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Abstract 

Structural vector autoregressions that are set-identified (e.g. using sign restrictions) are typically 

estimated under the normalisation that the structural shocks have unit standard deviation, in which 

case the estimated impulse responses are to a standard-deviation shock. However, impulse 

responses to a unit shock – a shock that raises a particular variable by one unit – are often of greater 

relevance, particularly for policy analysis. For example, central bankers are interested in answering 

questions like ‘what are the effects of a 100 basis point increase in the federal funds rate?’ This 

paper explores the extent to which set-identifying restrictions are informative about impulse 

responses to unit shocks. I show that identified sets for these impulse responses may be unbounded 

and discuss issues that this raises for conducting inference. I explain how to draw useful posterior 

inferences about impulse responses even when the identified sets for these impulse responses are 

unbounded at some values of the reduced-form parameters. I illustrate the empirical relevance of 

these issues by estimating the macroeconomic effects of a 100 basis point shock to the federal funds 

rate. The results obtained under a rich set of sign and narrative restrictions are broadly consistent 

with the effects of US monetary policy on output lying at the smaller end of the range of existing 

estimates. 

JEL Classification Numbers: C32, E52 

Keywords: Bayesian inference, impulse responses, monetary policy, set-identified models, sign and 
zero restrictions 
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1. Introduction 

When estimating the effects of macroeconomic shocks using structural vector autoregressions 

(SVARs), it has become increasingly common to use sign restrictions and/or a set of zero restrictions 

that are insufficient to point-identify the parameters of interest, in which case the parameters are 

set-identified (e.g. Uhlig 2005; Arias, Rubio-Ramírez and Waggoner 2018).1 Set-identified SVARs are 

typically estimated under the normalisation that the structural shocks have unit standard deviation 

(i.e. the ‘standard-deviation normalisation’). The impulse responses that are obtained under this 

normalisation consequently represent impulse responses to a standard-deviation shock. However, 

as argued by Fry and Pagan (2011) and Stock and Watson (2016, 2018), impulse responses to a 

unit shock – a shock that raises a particular variable by one unit – are naturally more relevant for 

policy analysis. For example, central bankers are interested in answering questions like ‘what are 

the effects of a 100 basis point increase in the policy rate?’ 

In this paper, I explore the extent to which set-identifying restrictions are informative about impulse 

responses to unit shocks (i.e. under the ‘unit-effect normalisation’). In particular, I show that the 

‘identified set’ for an impulse response to a unit shock – the set of values of the impulse response 

that are consistent with the reduced-form parameters given the identifying restrictions – may be 

unbounded. To give some intuition, the impulse responses to a unit shock are obtained by dividing 

the impulse response of a particular variable with respect to a standard-deviation shock by the 

‘normalising impulse response’ (e.g. the impact response of the federal funds rate with respect to a 

standard-deviation monetary policy shock). When the identified set for the normalising impulse 

response includes zero, it may be possible to make the impulse response to a unit shock arbitrarily 

large by considering a sequence of parameters converging to the point where the normalising 

impulse response is zero. The possibility that the identified set for the impulse response to a unit 

shock is unbounded suggests that set-identifying restrictions have the potential to be extremely 

uninformative about these impulse responses. I demonstrate the implications of an unbounded 

identified set when conducting inference, with a focus on the prior-robust approach to Bayesian 

inference proposed in Giacomini and Kitagawa (2021), and discuss how researchers can potentially 

draw useful posterior inferences about impulse responses to a unit shock when the identified set is 

unbounded with positive posterior probability.2 

Under the standard approach to Bayesian inference in set-identified SVARs (e.g. Uhlig 2005; Rubío-

Ramirez, Waggoner and Zha 2010; Arias et al 2018), it is straightforward to transform from the 

standard-deviation normalisation to the unit-effect normalisation. As is the case under point-

identifying restrictions, this transformation simply requires dividing the impulse responses obtained 

under the standard-deviation normalisation by the normalising impulse response. Repeating this at 

each draw of the parameters from their posterior distribution generates a posterior distribution for 

the impulse responses to a unit shock. However, there are well-documented problems with the 

standard approach to Bayesian inference in set-identified models. In particular, because the model 

                                                      

1  Loosely speaking, a parameter is point-identified if its value can be pinned down given knowledge of the joint 

distribution of the data. A parameter is set-identified if its value can only be determined up to a (non-singleton) set. 

