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Abstract

We show that canonical menu cost models, when parameterized to match the distri-

bution of price changes, suffer three important shortcomings: they require implausibly

large menu costs, they predict a large amount of misallocation, and they cannot re-

produce the comovement between the frequency of price changes and inflation in the

data. These shortcomings are amplified in the presence of microeconomic strategic

complementarities. We resolve them by extending the standard multi-product menu

cost model along two dimensions. First, we assume that strategic complementarities

are at the firm, not the product level. Second, we assume that the products sold by a

firm are imperfect substitutes. In contrast to standard models, the frequency of price

changes increases rapidly with the size of monetary shocks, so our model implies non-

linear output responses. Even for small shocks, our model predicts stronger selection

effects and therefore more flexible price responses and smaller real effects.
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1 Introduction

Macroeconomists often invoke menu costs as an important source of price rigidities. In menu

cost economies, firms are more likely to adjust prices in response to large shocks, so Phillips

curves are potentially non-linear. However, most work using menu cost models studies the

responses to small aggregate shocks, often times using linear methods.1 The recent rise in

inflation in many modern economies suggests a need to understand how menu cost economies

respond to large shocks. Understanding the causes of high inflation hinges critically on

whether Phillips curves are as flat when inflation is high as they are when inflation is low.

In this paper, we study the importance of non-linearities in menu cost economies that

reproduce the distribution of micro price changes. As recent work by Alvarez et al. (2016)

showed, the latter is a critical determinant of the real effects of small monetary shocks in a

large class of menu cost economies. We show that standard menu cost models with Gaus-

sian idiosyncratic productivity shocks, both single- and multi-product, have three important

shortcomings when calibrated to match this distribution. First, they require implausibly large

menu costs and imply considerable profit losses from frictions to price adjustment. Second,

they predict a large amount of misallocation from dispersion in prices. Third, they cannot

reproduce the strong empirical comovement between inflation and the frequency of price

changes. These shortcomings are amplified in the presence of microeconomic strategic com-

plementarities that make a firm’s optimal reset price depend on the price of its competitors

(Klenow and Willis, 2016).

We propose a resolution to these shortcomings by extending the standard multi-product

menu cost model (Alvarez and Lippi, 2014) along two dimensions. First, we assume that

strategic complementarities are at the firm, not the product level. Second, we assume that

the products sold by a given firm are imperfect substitutes. Both of these assumptions reduce

the amount of misallocation from inefficient price dispersion inside the firm and thus require

lower menu costs to reproduce the frequency of price changes. These two extensions go a

long way towards remedying the three shortcomings of canonical menu cost models.

We use our model to revisit the classic question of how large are the real effects of monetary

policy. We find that the output responses to monetary shocks in our model are very different

than those in the standard model. First, even in response to a small monetary shock, our

1See, for example, Dotsey et al. (1999), Golosov and Lucas (2007), Midrigan (2011), Vavra (2013), Alvarez
et al. (2016), Alvarez et al. (2022), Auclert et al. (2022). An exception is the work of Karadi and Reiff (2019)
who study the response to large shocks in an economy similar to Midrigan (2011).
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model predicts a much larger degree of price flexibility owing to a stronger selection effect

(Golosov and Lucas, 2007). Second, output responds non-linearly to shocks of various sizes.

The larger the shock is, the stronger the response of the frequency of price changes and

therefore the smaller the real effects. Thus, our model predicts that the Phillips curve is

highly non-linear.

We start by motivating our analysis using micro price data that underlies the construction

of the Consumer Price Index in the United Kingdom. Since aggregate inflation has not been

volatile prior to the recent rise in inflation, we use disaggregated sectoral data to study the

high-frequency comovement between sectoral inflation and the sectoral frequency of price

changes. In line with previous work, we show that the frequency of price changes increases in

periods of high inflation.2 For example, when sectoral inflation is close to zero, the frequency

of price changes is approximately 10% per month. In contrast, when inflation increases to

5%, the frequency of price changes averages 14%. We follow Klenow and Kryvtsov (2008) in

decomposing movements in inflation into an intensive margin term that keeps the frequency

of price changes constant, and an extensive margin term. As in Klenow and Kryvtsov (2008),

the intensive margin term accounts for most of the movements in inflation in periods of low

inflation, but for only half of these movements when inflation is relatively high. Thus, the

frequency of price changes plays an important role at high levels of inflation.

We begin our analysis using a standard single-product menu cost model in which firms

are subject to Gaussian idiosyncratic, sectoral and aggregate shocks. Firms face random

menu costs of adjusting prices, as in Dotsey et al. (1999), and have occasional opportunities

to change their price for free, as in Nakamura and Steinsson (2010). As in existing work,

a single state variable – the gap between the firm’s price and its flexible-price counterpart,

in short the price gap, summarizes the history of idiosyncratic shocks received by each firm.

This price gap determines the hazard that the firm resets its price. In turn, the distribution

of price gaps across firms and the adjustment hazard determines the distribution of price

changes and the responses of the economy to aggregate shocks.

We calibrate this model to match the frequency and distribution of price changes in the

data. The calibrated model displays three shortcomings. First, it requires very large menu

costs: the average amount of resources spent on changing prices in any given period is equal

to 8.8% of GDP, much larger than the 1% direct estimate in the literature (Levy et al., 1997,

Zbaracki et al., 2004). Since most price changes in this economy are free, the average menu

2This pattern has been documented before by Gagnon (2009), Nakamura et al. (2018), Alvarez et al.
(2018) and Karadi and Reiff (2019) using aggregate data from episodes of high inflation in other countries.
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cost does not fully reflect the losses firms face from frictions to price adjustment. We find that

these frictions reduce the value of the firm by 44%, a sizable amount and at odds with the

view that menu costs generate small losses to individual firms (Mankiw, 1985). Second, the

model implies substantial misallocation: aggregate productivity is 21.6% lower than under

flexible prices. Though this number is comparable to the estimates of misallocation reported

by De Loecker et al. (2020) and Baqaee and Farhi (2018), these estimates encompass losses

from all distortions, not just those due to menu costs. Third, the model predicts that the

frequency of price changes is nearly constant, even in times of high inflation, at odds with

the patterns we document in the data.

We next consider a multi-product setting in which each firm sells a continuum of products,

each subject to idiosyncratic and firm-specific Gaussian quality shocks. There are economies

of scope in price adjustment in that the firm can change the entire menu of its prices by

paying a single fixed cost, assumed constant for all firms and time periods. We show that

two state variables are now necessary to summarize the history of shocks experienced by a

firm: the firm’s price gap – a weighted average of the product-level price gaps of the firm, as

well as the duration of the firm’s price spells. The latter determines the amount of within-

firm misallocation: the older prices are, the larger the misallocation, and thus the larger the

losses from leaving prices unchanged.

We show that economies of scope, on their own, do not remedy the three shortcomings

enumerated above. We therefore extend the model along two dimensions, both of which

reduce the misallocation from price dispersion within the firm. Our first assumption is that

strategic complementarities, which arise due to decreasing returns to scale, are at the firm,

not at the product level. Specifically, there is a firm-specific factor of production that is

fixed at the firm level, but perfectly mobile across the products the firm sells. Second, we

assume that individual products sold by a given firm are imperfect substitutes. Our notion of

a product is a collection of highly substitutable goods that are subject to correlated shocks.

For example, various flavors of tea sold at Starbucks are highly substitutable but also face

correlated shocks, so we think of tea at Starbucks as a product that is distinct from pastries,

another product sold at Starbucks. Because a firm’s products are imperfect substitutes, the

losses that the firm faces from its inability to change prices in response to product specific

shocks are small. We show that the re-calibrated model goes a long way towards remedying

the shortcomings of the standard menu cost models. For example, our model predicts that

menu costs represent 2.4% of average firm revenue, much closer to the empirical estimates,
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and that the losses from misallocation are only 2%. Importantly, our model predicts that

the frequency of price changes increases much more in times of high inflation, half as much

as it does in the data.

We use our model to revisit the real effects of monetary shocks by studying impulse

response functions to one-time, unanticipated and permanent shocks of various sizes. We

show that in our model impulse responses are very different than those predicted by standard

models. First, output responds non-linearly to shocks because the frequency of price changes

increases rapidly with the size of the shock. In contrast, in the standard model the output

response scales nearly linearly with the size of the shock, even for monetary shocks as large

as 15%, because the frequency of price changes is nearly constant. Second, even for small

shocks, for which the frequency of price changes responds little, the real effects in our model

are smaller than in the standard model. This is due to a much stronger selection effect.

We provide intuition for these two results by zooming in on a special case of our multi-

product model, one in which the elasticity of substitution between the products sold by a

given firm is equal to zero. In this case the duration of price spells is no longer a state

variable because there is no misallocation inside the firm. We show that this version of the

multi-product model is identical to a single-product model provided we adjust the trend

growth rate of the money supply to ensure that the firm’s price gap drifts at the same

rate in both models. Even though these two models have identical implications for the

distribution of firm price gaps and decision rules, they have different implications for the

distribution of price change. The single-product economy generates a bi-modal distribution

with most mass near the (s, S) thresholds. In contrast, the multi-product model matches the

distribution of price changes in the data well due to the large product-specific shocks. Despite

the different distributions of price changes, the two models respond identically to aggregate

shocks. Thus, the multi-product model without misallocation inside the firm inherits the

properties of the single-product model which, as Golosov and Lucas (2007) pointed out,

features strong selection effects. Moreover, since our model requires less volatile firm-level

shocks to reproduce the dispersion of price changes, the menu cost is lower, implying narrower

(s, S) bands, and therefore more non-linear output responses.

We summarize our findings by tracing out the Phillips curve implied by monetary shocks.

In our model, in contrast to the standard model, the Phillips curve is highly non-linear and

becomes nearly vertical at inflation rates exceeding 10%.
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2 Motivating Evidence

This section uses sectoral micro price data from the UK to corroborate that the frequency

of price changes systematically increases with inflation, and that increases in the frequency

of price changes account for a significant share of movements in inflation when inflation is

relatively high. Though these facts have been documented in previous work using data for

other countries,3 we use the numbers for the UK to quantitatively evaluate the ability of

several variants of the menu cost model to reproduce this pattern. In contrast to existing

work, we focus on data for individual sectors rather than the aggregate. As we show be-

low, inflation is considerably more volatile in individual sectors compared to the aggregate,

so sectoral variation allows us to better understand the relationship between inflation and

frequency of price changes in periods of high inflation.

2.1 Data

We use the data that underlie the construction of the Consumer Price Index (CPI) in the

UK. The data are collected by the United Kingdom Office for National Statistics (ONS).

We use publicly available monthly product-level price quotes from January 1996 to August

2022. Goods and services are classified into 71 classes following the 6-digit Classification of

Individual Consumption by Purpose (COICOP 6). Each item in a given class is constructed

with product-level price quotes by either sampling individual outlets or by collecting prices

centrally (for example, university tuition fees). We exclude centrally-collected items, which

account for approximately 26% of total consumer expenditure.

In computing price statistics, we use regular price series constructed by filtering V-shaped

sales that last less than three months.4 Kehoe and Midrigan (2015) show that in theory

temporary price changes do not contribute much to inflation dynamics. We next corroborate

their argument empirically by showing that excluding V-shaped sales from the calculation of

inflation does not visibly change its time path.

To that end, consider the following decomposition of inflation. Let pit be the price of

good i and ωit the weight of that good in the CPI. Aggregate inflation is then

πt =
∑
i∈At

ωit log pit/pit−1,

3See, for example, Gagnon (2009) using data for Mexico, Nakamura et al. (2018) using data for the US,
Alvarez et al. (2018) using data for Argentina, Karadi and Reiff (2019) using data for Hungary.

