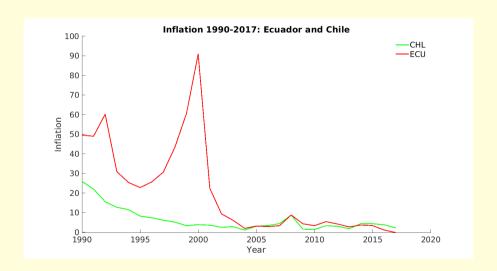
Evaluating Exchange Rate Regimes: a Natural Experiment?

Amol Ashoka University

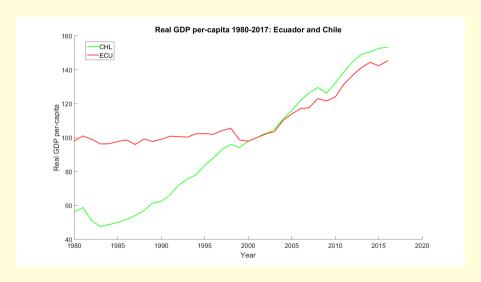
Constantino Hevia Universidad Torcuato Di Tella

Juan Pablo Nicolini FRB Minneapolis and Universidad Torcuato Di Tella

December, 2025


- We revisit the question of the **optimal exchange rate policy** in Small Open Economies (SOE).
- Old question: Friedman (1953) "The case for flexible exchange rates":
 - Prices are sticky.
 - Let the exchange rate do the adjustment.
 - Spain and Portugal 2009-12.
- "Fear of Floating" in practice. Calvo and Reinhart (2002).

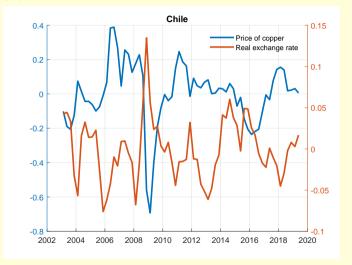
- Want a model with realistic real exchange rate behavior.
- Focus on role of primary commodities in SOE.
- Primary commodity prices (PCP)
 - are particularly volatile and persistent
 - correlate with relevant variables (RER, output).
 - exogenous in SOE.
- Very simple model reproduces salient features of data.


- Study the interaction of
 - shocks to the terms of trade (PCP).
 - frictions in the setting of **both** prices and wages
- If only one friction, the nominal exchange rate movements fixes it.
- One example with rigid wages: Schmitt-Grohé and Uribe (2016).

- We use two paradigmatic examples.
 - Chile "floats" since 2001.
 - Ecuador "hard peg" also since 2001.
- In both countries exports of PC around 20% of GDP (over 80% copper in Chile and almost 50% oil in Ecuador).
- Almost a natural experiment?

Inflation in Chile and Ecuador

GDP per capita in Chile and Ecuador


- We use Chilean data (floater) to calibrate the model.
- Simple NK model with Calvo-type frictions in prices and wages.
- Augmented with:
 - A sector that produces an exportable primary commodity.
 - Exogenous shocks to PC prices, and TFP.

- The model replicates key moments in the data.
- Some degree of "fear of floating" is optimal.
- The right amount of "fear" depends much on details.
- Fully floating dominates a hard peg, with welfare gain around 0.03 percentage points of lifetime consumption.
- The model ignores lack of commitment and assumes that the price level can be perfectly targeted.

Plan

- Data for Chile.
- Model.
- Calibration and Simulations.
- Welfare Analysis.
- Data for Ecuador

Chile and copper

Note: Quarterly data. HP-filtered with a smoothing parameter of 1600. Correlation is -0.6.

Impulse response to negative shock to the price of copper

Note: VAR with price of copper in constant USD, real GDP, and real exchange rate. VAR identified using exogeneity of price of copper. Data are hp-filtered.

Model with flexible prices and financial autarky

- Labor only economy.
- Produces
 - a **traded** primary commodity using labor and an endowment (oil, land)
 - a **nontraded** final good using labor, the locally produced commodity and an imported input
- Preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[u(c_t) - h(n_t + I_t) \right]$$

- n_t is labor allocated to the final non-traded
- l_t is labor allocated to the primary commodity.

