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ABSTRACT 

This paper uses novel microdata sources spanning 2001-02 to 2015-16 to explore the structural drivers 
of wage growth in Australia, with a view to better understanding recent weak wage growth – a 
phenomenon observed across a range of advanced economies. Controlling for a range of cyclical and 
other factors, we show that part of firms’ idiosyncratic productivity growth tends to be passed-through 
to workers in the form of higher wage growth, consistent with the idea that firms share rents with their 
workers. The size of this pass-through is around the midpoint of leading international estimates, and 
appears to decline modestly after 2012-13, when aggregate wage growth begins to slow. We then discuss 
a range of possible mechanisms for this modest decline, including the transition from the mining boom, 
globalisation, changing shock processes, declining labour market fluidity and uneven technology 
diffusion. Given that our dataset does not cover the past few years, however, it is not clear whether lower 
pass-through of productivity to wages has persisted. In this respect, our results represent a tentative first 
step in examining the microeconomic drivers of a macroeconomic phenomenon with particular reference 
to wages. We provide a proof-of-principle demonstration of the value of longitudinal microdata and 
empirical techniques to such investigations, and suggest further analysis into the factors behind declining 
labour market fluidity would be a fruitful exercise. 
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1. INTRODUCTION 

Across a variety of measures, wage growth has been slow in Australia, and in many other advanced 
economies, over recent years (Treasury 2017; Arsov and Evans 2018). A range of analyses suggest that 
wage growth has been lower than can be explained by measures of labour market spare capacity, 
inflation expectations and output price inflation, and the usual lags between these variables and wage 
growth (e.g. Cassidy 2019). This has led to suggestions that deeper structural factors may be at play, 
including changes in competitive dynamics owing to globalisation and technological change (Lowe 2018). 
But systematic evidence on the contribution of these structural factors in Australia is scarce and there is 
growing recognition that the answers to these questions may lie at the micro rather than the macro level 
(Weir 2018). 

Accordingly, this paper uses novel microdata sources to explore the structural sources of wage growth in 
Australia. More specifically, we are interested in understanding that modest portion of weakness in wage 
growth that cannot be explained by historical relationships with labour market slack, labour productivity 
and inflation. Conceptually, we follow Summers and Stansbury (2017) and note that recent wage growth 
could have been weaker than expected either because there has been a recent and potentially transient 
change in either the relationship between wages and productivity; or because the relationship remains 
the same but something else has weighed on wages. Since the latter explanation tends to encompass a 
number of cyclical aspects – such as mismeasurement of labour market slack – we focus our efforts on 
identifying the underlying structural link between wages and productivity. Empirically, credible 
identification depends on the ability to link workers to firms – through the use of matched firm-worker 
data – in order to control for unobserved worker and firm characteristics, and the increasing tendency of 
high-ability workers to sort into high productivity firms. We thus follow a recent literature that seeks to 
understand aggregate wage outcomes in terms of the important links that exist between the dispersion 
in firm-level productivity and worker-level wages within narrowly defined sectors (Card, Heining and 
Kline 2013; Bagger et al 2014). 

We first document an important link between individuals’ wages and firm-level productivity over the 
period 2001-02 to 2015-16, consistent with the idea that firms share rents with their workers. Such a link 
does not arise in neoclassical models of wages, where all firms pay the same wage, but is an empirical 
regularity in the international literature and is consistent with leading models of job search. Our estimates 
– which are the first for Australia – imply that an idiosyncratic shock to firm-level productivity of 10 per 
cent is associated with an increase in wages of around 1 per cent, controlling for a battery of time-varying 
cyclical shocks and assortative matching between high-ability workers and high productivity firms. This is 
around the midpoint of the range of leading international estimates, and highlights the important link 
between firm productivity and wages, consistent with recent analysis using firm level data (Treasury 
2017).  

We also find evidence that this pass-through may have declined modestly in the period after 2012-13, 
when aggregate wage growth slows. Drawing aggregate implications from these structural micro-level 
relationships is complex, reflecting the many assumptions required to extrapolate with any confidence 
from estimates from the micro -level to the aggregate economy. Indeed, this reflects the more general 
tension that can at times exist between the internal and external validity of results in empirical work (Roe 
and Just 2009).  

A back-of-the-envelope estimate nonetheless provides useful context, suggesting that growth in the 
aggregate wage price index could have been around 0.15 percentage points higher annually after 2012-
13, had an aggregate shift in pass-through – equivalent to the same magnitude as estimated from micro-
data over this period – not occurred. This corresponds to around one-third of the unexplained weakness 
in wages growth observed in recent years. The change in the relationship between workers’ wages and 
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firm-level productivity thus provides a new mechanism to understand the meaningful but modest portion 
of the weakness in aggregate wage growth over recent years that cannot be explained by historical 
relationships. Given that our dataset for this part of the analysis concludes in 2014-15, however, it is not 
clear whether lower pass-through of productivity to wages has persisted. 

We then indirectly explore and discuss some potential mechanisms for this apparent modest, and 
potentially transient, shift in the relationship between wages and firm-level productivity. We start by 
discussing some Australia-specific explanations, such as the notion that there might be a real wage 
‘overhang’ following the end of the mining boom, or that the shock processes affecting firms might have 
changed. Reflecting the fact that wage growth has been unexpectedly low in a number of advanced 
economies over the past few years, we then go on to explore in more detail two explanations that are 
more ‘global’ in nature. 

The first is the decline in labour market fluidity, which has been documented for the United States (US) 
and which we document for Australia. To the extent that it implies fewer outside options for workers, 
lower labour market fluidity may have reduced workers’ confidence and power in negotiations, and thus 
lowered the scope for rent sharing. Equally, lower labour market fluidity could reflect decreased feelings 
of job security amongst workers due to globalisation and technological advancement (Lowe 2018). 
Consistent with both of these, we discuss recent evidence which shows that higher job switching rates 
are associated with higher wage growth at the local labour market level in Australia, even after controlling 
for a range of cyclical and demographic factors. Moreover, even workers who remain with their 
incumbent employer appear to benefit from more fluid labour markets, which provides further evidence 
that the decline in job switching rates – to the extent it is structural – could be related to the shift in rent-
sharing. 

Second, we explore the conjecture that given the rising productivity gap between frontier and laggard 
firms observed internationally (Andrews, Criscuolo and Gal 2015, 2016), laggard firms may try to cut costs 
to compete, leading their wages to be less responsive to productivity (Weir 2018). While this explanation 
may be relevant for a number of OECD countries, it does not appear to fit the Australian data. This is not 
to say that technology does not influence wages and productivity. Instead, the two necessary ingredients 
for the technology diffusion argument – namely noticeable increases firm-level productivity dispersion, 
and growing wage inequality driven by differences in average wages paid between firms – are less evident 
in Australia. 

Finally, even if the shift in the relationship between wages and firm-level productivity had not occurred, 
aggregate wage growth may still have been affected by changing patterns of within-industry labour 
reallocation. Indeed, the period of low aggregate wage growth has coincided with a slowdown in the 
extent to which labour is reallocated from less productive to more productive firms. Given high 
productivity firms pay higher wages, slowing reallocation implies that fewer high paying jobs are being 
created than otherwise. We consider this compositional effect separate from the relationship between 
wages and productivity, as it implies both lower aggregate productivity and wage growth. 

Overall, what emerges is not a single unified explanation of slower aggregate wage growth, but rather a 
pattern of evidence that lends credence to the idea that structural factors may have weighed on wage 
growth in Australia up until at least 2014-15. On the one hand, it is consistent with the idea that the 
response of wages to improving labour market conditions has been slower and more muted than in past 
cycles (MYEFO, 2018). This suggests a need to continue to look beyond these old relationships when 
considering the outlook for wages growth. On the other hand, to the extent that we have not explicitly 
identified the drivers of the reduced pass-through of productivity to wages, it is not clear whether this 
effect will persist into the medium-term and may well turn out to be a transient phenomenon. A key 
priority for future work will be to understand these drivers, their origins and potential responses. 
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The remainder of the paper is structured as follows. The next section reviews what we know about low 
wage growth in Australia and presents some new evidence illustrating the broad-based nature of the 
wage slowdown at the firm and worker level. Section 3 then examines the empirical link between 
individual wages and firm-level labour productivity, while Section 4 indirectly explores some potential 
mechanisms behind the observed changes in the relationship between wages and productivity. Section 5 
examines the implications of changing patterns of labour reallocation for aggregate wages and then 
Section 6 discusses some implications for future research. 