4We define V-shaped sales as temporary price cuts that return exactly to the original level.
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Figure 1: Inflation Calculated Using on All vs. Regular Price Changes
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where At = Rt∪St is the set of goods that experience a price change in period t, Rt is the set

of goods that experience a regular price change and St denote the set of goods who experience

a price change associated with a V-shaped sale. We construct an alternative inflation series

based on regular price changes by calculating

πRt =
∑
i∈Rt

ωit log pit/pit−1,

and thus excluding price changes that either initialize or end a V-shaped sale.

Figure 1 compares the inflation series computed using all price changes with that com-

puted using only regular price changes. The figure reports the cumulative inflation in the

previous 12 months, that is, the year-to-year percent change in the consumer price index.

The two series are nearly indistinguishable, consistent with the theoretical predictions of Ke-

hoe and Midrigan (2015). Motivated by this observation, from now on we focus our analysis

on regular price changes only.

2.2 Inflation and Frequency of Adjustment

We follow Klenow and Kryvtsov (2008) in decomposing movements in inflation into an exten-

sive margin component that captures changes in the frequency of price adjustments and an

intensive margin which captures movements in the average price change of firms that adjust.
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Specifically, letting ft(s) denote the fraction of products in sector s that experience a change

in their regular price in period t and ∆t(s) denote the average price change conditional on

adjustment, we have5

πt(s) = ∆t(s)ft(s).

We gauge the role of the extensive margin by constructing a counterfactual inflation se-

ries that replaces the observed frequency of price changes ft(s) with that sector’s average

frequency of price changes, f̄(s) = 1
T

∑
t ft(s). That is, we calculate

πct (s) = ∆t(s)f̄(s),

and compare the dynamics of the actual inflation series πt(s) with the counterfactual πct (s)

that shuts down movements in the frequency of price changes.

Figure 2 shows the fraction of price changes (left panel) and the two inflation series (right

panel) for a specific COICOP 6 sector – “Bread and Cereals.” As earlier, our measure of

the frequency of price changes is the average monthly fraction of (regular) price changes in

the previous 12 months. Our measure of inflation is the year-to-year percent change in the

sectoral price index.

As the figure shows, the frequency of price changes in this sector fluctuates substantially

over time, ranging from 5% to 20%. Consequently, the extensive margin of adjustment

accounts for a sizable fraction of movements in inflation, especially during the 2007-2008

world food crisis, when actual inflation exceeded 15%, while counterfactual inflation only

increased to 7%.

Figure 3(a) documents these patterns more systematically by presenting a binned scat-

terplot of the sectoral frequency of price changes against sectoral inflation rates pooling data

from all sectors and weighing each by its expenditure share. We include sectoral fixed effects

so our results capture high-frequency variation in sectoral inflation rates, not trend differ-

ences across sectors. The figure shows that the frequency of price changes systematically

increases with inflation. For example, when inflation is in the neighborhood of zero, the

frequency of price changes is approximately equal to 10% per month and when inflation is

5%, the frequency of price changes averages 14%.

To assess the importance of movements in the frequency of price changes for the dynamics

of inflation, Figure 3(b) shows a binned scatterplot of the counterfactual inflation series

that keeps the frequency of price changes constant at its historical average against realized

5All statistics are weighted using item-level consumption expenditure weights.
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Figure 2: Inflation Decomposition: Bread and Cereals
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Notes: The left panel plots the frequency of adjustment ft(s). The right panel plots πt(s) = ∆t(s)ft(s) and

πc
t (s) = ∆t(s)f̄(s).

Figure 3: Inflation and the Frequency of Price Changes
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Table 1: Role of Extensive Margin

A. Inflation Volatility

s.d. πt(s) 2.87

s.d. πct (s) 2.51

ratio 0.87

B. Slope of πct (s) on πt(s)

all observations 0.80

πt(s) > 75th pct. 0.48

πt(s) > 90th pct. 0.39

Notes: We compute the statistics in Panel A by first calculating the standard deviation of the two inflation

series for each sector and then calculating the expenditure-weighted average of the sector-level standard

deviations. We compute the slope coefficients in Panel B using an OLS regression that weighs observations

for each sector using that sector’s expenditure weights.

inflation. Note that for low levels of inflation the extensive margin accounts for little of the

movements in inflation: the counterfactual inflation series increases one-for-one with actual

inflation. In contrast, for high inflation rates, above 4%, ignoring the extensive margin

systematically underpredicts inflation.

Table 1 further corroborates these patterns. Panel A shows that the standard deviation

of the counterfactual inflation series is equal to 2.51%, representing 87% of the standard

deviation of actual inflation. This is consistent with Klenow and Kryvtsov (2008), who

document that most movements in inflation are due to the intensive margin. However, Panel

B shows that the extensive margin becomes much more important at higher rates of inflation.

The slope coefficient in a regression of πct (s) on πt(s) is equal to 0.80 for the entire sample, but

falls to 0.48 and 0.39 when sectoral inflation exceeds its 75th and 90th percentile, respectively.

We therefore conclude that at higher rates of inflation, the extensive margin accounts for

more than one half of the variability of inflation.
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3 Single-Product Menu Cost Model

We next show that the standard single-product menu cost, calibrated to match the distri-

bution and frequency of price changes in the data, has three shortcomings. First, the model

requires implausibly large menu costs to reproduce the frequency of price changes in the data.

Second, it implies implausibly large losses from misallocation due to price dispersion. Third,

it predicts that the frequency of price changes comoves little with inflation. As we show

below, these shortcomings also apply to the standard multi-product model with economies

of scope in price adjustment.

Because we are interested in studying the comovement between sectoral inflation and

frequency of price changes, we assume an economy that consists of a continuum of ex-ante

identical sectors. The output of each sector is used to produce a final consumption good using

a Cobb-Douglas technology. Each sector consists of a continuum of firms, each producing

a differentiated variety. Following Midrigan (2011) and much of the subsequent menu cost

literature, we assume that idiosyncratic firm-level shocks are shocks to quality: they change

both the costs of producing the good, as well as the consumers’ demand for it, but absent

menu costs leave the firm’s profits unchanged. In addition to idiosyncratic shocks, we allow

for shocks to sectoral productivity, as well as shocks to monetary policy. We follow Golosov

and Lucas (2007) in assuming that preferences are logarithmic in consumption and linear

in hours worked. This assumption is widely used in menu cost models and implies that

the dynamic problem of firms in a given sector depends solely on that sector’s inflation and

marginal cost. This allows us to characterize inflation dynamics in each sector in isolation,

greatly simplifying computations.

3.1 Consumers

A representative consumer has preferences over consumption and derives disutility from work.

The consumer maximizes life-time utility, given by

E0

∞∑
t=0

βt (log ct − ht) ,

subject to

Mt +
1

1 + it
Bt+1 = Wtht +Dt +Mt−1 − Pt−1ct−1 +Bt + Tt,

where ct is consumption, ht is hours worked, Pt is the aggregate nominal price level, Mt+1

is the money supply, Bt+1 is the amount of government bonds, Dt denotes profits and Tt

represents government transfers.
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For simplicity, we assume that monetary policy is a money growth rule and that nominal

spending is subject to a cash-in-advance constraint,

Ptct ≤Mt.

The Euler equation for bond holdings is then

1

ct
= βEt (1 + it)

Pt
Pt+1

1

ct+1

,

and the cash-in-advance constraint binds if it > 0, as in our numerical experiments. Since

the optimal labor supply choice satisfies

Wt

Pt
= ct,

the nominal wage is equal to the money supply

Wt = Ptct = Mt.

Note that the timing assumptions we make here are as in Rotemberg (1987) and imply that

the cash-in-advance constraint does not distort the labor supply choice because labor income

in period t can be used for consumption immediately.

3.2 Technology

We next describe the assumptions we make on technology.

3.2.1 Final Goods Producers

Final output is produced using a Cobb-Douglas aggregator across sectoral output yt(s)

yt = exp

(∫
log yt (s) ds

)
. (1)

The final output is used for consumption only, so the aggregate resource constraint is ct = yt.

The aggregate price index Pt satisfies

Pt = exp

(∫
logPt (s) ds

)
,

where Pt(s) is the price index in sector s and the demand for a given sector’s output is

yt(s) =

(
Pt(s)

Pt

)−1

yt.

The assumption of a unit elasticity of substitution across sectors implies that sectoral expen-

ditures are proportional to nominal spending, the money supply and nominal wages:

Pt(s)yt(s) = Ptyt = Mt = Wt.
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3.2.2 Intermediate Goods Producers

Firm f in sector s produces output using a labor-only technology with decreasing returns to

scale determined by η ≤ 1

yt (f, s) = et (s)ut (f, s) lt (f, s)η ,

where et(s) is a productivity component common to all firms in sector s, ut(f, s) represents

the quality of an individual firm f in that sector and lt(f, s) the amount of production labor

the firm hires. As in Burstein and Hellwig (2008), decreasing returns to scale introduce a

form of strategic complementarity across price setters, dampening the response of individual

prices to aggregate and sectoral shocks.

Sectoral output is obtained by aggregating firm output using a Dixit-Stiglitz aggregator

with elasticity of substitution σ

yt (s) =

(∫ (
yt (f, s)

ut (f, s)

)σ−1
σ

df

) σ
σ−1

. (2)

Notice that in addition to shifting the firm’s productivity, the quality index ut(f, s) also acts

as a demand shifter. If prices were flexible, firms would respond to an increase in ut(f, s)

by reducing prices one-for-one, leaving quality adjusted prices, namely ut(f, s)Pt(f, s), and

firm revenues unchanged. These quality shocks therefore provide a simple mechanism that

changes firm’s desired prices without requiring us to keep track of ut(f, s) as a state variable.6

For tractability, we assume that et(s) and ut(f, s) follow random walk processes

log et+1(s) = log et(s) + σeε
e
t+1(s) (3)

and

log ut+1(f, s) = log ut(f, s) + σuε
u
t+1(f, s),

where εet+1(s) and εut+1(f, s) are i.i.d innovations drawn from a standard normal distribution.

Letting Pt(f, s) denote an individual firm’s price, the demand function for the firm’s

output is given by

yt (f, s) = ut (f, s)

(
ut (f, s)Pt (f, s)

Pt (s)

)−σ
yt (s) ,

where

Pt (s) ≡
∫
Pt (f, s)

yt (f, s)

yt (s)
df =

(∫
(ut (f, s)Pt (f, s))1−σ df

) 1
1−σ

is the price index in sector s.

6An alternative approach, which we discuss in the Appendix, would be to assume that ut(f, s) only affects
productivity and scale the menu costs accordingly.
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3.3 Menu Costs and Firm Objective

As recent work emphasized, the aggregate implications of menu cost models are shaped

by the distribution of individual firms’ desired price changes as well as the shape of the

adjustment hazards, which in turn determine the distribution of firm price changes (Caballero

and Engel, 2007, Midrigan, 2011, Alvarez et al., 2016). We therefore assume a flexible menu

cost specification that allows the model to reproduce key moments of the distribution of price

changes in the data. Specifically, we follow Nakamura and Steinsson (2010) and assume that

with probability 1 − λ firms can change their price for free and with probability λ a price

change requires a fixed cost ξt(f, s). We follow Khan and Thomas (2008) in assuming that the

fixed cost is an i.i.d. draw from a uniform distribution U [0, ξ̄] which gives rise to a smoothly

increasing adjustment hazard, as in Costain and Nakov (2011) and Alvarez et al. (2021).