Thus

Final good technology

$$X_t = A_t (E)^{\phi} (I_t)^{(1-\phi)}$$

 $v_t = Z_t (n_t)^{\eta_1} (x_t)^{\eta_2} (m_t)^{\eta_3}$

 $P_{t} = k \frac{1}{Z_{t}} (W_{t})^{\eta_{1}} (P_{t}^{x})^{\eta_{2}} (P_{t}^{m})^{\eta_{3}}$

SO

$$W_t = (1 - \phi) P_t^{x} A_t \left(\frac{E}{I_t}\right)^{\phi}$$

$$P_t = k' rac{\mathcal{A}_t^{\eta_1}}{\mathcal{Z}_t} \left(rac{\mathcal{E}}{I_t}
ight)^{\phi\eta_1} \left(P_t^{\mathsf{x}}
ight)^{\eta_1+\eta_2} \left(P_t^{\mathsf{m}}
ight)^{\eta_3}$$

Law of one price

$$P_t^x = S_t P_t^{x*}$$

$$P_t^m = S_t P_t^{m*}$$

- Then,

$$P_t = k' rac{\mathcal{A}_t^{\eta_1}}{\mathcal{Z}_t} \left(rac{\mathcal{E}}{l_t}
ight)^{\phi\eta_1} \left(S_t P_t^{\chi*}
ight)^{\eta_1+\eta_2} \left(S_t P_t^{m*}
ight)^{\eta_3}$$

- or

$$P_t = P_t^{USA} S_t \left[k' \frac{A_t^{\eta_1}}{Z_t} \left(\frac{E}{I_t} \right)^{\phi \eta_1} \left(\frac{P_t^{X*}}{P_t^{USA}} \right)^{\eta_1 + \eta_2} \left(\frac{P_t^{m*}}{P_t^{USA}} \right)^{\eta_3} \right]$$

- If we let ξ_t be the real exchange rate:

$$\xi_t = \frac{P_t^{USA}S_t}{P_t} = \frac{1}{MC_t^*}$$

where

$$extit{MC}_t^* = \left[k' rac{A_t^{\eta_1}}{Z_t} \left(rac{E}{I_t}
ight)^{\phi \eta_1} \left(rac{P_t^{X*}}{P_t^{USA}}
ight)^{\eta_1 + \eta_2} \left(rac{P_t^{m*}}{P_t^{USA}}
ight)^{\eta_3}
ight]$$

is the marginal cost in constant USD.

Quantitative Model

- Add Calvo frictions in prices and wages.
- Accumulation of foreign liabilities:

$$\frac{D_{t+1}}{1+r_t} - D_t + P_t^{x*} (X_t - x_t) - P_t^{z*} z_t = 0.$$

Numerical experiments

- We abstract from implementation.
- Monetary policy can set a nominal variable.
- Given the frictions, natural policy to considers trades-off P_t vs W_t .
- Will consider a policy that trades off P_t versus S_t
 - Chile targets nominal prices: inflation targeting.
 - Ecuador: dollarization equivalent to a fixed exchange rate regime.

"Fear of floating" policy

- Recall that

$$P_t = \frac{\theta_p}{\theta_p - 1} S_t M C_t^*$$

- Policy of the form

$$\log\left(\frac{S_{t+1}}{S_t}\right) = -\nu\log\left(\frac{MC_{t+1}^*}{MC_t^*}\right).$$

- $\nu = 0$ is a peg.
- $\nu = 1$ is pure inflation targeting.
- $0 < \nu < 1$ is "fear of floating".

Calibration

- Preferences of the form

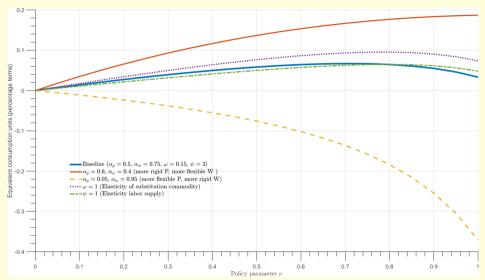
$$U(C_t, L_t) = \frac{C_t^{1-\gamma} - 1}{1-\gamma} - \varphi \frac{(\bar{L} - L_t)^{1+\psi}}{1+\psi}.$$

- Elasticity of labor supply: $\psi = 3$.
- Fraction of the workforce in commodity sector is 5%.
- Share parameters in final goods: $\eta_1 = 0.03$, $\eta_2 = 0.24$, $\eta_3 = 0.73$.
- Commodity production: elasticity of substitution $\omega = 0.15$.
- Process for commodity prices P_t^{X*} . Volatility = 0.14, persistence = 0.97.
- Price stickiness parameters:
 - $\alpha^p = 0.5$
 - $-\alpha^{w} = 0.75$