2. LOW WAGE GROWTH IN AUSTRALIA 

Wage growth has been low in recent years, relative to history. Moreover, it has generally been somewhat 
lower than would have been predicted based on its historical relationship with labour market slack, 
labour productivity, inflation expectations, and other key theoretical determinants (Treasury 2017; 
Bishop and Cassidy 2017; Arsov and Evans 2018). For example, the lower rate of inflation, or inflation 
expectations, in recent years would be expected to lower nominal wages growth one-for-one. But wages 
growth has been lower than expected even after accounting for this, and other changes in relevant 
determinants. In this regard, the RBA’s Phillips curve model has over-estimated actual wage growth 
(based on the WPI) by around ½ percentage points per annum over past 5 years (Figure 1; Cassidy 2019) 
– and it is this unexplained portion of wages weakness that we are particularly interested in.  

Figure 1: Contribution to Wage Growth – RBA Model 
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Notes: Wage growth measure is year-ended private WPI growth; all series shown as year-ended deviations from 
own mean. 
Sources: ABS; RBA 

 
Relatedly, there has also been a marked divergence between wages and other cyclical measures that 
tend to co-move closely with wages, such as measures of capacity constraints (Figure 2 Panel A). Perhaps 
unsurprisingly then, actual wage growth has persistently been below that forecast by the RBA since 2011 
(Figure 2, Panel B).3 

                                                           
3  This graph is only illustrative, as some portion of the forecast miss will also reflect errors in the forecasts for the 

variables that help to determine wage growth. 
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A number of papers have tried to explain recent low wage growth. Most of these analyses have been 
done using economy-wide macro-data. While such analyses are useful, they necessarily have some 
shortcomings. As the period we are considering is relatively short, it can be difficult to identify any 
structural change, and also to differentiate between different explanations for the change. Moreover, 
economy-wide data are not particularly useful if we are trying to identify the effects of 
compositional change.  

Figure 2: The Slowdown in Aggregate Wage Growth in Australia 
Panel A: Constraints on Output and Wage Growth 

0

1

2

3

4

0

20

40

60

1998 2002 2006 2010 2014 2018

Per centPer cent

NAB survey: 'labour is a constraint' (LHS)

Wage price index (RHS)

 

Panel B: RBA Wage Price Index Forecasts 
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Notes: In left panel, wage growth measure is year-ended growth in WPI. NAB survey measure shows share of firms 
reporting availability of suitable labour as a minor or significant constraint on output. In right panel, forecasts are from 
February Statement of Monetary Policy. 
Sources: ABS; NAB; RBA 

 
Digging deeper, recent analysis using microdata suggests that the slowdown in wage growth is relatively 
broad based and has been experienced across income, education, age and occupation categories 
(Treasury 2017). Moreover, the slowdown in wage growth is apparent even when following trends in 
wage growth for individual firms (Figure 3), with average wage growth within firms around 2 percentage 
points lower in 2015-16, relative to 2010-11. We also see a similar decline when we track wage growth 
for individual workers, or fixed firm-worker relationships – that is, just looking at variation in the wages 
of a worker that remains at one firm (Appendix B, Figure B1). This set of results rules out a number of 
compositional explanations.  For example, the slowdown is not driven by the changing nature of workers 
(for example, skills or age) or firms (for example, industry), at least not entirely.   
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Figure 3: Broad-based slowdown in wages 
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Note: Presents coefficients from a regression of change in log annual wages on financial year dummies and either: 
no controls; or firm fixed effects. Values represent deviation of nominal wages growth from 2003 level. 
Source: Treasury analysis of de-identified tax data. 

 
Another advantage of microdata is that they can make it easier to abstract from cyclical factors – or even 
certain forms of mismeasurement, for example in inflation expectations or labour market slack – and to 
identify structural factors. This is because we can include time-varying controls at the state and industry 
level that allow us to abstract from these aggregate influences.  

These points highlight the potential benefits of using microdata to try to better understand the recent 
unexplained weakness in wage growth. There have been relatively few such analyses to date, and these 
have tended to focus on firm-level data. But firm-level data is only likely to get us so far. Numerous papers 
have documented the role of worker heterogeneity in explaining heterogeneous wage outcomes across 
firms (for example, Song et al 2019; Card et al 2016). Failing to account for worker differences can lead 
to incorrect inference, reflecting the fact that highly skilled workers will tend to raise firm productivity, 
and given high productivity workers may tend to congregate at certain firms.  

As such, this paper makes use of de-identified matched firm-worker panel data that allows us to account 
for worker heterogeneity when trying to shed light on the factors affecting aggregate wage growth in 
Australia. This is the first paper to use such a database in Australia. 

3. MICRO EVIDENCE ON WAGES AND PRODUCTIVITY 

One useful framework for thinking about the slowdown in wage growth is that proposed in Summers and 
Stansbury (2017). Broadly, we can think of two potential sets of explanations for the fact that wage 
growth has been weaker than expected: there has been a shift in the relationship between productivity 
and wage growth; or, the wages-productivity relationship has remained unchanged but something else 
has been weighing on wage growth.  

Many of the more structural explanations posited to date can broadly be interpreted as a change in the 
relationship between wage and productivity growth. For example, as suggested by Foster and Guttmann 
(2018), if workers feel less secure in their jobs this is likely to lower their wage bargaining power and 
mean that more of the gains from increases in productivity and profits are likely to flow to employers 
instead of workers. This would lead to a weakening of the relationship between wages and productivity. 
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Increasing integration of local and global labour markets might have similar effects (Lowe 2017). These 
contrast to some of the more cyclical explanations, such as mismeasured labour market slack, that will 
weigh on wage growth, but will not necessarily affect the relationship between wages and productivity, 
particularly at the micro level. 

As we are interested in identifying whether there are structural explanations for recent weak wage 
growth, we explore whether there is evidence of a shift in the relationship between wage and firm 
productivity growth in recent years. 

3.1 Wages, productivity and rent sharing 

To consider whether the link between productivity and wages has changed in the past few years, we draw 
on the rent-sharing literature. In the presence of labour market frictions, any job-worker match will 
generate some economic surplus, or ‘rent’. This rent will be split between the worker and the firm, and 
this split will be a function of the worker’s bargaining power. 

Within these models there is a link between productivity and wages, as worker productivity affects the 
amount of rent available to split. In particular, wages usually take on the reduced-form: 

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒𝑖) = 𝛾𝑙𝑜𝑔(𝐿𝑃𝑖) + (1 − 𝛾)𝑏𝑖 

Where 𝐿𝑃𝑖 is the productivity of the worker and 𝑏𝑖 is a reservation wage, which captures the outside 
option of the worker. The parameter 𝛾 captures the worker’s degree of bargaining power. 

As such, to consider the relationship between firm productivity and worker wages, we estimate the 
following equation: 

𝑙𝑜𝑔(𝑤𝑎𝑔𝑒𝑖𝑗𝑡) =∝ +𝛽1𝑙𝑜𝑔(𝐿𝑃𝑗𝑡) + 𝛿𝑋′ + 𝜀𝑖𝑗𝑡  

The vector 𝑋′ has a number of controls, including various fixed effects. It includes a number of time fixed 
effects that account for time-varying state- and industry-specific shocks. This implies that our estimates 
give information on the pass-through of shocks to idiosyncratic firm productivity onto wages – that is, 
they net out the effects of average changes in these variables at the state and industry level. This will 
ensure that our results are not unduly affected by cyclical factors, such as conditions and wages in the 
rest of the industry, which are likely to be a key determinant of the reservation wage. One potential cost, 
however, is that it is more difficult to infer aggregate implications (see below). The regression also 
includes a variety of firm and worker fixed effects, which are included to control for time-invariant 
factors, such as a worker’s work ethic or a firm’s inherent innovativeness. 