The firm’s objective is to maximize the present value of its profits, given by

E0

∞∑
t=0

βt
1

Ptct

[
(1 + τ)Pt (f, s) yt (f, s)−Wt

(
yt (f, s)

et (s)ut (f, s)

) 1
η

− ξt (f, s)WtIt(f, s)

]
,

where τ = σ/ (σ − 1) is an output subsidy that corrects the markup distortion that would

arise even in the absence of menu costs. Letting It(f, s) denote a price adjustment indicator,

the last term represents the menu cost of changing prices, denominated in units of labor.

It is convenient to rewrite the firm’s objective as a function of its price gap: the ratio of

its actual price relative to what the firm would charge under flexible prices. To do so, we

first define the real marginal cost index in sector s as

at(s) ≡
Wt

Pt (s) yt(s)

(
yt (s)

et (s)

) 1
η

,

and define the firm’s price gap as

xt (f, s) = āη
et (s)ut (f, s)Pt (f, s)

Mt

,

where ā is the steady state value of at(s). Similarly, we define the sectoral price gap as the

CES weighted average of firm price gaps

xt (s) =

[∫
xt (f, s)1−σ df

] 1
1−σ

= āη
et (s)Pt (s)

Mt

.

This sectoral price gap is equal to one in steady state, and more generally is inversely related

to the sector’s real marginal cost

xt(s) =

(
at(s)

ā

)−η
. (4)

13



We note that under flexible prices xt (f, s) = xt(s) = 1 and at(s) = η.

With this notation in place, we can write the firm’s objective as

E0

∞∑
t=0

βt

[
(1 + τ)

(
xt (f, s)

xt (s)

)1−σ

− at (s)

(
xt (f, s)

xt (s)

)−σ
η

− ξt (f, s) It(f, s)

]
, (5)

or using equation (4),

E0

∞∑
t=0

βt
(
xt (s)σ−1

[
(1 + τ)xt (f, s)1−σ − āxt (s)(

1
η
−1)(σ−1) xt (f, s)−

σ
η

]
− ξt (f, s) It(f, s)

)
.

(6)

Given a sectoral price gap xt(s), the firm level price gap that maximizes the firm’s flow profits

is equal to

xt (f, s) =

(
ā

η

) 1

1+σ( 1
η−1)

xt (s)

(σ−1)( 1
η−1)

1+σ( 1
η−1) ,

so the exponent

θ ≡
(σ − 1)

(
1
η
− 1
)

1 + σ
(

1
η
− 1
)

determines the strength of strategic complementarities, that is, the extent to which an indi-

vidual firm’s price depends on the price of its competitors.7 In particular, the lower η is or

the higher σ is, the larger the value of θ, that is, the stronger strategic complementarities.

Intuitively, if after an increase in the money supply most firms do not adjust their prices and

therefore xt(s) is low, a firm that resets its price recognizes that if it were to increase its price

it would experience an output drop. This output drop is increasing in the demand elasticity

σ. Since marginal cost is upward sloping, more so the lower η is, the output drop would

lead to a decline in marginal cost. The firm would therefore not respond to the money shock

fully and instead keep its price gap close to xt(s). This complementarity thus amplifies the

output responses to monetary shocks as it increases the effective degree of price stickiness in

the economy.

Equation (6) shows that the problem of a firm in a given sector only depends on current

and future sectoral price gaps xt(s) and not on any other sectoral and aggregate variables.

To see how the sectoral price gap xt(s) is determined in equilibrium, let

x̂t(f, s) = xt−1 (f, s)
et (s)

et−1 (s)

ut (f, s)

ut−1 (f, s)

Mt−1

Mt

7Notice that we define θ to be the negative of the corresponding parameter in Alvarez et al. (2022).
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denote the firm’s individual state variable. If a firm with this state variable does not adjust,

its price gap is xt(f, s) = x̂t(f, s) and therefore falls if the money supply expands and increases

if sectoral or firm productivity increase. If, in contrast, the firm adjusts its price, it resets

the price gap to xt(f, s) = x∗t (s), which is common to all firms that adjust. Letting vat (s)

denote the value of adjusting the price and vnt (x̂, s) the value of not adjusting for a firm with

state x̂, the probability that the firm adjusts is given by

ht (x̂, s) = 1− λ+ λ
vat (s)− vnt (x̂, s)

ξ̄
.

Given the optimal reset price x∗t (s), the adjustment hazard ht (x̂; s) and the firm distribution

Ft(x̂; s), the sectoral price gap satisfies

xt(s) =

(∫ [
ht (x̂; s)x∗t (s)1−σ + (1− ht (x̂; s)) x̂1−σ] dFt (x̂; s)

) 1
1−σ

.

3.4 Aggregation

The frictions to price adjustment give rise to a non-degenerate distribution of price gaps

xt(f, s) and therefore dispersion in markups across firms and time. This, in turn, leads to

productivity losses from misallocation and inefficient fluctuations in sectoral and aggregate

employment. To characterize these, note first that we can recover the firm’s markup

µt (f, s) = η (1 + τ)
Pt (f, s) yt (f, s)

Wtlt (f, s)
,

which can be rewritten as a function of its own price gap and the sectoral price gap,

µt (f, s) = η (1 + τ)
1

at (s)

(
xt (f, s)

xt (s)

)1+σ( 1
η
−1)

.

Following Edmond et al. (2018), we can then calculate the sectoral markup as the sales-

weighted harmonic average of individual firm markups,

µt (s) =

(∫
µt (f, s)−1

(
xt (f, s)

xt (s)

)1−σ

df

)−1

.

We can also derive a sectoral production function that determines how much output yt(s)

a given sector produces using a total amount of labor

lt(s) =

∫
lt(f, s)df.
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Specifically, the sectoral production function is

yt (s) = et (s)φt (s) lt (s)η ,

where φt(s) summarizes the losses from misallocation due to dispersion in relative price gaps

φt (s) =

(∫ (
xt (f, s)

xt (s)

)−σ
η

df

)−η
.

When prices are flexible, xt(f, s) = xt(s) = 1 and φt(s) = 1. More generally, dispersion in

relative prices reduces φt(s) below 1, more so the larger σ/η is. Intuitively, efficiency requires

that all firms in a given sector use the same amount of labor, lt(f, s) = lt(s). The more

elastic demand is, or the stronger the decreasing returns, the larger the dispersion in firm

employment implied by a given amount of relative price dispersion, and thus the larger the

losses from misallocation.

In addition to reducing sectoral productivity, menu costs also generate inefficient fluctu-

ations in sectoral employment. In particular, the amount of labor used by a sector is

lt (s) =
(1 + τ) η

µt(s)
(7)

and is decreasing in the sectoral markup. In contrast, if prices were flexible, sectoral employ-

ment would be lt (s) = η.

Lastly, we can derive the aggregate implications of frictions to price adjustment in a

similar fashion by noting that the aggregate markup is the harmonic average of sectoral

markups

µt =

(∫
µt (s)−1 ds

)−1

,

and that aggregate productivity is equal to

ēt ≡
yt
lηt

=

(∫ (
xt

xt (s)

1

φt (s)

) 1
η

ds

)−η
,

where

xt = exp

(∫
log

xt(s)

et(s)
ds

)
.

3.5 Parameterization

Table 2 reports the result of the parameterization. A period is a month. We set the discount

factor β to an annualized value of 0.96, the demand elasticity σ to 6, implying a flexible price
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markup of 20%, and the elasticity of labor in the production function η to 2/3. These are

values commonly used in the literature. We calibrate the remaining parameters to match

moments on the frequency and size of price changes in the UK micro data reported in Panel

A. We compute the counterparts of these statistics in the steady-state of the model, with no

sectoral or aggregate shocks.

We calculate the sectoral frequency of price changes in the data as the harmonic weighted

average of the frequency of price changes of individual product categories (items) that belong

to that sector. We follow Klenow and Kryvtsov (2008) in standardizing the distribution of

price changes by the respective item-level mean and variance. That is, we calculate for each

price change ∆pit(j) of quote i that belongs to product category j the standardized price

change

∆̂pit(j) =
∆pit(j)− µ∆(j)

σ∆(j)
σ∆ + µ∆,

where µ∆(j) and σ∆(j) are the item-level mean and standard deviation of non-zero price

changes and µ∆ and σ∆ are the overall ones.

As Panel A shows, the model is able to match the targeted moments well. The frequency

of price changes is equal to 11.6% per month. The model reproduces well the kurtosis of

non-zero price changes in the data (3.65 vs. 3.61). Despite its parsimony, the model matches

well the prevalence of both large and small price changes, as well as the distribution of the

size (absolute value) of price changes. For example, 10% of price changes are less then 1.8%

in absolute value in the data and 2.0% in the model. As Panel B shows, the model requires

very dispersed productivity shocks (σu = 0.067) and a large probability of free price changes

(1− λ = 0.09). Free price changes thus account for 78% (0.09/0.116) of all price changes.

We next highlight the first shortcoming of the menu cost model: it requires implausibly

large menu costs to reproduce the data. The upper bound of the distribution of menu costs,

ξ̄, is 43 times average monthly firm sales. Since firms only pay the menu cost when they draw

a sufficiently small one, the average amount of resources spent on costs of adjusting prices in

a given period is equal to 11.6% of the wage bill or 8.8% of average firm sales, a number much

larger than the estimates reported in Levy et al. (1997) and Zbaracki et al. (2004), which are

in the neighborhood of 1% of firm revenues. Because of the prevalence of free price changes,

the magnitude of menu costs alone is not informative about the costs of price adjustment.

We thus find it useful to compare the life-time value of a firm in our menu cost economy to

that in a counterfactual setting in which the firm faces no frictions to price adjustment. The

value of the firm in the menu cost economy is 44% lower than in the absence of menu costs.
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Thus, menu costs are akin to a 44% tax on firm profits, a sizable amount, and at odds with

the view that firms suffer small losses from barriers to changing prices (Mankiw, 1985).

Table 2: Parameterization of Single-Product Model

A. Moments

Data Model

frequency ∆p 0.116 0.116

distribution of ∆p

mean 0.018 0.016
std. dev. 0.188 0.195
kurtosis 3.609 3.649

5th percentile -0.327 -0.316
10th percentile -0.226 -0.227
25th percentile -0.081 -0.099
50th percentile 0.026 0.017
75th percentile 0.119 0.143
90th percentile 0.247 0.266
95th percentile 0.340 0.333

distribution of |∆p|

mean 0.142 0.152
std. dev. 0.125 0.124

5th percentile 0.009 0.011
10th percentile 0.018 0.020
25th percentile 0.045 0.055
50th percentile 0.104 0.120
75th percentile 0.204 0.220
90th percentile 0.334 0.326
95th percentile 0.413 0.392

B. Parameter Values

Assigned Calibrated

β discount factor 0.96 gm mean money growth rate 0.021
σ demand elasticity 6 σu s.d. idios. shocks 0.067
η labor elasticity 2/3 λ 1 - prob. free change 0.910

ξ̄ upper bound menu cost 43.23

Note: the menu cost is relative to average sales. The money growth rate and discount factor are annualized.

Figure 4 provides some intuition for why the model requires such large menu costs and

such a large probability of free price changes to match the micro data. The left panel

plots the distribution of desired price changes, f(∆p), where ∆p = log x∗/x̂ is the firm’s
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Figure 4: Distribution of Desired Price Changes and Adjustment Hazard
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desired price change, and superimposes the probability of adjustment, h(∆p), as a function

of the desired price change. The right panel plots the distribution of actual price changes

conditional on adjustment, g(∆p) ∼ h(∆p)f(∆p). Since many price changes in the data are

in the neighborhood of zero, the adjustment hazard at zero, 1 − λ, must be quite high. In

turn, reproducing the tails of the price change distribution requires a relatively flat hazard,

that is, large menu costs. This allows the model to reproduce the fraction of producers whose

prices are far away from the optimum and thus desire a large price change.