Baseline parameters

Parameter	Description	Value
β	Discount factor (utility, annualized)	0.96
γ	Risk aversion (utility)	2
ψ	Exponent leisure (utility)	3
ω	Elasticity of substitution in commodity technology	0.15
ho	Share of labor in commodities technology	0.10
η_1	Share of home commodity in final goods	0.03
η_2	Share of foreign commodity in final goods	0.24
η_3	Share of labor in final goods	0.73
α^p	Calvo parameter prices	0.50
α_{W}	Calvo parameter wages	0.75
$ heta_{\mathcal{P}}$	Elasticity of subst. intermediate varieties	6
θ^{W}	Elasticity of subst. labor varieties	6
ρ_X	Coefficient on lagged value home commodity price	0.97
σ_{X}	Standard deviation shock to home commodity price	0.14

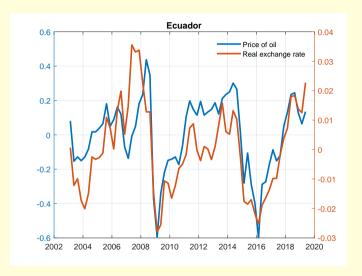
Moments Chile and Inflation targeting


	Chile	Model
std(GDP)	1.6	1.6
$std(p^{x*})$	18.4	18.4
std(RER)	5.5	6.8
$corr(RER, p^{x*})$	-0.75	-0.83
corr(RER,GDP)	-0.46	0.20
corr(GDP,p ^{x*})	0.56	0.29

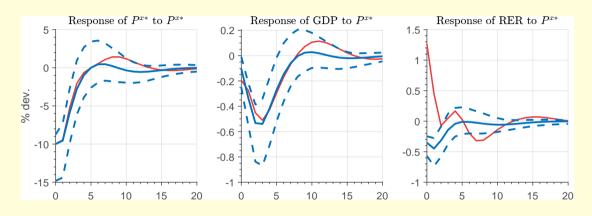
Data and model are HP-filtered with a smoothing parameter of 1600.

Welfare analysis

- Compute the welfare gain relative to a peg by moving the "fear of floating" parameter ν .
- Simulate model with all shocks
- Baseline economy
- Economies with different degrees of price stickiness and elasticities.

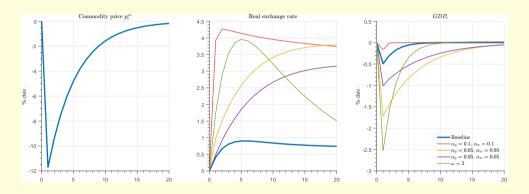

Welfare gain over hard peg ($\nu = 0$)

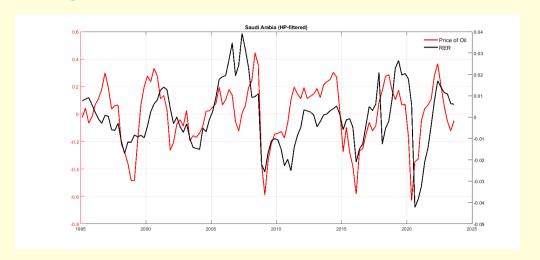
Welfare analysis


- Some degree of "fear of floating" is optimal.
- The exact amount is sensitive to details.
- Pure inflation targeting dominates a peg unless wages are extremely rigid.

Ecuador

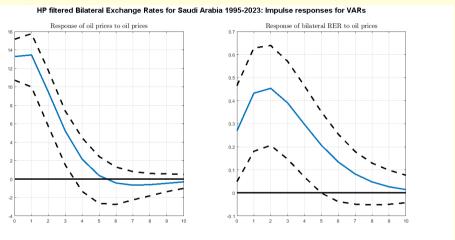
Note: Quarterly data. HP-filtered with a smoothing parameter of 1600. Correlation is 0.9 for multi and 0.76 for bilateral


Ecuador: impulse response to negative oil price shock

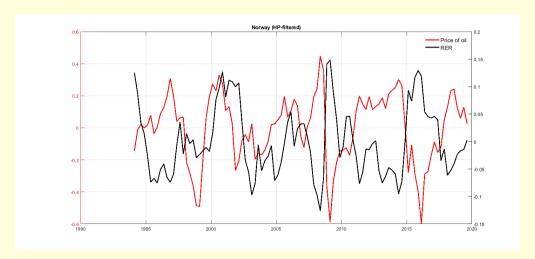

Note: VAR with oil price in constant USD, real GDP, and real exchange rate. VAR identified using exogeneity of oil price. Data is hp-filterd. In red, Chile's impulse response.