A large number of papers have estimated equations of this form to examine whether there is a link 
between firm- or industry-level productivity and wages. Or, more precisely, they try to examine whether 
shocks to firm- or industry-level productivity flow through to wages, while trying to avoid any endogenous 
changes in both wages and productivity due to, for example, demand shocks. These papers are well 
summarized in Card et al (2016) and Manning (2011). Estimates from more recent papers, which exploit 
both firm-level productivity data and worker-level wage data, generally find estimates of 𝛾 ranging 
from 0.05 to 0.15.  

While the relationship between wages and productivity is of interest, the motivation of this paper is to 
examine whether this relationship has changed. To do so, we also estimate the following equation: 

∆𝑙𝑜𝑔(𝑤𝑎𝑔𝑒𝑖𝑗𝑡) =∝ +𝛽1∆𝑙𝑜𝑔(𝐿𝑃𝑗𝑡) + 𝛽2[∆𝑙𝑜𝑔(𝐿𝑃𝑗𝑡) ∗ 𝐷12/13
𝑃𝑜𝑠𝑡 ] + 𝛿𝑋′ + 𝜀𝑖𝑗𝑡  
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Where 𝐷12/13
𝑃𝑜𝑠𝑡  is a dummy that takes on the value one for 2012-13 onwards, and zero otherwise. 

Therefore, our coefficient of interest is 𝛽2, which identifies whether there has been a change in the 
relationship between firm-level productivity and wages over the recent period where unexplained 
weakness in aggregate wage growth emerges. We choose 2012-13 to coincide with period of unexplained 
weakness in wages growth per the RBA’s Philips curve model, though some basic testing suggests our 
results are generally robust to the exact choice of year. 

We prefer a differences specification when trying to identify a change in the relationship, rather than the 
levels specification that is more common in the literature and that we use for identifying rent sharing. 
This is because the differences specification is likely to be more suited to capturing a change in the 
relationship between wages and productivity. For example, if the change reflects a shift in worker 
bargaining power, we would expect it to affect the sharing of future rents, but not necessarily past rents, 
making the differences specification more appropriate. More generally, if we are transitioning to a new 
and different relationship between the levels of wages and productivity, the transition is likely to take a 
number of years, and can be better accommodated by the differences specification. The differences 
specification can also help to control for variation in worker quality (Card et al 2016), though this is not 
overly important for our application as we have access to employee-level data.4 

At the macro level, the relationship between wages and productivity will reflect not only the idiosyncratic 
firm productivity shocks that we capture, but also common productivity shocks at the national, state and 
industry levels that are absorbed through our fixed effects structure. Despite these apparent costs, we 
include fixed effects since our aim to credibly identify the causal relationship between productivity and 
wages, and any change therein. To the extent that this aids causal identification, if we find any evidence 
of a change in the relationship between firm-level productivity and wages, then it will likely be suggestive 
of a change in the aggregate relationship. This will be the case even if the responsiveness of wages to 
common and idiosyncratic shocks differs somewhat (as has been demonstrated in Card et al (2016)). 

Our measure of wages is the gross wages received by the worker in their main job (that is, the job that 
pays them the most). As demonstrated in Appendix A, this measure tracks official aggregate wage 
measures (such as the WPI and AENA) reasonably well in trend terms, although some non-trivial 
differences arise due to definitional issues. Our measure of labour productivity is the firm’s real value 
added, divided by the number of employees at the firm during the year. We construct the measure of 
real value added by deflating nominal value added by an industry-specific value-added deflator.5 We only 
have data on value-added up to 2014-15, so this limits the sample for this part of the analysis. 

It would be preferable to measure both wages and productivity on an hours basis, as this might be more 
robust to changes along the intensive hours margin (for example, Bishop, Gustafsson and Plumb 2016), 
which could be particularly important given the growth of the ‘gig economy’. But, so long as both are 
measured on the same basis, any such adjustment is unlikely to substantially affect our results. 

3.2 Is there a relationship between wages and firm productivity in Australia? 

Table 1 outlines the results from five specifications with different fixed effects structures. In all 
specifications there is a positive and significant relationship between firm productivity and worker wages 
over the period 2001/02-2014/15. The estimates are around 0.1, which implies that an unexpected 
10 per cent increase in firm productivity leads to a 1 per cent increase in worker wages. This is around 

                                                           
4  To show that our results do not reflect some inherent difference between the level and difference specifications, we 

estimate the basic model with no interaction in differences for comparison. The results are very similar to the levels 
specification. See Appendix B. 

5  More details are available in Appendix A. 
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the midpoint of the leading estimates from the international literature. For context, a firm that has 
productivity one standard deviation above the industry mean will have wages that are about 10 per cent 
higher.6 The fact that we find a relationship between firms’ productivity and wages is consistent with 
Treasury (2017), which finds that more productive firms tend to pay higher wages.  

Table 1: The link between wages and firm productivity  
Dependent variable: Log wages of the individual 

 
Note: All regressions include a set of common controls covering worker characteristics (sex, a quadratic in age and 
residential location (Statistical Area 4)), firm characteristics (size and industry division), and state- and division-wide 
time-varying factors (state and industry division separately interacted with financial year). Errors are clustered at the 
firm-level. 

 
It is worth noting that, while the pass-through of firm productivity to wages seems low, in a neoclassical 
model it will be zero, as all firms pay the same wage. Moreover, we are only capturing the short-run 
pass-through and any nominal rigidity in wages, as might occur if individuals sign multi-year contracts, 
will necessarily lower the measured pass-through. Such rigidities could also be important if firms expect 
some of the productivity growth to be retraced (that is, firm-specific productivity does not have a unit 
root). In fact, Card et al (2016) finds some evidence that the pass-through of industry-level productivity 
to wages is stronger than the pass-through of firm-level productivity. So the micro-level 
productivity-wage nexus can coexist with the longer-run one-to-one association present in macro studies. 

As we move from Columns 1 to 5, we incorporate increasingly demanding micro fixed effects structures 
and the explanatory power of the models increase accordingly. In particular, the inclusion of worker fixed 
effects in Column 3 leads to a particularly large increase in explanatory power, which is consistent with 
numerous papers that find that variation in worker quality explains a large share of variation in wages 
(for example, Song et al (2019); Card et al (2016)). This highlights the importance of human capital and 
skills in the determination of wages. 

At the same time, the coefficient on productivity tends to decline when we include worker fixed effects, 
compared to the case with no fixed effects. This suggests that failing to account for worker effects leads 
to an upward bias in the coefficient, consistent with Dobbleaere and Mairesse (2018). The bias reflects 
the fact that firms that employ higher productivity workers are likely to have both higher wages and 
productivity. Indeed, the inclusion of interacted worker-firm fixed effects in Column 5 allows us to control 
for the assortative matching of high-ability workers to high productivity firms. Given our aim is to isolate 
the pass-through of exogenous productivity ‘shocks’ to wages, it is crucial to abstract from these 
compositional effects. This highlights the importance of having linked employer-employee data. 

                                                           
6  The standard deviation of labour productivity within an industry is approximately 1 log unit. 

(1) (2) (3) (4) (5)

Productivity 0.244*** 0.096*** 0.111*** 0.077*** 0.075***

(0.004) (0.002) (0.002) (0.002) (0.001)

Common controls X X X X X

Fixed effects

Firm X X

Worker X X

Firm#Worker X

R2 0.311 0.413 0.739 0.757 0.791

Adjusted R2 0.311 0.403 0.673 0.689 0.721

N 27,325,184 27,325,184 27,325,184 27,325,184 27,325,184 
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3.3 Has the relationship between wages and firm productivity changed? 

