal weight updating

equation (9) for our particle filter. In many cases considered in the literature, the use of

this optimal density function and the associated weights is not feasible. Specifically, there

are two reasons why the optimal procedure is infeasible in many cases. First, it is usually

very difficult to sample from f
(
St|Sit−1, Yt

)
. Second, it is often computationally hard to

evaluate f
(
Yt|Sit−1

)
. In our particular case, however, these two common difficulties are not

present. First, as Appendix B shows, f
(
St|Sit−1, Yt

)
is a density of a variable which is a linear

function of a truncated normal variable. Therefore, sampling from the density can be done

by drawing from a truncated normal density and plugging the draw into the linear function.

Second, as Appendix B also shows, although f
(
Yt|Sit−1

)
is not normal when rt = 0, it is

a product of normal density and a probability which can be calculated from a cumulative

normal density. Thus, it can easily be evaluated.

Starting from initial particles {Si0}Ni=1 and weights {wi0}Ni=1, the particle filter sequentially

approximate f (St|Y t) by sampling new particles according to (8) and updating weights

according to (9). The complete description of the algorithm is given in Appendix C.

3.3 The role of the assumptions

Since the state vector in general contains multiple variables, its conditional density f (St|Y t)

is a multivariate density. Therefore, in general, we may have to approximate a multivariate

density in implementing the particle filter.

However, approximating a multivariate density is notoriously a difficult task. As the

number of dimensions increases, the number of particles required for a given precision of ap-

proximation exponentially increases. Then, the amount of time needed for the computation

easily explodes, rendering the approximation method computationally infeasible.

8A large variance of the weights means that there are a lot of particles to which very small weights are
assigned. Such particles contain less information on the density to be approximated than particles with
larger weights. Therefore, the efficiency of the approximation deteriorates as the variance of the weights
increases. See, e.g., Arulampalam et al. (2002).
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The two assumptions which we imposed on the system in Section 2, and the assumption

made in this section that S0 is given, are intended to avoid this problem. With the two

assumptions, namely, (i) there are as many observed series as structural shocks, and (ii)

ΛΨ is invertible, we effectively limit our attention to the case in which an approximation of

the one-dimensional density of r∗t is sufficient to approximate the density of entire St. This

is because under the assumptions there is a mapping from r∗t to St given Yt and St−1, as

we show in Appendix B. Intuitively, when ΛΨ is invertible, the structural shocks εt can be

computed from r∗t and xt given St−1. Then, with the structural shocks εt and given St−1, the

entire state vector St can be backed out from the state-transition equation (4). Note that

the argument holds for all t ≥ 1 under the assumption that S0 is given.

Note that the assumptions do not hold for some of the typical DSGE models in the lit-

erature such as Smets and Wouters (2003). In Smets and Wouters (2003), the number of

shocks exceeds the number of observed data series. Intuitively, in that model some of the

shocks are inherently attached to the natural output, and the natural output is treated as

an unobservable state variable in the state-space representation. When such an additional

unobservable variable other than the shadow rate was present in our framework, the approx-

imation must have been done for a multivariate density. However, as we noted above, the

computation could be infeasible in such a case.9

4 Estimation strategies

Now we proceed to the estimation step of the system given by (4) and (5). The parameter

values are not known and now to be estimated. We denote by θ all the structural parameters

contained in matrices A, B, C, and D in (2).

We assume that the sample period for the estimation is chosen such that the short-term

rate is not zero in the initial period. This assumption guarantees that the unconditional

distribution of the observed data in the initial period is a normal distribution. Then, as we

will show below, the period likelihood function for the initial period can be easily evaluated.

In the previous section, we assumed that S0 is given when the particle filter is invoked.

When S0 can be computed from Y0, the assumption can be easily satisfied. Even when some

elements of S0 can not be computed from Y0, we can treat the unknown elements in S0 as

additional parameters, and add them to θ.