We next highlight the second shortcoming of the menu cost model: it generates implau-

sibly large losses from misallocation. Table 3 summarizes the model’s implications for the

distribution of markups across firms within a sector. The average cost-weighted markup, the

object that determines the sector’s labor share, is equal to 1.195, in the middle of the range

of existing estimates. The average sales-weighted markup is equal to 1.592. As pointed out

by Edmond et al. (2018), the sales-weighted average markup is equal to the cost-weighted

markup plus a term that captures the dispersion of markups across firms. Thus, the model

features a great deal of markup dispersion. Indeed, the table shows that markups range from

a 10th percentile of 0.50 to a median of 1.04 and a 90th percentile of 1.94, so a sizable fraction

of producers sell at a price substantially below marginal cost. Overall, the model predicts a

great deal of misallocation: aggregate productivity is 21.63% lower than under flexible prices.

This number is comparable to the estimates of misallocation reported by De Loecker et al.
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Table 3: Distribution of Markups

cost-weighted average markup 1.195
sales-weighted average markup 1.592

cost-weighted distribution of markups

10th percentile 0.496
25th percentile 0.691
50th percentile 1.043
75th percentile 1.585
90th percentile 1.940

misallocation losses, % 21.63

(2020) and Baqaee and Farhi (2018). However, the latter encompass all distortions that lead

to misallocation (taxes, factor adjustment costs, financial frictions, markup variation aris-

ing from differences in demand elasticities etc.), as well as differences in production function

elasticities across producers.8 It is implausible that menu costs alone account for all observed

misallocation in the data.

3.6 Role of Extensive Margin of Adjustment

We next illustrate the third shortcoming of the menu cost model: in contrast to the data,

the frequency of price changes comoves little with inflation, rendering the extensive margin

of price adjustments unimportant for inflation dynamics.

To that end, we subject firms to sectoral productivity shocks et(s) that evolve according

to equation (3), and we choose the standard deviation σe to match the average standard

deviation of sectoral inflation.9 We use the Krusell and Smith (1998) approach to solve the

firm’s problem in the presence of sectoral shocks. Recall that the firm’s problem depends only

on the current and future sectoral price gaps xt(s). We postulate that the firm’s perceived

law of motion for the sectoral price gap is a function of the current gap and the sectoral

productivity shock

xt+1(s) = X (xt(s), εt+1(s)) .

Since we are interested in characterizing potentially nonlinear responses to shocks, we param-

eterize X (·) using Chebyshev polynomials. For any given guess of X (·), we solve the firm’s

8See, for example, Foster et al. (2022) for a discussion.
9When we add sectoral shocks, we reduce the standard deviation of idiosyncratic shocks σu to ensure that

the model reproduces the moments in Table 2. For now, we assume there are no aggregate monetary shocks.
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Figure 5: Importance of the Extensive Margin
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decision rules, simulate histories of sectoral productivity shocks, and find the sectoral price

gap xt(s) that is consistent with the firm’s decision rules. We then use projection methods

to update our guess of X (·) using simulated data on xt(s) and εt(s), and iterate until con-

vergence. We find that the Krusell and Smith (1998) approach works well in this setting, in

that the R2 in the perceived law of motion exceeds 0.9999.

Figure 5 assesses the model’s ability to reproduce the empirical comovement between

the counterfactual inflation series that shuts down fluctuations in the frequency of price

adjustments πct (s) and actual inflation πt(s). In contrast to the data, in the model πct (s) and

πt(s) comove one-for-one, suggesting that the extensive margin of price adjustment plays no

role in inflation fluctuations, even at high rates of inflation.

Table 4 corroborates this point. Panel A shows that the standard deviation of counterfac-

tual inflation is nearly as large as that of actual inflation, 2.83 vs. 2.87. Panel B shows that

the slope coefficients from regressing πct (s) on πt(s) are close to one, even when we restrict the

sample to periods when sectoral inflation exceeds its 75th and 90th percentile. The patterns

are at odds with the data.

To summarize, the single-product menu cost model, when calibrated to match the dis-

tribution of micro price changes in the data, suffers three important shortcomings. First,

the model requires implausibly large menu costs and implies considerable firm losses from

frictions to price adjustment. Second, the model predicts a large amount of misallocation
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Table 4: Importance of the Extensive Margin

Inflation Volatility

Data Model

s.d. πt(s) 2.87 2.87

s.d. πc
t (s) 2.51 2.83

ratio 0.87 0.99

Slope of πc
t (s) on πt(s)

Data Model

all observations 0.80 0.99

πt(s) > 75th pct. 0.48 0.94

πt(s) > 90th pct. 0.39 0.92

from dispersion in marginal revenue products. Third, the model cannot reproduce the strong

comovement between the frequency of price changes and inflation observed in the data. As

the robustness section shows, even when η = 1, so there are no strategic complementarities,

the single-product model continues to predict that the frequency of price changes is approx-

imately constant, even in times of high inflation, and that menu costs and misallocation are

large, albeit less so than with strategic complementarities. Moreover, as we show below, these

shortcomings also apply to the canonical multi-product menu cost model with economies of

scope in price setting.

4 Multi-Product Menu Cost Model

We next extend the model to a multi-product setting in which there are economies of scope

in the price adjustment technology, as in Midrigan (2011) and Alvarez and Lippi (2014).10

Specifically, we assume that each firm sells a unit measure of products, each subject to

idiosyncratic and firm specific quality shocks. Moreover, we assume that the firm can change

the entire menu of prices by paying a single fixed cost. Intuitively, this model can match the

large number of both small and large price changes because the price adjustment decision is

determined by the distribution of price gaps across all products, not individual price gaps.

We show that economies of scope, on their own, do not remedy the three shortcomings of

10See Bhattarai and Schoenle (2014) and Bonomo et al. (2022) for evidence on multi-product pricing.
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the menu cost model enumerated above. We therefore extend the model along two dimen-

sions, both of which reduce the misallocation from price dispersion within the firm and allow

us to substantially remedy the shortcomings of the standard menu cost model. Intuitively,

since in a multi-product economy firms adjust when misallocation within the firm is large,

reducing it lowers the menu costs that the model requires to reproduce the frequency of price

changes and thus the amount of misallocation. Moreover, since menu costs are small, the

extensive margin of price adjustment becomes more important, as in the data.

Our first assumption is that decreasing returns to scale arise due to a specific factor

of production that is fixed at the firm level, but is perfectly mobile across the products

a firm sells. As we show below, this implies that though there are decreasing returns to

scale at the firm level and therefore strategic complementarities across firms, the losses from

misallocation within the firm are lower relative to a multi-product model where the decreasing

returns to scale are at the product level. Second, we assume that individual products sold

by a given firm are imperfect substitutes, an assumption that further reduces the losses from

misallocation within a firm. Our notion of a product is a collection of highly substitutable

goods that are subject to correlated shocks. For example, we think of tea sold by Starbucks

as representing a product because different flavors or sizes of tea are close substitutes that

experience correlated shocks. In contrast, different pastries sold by Starbucks, while highly

substitutable among themselves, are much less substitutable with tea.

To conserve space, we present the general version of our model only and discuss in passing

various special cases. Since the model shares many elements with the single-product model

above, we only discuss the new ingredients of the model we introduce here.

4.1 Technology

The output yt(f, s) of individual firms is aggregated into a final good using the same aggre-

gators as in (2) and (1). A given firm produces a continuum of products that are aggregated

into a firm level composite using

yt (f, s) =

(∫ (
yit (f, s)

zit (f, s)

) γ−1
γ

di

) γ
γ−1

,

where γ is the elasticity of substitution between different products and zit(f, s), the quality

of product i, follows a random walk process

log zit+1(f, s) = log zit(f, s) + σzε
z
it+1(f, s),
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where σz is the volatility of innovations and εzit+1(f, s) is an i.i.d. draw from a standard

normal distribution. The demand for an individual product is given by

yit (f, s) = zit (f, s)

(
zit (f, s)Pit (f, s)

Pt (f, s)

)−γ
yt (f, s) ,

where

Pt (f, s) ≡
∫
Pit (f, s)

yit (f, s)

yt (f, s)
di =

(∫
(zit (f, s)Pit (f, s))1−γ di

) 1
1−γ

is the composite price of the bundle of products of firm f .

Individual products are produced with a technology that uses labor and an input, say

managerial, that is in fixed supply at the firm level but perfectly mobile across individual

products. Specifically, letting mit(f, s) denote the amount of the fixed input used for product

i, the production function is

yit(f, s) = et (s)ut (f, s) zit (f, s)mit (f, s)1−η lit (f, s)η . (8)

We normalize the supply of the fixed factor to 1, so the choice of mit(f, s) has to satisfy∫
mit (f, s) di = 1.

For a given amount of labor used in the production of product i, the optimal choice of the

fixed factor is

mit (f, s) =
lit (f, s)

lt (s)
, (9)

where

lt(f, s) =

∫
lit(f, s)di =

(∫
yit (f, s)

et (s)ut (f, s) zit (f, s)
di

) 1
η

(10)

is the total amount of labor used by the firm. Substituting equation (9) into equation (8)

reveals that at the product level the technology is linear in the amount of labor used by

product i.

We make two remarks. First, eliminating dispersion in zit(f, s) across products allows us

to nest the single-product menu cost model as a special case. Second, assuming instead that

the fixed factor is immobile across products, so that mit(f, s) = 1 and equation (8) features

decreasing returns to scale at the product level, implies that the amount of labor the firm

uses is given by

lt(f, s) =

∫ (
yit (f, s)

et (s)ut (f, s) zit (f, s)

) 1
η

di.

As we show below, under this alternative assumption, the losses from misallocation within

the firm are larger compared to our baseline.
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4.2 Menu Costs and Firm Objective

Since economies of scope in price setting allow us to match the large number of small price

changes observed in the data, we no longer need to assume that menu costs are random nor

that some price changes are free. We let ξ̄ denote the deterministic cost a firm must incur

to change the entire menu of prices. The firm’s life-time value is then given by

V0(f, s) = E0

∞∑
t=0

βt

Ptct

[
(1 + τ)

∫
Pit (f, s) yit (f, s) di−Wtlt(f, s)− ξ̄WtIt(f, s)

]
.

Let

xit (f, s) = āη
et (s)ut (f, s) zit (f, s)Pit (f, s)

Mt

denote the price gap of product i, which now also scales the price by the product’s idiosyn-

cratic quality zit(f, s). The firm’s price gap is simply

xt (f, s) =

(∫
xit (f, s)1−γ di

) 1
1−γ

= āη
et (s)ut (f, s)Pt (f, s)

Mt

.

Aggregating the labor used by different products allows us to derive a firm-level production

function

yt (f, s) = et (s)ut (f, s)φt (f, s) lt (f, s)η ,

where

φt(f, s) =

(∫ (
xit (f, s)

xt (f, s)

)−γ
di

)−1

captures the losses from misallocation arising from price gap dispersion inside the firm. Notice

that this firm-level production function features decreasing returns to scale, which imply that

the firm’s optimal price gap xt(f, s) depends on the price gap of its competitors xt(s), as in

the single-product menu cost model.