Table 2 shows the results from the regression that looks for changes in the relationship between firm 
productivity and wages. Again, as we move from Column 1 to 5 we incorporate an increasingly 
burdensome fixed effects structure. As the model is in differences, firm and worker fixed effects are now 
allowing for differential trends in wages.7  

Table 2: The changing in the link between wage growth and firm productivity growth  
Dependent variable: Change in log wages of the individual 

 
Note: All regressions include a set of common controls covering worker characteristics (sex, a quadratic in age and 
residential location (Statistical Area 4)), firm characteristics (size and industry division), and state- and division-wide 
time-varying factors (state and industry division separately interacted with financial year). All are interacted with the 
post13 dummy. Errors are clustered at the firm-level. 

 
Turning now to our variable of interest (that is, productivity#post13), the negative coefficient on the 
interaction term suggests that there has been some weakening in the relationship between productivity 
and wages in recent years.  Our estimates suggest that the relationship weakened by 10-20 per cent, 
depending on the specification. 

Overall, the results indicate that the relationship between wages and productivity has declined modestly 
in recent years. While the results specifically relate to the relationship between idiosyncratic firm 
productivity and wages (as discussed above), they are suggestive of a broader weakening in the 
relationship. This lends credence to the view that structural factors may have weighed on wage growth 
in recent years. We explore this in more detail in the next section. Nevertheless, given our dataset 
concludes in 2014-15 it is not clear whether lower pass-through of productivity to wages has persisted.  

To try to quantify these effects, we run a simple counterfactual. We assume that prior to 2012-13 there 
was a (long-run) one-to-one relationship between wages and productivity at the aggregate level.8 We 
also assume that the 10 per cent weakening in the relationship evident at the micro level can be 

                                                           
7  Freestone (2018) finds no systematic heterogeneity in wage growth, which would suggest that these fixed effects are 

unnecessary. Nevertheless, some of these micro-level fixed effects appear to improve the model fit, particularly the 
inclusion of firm fixed effects. This is even more evident in the non-interacted differences specification in Appendix B. 

8  This assumption is consistent with the fact that labour’s share of income has been broadly flat for a number of 
decades.  

(1) (2) (3) (4) (5)

ΔProductivity 0.121*** 0.118*** 0.105*** 0.100*** 0.097***

(0.003) (0.003) (0.003) (0.003) (0.002)

ΔProductivity#post13 -0.016*** -0.015*** -0.031*** -0.027*** -0.024***

(0.004) (0.004) (0.005) (0.005) (0.004)

Common controls X X X X X

Fixed effects

Firm X X

Worker X X

Firm#Worker X

R2 0.036 0.063 0.264 0.283 0.325

Adjusted R2 0.036 0.041 0.013 0.008 0.046

N 27,325,184 27,325,184 27,325,184 27,325,184 27,325,184 
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generalized to the macro level.9 Our counterfactual then asks, what would wage growth have looked like 
if the relationship had not weakened, given labour productivity growth of around 1½ per cent?  

The red line in Figure 4 plots this counterfactual wage growth series. 10 In this case, aggregate nominal 
wage growth might have been about 0.15 percentage points higher in each year since 2012-13, 
eliminating around 1/3 of the unexplained weakness in nominal wage growth. The results are obviously 
only illustrative, but they do suggest that structural forces could potentially account for a non-trivial share 
of the unexplained weakness observed in recent years. 

Figure 4: A modest drag on aggregate wage growth  
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Notes: Wage growth measure is year-ended growth in WPI. Counterfactual assumes a one-to-one historical 
relationship between labour productivity and wages, and that the relationship has weakened by 10 per cent. 
Source: ABS; Authors’ calculations 

4. POTENTIAL EXPLANATIONS FOR THE CHANGING RELATIONSHIP 

There are numerous potential explanations for a recent, potentially transient, shift in the relationship 
between productivity and wages, and for unexpectedly lower wage growth more generally.11 Some of 
these are more Australia specific and we briefly discuss a few of these in Section 4.1. 

Nevertheless, as discussed in Arsov and Evans (2018), wage growth has been unexpectedly low in a 
number of advanced economies over the past few years. This would suggest that these phenomena are 
unlikely to be explained solely by domestic factors. 

As such, we then go on to explore some explanations that are more global in nature. One explanation is 
declining labour market fluidity, which has been documented in the United States. Declines in fluidity 
could reflect increasing distortions and adjustment costs, and so could be the cause of lower wage growth 
and the change in the relationship between firm productivity and wages we observe in the data. But it 

                                                           
9  This represents a lower bound based on our estimates and thus reflects a conservative stance on the effect of micro-

level decoupling between wages and productivity. 
10  WPI is quality adjusted, so changes in productivity may be less likely to affect this wages measure. However, this graph 

is just intended as illustrative. 
11  We return to some other potential explanations in our discussion of future work in Section 6.  
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could also be symptomatic of factors such as technological progress and globalisation that make workers 
feel less secure and therefore less willing to change jobs. 

Section 4.2 then explores that the role of the growing productivity gap between the productivity of 
‘leaders’ and ‘laggards’ (Andrews, Criscuolo and Gal 2015, 2016) in explaining the change in the 
relationship between firm productivity and wages, and low wage growth (see Weir 2018).12  

4.1 Australia-specific explanations 

A number of potential explanations for any change in the relationship between firm-level productivity 
and wages relate specifically to Australia. One prominent example is that wages grew faster than 
productivity during the mining boom, and now need to grow more slowly than productivity for a period.13  

Assessing this real wage overhang explanation is complicated by the fact that the relevant wage for 
consumers and firms differs. Consumers care about how much they can buy with their wage, and so the 
relevant deflator is the Consumer Price Index (CPI). The nominal wage deflated by the CPI is often referred 
to as the real consumer wage. In contrast, firms care about how much their labor inputs cost relative to 
what they can sell their goods for, so the relevant deflator is the Producer Price Index (PPI). The nominal 
wage deflated by the PPI is often referred to as the real producer wage. As documented by Treasury 
(2017), the real consumer wage grew faster than productivity during the mining boom, while the real 
producer wage tracked labour productivity fairly closely.  

If the weakness in wages that has been observed in recent years does reflect some form of real wage 
overhang, it could potentially account for the decline in rent-sharing. In particular, if firms were handing 
out an ‘abnormally’ large share of productivity gains to workers during the boom, and are now trying to 
‘claw’ this back by giving out a lower share, this could account for the decrease in the rent sharing 
coefficient. That said, we might expect any such change to be more evident when looking at the 
relationship between the aggregate or industry-wide component of productivity and wages, rather than 
between the firm-specific component and wages.  

Another potential explanation for the observed decline in rent-sharing that specifically relates to our 
study is a change in the economy’s shock process. In order to isolate firm-specific productivity shocks, 
and to abstract from demand or other shocks that could affect firm’s measured productivity and wages, 
many rent sharing studies instrument their productivity variables. We choose not to do so for two 
reasons. First, we do not have access to any instruments that we feel are valid.14 Second, to the extent 
that firm-specific demand shocks raise firm’s profits, for example by raising the prices of their goods, we 
might still be interested in how they are passed on to wages. 

One concern, though, is that the pass-through of increased profits from productivity and demand shocks 
could differ if, for example, the persistence of the two shocks differs. Firm-specific productivity shocks 
might be more persistent than firm-specific demand shocks, and as such the pass-through of these shocks 
could be higher. This would be consistent with van Reenen (1996), who finds a much larger estimate of 
rent sharing when he instruments using a measure of patents. If this is the case, our estimated coefficient 
will be an average of the two pass-throughs, weighted by the relative importance of the two shocks. 

                                                           
12  A related, econometric, explanation could be that a growing productivity divergence might introduce an omitted 

variable bias, given we only have firm-level productivity in our regression. The bias is likely to be negative, as workers 
with higher wage growth have more understated productivity growth.  