Price and wage stickiness don't do the job!

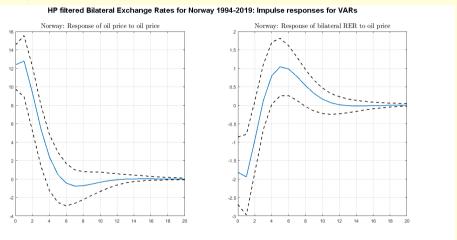
- Impulse response under a peg for different degrees of stickiness.



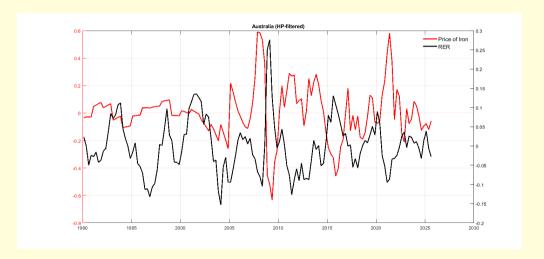
Other Peg: Saudi Arabia and oil


Note: Quarterly data. HP-filtered with a smoothing parameter of 1600. Correlation is 0.46.

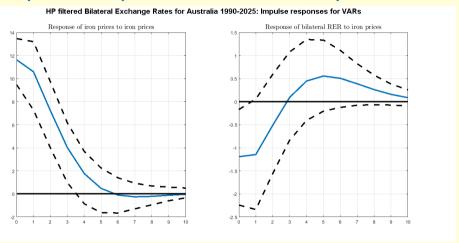
Impulse response to positive shock to the price of oil


Note: VAR with price of oil in constant USD, and real exchange rate. VAR identified using exogeneity of price of oil. Data are hp-filtered.

Other floater: Norway and oil

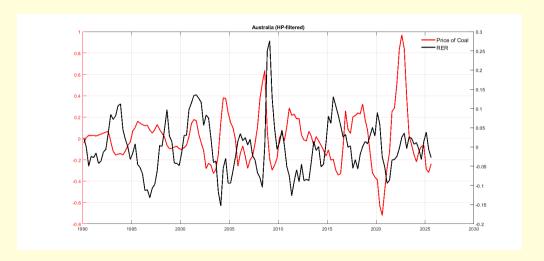

Note: Quarterly data. HP-filtered with a smoothing parameter of 1600. Correlation is -0.5.

Impulse response to positive shock to the price of oil

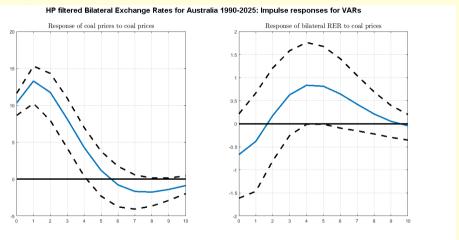

Note: VAR with price of oil in constant USD, and real exchange rate. VAR identified using exogeneity of price of oil. Data are hp-filtered.

What about Australia and iron?

Note: Quarterly data. HP-filtered with a smoothing parameter of 1600. Correlation is -0.5.


Impulse response to positive shock to the price of iron

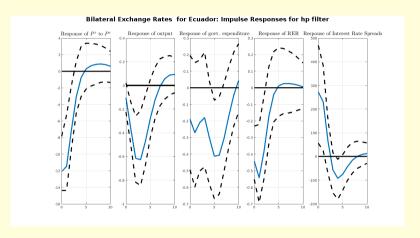
Note: VAR with price of iron in constant USD, and real exchange rate. VAR identified using exogeneity of price of iron. Data are hp-filtered.


THANKS!

Australia and coal

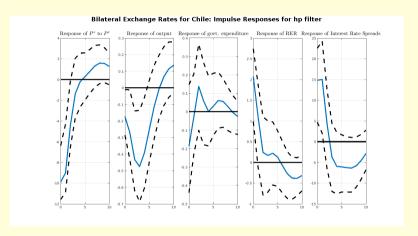
Note: Quarterly data. HP-filtered with a smoothing parameter of 1600. Correlation is 0.32.

Impulse response to positive shock to the price of coal


Note: VAR with price of coal in constant USD, and real exchange rate. VAR identified using exogeneity of price of iron. Data are hp-filtered.