9For the case with other unobservable variables than the shadow rate, we suggest that a Gibbs sampler
can be applied in estimating the model using the particle filter presented here. Note that, if the path of the
shadow rate is known, the system becomes standard and the DSGE model can be easily estimated. Therefore,
starting from an initial path of the shadow rate, we can draw parameters and the paths of unobservable
variables other than the shadow rate from the posterior distribution conditional on the path of the shadow
rate. Then, given the draws of the path of the unobservables and parameter values, we can apply the particle
filtering method to draw a path of the shadow rate. One can iterate these steps to sample parameters and
paths of the unobservables from the unconditional posterior distribution.
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We first describe how the likelihood of the model for a set of the parameter values can be

computed with the particles and weights generated by the particle filter. Then, we describe

the strategy for estimating the parameters. We also describe the particle smoothing method,

by which we can estimate the path of the shadow rate given the parameter estimates.

4.1 Likelihood evaluation

For a set of parameter values, the particle filter generates the particles and associated weights{
{Sit}Ni=1 , {wit}Ni=1

}T
t=0

which approximate the conditional densities of the state vector. With

them, we can evaluate the likelihood as follows.

First, the likelihood function can be written as a product of the period likelihood functions

f (Yt|Y t−1)

f
(
Y T |θ) =

T∏
t=0

f
(
Yt|Y t−1

)
(11)

with f (Y0|Y −1) ≡ f (Y0). We now make explicit the dependence of the likelihood on the

parameter values by putting θ in the expression on the left hand side.

For t > 0, the period likelihood function f (Yt|Y t−1) can be written as

f
(
Yt|Y t−1

)
=

∫
f (Yt|St−1) f

(
St−1|Y t−1

)
dSt−1,

where we used the fact that f (Yt|St−1, Y
t−1) = f (Yt|St−1). We approximate this using the

particles
{
Sit−1

}N
i=1

and weights
{
wit−1

}N
i=1

approximating f (St−1|Y t−1) as

f
(
Yt|Y t−1

) ≈
N∑
i=1

wit−1f
(
Yt|Sit−1

)
.

For t = 0, we use the unconditional distribution of Y0. Since the short-term rate in this

period is not zero by assumption, we have r∗0 = r0, and thus (5) implies that Y0 = β + ΛS0.

Since (4) implies that the unconditional distribution of S0 is normal with mean (I − Π)−1 α

and variance
∑∞

i=0 ΠjΨΣΨ′ (Πj)
′
, the unconditional distribution of Y0 is normal with mean

β + Λ (I − Π)−1 α and variance
∑∞

i=0 ΛΠjΨΣΨ′ (Πj)
′
Λ′.

4.2 Parameter estimation

Maximum likelihood estimation can be done by simply maximizing the likelihood function

(11) with respect to θ. However, in the current literature, maximum likelihood estimation of

DSGE models is not the common choice of the estimation method. As An and Schorfheide

(2007) point out, one reason for this is that the estimates of structural parameters obtained by

maximum likelihood methods are often at odds with the parameter values suggested by other
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evidence such as the results from micro studies. This reflects that the likelihood function

often peaks in regions of the parameter space that are inconsistent with the parameter values

suggested by other evidence.

The common approach employed in the literature of estimation of DSGE models is a

Bayesian approach. In the Bayesian approach, a prior distribution p (θ) is placed on param-

eters. Then by Bayes’ Theorem the posterior distribution of θ can be constructed from the

prior distribution and the likelihood function as

p
(
θ|Y T

)
=

f
(
Y T |θ) p (θ)∫

f (Y T |θ) p (θ) dθ

It is usually impossible to analytically compute this posterior distribution. Thus, instead,

draws from the posterior distribution are generated using Markov Chain Monte Carlo (MCMC)

methods, and inference on the parameters are made based on these posterior draws.

In this paper, following An and Schorfheide (2007), we employ the Random-Walk Metropo-

lis algorithm as the MCMC method to generate posterior draws. The details of the algorithm

are given in Appendix C.

4.3 Smoothing

Given parameter values, smoothing is a step to compute the densities of state vectors St

at each period given the entire data sample Y T , that is, f
(
St|Y T

)
for all t. When the

particle filter is employed for filtering, smoothing can be done using the particles and weights

generated by the particle filter. Let us assume that we now have the parameter estimates

obtained from the estimation step described above, and that using the parameter estimates

we have invoked the particle filter to get the particles and weights
{
{Sit , wit}Ni=1

}T
t=1

.