13  See, for example, the Q&A to Phil Lowe’s Address to the AFR Business Summit on 6 March 2019, as reported in 
Kehoe (2019). 

14  Many papers use lags of the right hand side variables, or measures of industry profit and productivity. Such 
instruments are only valid under certain, fairly restrictive assumptions. 
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Moreover, if the relative importance of the two shocks has changed in recent years, this could lead to a 
change in the estimated coefficient. 

While this is possible, there is little evidence of such a change in the relative importance of firm-specific 
demand and productivity shocks. For one, if productivity shocks had become less important, we might 
expect to see a broad-based decline in the dispersion of productivity amongst firms in recent years. As 
discussed in Section 4.3, there is little evidence of such a broad-based decline. That said, Campbell et al 
(2019) do find some evidence of a decline for certain industries, so this could be worth exploring in 
future work. 

Similar arguments could be made regarding efficiency wages: firms paying higher wages to promote 
greater productivity. This has the potential to lead to reverse causality, and therefore bias our estimates 
of the relationship between firm idiosyncratic productivity and worker wages. However, it is unlikely to 
affect our estimates of the change in this relationship, unless the propensity to use efficiency wages has 
changed. 

4.2 Declining labour market fluidity 

A number of papers have documented the fact that labour market fluidity has declined in the US (for 
example, Davis and Haltiwanger, 2014). Moreover, a nascent literature from the United States suggests 
that lower job switching rates are associated with lower wage growth (Faberman and Justiniano 2015; 
Karahan et al 2017; Moscarini and Postel-Vinay 2017). This association has been found in a variety of 
settings, and is robust to different definitions of local labour markets – such as demarcated by geography 
(states) or demography (sex, race, age and skills) – and to using both aggregate- and individual-level 
wages. The job switching rate emerges as a more important correlate of wages than the unemployment 
to employment transition rate, a common cyclical indicator of labour market strength. 

A more fluid labour market can benefit workers’ wages in two broad ways. First, it may lift labour 
productivity by facilitating moves from low to high productivity firms, as examined in Section 5, and 
ensuring workers’ skills and firms’ needs are well matched. Second, it may improve the bargaining 
position of workers. If a worker has more credible outside options in more fluid labour markets, then 
they will be better placed to negotiate higher wages with their employer, and therefore to earn a higher 
share of the rent from the match. As such, declines in labour market fluidity associated with, for example, 
increasing adjustment costs, could weigh on aggregate wages and help to explain the micro decoupling 
evident in the data. 

At the same time though, lower labour market fluidity could also be a symptom of other, broader factors. 
A number of academics and policymakers have argued that factors such as increasingly globalised labour 
market and technological innovation could make workers feel less secure in their jobs (see: Lowe 2018; 
Foster and Guttmann 2018). For example, cross-country evidence shows that those sectors that 
experienced a larger increase in global value chain integration recorded lower wages growth, especially 
when low-wage countries are integrated in supply chains (Andrews, Gal and Witheridge 2018). Indeed, 
workers that feel less secure might be less willing to change job, particularly if they worry that, as the 
newest employees, they might be the first to be fired in any downturn. Moreover, to the extent that 
globalisation benefits the largest firms (for example, Autor et al 2017), and could therefore weigh on the 
entry and growth rates of new firms that drive much of the labour market turnover, it could directly affect 
labour market fluidity (Davis and Haltiwanger 2014). 
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Consistent with the US evidence, Australian labour markets appear to have become less fluid in recent 
years. This is demonstrated in Figure 5, which shows declines in excess job reallocation rates (Panel A) – 
job churn in excess of what is required to accommodate net job creation (see Davis and Haltiwanger 
(2014) for details) – and job-to-job switching rates (Panel B). Abstracting from cyclical fluctuations, both 
appear to have trended down over the sample.15 

Figure 5: Labour market fluidity has declined 
Panel A: Excess job reallocation rates 
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Panel B: Job switching rate 
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Notes: In Panel A, excess job reallocation is calculated as (JC+JD)/|(JC-JD)| where JC refers to job creation rates 
and JD refers to job destruction rates. The smoothed series utilises STATA's robust nonlinear smoothing command 
"smooth" (option = 4235eh). The job switching rate is calculated as the number of workers that switch jobs, divided 
by the number that have jobs at the start and end of the year. 
Source:  Treasury analysis of de-identified tax data. 

 
Could the decline in job switching rates be associated with less upward pressure on Australian wages?   

Deutscher (2019) examines the effects of job switching on wages in Australia and finds that local labour 
markets that have higher job switching rates have higher wage growth. This result remains after 
controlling for demographic influences and a range of time-varying shocks, including the unemployment 
to employment transition rate.  A one percentage point increase in the rate at which workers switch jobs 
is associated with a ½ percentage point increase in growth in average wages.  While the association is 
stronger for those that switch jobs, who may be in the best position to negotiate wages, it remains for 
those that stay in their job. This provides evidence that it is not only the act of switching jobs that affects 
worker wages, but also the potential to switch jobs, as it provides workers with an outside option and 
therefore a stronger bargaining position. These associations also hold when estimated using employee-
level data, which allows for a rich set of controls. 

The association between job switching and wages is economically meaningful, with plausible variation in 
switching rates being associated with wage growth worth hundreds of dollars a year to the typical worker.  
As an illustration of this, Figure 6 shows the predicted effect of a 2 percentage point decrease in the 
job-switching rate – which roughly corresponds to the decline in the aggregate switching rate observed 
in the sample we analyse – for a worker on the mean wage.16 For the full sample, the predicted effect is 

                                                           
15  Ideally we would extend the sample, as the early part of our sample coincides with the mining boom, when job 

switching rates may have been unusually high. This is something we hope to do in future work. 
16  The sample we analyse differs from that in Figure 5; for example, it only includes those for whom we have location 

data. 
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a decline in wage growth of around 1 per cent (or $600) a year. This reflects a predicted effect of around 
-3 per cent (or $1600) a year for job switchers and around -0.6 per cent (or $300) a year for job stayers.   

Figure 6: Predicted impact on wages of a 2 percentage point decline in the job-
switching rate in a local labour market 

Panel A: Dollar decrease (2016 dollars) Panel B: Percentage point decrease 
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Notes: Based on coefficients from an OLS regression of the change in the natural logarithm of average wages in an 
SA4 in a given year on the job-to-job and unemployment-to-job transition rates and a set of control variables.  The 
control variables include year and SA4 fixed effects, state interacted with year, and a set of SA4 time-varying 
controls encompassing a linear trend, the unemployment rate, average number of weeks searching for a job, share 
of workers in each of 19 one-digit industry classifications, and the average age and proportion female of the relevant 
sample. The regression is run on three samples: all wage earners; job-switchers; and job-stayers. 
Source:  Treasury analysis of de-identified tax data. 

 
 

The results of this exercise suggest that labour market fluidity may be an important factor in the evolution 
of wages – benefitting not just those who switch but those who choose to stay in their job.  Given the 
trend decline in labour switching rates has been coincident with the unexplained weakness in wages, it 
seems likely that the two are related. Moreover, to the extent that lower job switching rates imply fewer 
outside options for workers, or reflect declines in workers’ sense of security more generally, it could help 
to explain the modest decline in rent-sharing.  

As with the majority of this paper’s analysis, these findings rely on rich underlying microdata following 
workers and firms over time. A logical next step would be to directly examine whether the decline in 
rent-sharing was more pronounced in local labour markets where job switching declined more. As more 
comprehensive and finely-grained data become available, further light will be able to be shone on the 
role of job switching on productivity, and on individual careers and wages. Such data will also help to 
identify the underlying causes of the decline in job switching rates. 