We note that if the specific input is instead fixed at the product level, the firm-level

production function is unchanged and the expression for misallocation is instead

φt(f, s) =

(∫ (
xit (f, s)

xt (f, s)

)− γ
η

di

)−η
.

With this notation, the firm’s objective can be expressed in terms of the firm-level price

gap and the losses from misallocation as

E0

∞∑
t=0

βt
(
xt (s)σ−1

[
(1 + τ)xt (f, s)1−σ − āxt (s)(

1
η
−1)(σ−1) xt (f, s)−

σ
η φt (f, s)−

1
η

]
− ξ̄It(f, s)

)
,
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where It(f, s) is an indicator for whether the firm changes its menu of prices. Thus, the only

difference between this objective and that of a single-product firm is that in a single-product

firm there is no misallocation inside the firm.

4.3 Recursive Formulation

We build on the insights of Alvarez and Lippi (2014) and summarize the distribution of

price gaps inside the firm xit(f, s) with sufficient statistics. In contrast to their work, which

considers a quadratic approximation to the firm’s objective, here we solve the model non-

linearly and have to keep track of two state variables.

To derive these, consider a firm that does not adjust the prices Pit−1(f, s) it inherits from

the previous period. Its composite price index is then equal to

Pt (f, s) =

(∫
(zit (f, s)Pit−1 (f, s))1−γ di

) 1
1−γ

.

Since zit(f, s) follows a geometric random walk with independent innovations, we have that

the firm’s composite price index evolves over time according to

Pt (f, s) = exp

(
(1− γ)

σ2
z

2

)
Pt−1 (f, s) .

If γ > 1, the composite price drifts down over time at a rate that increases with the volatility

of idiosyncratic shocks. Intuitively, the composite price index is a quantity-weighted average

of individual product prices, so even though individual prices are constant, consumers real-

locate demand towards goods with cheaper quality-adjusted prices and the firm’s composite

price falls.

The first state variable we keep track of is

x̂t (f, s) = āη
et (s)ut (f, s) exp

(
(1− γ) σ2

z

2

)
Pt−1 (f, s)

Mt

,

the price gap the firm would have in the absence of price changes. If the firm resets its

prices, its price gap is equal to xt(f, s) = x∗t (s), the optimal reset price gap, otherwise it is

xt(f, s) = x̂t(f, s). This state variable evolves over time according to

x̂t+1(f, s) = exp

(
(1− γ)

σ2
z

2

)
xt (f, s)

et+1 (s)

et (s)

ut+1 (f, s)

ut (f, s)

Mt

Mt+1

.

The second state variable we keep track of is the duration of a firm’s price spell, as this

determines the losses from misallocation within the firm. To see why, notice that when the
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firm resets its prices, it sets

xit(f, s) = x∗t (s)

and therefore there is no misallocation inside the firm, φt(f, s) = 1. Over time, the losses

from misallocation increase because the distribution of price gaps becomes more dispersed

φt (f, s) = exp

(
−γσ

2
z

2

)
φt−1 (f, s) .

Thus, the losses from misallocation for a firm whose prices are d periods old are

φt (f, s) = exp

(
−dγσ

2
z

2

)
.

For a given duration, these losses are increasing in the elasticity of substitution γ and the

volatility of idiosyncratic shocks.

We note that assuming instead that the specific factor is immobile across products implies

φt (f, s) = exp

(
−dγσ

2
z

2

(
1 + γ

(
1

η
− 1

)))
,

so the losses from misallocation are larger than in our baseline model whenever η < 1.

Dropping the dependence on s and letting xt denote the sectoral price gap, the value of

not adjusting is given by

vnt (x̂, d) = xσ−1
t

[
(1 + τ) x̂1−σ − āx( 1

η
−1)(σ−1)

t x̂−
σ
η exp

(
γd

η

σ2
z

2

)]
+βEt max

(
vnt+1 (x̂′, d+ 1) , vat+1 − ξ̄

)
,

where the law of motion for the firm’s price gap is given by

x̂′ = exp

(
(1− γ)

σ2
z

2
+ σeε

e
t+1 + σuε

u
t+1 (f)− gm

)
x̂t. (11)

The value of adjusting is

vat = max
x∗t

xσ−1
t

[
(1 + τ) (x∗t )

1−σ − āx( 1
η
−1)(σ−1)

t (x∗)−
σ
η

]
+ βEt max

(
vnt+1 (x̂′, d+ 1) , vat+1 − ξ̄

)
.

The law of motion for the price gap x̂′ is similar to equation (11), with x∗t replacing x̂t.

We note that the distribution of price changes for a firm with a price gap x̂t(f, s) that

last changed its price d periods ago and adjusts in period t is

log
P ∗it (f, s)

Pit−d (f, s)
∼ N

(
log

x∗t (s)

x̂t (f, s)
+ d (1− γ)

σ2
z

2
, dσ2

z

)
.

The older the firm’s prices are, the more dispersed its price gaps and therefore the more

dispersed its price changes. In turn, the distribution of overall price changes is equal to a

mixture of the normal distributions above, with weights given by the distribution over state

variables conditional on adjustment gt(x̂, d; s) ∼ ht (x̂, d; s) ft (x̂, d; s).
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4.4 Parameterization

Table 5 shows the parameterization of the model. In our baseline economy, which we refer

to as our model, we set γ = 1, σ = 6 and assume that the specific factor is mobile across

products.11 To illustrate the role of the two departures from the standard multi-product

model, we also show results from a standard multi-product economy in which γ = σ = 6 and

the specific factor is immobile across products.

Panel A shows that our model reproduces the distribution of price changes well. Panel

B shows that the volatility of firm-level shocks σu is lower than that of product-level shocks,

σz. Intuitively, the relative volatility of these two shocks is identified by the distribution

of price changes. Specifically, as σz/σu goes to zero, the model becomes the single-product

model which cannot reproduce the large number of small price changes given the assumption

of a constant fixed cost. In contrast, as σz/σu goes to infinity, the law of motion for x̂t is

deterministic, so all firms change prices after the same number of periods, as in the Taylor

model. In this case, the distribution of prices changes conditional on adjustment is normal, so

the model cannot match the excess kurtosis in the data. In this sense, the relative volatility of

the two shocks in our model plays the same role as the number of products does in Alvarez and

Lippi (2014). Notice that the standard multi-product model also reproduces the distribution

of price changes well.

We next discuss the ability of our model to remedy the shortcomings of the single-product

menu cost model. Consider first the implied menu costs. As Panel B of Table 5 shows, our

model requires much smaller costs of changing prices: ξ̄ = 0.21 of average firm sales. Since

firms adjust infrequently, the average amount of resources spent on costs of price adjustment

in a given period is equal to 2.4% of average firm sales. Though this is still larger than the

1% estimate in the literature, it is substantially smaller compared to what the single-product

model predicts. As before, we find it useful to compare the life-time value of a firm in the

economy with menu costs with that of a firm that faces no frictions to price adjustment. In

our model menu costs reduce firm value by as much as a 7.9% tax on firm profits would. This

is much smaller than the implicit tax on profits in the single-product model. Notice that the

standard multi-product model also implies implausibly large menu costs: ξ̄ = 2.21 of average

sales, implying that the total resource cost of changing prices is 25.8% of average sales.

Consider next our model’s implications for dispersion in firm markups and the losses

from misallocation. Table 6 shows that markups range from a 10th percentile of 1.02 to a

11In the robustness section we report results for alternative values of γ.
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Table 5: Parameterization of Multi-Product Model

A. Moments

Data Our model Standard

frequency ∆p 0.116 0.116 0.117

distribution of ∆p

mean 0.018 0.017 0.025
std. dev. 0.188 0.196 0.196
kurtosis 3.609 3.566 3.508

5th percentile -0.327 -0.312 -0.325
10th percentile -0.226 -0.232 -0.233
25th percentile -0.081 -0.107 -0.093
50th percentile 0.026 0.023 0.042
75th percentile 0.119 0.119 0.160
90th percentile 0.247 0.256 0.260
95th percentile 0.340 0.330 0.317

distribution of |∆p|

mean 0.142 0.154 0.157
std. dev. 0.125 0.123 0.120

5th percentile 0.009 0.012 0.013
10th percentile 0.018 0.023 0.025
25th percentile 0.045 0.060 0.064
50th percentile 0.104 0.127 0.133
75th percentile 0.204 0.218 0.224
90th percentile 0.334 0.322 0.320
95th percentile 0.413 0.392 0.385

B. Calibrated Parameter Values

Our model Standard

gm mean money growth rate 0.023 0.035
σu s.d. firm shocks 0.025 0.037
σz s.d. product shocks 0.062 0.058
ξ̄ menu cost 0.207 2.207

Note: the menu cost is relative to average sales. The money growth rate is annualized.

90th percentile of 1.38 and imply that aggregate productivity is only 1.97% lower than under

flexible prices. These losses are much smaller than in the standard models, both single- and

multi-product, where productivity is 21.63% and 21.24% lower, respectively.

Figure 6 plots the distribution of firm price gaps x̂t(f, s) in a given sector, as well as

the adjustment hazard for firms that last adjusted 6 and 12 months ago. We make three
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Table 6: Distribution of Markups

cost-weighted average markup 1.194 1.191
sales-weighted average markup 1.210 1.285

cost-weighted distribution of markups

10th percentile 1.019 0.827
25th percentile 1.088 0.918
50th percentile 1.195 1.103
75th percentile 1.266 1.405
90th percentile 1.382 1.793

misallocation losses, % 1.97 21.24

Figure 6: Distribution of Price Gaps
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observations. First, multi-product economies feature less dispersion in the price gaps than

the single-product economy. This is because firm level shocks are less dispersed, as now a lot

of the dispersion in price changes is due to product specific shocks. Second, because menu

costs are smaller in our model, the (s, S) bands are narrower than in the standard model. As

we show below, the width of the (s, S) bands has important implications for how the economy

responds to large aggregate shocks. The narrower the bands are, the larger the fraction of

firms that end up outside the bands and therefore adjust prices after a large shock. Third,

the (s, S) bands narrow with the duration of prices because the increase in misallocation

inside the firm reduces the value of inaction relative to that of adjustment.
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Figure 7: Importance of the Extensive Margin
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4.5 Role of Extensive Margin of Adjustment

We next evaluate the ability of our model to reproduce the comovement between the frequency

of price changes and inflation. As before, we subject firms to sectoral productivity shocks

and use the Krusell and Smith (1998) approach to solve the firm’s problem. We find that

the method works well even in the multi-product setting, with a R2 in the perceived law of

motion for the sectoral price gap in excess of 0.9998.

Figure 7 illustrates our model’s prediction regarding the relationship between inflation

πt(s) and the counterfactual inflation series πct (s) that keeps the frequency of price changes

constant. At low levels of inflation πt(s) and πct (s) comove one-for-one, as in the data. At

higher inflation, keeping the frequency of price changes constant underpredicts inflation,

although less so in the model compared to the data.

Table 7 further corroborates this point. In our model, counterfactual inflation accounts

for 89% of the volatility of actual inflation, close to the 87% in the data. Moreover, as in

the data, the extensive margin becomes particularly important at high levels of inflation:

the slope coefficient from regressing πct (s) on πt(s) is 0.89 for the overall sample, but falls to

0.72 and 0.64 when we restrict the sample to periods in which inflation exceeds its 75th and

90th percentile. Thus, our model accounts for half of the importance of the extensive margin

for inflation dynamics. In contrast, the standard multi-product menu cost model predicts a

much smaller role for the extensive margin of price adjustment.
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Table 7: Importance of the Extensive Margin

Inflation Volatility

Data Our model Standard

s.d. πt(s) 2.87 2.87 2.86

s.d. πc
t (s) 2.51 2.55 2.70

ratio 0.87 0.89 0.94

Slope of πc
t (s) on πt(s)

Data Our Model Standard

all observations 0.80 0.89 0.94

πt(s) > 75th pct. 0.48 0.72 0.82

πt(s) > 90th pct. 0.39 0.64 0.78

To summarize, we show that extending the multi-product menu cost model to reduce

the amount of misallocation within the firm goes a long way towards remedying the three

shortcomings of the standard menu cost models we highlighted.