To conduct smoothing with the particles and weights, we use backward simulation fol-

lowing Godsill, Doucet, and West (2004). As we describe below, the idea of the backward

simulation is straightforward. Our primary interest is on the path of shadow rate, and there-

fore let us focus here not on smoothing the entire state vector but on smoothing only the

path of shadow rate. The details of the algorithm, which conducts smoothing for the entire

state vector, is given in Appendix C.

First note that plugging each particle Sit into (3) yields the corresponding shadow rate

r∗,it . Thus
{
r∗,it , w

i
t

}N
i=1

approximates the conditional density f (r∗t |Y t). With these particles

of the shadow rate and their weights, the smoothing procedure approximates f
(
r∗t |Y T

)
by

generating lots of draws from the density. To get one such draw, we start from the last period

T and move backward to the initial period 0. First, for the last period T , f
(
r∗T |Y T

)
is exactly

the conditional density which the particles and weights
{
r∗,iT , w

i
T

}N
i=1

approximate. Thus, we

simply choose the sample of the shadow rate r̃∗T from
{
r∗,iT
}N
i=1

with probability {wiT}Ni=1.
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For t < T , given the chosen shadow rate r̃∗t+1, we can reevaluate the weight assigned to each

particle with the information that the shadow rate in the next period is r̃∗t+1. This can be

done by reweighting each weight {wit}Ni=1 with the probability that r̃∗t+1 actually realizes in

the next period when the current state is Sit . Then, we choose r̃∗t from
{
r∗,it
}N
i=1

with the

reweighted probabilities. The steps proceed recursively backward, and we obtain a sample

path of the shadow rate {r̃∗t }Tt=0. By generating a desired number of paths of the shadow

rate, we have the approximation of the density f
(
r∗t |Y T

)
represented by those paths.

5 An example: small DSGE model with Japanese data

In this section, we fit a small DSGE model to Japanese data as an application of the esti-

mation method presented above.

5.1 A small New Keynesian model

The small model which we fit to Japanese data is a typical DSGE model in the literature.

It basically consists of three equations. As usual, the equations have all been log-linearized,

and the variables are in terms of deviations from the deterministic steady state, except that

the output gap is in terms of deviation from the flexible-price equilibrium. The definitions

of the parameters are summarized in Table 1.

The first equation is the forward-looking IS curve with internal habits:10

yt = cy1yt−1 + cy2Etyt+1 − cy3Etyt+2 − cy4 (r∗t − Etπt+1) + εyt , (12)

where yt is the output gap, πt is the inflation rate, and εnt is the shock to the natural rate

whose distribution is i.i.d.normal, cy1 ≡ χ/ζ, cy2 ≡ (1 + βχ+ βχ2) /ζ, cy3 ≡ βχ/ζ, cy4 ≡
(1− βχ) (1− χ) / (σcζ), ζ ≡ 1+χ+βχ2. The discount factor β is a function of r̄, the steady

state annual real interest rate (in percentage point), and β = 1/ exp (r̄/400).

The second equation is the hybrid New Keynesian Phillips curve:11

πt = cπ1Etπt+1 + cπ2mct + cπ3πt−1 + επt , (13)

10This IS curve can be derived from the following household utility function:

E0

∑∞
t=0 β

t
[
(1− σc)−1 (Ct − χCt−1)1−σc − χh (1 + σh)−1

N1+σh
t

]

subject to an appropriate budget constraint with the shadow rate. Here, Ct is consumption level, Nt is labor
supplied.

11The Phillips curve is derived in the Calvo-style sticky-price setup with backward indexation. The
underlying production function is assumed to be Cobb-Duglous with capital being fixed. Labor market is
assumed to be competitive.
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where επt is the price shock whose distribution is i.i.d.normal, cπ1 ≡ β/
(
1 + βγp

)
, cπ2 ≡

κ/
{(

1 + βγp
)

(1 + θ (1− α) /α)
}

, κ ≡ (1− ξp
) (

1− βξp
)
/ξp, c

π
3 ≡ γp/

(
1 + βγp

)
and mct

is the real marginal cost defined by

mct ≡ cπ4yt + cπ5
{(

1 + βχ2
)

(yt − εyt )− χ (βEtyt+1 + yt−1 + εyt )
}
,

with cπ4 ≡ (σh + 1− α) /α and cπ5 ≡ σc/ {(1− χ) (1− βχ)}. The parameters θ and α are

the steady state price elasticity of demand and the cost share of labor input in the Cobb-

Douglous production function, respectively. Following Ichiue et al. (2008), we calibrate these

two parameters and set θ = 6 and α = 0.63.