4.3 Uneven technology diffusion 

Another factor that could be contributing to weak wage growth in Australia is an increasingly uneven 
diffusion of technology that leads to a growing divergence between the productivity of ‘leaders’ and 
‘laggards’. A growing divergence in productivity outcomes is likely to be associated with a growing 
divergence between the wages paid by high and low productivity firms, and therefore increasing wage 
inequality, particularly if the technologies require highly skilled workers (for example, Caselli 1999). 
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As well as leading to greater wage inequality, these dynamics could also weigh on aggregate wage growth, 
as discussed in Weir (2018) and Lowe (2018). In order to compete less productive firms will need to try 
to cut costs, and might do so by paying lower wages. This would place downward pressure on aggregate 
wage growth, and would lead to a further divergence between the wages paid by high and low 
productivity firms, beyond what would be implied by the differing marginal productivities of labour at 
these firms. As this might make the wages of low productivity firms less responsive to productivity 
changes, it could also help to explain the decline in rent-sharing. 

There is some tentative evidence for such dynamics overseas. For example, a number of papers have 
documented a growing gap between the productivity of leader and laggard firms, such as Andrews et al 
(2015, 2016) for a range of OECD countries, and Haldane (2018) for the United Kingdom. A number of 
papers have also documented that the dispersion of wages paid by firms has increased over time (for 
example, Card, Heining and Kilne 2013; Song et al 2019). Moreover, Berlinegieri, Blanchenay and 
Criscuolo (2017) find some evidence that the relationship between productivity and wages is weaker for 
low productivity firms, and that much of the increase in the dispersion of wages between firms reflects 
weakness in wage growth for firms at the bottom of the wages distribution. Both of these finding are 
consistent with low productivity firms having to lower wages to compete with their highly productive 
competitors. 

However, the evidence for Australia is far less compelling. In particular, there is little evidence of rising 
productivity dispersion in general, or a growing divergence between the productivity of leaders and 
laggards in Australia. This is evident in Figure 7 Panel A, which is constructed by calculating the ratio of 
value-added labour productivity for firms at the top of the industry productivity distribution to all other 
firms in an industry, and then taking the median across industries.17 These findings are consistent with 
the findings in Treasury (2017) and Campbell et al (2019) and are robust to different industry definitions, 
weighting and trimming rules, divergence measures, to focusing on the top 5 percentile instead of the 
top 10 percentile, and to using estimates of multi-factor productivity. 

There is also little evidence of a growing divergence between wages paid by firms at the top and bottom 
of the productivity distribution. Despite some volatility, the ratio of wages paid by the most productive 
firms to those paid by other firms has been broadly stable over the sample (Figure 7, Panel B).18  

                                                           
17  Industries are defined at the 4-digit ANZSIC industry level. The analysis uses data from the BLADE database. Value-

added productivity is calculated as the ratio of value-added to full time equivalent (FTE) employees. We add one to FTE 
employees to account for owner-managers who affect output, but not employment statistics. 

18  The large spike in the mid-2000s appears to reflect a number of small firms. If we weight firms by their employment 
shares, which may lessen measurement error and may be more relevant for aggregate wage outcomes, the spike is not 
evident and the ratio is far less volatile. 
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Figure 7: Key components of technology diffusion-based explanations 
Panel A: Ratio of productivity for most productive 
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Notes: Ratios calculated as average productivity or wages for top 10 percentile of firms in a 4-digit industry, over 
average for rest of industry. Goods sector includes manufacturing, construction, wholesale trade, retail trade and 
transport; services sector includes accommodation, information media & technology, rental services & real estate, 
professional services and administrative services. In left panel, one added to all firm FTE to account for owner 
managers. 
Source: ABS BLADE database 

 
So far we have focused on firm-level data, but employee-level data may provide additional insights as we 
can examine individual wage outcomes, rather than the firms’ average wages. Using our de-identified 
matched firm-worker panel data we follow Song et al (2019) and decompose the total variation in 
individuals’ wages into two components: a between-firm component that captures variation in average 
wages across firms; and a within-firm component that captures variation in individuals’ wages within 
firms (see Box 1). If uneven technology diffusion was important, we would expect to see a substantial 
increase in the between-firm component. While there has been some increase, it has been fairly small at 
only around 0.03 log points, and has only accounted for around half of the overall increase in wage 
dispersion (Figure 8). In contrast, in the US over the same sample the between component increased by 
around 0.1 log points, and accounted for the majority increase wage dispersion over the sample (Song et 
al 2019). 
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Figure 8: Decomposing wage dispersion 
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Notes: See Box 1 
Source: Treasury analysis of de-identified tax data. 

 

Box 1: Wage Variance Decomposition 

In order to compare Australian and US trends in earnings equality, we adopt the approach of Song et al (2019) 
and decompose the cross-sectional variance of log earnings into within and between components. That is, we 

let 𝑤𝑡
𝑖,𝑗

 be log wages of employee i at firm j in period t. Thus,  

𝑤𝑡
𝑖,𝑗

≡ 𝑤̅𝑡
𝑗

+  (𝑤𝑡
𝑖,𝑗

− 𝑤̅𝑡
𝑗
)  

Where 𝑤̅𝑡
𝑗
 is the mean wage in firm j and so 

𝑣𝑎𝑟(𝑤𝑡
𝑖,𝑗

) = 𝑣𝑎𝑟(𝑤̅𝑡
𝑗
) + 𝑣𝑎𝑟(𝑤𝑡

𝑖,𝑗
|𝑖 ∈ 𝑗) 

The first term on the right-hand side is the between-firm dispersion as measured by the variance of mean firm 
wages. The second term on the right-hand side is the within-firm dispersion term as measured by the deviation 
of individual earnings from the within-firm mean.  

In order to make our estimates comparable with those of Song et al (2098), we weight the within-term by each 
firm’s employment share and limit our sample to full-time employees19 in companies with a headcount of 20 or 
more. 

5. PRODUCTIVITY, WAGES AND REALLOCATION 

Throughout the paper we have noted the potential for lower market dynamism to weigh on both 
aggregate productivity and wage growth. For example, lower job switching rates could lead to less 
reallocation of workers from unproductive to productive firms, and therefore to slower productivity and 

                                                           
19  Our data only contain annual earnings. We proxy full-time workers as those earning above the annualised minimum 

weekly wage; for example, in 2010 this was $29,624 per year.  
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wage growth. A natural question then is, what evidence is there of decreasing market dynamism and 
efficient reallocation? 

Declines in firm entry rates over recent years are suggestive of a decline in business dynamism and 
efficient reallocation. Andrews and Hansell (2019) look at this more explicitly, using the approach 
proposed by Decker, Haltiwanger, Jarmin and Miranda (2018). This approach exploits a prediction from 
canonical models of firm dynamics: conditional on initial size, more productive firms are likely to grow 
more quickly than less productive firms, and less productive firms are more likely to fail. 

The approach entails estimating the responsiveness of employment growth to lagged labour productivity 
at the firm level, where the simplest form of the model is: 

𝑔𝑖,𝑡+1
𝐸 = 𝛽0 + 𝛽1𝐿𝑃𝑖𝑡 + 𝑋𝑖𝑡

′ 𝜃 + 𝜀𝑖𝑡+1 

Where future growth (𝑔𝑖,𝑡+1
𝐸 ) is a function of current (labour) productivity (LP) of firm i at time t, 

expressed in relative terms as deviation from the industry average, and where the vector X’ includes 
controls for firm size plus a range of cyclical controls.20  

To identify how productivity-enhancing reallocation is evolving in a structural sense, the model controls 
for cyclical influences in three key ways. First, the firm-level labour productivity is expressed as a 
deviation from the industry average at the four-digit ANZSIC06 level, which is akin to controlling for time-
varying industry-specific shocks. Second, the impact of common time-varying shocks (that is, the national 
business cycle) is absorbed by the inclusion of time fixed effects. Finally, the inclusion of the state 
unemployment rate directly controls for state-level business cycles and, through its interaction with the 
labour productivity term, sweeps out the impact of state-level shocks on the responsiveness of 
employment growth to firm productivity. 