5 Real Effects of Monetary Shocks

We next revisit the classic question in the menu cost literature: how large are the real effects

of monetary policy? That is, how much does output respond to a monetary shock? We show

that output responses in our model are very different than those in the standard model that

we argued is inconsistent with the data. We show two results. First, in our model output

responds non-linearly to shocks of various sizes. The larger the shock is, the stronger the

response of the frequency of price changes and therefore the smaller the real effects. Thus,

our model predicts that the slope of the Phillips curve is non-linear. Second, even for small

shocks the real effects are smaller in our model compared to the standard model, even though

both match the distribution of price changes equally well. Thus, the distribution of price

changes no longer pins down the output responses, in contrast to standard models (Alvarez

et al., 2016).
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Figure 8: Output Response to Money Shock

0 10 20

0

2

4

6

8

10
10% shock

0 10 20

0

0.2

0.4

0.6

0.8

1
1% shock

our model
single product

0 10 20

0

1

2

3

4

5
5% shock

5.1 Impulse Response to Monetary Shocks

We start by reporting the impulse response of aggregate output yt to a one-time, unantici-

pated and permanent increase of 1%, 5% and 10% in the money supply Mt, starting from

the steady-state of the model without aggregate or sectoral uncertainty. Figure 8 plots these

responses in our model and the standard single-product model. To ease comparison, we

rescale the y-axis by the size of the shock. We make two points. First, even for a small shock

of 1% the real effects of monetary policy are smaller in our model. Since Ptyt = Mt, this

simply reflects that the aggregate price level is more flexible in our model. Second, while in

the single-product model the impulse response scales linearly with the shock, in our model

larger shocks imply disproportionately smaller output responses. Indeed, when the shock is

large (10%) the output response on impact is smaller than when the shock is 5%. Thus, the

larger the shock is, the larger the discrepancy between the real effects of the shock in our

model and the standard model.

We next explain why this is the case. First, Figure 9 plots the corresponding impulse

responses of the frequency of price adjustment. In contrast to the standard model, in which

the frequency responds very little to shocks of all sizes, in our model the frequency increases

after a large money shock. For example, though the frequency responds little to a money

shock of 1%, it nearly doubles to 25% for a 5% shock and jumps to 80% after a 10% shock.

Second, in Table 8 we zoom in on the impact response of inflation to a money shock ∆m.

We calculate the pass-through of the shock to inflation ∆π/∆m and decompose it into three

channels. Our decomposition, in the spirit of Caballero and Engel (2007), starts from the

observation that, up to a first-order approximation, inflation in the absence of the shock is
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Figure 9: Frequency Response to Money Shock
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equal to

π =

∫
ωh (ω) df (ω) ,

where ω is the desired price change, h(ω) is the adjustment hazard and f(ω) is the steady-

state distribution of desired price changes. The money shock increases all firms’ desired price

changes to ω + α, where

α = x̃∗ − x∗ + ∆m,

and where x̃∗ is the log reset price in the first period after the money shock and x∗ is the log

reset price in the absence of the shock. The money shock changes the inflation rate to

π̃ =

∫
(ω + α) h̃ (ω) df (ω) ,

where h̃(ω) is the new adjustment hazard as a function of ω, the desired price change absent

the money shock. The change in inflation ∆π ≡ π̃ − π can then be decomposed into the

following three terms

∆π = α

∫
h (ω) df (ω)︸ ︷︷ ︸

Calvo

+α

∫ (
h̃ (ω)− h (ω)

)
df (ω)︸ ︷︷ ︸

frequency

+

∫
ω
(
h̃ (ω)− h (ω)

)
df (ω)︸ ︷︷ ︸

selection

.

The first term, which we refer to as the Calvo term, captures the price increase that the

shock generates if the frequency of price changes were to remain constant at its steady state

level
∫
h (ω) df (ω). The second term, which we refer to as the frequency term, captures the

price increase resulting from the increase in the frequency of price changes from its steady

state level to
∫
h̃ (ω) df (ω). The final term is the Golosov and Lucas (2007) selection effect

that captures the change in mix of firms that adjust prices. We note that this is purely an
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accounting decomposition, as all of these effects are interdependent. For example, a stronger

selection effect leads to more price flexibility and thus a smaller reduction in the optimal

reset price x̃∗ and therefore a larger Calvo effect.

Table 8 reports the results of this decomposition. We make two observations. First, in

our model money shocks have a larger pass-through to inflation than in the single-product

model. This is true even for a small shock of 1%, for which the pass-through is 0.32 in our

model and only 0.13 in the single-product model. This difference is almost entirely accounted

for by a stronger selection effect, which is responsible for two thirds of the overall response

in our model. Second, in our model the pass-through increases rapidly with the size of the

shock: from 0.32 for a 1% shock to 0.86 for a 10% shock vs. from 0.13 to 0.15 in the single-

product model. This increase is primarily accounted for by the increase in the frequency of

price changes.

Table 8: Inflation Pass-through to Monetary Shock on Impact

Single-product Our model

1% 5% 10% 1% 5% 10%

total pass-through 0.129 0.135 0.146 0.323 0.421 0.861

Calvo 0.094 0.096 0.098 0.095 0.099 0.111
frequency 0.001 0.004 0.011 0.009 0.123 0.660
selection 0.035 0.036 0.037 0.219 0.198 0.090

5.2 Non-Linear Phillips Curve

We next investigate how non-linear are the real effects of money shocks for a wider range

of shocks. Specifically, we consider money shocks that range from -15% to 15% and report

the impact response of the frequency of price changes and output, as well as the cumulative

response of output.

Figure 10 shows that though the frequency of price changes is relatively insensitive to the

size of the money shock in the standard model, it responds very non-linearly in our model.

Specifically, in the neighborhood of zero the frequency does not respond to money shocks,

but increases fast away from zero and is nearly 100% for shocks exceeding 10% in absolute

value. Recall that our model only partially reproduces the importance of the extensive
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Figure 10: Frequency Response on Impact
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margin of price adjustment in the sectoral data, so the results in Figure 10 likely understate

the non-linear response of the frequency.

Figure 11(a) displays the impact response of output to monetary shocks of various sizes.

In the single product model, the response is nearly linear, with a slope coefficient of 0.87,

reflecting the relatively constant frequency of price changes. In our model, the slope is highly

non-linear. For small shocks the output response is comparable to that in the standard

model. As the shock gets larger, the output response is smaller than in the standard model

and peaks for shocks of approximately 7% in absolute value. Further increases in the size

of the shock reduce the output response, owing to the steep rise in the frequency of price

changes. Consequently, if the shock is large enough and all firms adjust prices, there are no

real effects of monetary policy.

The cumulative impulse responses of output, depicted in Figure 11(b), exhibit a similar

pattern, but the discrepancy between our model and the standard model is even larger,

owing to the lower persistence of output in our model. As can be inferred from Figure 8, the

response of output in our model has a lower half-life.

Figure 12 summarizes this discussion by depicting the Phillips curve implied by the impact

responses of output and inflation to the money shocks considered above. While the Phillips

curve is approximately linear in the standard model, it is highly non-linear in our model. In

particular, at low levels of inflation the Phillips curve has a slope only slightly larger than in

the standard model, and becomes vertical at high rates of inflation.
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Figure 11: Output Response to Money Shocks
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(b) Cumulative Response
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Figure 12: Phillips Curve, Impact Responses
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5.3 Intuition

We next provide intuition for why reducing the amount of misallocation inside the firm

increases the strength of the selection effect in response to small shocks and the response

of the frequency of price changes to large shocks. To this end, we consider a version of our

multi-product model in which the elasticity of substitution between a firm’s products is equal

to γ = 0, so there are no losses from misallocation inside the firm. Since the duration of price

spells only affects firms’ profits through their effect on misallocation, φt(f, s) = exp
(
−dγ σ

2
z

2

)
,

setting γ = 0 implies that the firm’s decisions are no longer a function of the duration d.
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Figure 13: Distribution of Price Changes in Single- and Multi-Product Model

distribution of -rm gaps

-0.2 0 0.2
0

0.2

0.4

0.6

0.8

1
distribution "p, single

-0.5 0 0.5
0

5

10

15

20

25

30
distribution "p, multi

-0.5 0 0.5
0

0.5

1

1.5

2

2.5

h(x̂)

F (x̂)

Dropping the dependence on s, the Bellman equation that describes the value of inaction is

only a function of the firm’s overall price gap x̂

vnt (x̂) = xσ−1
t

[
(1 + τ) x̂1−σ − āx( 1

η
−1)(σ−1)

t x̂−
σ
η

]
+ βEt max

(
vnt+1 (x̂′) , vat+1 − ξ̄

)
,

where the price gaps evolves according to

x̂′ = exp

(
(1− γ)

σ2
z

2
+ σuε

u
t+1 (f, s)− gm

)
x̂.

The value of adjustment is

vat = max
x∗t

xσ−1
t

[
(1 + τ) (x∗t )

1−σ − āx( 1
η
−1)(σ−1)

t (x∗t )
−σ
η

]
+ βEt max

(
vnt+1 (x̂′) , vat+1 − ξ̄

)
,

where the price gap evolves according to the same law of motion, with x∗t replacing x̂.

The single-product model is a special case of a multi-product model in which there are

no product-level shocks, so σz = 0. The equations above then imply that when γ = 0 the

multi-product model with σz > 0 is equivalent to the single-product model with σz = 0,

provided we adjust the trend growth rate of money supply to ensure that the price gap drifts

at the same rate in the two models. Thus, a single-product model in which

gsingle
m = gmulti

m − σ2
z

2

has identical value functions, adjustment thresholds and optimal reset prices as its multi-

product counterpart. We can therefore obtain intuition for how the multi-product economy

works by studying an equivalent single-product model.
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The left panel of Figure 13 shows the steady state distribution of price gaps x̂ and the

adjustment hazard in the multi-product economy with γ = 0 that we calibrate to match the

distribution of micro-price changes in the data (see the robustness section below for details

about the calibration). This is also the distribution of price gaps in the single-product

economy in which we adjust the trend money growth rate appropriately. Even though these

two models have identical implications for the distribution of firm price gaps and decision

rules, they have different implications for the distribution of price change.

The middle panel of the figure shows the distribution of price changes in the single-product

economy. This distribution is reminiscent of that in Golosov and Lucas (2007): it features

neither small nor very large price changes and has a large mass near the (s, S) thresholds. In

contrast, in the multi-product version of the model, the bimodal distribution of price gaps

conditional on adjustment does not translate into a bimodal distribution of price changes,

since individual products experience price changes largely due to product-specific shocks. As

the right panel of Figure 13 shows, the latter reproduces the evidence on the distribution of

price changes well.

Consider next the impulse response of output to a monetary shock. The shock reduces

all firms’ price gaps by the same amount. The aggregate price gap, in both the single- and

multi-product economy, is given by

xt =

(∫ [
ht (x̂) (x∗t )

1−σ + (1− ht (x̂)) x̂1−σ] dFt (x̂)

) 1
1−σ

,

and therefore responds identically in the two economies. Thus, even though the single- and

multi-product economy imply different distributions of price changes, they predict identical

responses to monetary shocks.