The third equation is the Taylor-type monetary policy rule with inertia:

r∗t = φrr
∗
t−1 + (1− φr)

{
φyyt + φππt

}
+ εrt . (14)

where εrt is the monetary policy shock whose distribution is i.i.d.normal.

Note that the interest rate that enters the structural equations (12)-(14) is not the short-

term interest rate rt but the shadow rate r∗t . The two rates are related by (1).

Let St ≡
(
yt−1, πt−1, r

∗
t−1, yt, πt, r

∗
t , Etyt+1

)′
and εt ≡ (εyt , ε

π
t , ε

r
t )
′. Then the structural

equations (12)-(14) can be cast into a system of expectational difference equations (2).

Within the parameter region of determinacy, the solution can be written in the form of

(4). Letting π̄ be the steady state inflation rate, the observed data series are related to the

model variables through the following observation equation.



GAPt

INFt

Rt


 =




0

π̄

r̄


+




0 0 0 100 0 0 0

0 0 0 0 400 0 0

0 0 0 0 0 400 0


St.

where GAPt is the data of GDP gap, INFt is the data of annual inflation rate, Rt is the

data of short-term annual interest rate. All the data are in percentage point.

Finally, S0 can be computed from Y0 in this case. y−1, π−1, r
∗
−1, y0, π0, r

∗
0 are computed

from the observation equation with Y−1 and Y0. As for E0y1, it can be computed by solving

e′EyS0 = e′y (α + ΠS0), where eEy and ey are selection vector whose values are zeros except

for the elements corresponding to Etyt+1 and yt, respectively, being one.

5.2 Data and implementation

We use three quarterly Japanese time series as observable data series: the CPI inflation

rate for INFt, GDP gap constructed by the method described in Hara et al. (2006) for

GAPt, and the overnight call rate for Rt. All the variables except the call rate are seasonally

adjusted. The sample period is 1981:1Q to 2008:3Q. We treat a value of short-term interest
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rate less than 5 basis point as zero. As a result, there are two periods of zero interest rate:

1999:2Q-2000:2Q and 2001:2Q-2006:2Q.

We set the number of particles to 10,000. While the approximation error becomes smaller

as the number of the particles increases, the computation time significantly increases. In

order to make the computation more efficient, we implemented the particle filter in Fortran

code, but still there is considerable computational burden in running the particle filter. The

number of 10,000 is adopted taking into account this tradeoff.

As for the implementation of the Random-Walk Metropolis algorithm, the covariance

matrix of the proposal density, Σ̃, is set to 0.5 times the Hessian of the posterior density

of an auxiliary model evaluated at the posterior mode. The auxiliary model is the same

as the above model except that it ignores the nonlinearity caused by the zero lower-bound

of interest rate. More precisely, it assumes that the shadow rate is always equal to the

short-term rate.12

The initial draw is drawn from NP

(
θ̄, 2Σ̃

)
, where θ̄ is the posterior mode obtained by

maximizing ln f
(
Y T |θ) + ln p (θ). We repeat the steps of the Random-Walk Metropolis

algorithm 1,000,000 times, and throw away the first half of the draws. The resulting 500,000

draws are used to approximate the posterior density.

5.3 Results

Table 1 shows the prior specifications and the parameter values at the posterior mean. Note

that the steady state real rate at the posterior mean is lower than its prior mean, 2.00, which

is about the average of the ex-post real rate during the sample period. This result obtains,

of course, because we allowed the shadow rate to decline below zero.

Figure 1 shows the prior and posterior densities of the structural parameters. In many

cases, the posterior density is narrower than the prior density, suggesting that the observa-

tions actually added useful information for estimating the parameter values. Also, all the

posterior densities are single-peaked, suggesting that a severe identification problem is not

present in this estimation.