Turning to the results, the estimated coefficient on LP (that is, β1) is positive and significant at the 
1 per cent level, suggesting that on average over the sample period, more productive firms are more 
likely to expand and less productive firms are more likely to contract. This suggests that resources are 
flowing in the right direction over time and thus that reallocation provides a positive contribution to 
aggregate productivity growth. Importantly, evidence emerges to suggest that this reallocation process 
may have weakened around the same time that aggregate wage growth slowed. In this regard, the 
authors interact the (lagged) firm productivity term with: 

• First, a linear time trend and its square, to account for non-linearity in the trend. This exercise 
returns a positive coefficient on LP*Trend coupled with a negative coefficient on LP*Trend2. To 
illustrate this effect, Figure 9 Panel A shows the difference in employment growth between a high 
productivity firm – that is, a firm one standard deviation above the industry mean – and a low 
productivity firm – that is, a firm one standard deviation below the industry mean. Over the first 
few years of the sample, the employment growth differential between a high and low productivity 
firm rises slightly but then declines from around 2010 to reach around 7 per cent by 2016. 

• Second, a piecewise dummy that takes the value of 1 in the post-2011-12 period. This interaction 
term is negative and statistically significant and implies that the difference in employment growth 

                                                           
20  The model defines LP as real revenue per FTE in order to avoid indirectly censoring units with negative value-added but 

using real value-added per FTE measure does not change the story. While future analysis will look to exploit estimates 
of multi-factor productivity (MFP), the estimated responsiveness of firm employment growth to (lagged) productivity in 
Decker et al (2018) is insensitive to the choice of LP or MFP.  
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between a high and low productivity firm fell by 1½ percentage points in the low wage growth 
period (Figure 9, Panel B).21  

Given higher productivity firms pay higher wages, the decline in the rate at which labour is reallocated to 
high productivity firms implies that there will be fewer high paying jobs than there would be otherwise. 
Put differently, a slowdown in the pace of labour reallocation might have resulted in a compositional 
effect that imposes a drag on the dynamics of aggregate wages and productivity growth. Finally, to the 
extent that the decline in the ability of the economy to reallocate labour to high productivity firms reflects 
a rise in adjustment frictions, this could partly account for why more firms are reporting it more difficult 
to find suitable workers (Figure 1, Panel A). 

Figure 9: Reallocation of workers from low to high productivity firms has slowed 
Difference in employment growth between a high and low productivity firm 
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Notes: High (low) productivity firms are defined by being one standard deviation above (below) the industry mean 
labour productivity. 
Source: Andrews and Hansell (2019). 

6. DISCUSSION AND FUTURE WORK 

Our paper exploits novel microdata sources to assess the relevance of a range of potential structural 
barriers to higher wage growth in Australia. In doing so, we provide a proof-of-principle demonstration 
of the value of longitudinal microdata, and related empirical techniques, to such investigations. In 
particular, our use of de-identified matched employer-employee data allow us to employ state-of-the-
art high-dimensional fixed effects modelling to account for worker heterogeneity, and assortative 
matching between high ability workers and high productivity firms. Consistent with the international 
literature, our results highlight the importance of accounting for worker heterogeneity in explaining wage 
outcomes, and in making inference about their determinants.  

Moreover, our analysis provides useful insights into low wage growth in Australia. This is a topic of some 
international interest given recent weak wage growth across a range of advanced economics, and is of 
domestic interest given the importance of wages at both an individual and aggregate level. 

                                                           
21  This result is robust to using alternative break points, such as 2012/13. 
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Overall, we find evidence that structural forces may have weighed on wage growth in recent years, and 
that these forces have seen a modest shift in the relationship between wage and productivity growth. 
Given that our dataset concludes in 2014/15, however, it is not clear whether lower pass-through of 
productivity to wages has persisted. While we cannot provide conclusive evidence on what these forces 
are, our results do help to guide future research by ruling out some, and providing tentative evidence in 
support of others. 

In particular, our results suggest that declining labour market fluidity and market dynamism are 
potentially relevant factors to understand changes in the relationship between firm productivity and 
wage growth, and weak wage growth more generally. As such, any explanation for weak wage growth 
probably needs to also be able to explain changing patterns of market dynamism. 

The implications of these findings are obviously highly dependent on the cause of lower wage growth 
and dynamism. For example, if firm-specific human capital has become more important – due to the rise 
in intangible capital – then the cost of job separation from both the perspective of the worker and firm 
will be higher, implying less need for job switching (Cairo and Cajner 2018). To the extent that this affects 
the bargaining position of workers and firms similarly, there may be limited ability or benefit to respond 
to these trends. Conversely, if these concurrent phenomena instead reflect increasing adjustment 
frictions in the economy (Decker et al., 2018), then there may be a scope to improve outcomes. Thus, 
identifying the reasons for the decline in market dynamism is a high priority for future research.  

It is important not to overstate the significance of these results for wage growth going forwards. To date, 
the degree of ‘unexplained’ weakness in wage growth has been only moderate: potentially around 
½ percentage point. Moreover, given we have not explicitly identified the drivers of the reduced pass-
through of productivity to wages, it is not clear whether this effect will persist into the medium term. In 
particular, if the structural forces reflect a shift to a new ‘equilibrium’ relationship between the level of 
productivity and wages, the effects on wage growth should eventually diminish and thus be less relevant 
in the medium term.  

In either case, if the public and private sectors are aware of these forces, they can continue to incorporate 
them into their forecasts. For example RBA (2018) notes:  

“The central forecast for a moderate increase in wages growth over the next couple of years assumes that 
some of these factors will continue to weigh on wages growth for a while yet.” 

A greater understanding of the nature of the structural weakness will help to facilitate this. 

Our results also provide further empirical support for the relationship between productivity and wages 
by providing the first empirical evidence on firm- and worker-level rent sharing for Australia. These results 
confirm international evidence of modest but not insignificant sharing of idiosyncratic firm-level 
productivity gains with workers (Card, Heining and Kline 2013). 

Of course, there are other potential explanations for the observed decline in rent-sharing that we have 
not explored in this paper, some of which can only be tested with matched firm-worker panel data. These 
could be considered in future work.  

For example, research has also linked the increasingly globalised nature of the labour market, and the 
rise of China, to lower worker bargaining power (for example, Autor, Dorn and Hanson 2016). Future 
work could examine this, particularly if we can couple the location and industry data in our de-identified 
matched firm-worker panel data with detailed data on imports. An examination of the link between wage 
bargaining patterns and rent-sharing would also be possible with the incorporation of micro-level wage 
setting data into our de-identified matched firm-worker panel database (see Guertzgen 2009).  
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Finally, it would be interesting to dig deeper into the relationship between wages and market dynamism. 
A logical next step would be to directly examine whether the shift in the relationship between wages and 
firm-level productivity was more pronounced in local labour markets where job switching declined more. 
Furthermore, younger workers are generally more likely to switch jobs, and job switching represents a 
key channel for them to increase their wages (for example, Haltiwanger, Hyatt and McEntrafer, 2017). As 
such, they could be more adversely affected by lower labour market fluidity. Finally, it would be 
interesting to explore how the results vary across high or low wage earners or for firms in regions with 
larger declines in labour mobility. This could give additional clues regarding the structural sources of wage 
growth in Australia.  
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APPENDIX A: MICRODATA SOURCES 

Business Longitudinal Analysis Data Environment (BLADE) 

The firm-level data used in this paper draws heavily on the Business Longitudinal Analysis Data 
Environment (BLADE), compiled by the Australian Bureau of Statistics. BLADE consists of administrative 
data from the Australian Taxation Office (ATO) matched with ABS-produced survey microdata, such as 
the Business Characteristics Survey. 

In particular the analysis on productivity reallocation and average wages draws on two key administrative 
data sources. First, measures of output and intermediate use are sourced from Business Activity 
Statements (BAS). While each annualised BAS dataset contains more than two million records, only 
around 800,000 or more units report formal employment via annual payment summaries (APS).22 We 
also draw on this payment summary information in combination with the industry of origin of the 
employing business to estimate full-time equivalent employees – our measure of labour input.23 For the 
BLADE data analysis in Section 4.2, we construct value-added as sales less non-capital expenditure, which 
capture intermediate inputs used by the firm in producing their output. 