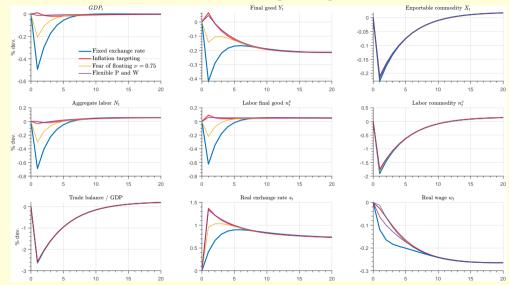
Moments Ecuador and fixed exchange rate

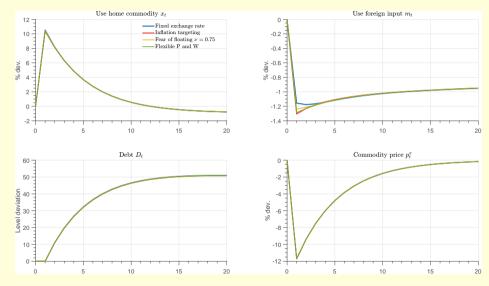
	Ecuador	Model (only p^{x*})
$std(p^{x*})$	21.5	21.4
std(GDP)	1.8	3.1
std(RER)	1.5	6.4
$corr(RER, p^{x*})$	0.76	-0.74
corr(RER,GDP)	0.30	-0.26
$corr(GDP, p^{x*})$	0.47	0.83


Data and model are HP-filtered with a smoothing parameter of 1600.

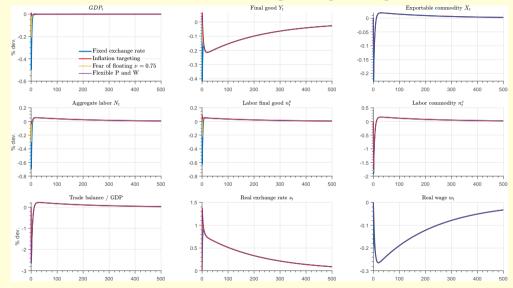
Ecuador: impulse response to negative oil price shock

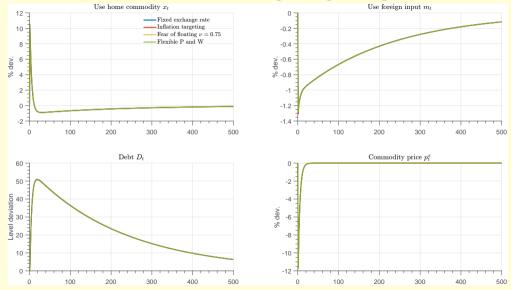
Note: VAR with oil price in constant USD, real GDP, real exchange rate, government expenditures, and soverign spread. VAR identified using exogeneity of oil price. Data is hp-filtered.


Chile: impulse response to negative copper price shock


Note: VAR with copper price in constant USD, real GDP, real exchange rate, government expenditures, and soverign spread. VAR identified using exogeneity of oil price. Data is hp-filtered.

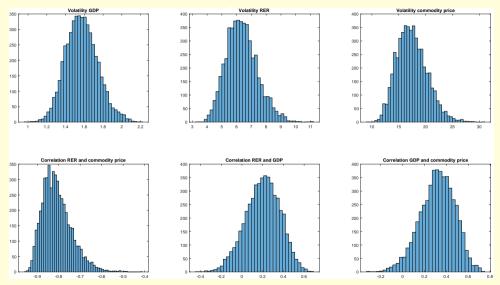
APPENDIX


Impulse responses inflation targeting


Impulse responses inflation targeting

Impulse responses inflation targeting (long horizon)

Impulse responses inflation targeting (long horizon)



Moments Chile and Inflation targeting

	Chile	Model	Only p^{x*}	No <i>A</i> ^x	No A ^y
std(RER)	5.5	6.8	5.7	6.7	6.5
std(GDP)	1.6	1.6	0.8	1.6	1.1
$std(p^{x*})$	18.4	18.4	18.4	18.4	18.4
$corr(RER, p^{x*})$	-0.75	-0.83	-0.97	-0.82	-0.85
corr(RER,GDP)	-0.46	0.20	-0.40	0.20	0.03
corr(GDP,p ^{x*})	0.56	0.29	0.61	0.32	0.43

Data and model are HP-filtered with a smoothing parameter of 1600.

Model moments small sample distributions