Figure 2 shows the impulse responses to structural shocks. Most of them seem to be

reasonable. In particular, the responses of output gap and inflation rate to a monetary

policy shock are hump-shaped, and the response of inflation is delayed, attaining its peak in

about 2 years.

12Note that in principle Σ̃ can be any positive definite matrix for the algorithm to correctly generate draws
from the posterior density. Having said that, usually Σ̃ is set to some constant times the Hessian of the
posterior density of the model being estimated, evaluated at the posterior mode. In our case, however, the
Hessian of the model being estimated can not be computed with a high precision because the likelihood is
computed with approximation. As a result, when the Hessian of the model being estimated is used, the
speed of convergence of the algorithm becomes very slow. We avoid this problem by using the Hessian of the
auxiliary model, which is computed with much higher precision because no approximation by the particle
filter is necessary for this model.
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Figure 3 shows the smoothed path of the shadow rate at the posterior mean, together

with the output gap and the inflation rate. The path of shadow rate is the mean of 10,000

paths generated by the method described in Section 4. The 90% confidence interval is also

constructed as the 5- and 95- percentiles of the 10,000 paths. As is clear from the figure, the

shadow rate declines to a level below zero during the periods of zero interest rate. Especially,

the decline of the shadow rate is large in the second zero-interest-rate period. This is con-

sistent with the fact that in that period BoJ conducted a larger number of ’unconventional’

policy measures, which are detailed in Ugai (2006). The shadow rate hits the bottom of

-2.15% in the 4th quarter of 2002, when the output gap and the inflation rate are also near

their bottoms.

To compare the estimated path of the shadow rate with those of the previous studies,

Figure 4 and 5 show the paths of the shadow rate estimated in Iwata and Wu (2006) and

Ichiue and Ueno (2008). These are taken from their original papers. First look at the

estimated path of Iwata and Wu (2006). Their path (”Implied Call Rate”) looks similar to

ours at least until 2001, which is the end of their sample period. However, since our results

are based on the sample period ending 2008:3Q, which includes additional 4 and a half years

of period of zero interest rate, one should not draw a conclusion from this comparison. Next,

let us look at the estimated path of Ichiue and Ueno (2008). Their sample period extends to

the beginning of 2006, and thus a more direct comparison can be made. Overall, their path

is far below our path for the most of the periods of zero interest rate. This might reflect

the fact that their approach does not take into account the effects of the shadow rate on the

economy.13 On the other hand, note also that the movements of the two paths share some

common features. Both paths hit the bottoms around 2003, and quickly rise till about 2004.

Such similarities are interesting given that the two paths are estimated by totally different

approaches.

6 Conclusion

This paper proposed an empirical DSGE framework to measure monetary policy when the

nominal short-term interest rate is zero. In so doing, we introduced the shadow rate repre-

senting the monetary policy stance of a central bank into the standard DSGE framework. By

the introduction of the shadow rate, the nonlinearity caused by the zero lower-bound does

not affect the linearity of the state-transition equation, and only the observation equation

becomes nonlinear. We argued that Bayesian estimation of such a model can be done by

employing a version of particle filter. As an application of the method, we fitted a small

13On the other hand, the results of Ichiue and Ueno (2007) suggest that the large decline of the estimated
shadow rate in Figure 5 is due to the assumption of the constant equilibrium interest rate in their yield curve
model. In Ichiue and Ueno (2007), they extend their framework to allow for shifts in the equilibrium rate.
The bottom of the estimated path using the extended model is around -0.8%, and thus it is now above ours.
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New Keynesian model to Japanese data. The results suggest that the shadow rate was well

below zero during the period of zero interest rate in the 2000s.