The main demographic information in BLADE consists of industry and institutional sector codes, which 
permit us to focus on industries and businesses that are privately-owned. The ABS adds an additional 
year of administrative and survey data to BLADE each year. As of writing, the latest available year was 
2016 and so our sample – unless specified otherwise – encompasses the period 2002 to 2016.24 

As is standard in the literature, we confine our analysis to focus on the market sector (that is, we exclude 
utilities; education, public administration and safety and health) and exclude finance and insurance 
where productivity is notoriously difficult to measure. Our final firm-level dataset for analysis covers 
around 75 per cent of gross value added and 84 per cent of compensation of employees in the market 
sector over 2002-2016.  

Matched Firm-Worker Panel 

In addition to the firm-level data results from BLADE, the Australian Treasury receives de-identified 
Australian Taxation Office (ATO) for the purposes of revenue analysis.25 These data encompass annual 
employee earnings for all Pay-As-You-Go taxpayers and detailed balance sheet information on 
incorporated entities. For this paper and other revenue-related analysis, we have created a panel of 
de-identified matched firm-worker data. In this database, we define firm value added as a measure of 
gross operating surplus (essentially profits) plus compensation of employee. We use this definition, 
instead of the definition used in BLADE, due to differences the reporting of intermediate inputs across 
tax forms. 

Since these data encompass all compliant entities within the Australian economy, it is difficult to provide 
summary statistics since the cross-sectional and longitudinal scope of each slice of the data is determined 
by the analytical question at hand. Currently, our data cover 2001-02 to 2014-15 (2015-16 for some of 

                                                           
22  It is important to note that the ABS does not permit access to person-level data. All information from the payment 

summaries has been aggregated to the business unit.  
23  For more information see Hansell, Nguyen and Soriano (2015).  
24  The Australian fiscal year ends in June. For simplicity, we refer to the last year of the fiscal year, and so the 2001-02 

fiscal year becomes 2002.  
25  Note the de-identified data contains no information capable of directly identifying any individual or business. 
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the analysis in this paper) but is limited to those employed by incorporated entities. For example, the 
following table contains summary statistics on annual individual wages over the sample period.26  

Fiscal Year N Mean Median 
25th 

Percentile 
75th 

Percentile SD 

2002 2,936,914 27,906 21,923 6,406 39,200 39,128 

2003 3,329,139 28,153 21,854 6,319 39,906 35,602 

2004 3,583,533 28,654 21,130 5,995 40,352 48,154 

2005 3,698,581 29,324 21,742 6,137 41,874 38,451 

2006 3,845,696 30,836 22,935 6,586 43,798 41,075 

2007 3,919,153 32,575 23,783 6,803 45,778 46,912 

2008 4,091,544 34,703 25,017 7,264 48,402 49,378 

2009 3,951,879 36,897 27,684 8,042 51,384 50,740 

2010 3,865,464 38,110 28,324 8,424 52,844 51,355 

2011 3,993,307 40,373 29,889 8,962 55,599 55,253 

2012 4,060,880 42,232 31,199 9,454 58,322 54,264 

2013 4,122,927 44,246 32,677 10,000 60,706 57,359 

2014 4,079,778 45,604 33,959 10,600 62,352 60,297 

2015 4,243,596 46,524 34,662 11,050 63,585 61,976 

 
For companies this corresponds to approximately 739,000 distinct entities with the following attributes.  

Variable  N Mean Median 
25th 

Percentile 
75th 

Percentile SD 

Employment 4,048,349 16.02 4 2 10 360.9 

Value-
added 4,048,349 1,599,857 133,941 46,743 374,935 116,000,000 

 
Central to the questions of whether wage growth has slowed and by how much is how one defines 
wages. The most cited measures of are the wage price index (WPI), total compensation or average 
compensation of employees (AENA).27  

When comparing these measures of wage growth to our micro-data, it is important to consider what 
exactly is captured in these measures. The WPI tracks the compensation paid to given occupations, and 
so is not affected by compositional shifts, such as workers leaving high paying mining jobs at the end of 
the mining boom, and taking up other, lower paid, jobs. In contrast, AENA tracks the aggregate 
compensation paid to all workers in the economy, and is affected by such compositional shifts. As such, 
it has tended to be below the WPI in recent years. 

Our microdata, on the other hand, track individual workers. The data will be affected by compositional 
change, similar to AENA, as a worker shifting from a high paying job to a low paying job will be recorded 
as having low wage growth (assuming we are not focusing on worker-employer matches). In this sense, 
it is somewhat akin to the AENA measure. However, we cannot calculate wage growth for an individual 
that transitions from work to unemployment, or unemployment to work, which might make our 
measure less volatile.  

                                                           
26  Note that to make our regressions more tractable, we limit each individual to their main income source for the year. In 

the (rare) event of a tie, we use random assignment.  
27  AENA is obtained by dividing total compensation of employees by the total number of employees (see introduction to 

ABS catalogue number 6105 (2005).  
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Notwithstanding these differences, when we compare the relative rates of change for these three 
series, it shows that the microdata we exploit in this paper exhibits similar trends over the sample 
period (Figure A1). Indeed, the relative rate of change for our sample is often in the middle between 
the WPI and AENA. 

Figure A1: Wage Growth Measures 
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Notes: Micro data series show unweighted average of individual workers’ wage growth. 
Sources: ABS; Treasury analysis of de-identified tax data 
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APPENDIX B: ADDITIONAL RESULTS  

Figure B1 demonstrates the broad-based decline in wages growth over recent years. It plots the 
differences in the coefficients on financial year dummies for 2010-11 and 2015-16, from regressions of 
the change in log annual wages on financial year dummies and certain micro fixed effects. The model 
with no fixed effects simply captures the change in workers’ unweighted average wage growth, while the 
other specifications capture average wage growth for individual workers, firms, or worker firm matches 
(that is, a given worker at a given firm). In all cases, the decline in wage growth over the period is around 
2 percentage points. This provides further evidence that the decline in wage growth has been 
broad-based, and has not reflected any compositional shifts between different types of workers, firms, 
or the matches therewith. 

Figure B1: A broad-based decline in wage growth since 2010-11 
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Note: Presents the fall in nominal wage growth between 2010-11 and 2015-16, estimated as the difference in the 
coefficients from a regression of change in log annual wages on financial year dummies and either: no controls; firm 
fixed effects; worker fixed effects; and firm-worker pairing fixed effects.  The latter two specifications also include 
controls for a quadratic in worker age. 
Sources: Treasury calculations based on confidential taxation data. 

 
Table B1 shows the results from the changes version of our model examining the relationship between 
firm wages and productivity. Consistent with the levels specification, the coefficient on productivity tends 
to be around 0.1. This provides additional robustness to the results from our level model. Moreover, the 
fact that the level and changes specifications are quite similar suggest that it there is not some inherent 
difference between the levels and changes specifications that is driving our finding that the relationship 
between firm wages and productivity has weakened. 
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Table B1: The changing link between wages growth and firm productivity growth 
Dependent variable: Change in the log wages of the individual 

 
Note: All regressions include a set of common controls covering worker characteristics (sex, a quadratic in age and 
residential location (Statistical Area 4)), firm characteristics (size and industry division), and cyclical effects (state 
and industry division separately interacted with financial year). Errors are clustered at the firm-level. 

 

(1) (2) (3) (4) (5)

ΔProductivity 0.119*** 0.116*** 0.105*** 0.101*** 0.097***

(0.003) (0.003) (0.003) (0.003) (0.002)

Common controls X X X X X

Fixed effects

Firm X X

Worker X X

Firm#Worker X

R2 0.036 0.058 0.231 0.252 0.303

Adjusted R2 0.036 0.042 0.037 0.043 0.072

N 27,325,184 27,325,184 27,325,184 27,325,184 27,325,184 