We conclude that selection effects are stronger when we reduce misallocation inside the

firm because the multi-product model inherits the properties of the single-product model.

Since the selection effect is strong in the single-product model, as pointed out by Golosov

and Lucas (2007), it is also strong in the multi-product model. Moreover, since the model

requires less volatile firm-level shocks to reproduce the dispersion of price changes, the menu

cost required to reproduce the frequency of price changes is lower, implying narrower (s, S)

bands, and therefore more non-linear output responses.12

12An alternative approach to narrowing the (s, S) bands is to assume fat-tailed productivity shocks, as in
Midrigan (2011). Karadi and Reiff (2019) show that model reproduces well the evidence from Hungary that
the frequency of price changes responds strongly to large changes in the value added tax.
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6 Robustness

We next evaluate the robustness of our findings to alternative parameterizations of the menu

cost models we considered above. Specifically, we show that the three shortcomings we

highlighted in the single-product model are not driven by our assumption that there are

decreasing returns to scale and therefore strategic complementarities. Moreover, we show

that our results in the multi-product model are robust to alternative values of γ, the elasticity

of substitution between products sold by a given firm.

6.1 Single-Product Model

We investigate the extent to which the shortcomings we highlighted in the single-product

model are driven by our assumption that there are decreasing returns to scale. We do so by

setting η = 1 and recalibrating the remaining parameters to match the same set of moments

as before. Table 13 in the Appendix reports the calibrated parameters and the targeted

moments and shows that this model can also match the distribution of price changes in the

data.

The first column of Table 9 shows that the model with constant returns requires smaller

menu costs, 2.1% of average sales and predicts smaller losses from misallocation, 5.71%,

compared to the single-product model with decreasing returns. Because in the single-product

model a large fraction of price changes are free, a more meaningful statistic is the overall

losses the firm incurs due to menu costs. We find these losses are equivalent to a 32.4% tax

on the firm’s profits, a sizable amount. Even though the model without decreasing returns

to scale implies smaller menu costs and losses from misallocation, it fails to reproduce the

comovement between inflation and the frequency of price changes. In particular, the slope

coefficient from regressing counterfactual inflation πct on actual inflation πt is 0.99 and falls

to only 0.93 when we restrict the simulated sample to periods in which inflation is above its

90th percentile, suggesting a much weaker role for the extensive margin of price adjustment

than in the data.

6.2 Multi-Product Model

We also investigate the extent to which our results are sensitive to γ, the elasticity of substitu-

tion between products within the firm. Recall that a relatively low elasticity of substitution

is required to reduce the degree of misallocation within the firm. In our baseline, we set
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Table 9: The Three Shortcomings in Alternative Parameterizations

Single-product Multi-product
η = 1 γ = 0 γ = 3

menu costs/sales 0.021 0.014 0.047

misallocation, % 5.71 0.92 3.97

slope of πct on πt

all observations 0.99 0.88 0.89

πt > 90th pct. 0.93 0.61 0.63

γ = 1. Here, we consider two alternative values: γ = 0, corresponding to the case in which

goods within the firm are perfect complements, and γ = 3. In both cases, we recalibrate the

remaining parameters to match the same moments as before. We report the results of the

parameterization in Table 14 in the Appendix.

Table 9 shows that the less substitutable goods within the firm are, the smaller the menu

cost and lower the amount of misallocation. In particular, when γ = 0, menu costs amount

to 1.4% of total sales, close to the empirical estimate, and the losses from misallocation are

only 0.92%. When γ = 3, the menu costs are a larger fraction of average sales (4.7%) and the

losses from misallocation are larger (3.97%). Both these parameterizations imply a stronger

comovement between inflation and the frequency of price changes than the standard model.

The slope coefficients in regressions of πct on πt are similar to those in our baseline.

7 Conclusions

Canonical menu cost models, of both the single-product and multi-product variety, suffer

three important shortcomings when calibrated to match the distribution of micro price

changes in the data. First, they require implausibly large menu costs and imply consid-

erable profit losses from frictions to price adjustment. Second, they predict a large amount

of misallocation from price dispersion. Third, they cannot reproduce the strong comovement

between the frequency of price changes and inflation observed in the data. These shortcom-

ings are exacerbated in the presence of microeconomic strategic complementarities.

We propose a resolution to these shortcomings by extending the multi-product menu

cost model along two dimensions. First, we assume that strategic complementarities are at
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the firm rather than the product level. Second, we assume that individual products sold

by a given firm are imperfect substitutes. Both these assumptions limit the losses from

misallocation from price dispersion within the firm and go a long way, but not fully, towards

remedying the three shortcomings of the canonical menu cost models.

We use the model to study the real effects of monetary policy. We find that, in contrast

to standard models, our model predicts smaller and highly non-linear output responses to

shocks, owing to a stronger selection effect and a more responsive frequency of price changes.

The model implies that the Phillips curve is nearly vertical when inflation exceeds 10%.
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Appendix

A Data

A.1 Overview

We use the data that underlie the construction of the Consumer Price Index (CPI) in the

UK. The data are collected by the United Kingdom Office for National Statistics (ONS).

We use public monthly product-level price quotes and item-level price indexes from January

1996 to August 2022.13

Goods and services are classified following the 6-digit Classification of Individual Con-

sumption by Purpose (COICOP 6).14 The CPI is produced in stages, with indexes derived

at each stage weighted together to give higher level indexes.15 A sample of prices of items

which are representative of UK consumer expenditure are collected in line with the COICOP

classification system.16 There are currently around 650 representative items in the CPI price

basket of goods. The items usually have fairly broad specifications (such as a roll of wallpaper

or womens jeans). Price collectors choose a selection of products which conform to that item

specification. Product-level price quotes are collected by either sampling individual outlets

or are collected centrally (for example, university tuition fees).

A.2 Weights

Class-level The COICOP class-level weights are largely calculated from household final

consumption expenditure data which covers the relevant population and range of goods

and services and are classified by COICOP.17 This is supplemented by other data sources,

including the Living Costs and Food Survey (LCF) data, International Passenger Survey

data (IPS) and data from Public Sector Branch. The weights used in compiling the measures

of consumer price inflation are updated annually following ONS reviews of the representative

13See also Davies (2021) and Petrella et al. (2018) who use these data.
14COICOP is a hierarchical classification system comprising: Divisions e.g. 01 Food & non-alcoholic

beverages, Groups e.g. 01.1 Food, and Classes (the lowest published level) e.g. 01.1.1 Bread and cereals. See
here for a description of the COICOP classification.

15This description is taken from the Consumer Price Indices Technical Manual published by the ONS and
available here.

16For example, for the item home-killed lamb, prices are collected for ‘loin chops with bone’ and ‘shoulder
with bone’. Other joints, and loin chops and shoulders without bones, are not priced; it is assumed that their
price movements are close to those of the joints of lamb that are priced.

17The descriptions in this subsection are taken from the Consumer Price Indices Technical Manual published
by the ONS and available here.
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items in the basket, so that the weights reflect the introduction of new items and the deletion

of others. In addition, using up-to-date expenditure data ensures that the indexes remain

representative of current expenditure patterns over time.

Item-level Some items within a class represent themselves while others represent a subclass

of expenditure within a section.18 However, other items represent price changes for a set of

items, which are not priced, so for these the weight reflects total expenditure on all items in

the set.19 The expenditure figures for all items in a section are expressed as a percentage of

the section weight. Each percentage is rounded to the nearest unit, except where percentages

are less than 0.5 which are rounded up to 1. Manual adjustments are then made by the ONS

to constrain the sum of each sections item weights to 100.

The item weights are updated twice each year with the January index when the new

COICOP weights are introduced, and in February when the representative items that make

up the basket of goods and services are updated. When the basket of goods and services is

updated in February, item weights are updated by drawing on data from a variety of sources.

These include detailed National Accounts expenditure data, LCF data, market research data

and other sources including administrative data. For each COICOP class, the sum of the new

item weights introduced in February is constrained to be equal to the updated class weight

introduced in the previous month.

A.3 Sources

We use several datasets published by the ONS to construct our master panel dataset.

1. Price quotes. The price quote data is sourced from the ONS website.20

2. Item identifier, COICOP classification, and COICOP weights. The item index data is

sourced from the ONS website.21 The classification of items into COICOP classifica-

tions are also provided by the ONS.22 COICOP weights are provided for each item.

18For example, within electrical appliances, the electric cooker item represents only itself and not any other
kinds of electrical appliances.

19For example, a screwdriver is one of several items representing all spending on small tools within DIY
materials, and there are other items within the section representing all spending on paint, timber, fittings
and so on.

20The link to the latest data is here and to historical data is here.
21The link is here.
22The link is here.

47

https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
https://webarchive.nationalarchives.gov.uk/ukgwa/20160109121317/http://www.ons.gov.uk/ons/rel/cpi/consumer-price-indices/cpi-and-rpi-item-indices-and-price-quotes/rpt-cpi---rpi-item-indices---price-quotes.html
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes


3. Aggregated price indexes. We also use the price indexes published by the ONS at

COICOP-6 and above levels of disaggregation.23

A.4 Compiling the Dataset

To compile the dataset, we use the following steps.

1. Import data. In this step we generate a dataset of unprocessed price quotes, a dataset

of item-COICOP classifications and CPI weights.

2. Process item-level data and price quotes. In this step we correct for recording errors

and drop price quotes that are invalidated by the ONS. We also use the algorithm

in Blanco (2021) to recover unique price trajectories for price quotes with the same

product-outlet identifier.24

3. Merge price quotes data with item identifiers and weights.

Our final master panel dataset is comprised of the variables in Table 10. We have around

38 million unique price quote observations from 1996m1 to 2022m8. All statistics and analyses

are conducted with this dataset.

A.5 Data Checks

We do two checks on our panel dataset.

1. First, we confirm that the diaggregated price indexes generate the published aggregate

CPI index using the sector-level weights in our dataset. We construct:

πt =
∑
s

wt(s)πt(s) (12)

where πt is inflation, πt(s) is inflation at the s-sector level of disaggregation, and wt(s)

is the corresponding weight in our dataset. Figure 14 plots the constructed aggregate

index against the published aggregate index; Figure 15 plots the corresponding inflation

rates.

2. The second check we do is to compare inflation constructed using the final micro price

dataset to the published aggregate inflation series. Figure 16 plots inflation rates cal-

culated from the micro data using regular prices, and shows that they have a close

correspondence to the published aggregate inflation rate.

23The link is here.
24These observations can arise because of confidentiality reasons.
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Figure 14: Price Indexes
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A.6 Constructing Micro-Price Statistics

We use our master panel dataset to construct the micro-price statistics that we use to calibrate

the model. We apply the following steps in sequence to the dataset:

1. Filters: We drop price changes with a sale flag and noncomparable product substitu-

tion flag. We also drop prices that are centrally collected by the ONS. We next remove

quotes for products that are not observed in the dataset for at least 6 months. We next

drop prices that are not rounded to the nearest cent, and which could indicate record-

ing errors (see Eichenbaum et al., 2014). We next drop observations if the number of

observations for the item-category is less than 20. Out of our initial number 37,708,793

unique price quotes, these filtering steps eliminates 3,639,521 observations.

2. Removing energy products: We drop observations that are classified as “energy”

at the COICOP-6 level, following the ONS classification.25 This removes 381,134 ob-

servations.

3. Product-level weights: The weights in our dataset are observed at the item-date

level. We construct product-date level weights by dividing the item-date weight by the

number of quotes observed for that item-date.