There are many directions for extensions of the current work, and here we suggest two of

them. First, the small New Keynesian model which we fitted to Japanese data is very likely

to be too simple a model to capture the dynamics of Japanese economy. Employing richer

DSGE models to estimate the shadow rate using the framework of this paper is a promising

direction. Second, as we pointed out in Section 3, the framework presented in this paper can

not directly be applied to some models with unobserved natural output including Smets and

Wouters (2003). However, the development of the natural output during the periods of zero

interest rate is of great interest especially when we evaluate the policies conducted during

those periods. Extending the framework for such models is another direction.
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A Derivation of (6)

f
(
St|Y t

)
=

f (St, Yt|Y t−1)

f (Yt|Y t−1)

=

∫
f (St, Yt, St−1|Y t−1) dSt−1∫
f
(
Yt, S ′t−1|Y t−1

)
dS ′t−1

=

∫
f (St|Yt, St−1, Y

t−1) f (Yt|St−1, Y
t−1) f (St−1|Y t−1) dSt−1∫

f
(
Yt|S ′t−1, Y

t−1
)
f
(
S ′t−1|Y t−1

)
dS ′t−1

=

∫
f (St|Yt, St−1)

f (Yt|St−1) f (St−1|Y t−1)∫
f
(
Yt|S ′t−1

)
f
(
S ′t−1|Y t−1

)
dS ′t−1

dSt−1.

In the final line, we used the fact that

f
(
St|St−1, Yt, Y

t−1
)

= f (St|St−1, Yt) ,

f
(
Yt|St−1, Y

t−1
)

= f (Yt|St−1) .

These relationships hold because, if we know St−1, the past history Y t−1 does not add any

information to infer about St and Yt.

B Conditional densities

Let us fix the notation first. We denote by Y ∗t ≡ (x′t, r
∗
t )
′ the vector of data which would

be observed if the shadow rate was observable. Then we have Y ∗t = β + ΛSt, and thus (4)

implies that

Y ∗t = γ + ΦSt−1 + et, (B.1)

where γ ≡ β + Λα, Φ ≡ ΛΠ, et ≡ ΛΨεt, et ∼ N (0,Ω), and Ω ≡ ΛΨΣΨ′Λ′. We partition et,

γ, Φ and Ω as

et ≡
[
ex,t

er,t

]
, γ ≡

[
γx

γr

]
, Φ ≡

[
Φx

Φr

]
, Ω ≡

[
Ωxx Ωxr

Ωrx Ωrr

]
,

with the number of rows of ex,t, γx, Φx and Ωxx being equal to that of xt.

Note that under the assumptions that Yt is an n × 1 vector and that ΛΨ is invertible,

there is a mapping from r∗t to St given St−1 and Yt. That is, combining εt = (ΛΨ)−1 et and

(B.1) and then substituting the result into (4), we have

St = α + ΠSt−1 + Ψ (ΛΨ)−1 (Y ∗t − (γ + ΦSt−1)) . (B.2)
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As we pointed out in Section 3, this mapping enables us to approximate the density of St,

which is in general multivariate, by approximating one-dimensional density.

Below, we denote by NP (x;µ,Σ) and NC (x;µ,Σ) the normal density and its cumulative

version at x with mean µ and variance Σ. Also, we denote by NTr
P (x; c, µ, σ2) the truncated

normal density at x with mean µ, variance σ2, and the truncation from above at c.

[SUGOU: Below, f (Yt|St−1) should come first because it is referred before f (St|St−1, Yt)

on p.7??]

B.1 f (St|St−1, Yt)

(B.1) implies that the density of Y ∗t conditional on St−1 is

f (Y ∗t |St−1) = NP (Y ∗t ; γ + ΦSt−1,Ω) . (B.3)

Then, the density of r∗t conditional on xt is given by

f (r∗t |St−1, xt) = NP

(
r∗t ; γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)
, (B.4)

where ρrx ≡ ΩrxΩ
−1
xx , σ2

r|x ≡ Ωrr − ΩrxΩ
−1
xxΩxr.

When rt > 0, we know for sure that Y ∗t = Yt and thus the value of St can be computed by

(B.2) without any uncertainty. In this case, the density becomes degenerate. When rt = 0,

since rt = 0 if and only if r∗t ≤ 0, we have f (r∗t |St−1, Yt) = f (r∗t |St−1, xt|r∗t ≤ 0). Therefore,

f (r∗t |St−1, Yt) is a truncated normal density given by

f (r∗t |St−1, Yt) =

{
degenerate at r∗t = rt when rt > 0

NTr
P

(
r∗t ; 0, γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)

when rt = 0
(B.5)

Then the conditional density f (St|St−1, Yt) is implicitly given by (B.2), the mapping from

r∗t to St.

B.2 f (Yt|St−1)

First note that f (Yt|St−1) is a joint density of xt and rt. Therefore, it can be written as the

product of the density of rt conditional on xt and the density of xt, i.e.,

f (Yt|St−1) = f (rt|St−1, xt) f (xt|St−1) .

As for the first term, note that rt is a censored normal variable with the latent variable r∗t .

Since the density of r∗t conditional on xt is given by (B.4), we have
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f (rt|St−1, xt) =





NP

(
rt; γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)

if rt > 0

NC

(
0; γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)

if rt = 0

As for the second term, (B.1) implies that xt has the conditional density

f (xt|St−1) = NP (xt; γx + ΦxSt−1,Ωxx) .

Multiplying the two and noting that the resulting density for rt > 0 is simply the joint

normal density of Yt, we have

f (Yt|St−1) =

{
NP (Yt; γ + ΦSt−1,Ω) if rt > 0

NC

(
0; γr + ΦrSt−1 + ρrxex,t, σ

2
r|x
)
NP (xt; γx + ΦxSt−1,Ωxx) if rt = 0

(B.6)

C Algorithms

Algorithm 1 (Particle filter for shadow rate).

1. Set initial particles and weights as Si0 = S0, wi0 = 1/N for all i = 1, . . . , N .

2. For t = 1 to T :

(a) Draw
{
r∗,it
}N
i=1

as follows.

• When rt > 0, set r∗,it = rt.

• When rt = 0, draw
{
r∗,it
}N
i=1

from (B.5).

(b) Set Sit = α+ ΠSit−1 + Ψ (ΛΨ)−1 (Y ∗,it −
(
γ + ΦSit−1

))
with Y ∗,it = (x′t, r

∗,i
t )′ for all

i = 1, . . . , N .

(c) Update weights by wit ∝ wit−1f
(
Yt|Sit−1

)
with (B.6).

3.
{
{Sit , wit}Ni=1

}T
t=1

is an approximation of the sequence of the conditional distributions

of the state vector, {f (St|Y t)}Tt=1.

Algorithm 2 (Random-Walk Metropolis algorithm).

1. Set the followings:

• Σ̃, the covariance matrix of the proposal distribution

• θ(0), the initial draw

• nsim, the number of draws to be generated
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• nburn, the number of initial draws to be discarded

2. For s = 1 to nsim:

• Draw ϑ from the proposal distribution NP

(
θ(s−1), Σ̃

)
.

• Set χ(s) = min

{
1,

f(Y T |ϑ)p(ϑ)

f(Y T |θ(s−1))p(θ(s−1))

}
.

• Set θ(s) as follows:

– Set θ(s) = ϑ with probability χ(s).

– Otherwise, set θ(s) = θ(s−1).

3.
{
θ(s)
}nsim
s=nburn+1

is an approximate realization from p
(
θ|Y T

)
.

Algorithm 3 (Particle smoothing).

1. Smooth the shadow rate by moving backward as follows:

(a) Choose r̃∗T = r∗,iT with probability wiT and set Ỹ ∗T ≡ (x′T , r̃
∗
T )′.

(b) For t = T − 1 to 1:

• For each i = 1, . . . , N , compute wit|t+1 ∝ witf(Ỹ ∗t+1|Sit) with (B.3).

• Choose r̃∗t = rit with probability wit|t+1 and set Ỹ ∗t = (x′t, r̃
∗
t )
′.

2. Recover the entire state vector by moving forward as follows:

(a) Set S̃0 = S0.

(b) For t = 1 to T :

• Set S̃t = α + ΠS̃t−1 + Ψ (ΛΨ)−1
(
Ỹ ∗t − γ − ΦS̃t−1

)
.