25There are five COICOP-6 classifications that are grouped as “energy”: Electricity (04.5.1), Gas (04.5.2),
Liquid fuels (04.5.3), Solid fuels (04.5.4), Fuels and lubricants (07.2.2).
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Table 10: Variables in Dataset

Variable Description

date Date of price quote observation
quote id Identifier for the price quote
weight id Identifier for the item
weight Weight
price Price
coicop 6 COICOP-6 classification
CPI agg Aggregate CPI index

Figure 15: Inflation Rates
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Figure 16: Inflation Calculated Using Regular Price Changes
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4. Regular prices: Since the sales flag is unlikely to cover all sales observed, we next

construct regular prices by applying an algorithm that filters out V-shaped price series

that last less than three months. As we plot in the text, the aggregate inflation series

computed from regular prices is close to the series computed using posted prices. As an

example of our algorithm that constructs regular prices, Figure 17 plots the posted price

and regular price for an item in the COICOP-6 Bread and Cereals category (01.1.1).

5. Standardization: We follow Klenow and Kryvtsov (2008) and compute the standard-

ized price change:

∆̂pit(s) =
∆pit(s)− µ∆(s)

σ∆(s)
σ∆ + µ∆

where µ∆(s) and µ∆ are the mean of the non-zero log price changes in sector s and

in the aggregate, respectively, and σ∆(s) and σ∆ construct the item-level mean and

variance of price changes.

6. Remove outliers: Our final step is to remove the top 2% and bottom 2% of observa-

tions based on the normalized price changes.

Table 11 shows price statistics for different sets of prices from our dataset.26 Removing

26In all cases, we standardize prices at the item level and remove the top 2% and bottom 2% of outliers.
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Figure 17: Posted and Regular Price Example: “Bread and Cereals” Product
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energy prices drops the frequency of adjustment from 0.18 to 0.17, and using regular prices

drops it further to 0.12. The remaining price statistics are broadly similar.

Table 12 shows the weights at the COICOP-2 level in our sample used to compute micro

price statistics and compared to the weights that are published by the ONS in the CPI.
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Table 11: Micro Price Statistics

Regular Prices
All Prices No Energy No Energy

frequency ∆p 0.180 0.168 0.116

distribution of ∆p

mean 0.014 0.014 0.018
std. dev. 0.188 0.190 0.188
kurtosis 3.121 3.145 3.609

5th percentile -0.325 -0.328 -0.327
10th percentile -0.238 -0.240 -0.226
25th percentile -0.100 -0.099 -0.081
50th percentile 0.024 0.023 0.026
75th percentile 0.126 0.126 0.119
90th percentile 0.250 0.252 0.247
95th percentile 0.329 0.332 0.340

distribution of |∆p|

mean 0.146 0.147 0.142
std. dev. 0.119 0.121 0.125

5th percentile 0.009 0.009 0.009
10th percentile 0.019 0.019 0.018
25th percentile 0.050 0.050 0.045
50th percentile 0.115 0.115 0.104
75th percentile 0.216 0.217 0.204
90th percentile 0.327 0.330 0.334
95th percentile 0.394 0.398 0.413

Table 12: COICOP-2 Level Weights in Sample Versus Published Weights

Weight, Sample Weight, CPI

1 Food and Non-Alcoholic Beverages 0.19 0.12
2 Alcoholic Beverages and Tobacco 0.09 0.05
3 Clothing and Footwear 0.08 0.06
4 Housing, Utilities, and Other Fuels 0.03 0.14
5 Furniture, Household Eq./Maintenance 0.12 0.08
6 Health 0.03 0.02
7 Transport 0.08 0.14
8 Communication 0.00 0.03
9 Recreation and Culture 0.14 0.13
10 Education 0.00 0.03
11 Restaurants 0.13 0.11
12 Miscellaneous Goods and Services 0.11 0.09

Aggregate 1.00 1.00
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B An Economy With Idiosyncratic Productivity Shocks

We describe an economy in which idiosyncratic shocks are shocks to productivity, as opposed

to quality. We show that the firm’s problem is nearly isomorphic to the problem of a firm in

our baseline model provided one rescales the menu cost appropriately.

We now suppose that the technology for aggregating individual products into a final sector

good is

yt (f, s) =

(∫
yit (f, s)

γ−1
γ di

) γ
γ−1

and

yt (s) =

(∫
yt (f, s)

σ−1
σ df

) σ
σ−1

.

Notice that we no longer have taste shifters in these aggregators. The demand functions are

therefore

yit (f, s) =

(
Pit (f, s)

Pt (f, s)

)−γ
yt (f, s)

yt (f, s) =

(
Pt (f, s)

Pt (s)

)−σ
yt (s) .

As earlier, the production function is

yit (f, s) = et (s)ut (f, s) zit (f, s)mit (f, s) lit (f, s)η ,

and the optimal choice of the specific factor mit implies that the total amount of labor the

firm needs to produce the bundle yit(f, s) is

lt (f, s) =

(∫
yit (f, s)

et (s)ut (f, s) zit (f, s)
di

) 1
η

.

Notice that now zit(f, s) represents a product-specific productivity shock and ut(f, s) repre-

sents a firm-specific productivity shock. The firm’s profits are

∞∑
t=0

βt

Ptct

[
(1 + τ)

∫
Pit (f, s) yit (f, s) di−Wt

(∫
yit (f, s)

et (s)ut (f, s) zit (f, s)
di

) 1
η

−Wtξt(f, s)It(f, s)

]
,

where we now assume that the fixed cost of changing prices ξt(f, s) depends on the firm’s

productivity, as we discuss below. Absent such rescaling, firms whose productivity grows

over time would face smaller menu costs relative to their profits and no longer be subject to

pricing frictions.
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To show that in this environment the problem of the firm is similar to that in our baseline

model, let us define the several objects. First, the first-best level of a firm’s productivity is

zt (f, s) =

(∫
zit (f, s)γ−1 di

) 1
γ−1

.

This evolves over time according to

zt (f, s) = zt−1 (f, s) exp

(
(γ − 1)

σ2
z

2

)
,

given our assumption that individual productivity evolves according to a geometric random

walk process with Gaussian innovations. We can then write the firm’s production function

as

yt (f, s) = et (s)ut (f, s) zt (f, s)φt (f, s) lt (f, s)η ,

where φt(f, s) represents the losses from misallocation inside the firm, given by

φt (f, s) =

(∫
zt (f, s)

zit (f, s)

(
Pit (f, s)

Pt (f, s)

)−γ
di

)−1

.

We also let the composite firm productivity be

ũt (f, s) = ut (f, s) zt (f, s) ,

which evolves according to a geometric random walk process with Gaussian innovations and

a drift equal to (γ − 1) σ2
z

2
. Also let

ut (s) =

∫ ũt (f, s)

(σ−1) 1η

1+σ( 1
η−1) df


1+σ( 1

η−1)
(σ−1) 1η

denote the sectoral weighted average of individual firm’s composite productivities. This term

also evolves over time according to a deterministic trend.

We define the price gaps as follows. The sectoral price gap is given by

xt (s) = āη
et (s)ut (s)Pt (s)

Mt (s)
.

The firm-level price gap is given by

xt (f, s) = āη
et (s)ut (s)

(
ũt(f,s)
ut(s)

) 1
η

1+σ( 1
η−1) Pt (f, s)

Mt (s)
.
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The product-level price gap is given by

xit (f, s) = āη
et (s)ut (s)

(
ũt(f,s)
ut(s)

) 1
η

1+σ( 1
η−1) zit(f,s)

zt(f,s)
Pit (f, s)

Mt (s)
.

We assume that the menu cost scales with the firm’s productivity:

ξ̄t(f, s) =

(
ũt (f, s)

ut (s)

) (σ−1) 1η

1+σ( 1
η−1)

.

This assumption ensures that the menu cost is equal to constant fraction of the firm’s (flexible

price) profits, so they do not vanish for firms that grow increasingly large. We can then rewrite

the firm’s objective as

∞∑
t=0

βt
(
ũt (f, s)

ut (s)

) (σ−1) 1η

1+σ( 1
η−1)

[
(1 + τ)

(
xt (f, s)

xt (s)

)1−σ

− at (s)φt (f, s)−
1
η

(
xt (f, s)

xt (s)

)−σ
η

− ξ̄It(f, s)

]
.

This objective is nearly identical to that in the baseline model with quality shocks, except

that we have an additional term due to firm productivity growth affecting the discount factor.

In addition, since we scale prices by different terms involving productivity, the law of motion

for price gaps changes accordingly.

We finally note that if the firm does not adjust prices, misallocation inside the firm is

equal to

φt (f, s) =

(∫
zt (f, s)

zit (f, s)

(
Pit (f, s)

Pt (f, s)

)−γ
di

)−1

=

(∫
zit (f, s)−1 di

)−1

zt (f, s)
,

and evolves over time according to the same law of motion as in our baseline model with

quality shocks

φt (f, s) = φt−1 (f, s) exp

(
−γσ

2
z

2

)
.
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C Additional Figures and Tables

This section reports the parameter values and targeted moments in the robustness section

discussed in the paper.

Table 13: Alternative Parameterization: Single-Product Model

A. Moments

Data η = 1

frequency ∆p 0.116 0.116

distribution of ∆p

mean 0.018 0.013
std. dev. 0.188 0.196
kurtosis 3.609 3.624

5th percentile -0.327 -0.318
10th percentile -0.226 -0.230
25th percentile -0.081 -0.102
50th percentile 0.026 0.014
75th percentile 0.119 0.139
90th percentile 0.247 0.264
95th percentile 0.340 0.334

distribution of |∆p|

mean 0.142 0.152
std. dev. 0.125 0.125

5th percentile 0.009 0.011
10th percentile 0.018 0.020
25th percentile 0.045 0.055
50th percentile 0.104 0.120
75th percentile 0.204 0.220
90th percentile 0.334 0.328
95th percentile 0.413 0.395

B. Calibrated Parameter Values

η = 1

gm mean money growth rate 0.019
σu s.d. firm shocks 0.067
λ 1-prob. free change 0.909
ξ̄ upper bound menu cost 12.49

Note: the menu cost is relative to average sales. The money growth rate is annualized.
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Table 14: Alternative Parameterizations: Multi-Product Model

A. Moments

Data γ = 0 γ = 3

frequency ∆p 0.116 0.115 0.115

distribution of ∆p

mean 0.018 0.012 0.025
std. dev. 0.188 0.178 0.190
kurtosis 3.609 3.889 3.405

5th percentile -0.327 -0.275 -0.306
10th percentile -0.226 -0.205 -0.224
25th percentile -0.081 -0.100 -0.094
50th percentile 0.026 0.013 0.037
75th percentile 0.119 0.122 0.152
90th percentile 0.247 0.229 0.254
95th percentile 0.340 0.303 0.317

distribution of |∆p|

mean 0.142 0.138 0.152
std. dev. 0.125 0.113 0.117

5th percentile 0.009 0.010 0.012
10th percentile 0.018 0.021 0.024
25th percentile 0.045 0.053 0.061
50th percentile 0.104 0.112 0.128
75th percentile 0.204 0.193 0.217
90th percentile 0.334 0.290 0.313
95th percentile 0.413 0.359 0.377

B. Calibrated Parameter Values

γ = 0 γ = 3

gm mean money growth rate 0.019 0.034
σu s.d. firm shocks 0.026 0.028
σz s.d. product shocks 0.057 0.059
ξ̄ menu cost 0.122 0.410

Note: the menu cost is relative to average sales. The money growth rate is annualized.
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