3.
{
S̃t

}T
t=0

is an approximate realization from f(ST |Y T ).
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Table 1. Prior specifications and parameter values at the posterior mean

Prior

Parameter Type Mean 90% interval

σc Relative risk aversion Gamma 2.00 [0.68,3.88]

χ Habit persistence Beta 0.60 [0.25,0.90]

ξp Price fixity Beta 0.50 [0.17,0.83]

γp Price indexation Beta 0.50 [0.17,0.83]

σh Inverse of Frisch elasticity Gamma 2.00 [0.68,3.88]

φπ Monetary policy reaction to inflation Normal 1.50 [1.17,1.83]

φy Monetary policy reaction to output gap Normal 0.50 [0.17,0.83]

φr Monetary policy inertia Beta 0.75 [0.57,0.90]

π̄ Steady state inflation Normal 1.00 [-0.64,2.64]

r̄ Steady state real rate Normal 2.00 [0.36,3.64]

σy S.d. of natural rate shock Inverse gamma 0.005 [0.001,0.014]

σπ S.d. of price shock Inverse gamma 0.005 [0.001,0.014]

σr S.d. of monetary policy shock Inverse gamma 0.005 [0.001,0.014]

Posterior

Parameter Mean 90% interval

σc Relative risk aversion 2.378 [0.714,3.976]

χ Habit persistence 0.970 [0.952,0.988]

ξp Price fixity 0.966 [0.933,0.997]

γp Price indexation 0.882 [0.798,0.971]

σh Inverse of Frisch elasticity 3.324 [0.729,5.583]

φπ Monetary policy reaction to inflation 1.454 [1.170,1.733]

φy Monetary policy reaction to output gap 0.253 [0.133,0.372]

φr Monetary policy inertia 0.898 [0.864,0.933]

π̄ Steady state inflation 1.355 [0.627,2.076]

r̄ Steady state real rate 1.731 [1.041,2.420]

σy S.d. of natural rate shock 0.0018 [0.0016,0.0021]

σπ S.d. of price shock 0.0012 [0.0010,0.0013]

σr S.d. of monetary policy shock 0.0012 [0.0010,0.0013]

24



Figure 1: Prior and posterior densities
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Note: The figure plots the marginal posterior distributions (black lines) against their marginal prior distri-
butions (gray lines).
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Figure 2: Impulse responses.
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Note: The 90% confidence intervals are shown with thin lines.
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Figure 3: Output gap, inflation rate, and shadow rate in Japan
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Note: The path of the shadow rate is the mean of 10,000 paths generated by the method described in Section
4. The 90% confidence interval is also shown.
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Figure 4: The estimated shadow rate of Iwata and Wu (2006)

monetary policy during this period therefore provides a good opportunity to study the
impact on monetary policy of the zero bound constraint on nominal interest rates.

We focus on the time period between 1991 and 2001 in this paper because there appears
to be several structural changes in the Japanese monetary policy during the past 30 years.
For example, in the second half of the 1980s, stabilizing the exchange rate seemed to be the
main policy goal for the BoJ due to the Plaza Accord. Moreover, the dramatic rise in asset
prices starting in the late 1980s caused the BoJ to refocus its policy activities on asset
prices. See Hetzel (1999) for a discussion of Japanese monetary policy since the 1970s.
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Fig. 1. (a) Industrial output and whole sale price; (b) money growth rate; (c) the short-term nominal interest rate.

S. Iwata, S. Wu / Journal of Monetary Economics 53 (2006) 1395–1408 1397

Note: The figure is taken from Iwata and Wu (2006).

Figure 5: The estimated shadow rate of Ichiue and Ueno (2008)

Figure 3: Shadow Rate and Call Rate 
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Note: This figure shows the estimated shadow rate (thick line) and the call rate (thin line). 
 
 

 
 
 
 

Figure 4: Shadow Rate and Current Account Balance at the BOJ 
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Note: This figure shows the estimated shadow rate (thick line) and the current account balance (CAB) 
at the BOJ that is not subject to reserve requirements (trillions of yen, right scale, dotted line). 
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Note: The figure is taken from Ichiue and Ueno (2008).

28


	Abstract

	1 Introduction
	2 A DSGE framework with shadow rate
	3 The filtering method
	4 Estimation strategies
	5 An example: small DSGE model with Japanese data
	6 Conclusion
	A Derivation of (6)
	B Conditional densities
	C Algorithms
	References
	Tables

	Figures