2  When applying their robust Bayesian approach to inference to a set-identified SVAR, Giacomini and Kitagawa (2021) 

focus on the impulse responses to standard-deviation shocks as the parameters of interest. Giacomini, Kitagawa and 

Read (2022) describe an algorithm for conducting robust Bayesian inference in proxy SVARs (i.e. SVARs identified 

using an external instrument) under the unit-effect normalisation. They note that the identified set may be unbounded 

at some values of the reduced-form parameters, but do not draw out the implications of this issue for conducting 

inference. 
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is set-identified, the likelihood function is flat with respect to certain parameters. As a consequence, 

a component of the prior is ‘unrevisable’ in the sense that it is never updated and, as a consequence, 

posterior inference may be sensitive to the choice of prior (Poirier 1998; Baumeister and 

Hamilton 2015).3 

To address the problem of posterior sensitivity, Giacomini and Kitagawa (2021) propose conducting 

Bayesian inference in set-identified models using an approach that is robust to the choice for the 

unrevisable component of the prior (a ‘robust Bayesian approach’ to inference). The key feature of 

this approach is that it replaces the prior with a class of priors, which contains all priors that are 

consistent with the identifying restrictions (given a prior for the reduced-form parameters).4 The 

class of priors generates a class of posteriors, which can be summarised in various ways. For 

example, rather than generating a single posterior mean, the class of posteriors generates a set of 

posterior means, which is an interval that contains every posterior mean that could be obtained 

under the class of priors. The class of posteriors can also be summarised using a ‘robust credible 

interval’, which is an interval that is assigned at least a given posterior probability under all posteriors 

in the class. Additionally, the class of posteriors generates a set of posterior probabilities for any 

particular hypothesis of interest (e.g. that the output response is negative at some horizon). This 

set can be summarised by the posterior lower and upper probabilities, which are, respectively, the 

smallest and largest posterior probabilities of the hypothesis over the class of posteriors. 

In the context of set-identified SVARs, implementing the robust Bayesian approach to inference 

requires computing the lower and upper bounds of the identified set for each impulse response. As 

noted above, if zero is contained within the identified set for the normalising impulse response, the 

identified sets for the impulse responses to a unit shock may be unbounded. In turn, if these 

identified sets are unbounded within any region of the reduced-form parameter space that receives 

positive posterior probability, the sets of posterior means will be unbounded. At face value, this 

suggests that set-identifying restrictions may be extremely uninformative about the impulse 

responses to a unit shock.5 Nevertheless, it may be possible to draw useful posterior inferences 

about impulse responses to a unit shock when the identified set is unbounded with positive posterior 

probability. For example, even when the set of posterior means is unbounded, the set of posterior 

medians or some other quantile may be bounded, and it may be possible to construct robust credible 

intervals if the credibility level is not too extreme. Moreover, the posterior lower and upper 

probabilities remain well defined. Consequently, it is always possible to draw inferences such as ‘the 

posterior probability that output declines by more than 𝑥 per cent at horizon ℎ in response to a 

100 basis point monetary policy shock is at least 𝑦 per cent and at most 𝑧 per cent’. 

Given the ubiquity of Bayesian methods in the literature on set-identified SVARs, and the well-

documented problem of posterior sensitivity to the choice of prior in these models, I focus on the 

implications of unbounded identified sets for conducting robust Bayesian inference. However, 

                                                      

3  The posterior density is the product of the likelihood and the prior density. Conditional on the reduced-form 

parameters, the likelihood function is flat, so the posterior will be proportional to the prior. 

4  An alternative approach to Bayesian inference in SVARs is to impose a prior directly over the structural parameters 

(as advocated in Baumeister and Hamilton (2015, 2018, 2019)). It remains the case under this approach that a 

component of the prior will never be updated by the data, so posterior sensitivity to the choice of prior may still be a 

concern. 

5  So long as the VAR is stable, the identified set for the impulse response to a standard-deviation shock is always 

bounded. The issue of unboundedness is therefore specific to the case where the impulse response of interest is with 

respect to a unit shock. 
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unboundedness may also arise when estimating or conducting inference about impulse responses 

to a unit shock within a frequentist framework. Existing approaches to frequentist inference in set-

identified SVARs focus on impulse responses to a standard-deviation shock as the parameters of 

interest (e.g. Gafarov, Meier and Montiel Olea 2018; Granziera, Moon and Schorfheide 2018). If the 

maximum-likelihood estimator (MLE) of the reduced-form parameters is such that zero is included 

within the identified set for the normalising impulse response, a frequentist estimate of the identified 

set for impulse responses to a unit shock may be unbounded. 

To make these issues clear, I use a bivariate SVAR in which I can analytically characterise identified 

sets under some sign restrictions on impulse responses. I then explain how to verify whether 

identified sets for the impulse responses to a unit shock may be unbounded in an SVAR of arbitrary 

dimension identified using both sign and zero restrictions. I first show that a necessary condition for 

unboundedness of these identified sets is that the identified set for the normalising impulse response 

includes zero. I explain why this condition is not also sufficient for unboundedness by describing an 

example where the condition is satisfied but particular impulse responses to unit shocks are 

bounded. I then provide an easily verifiable sufficient condition under which the identified set for 

the normalising impulse response includes zero; specifically, if the number of sign and zero 

restrictions is less than the dimension of the SVAR and the restrictions relate to a single structural 

shock, the identified set for the normalising impulse response always includes zero. When this 

sufficient condition is not satisfied (i.e. when there are more restrictions than variables in the SVAR 

and/or the restrictions relate to multiple shocks), I explain how to check whether the identified set 

for the normalising impulse response includes zero at a given value of the reduced-form parameters 

by adapting numerical algorithms that have been previously used to check whether identified sets 

are nonempty (e.g. Giacomini and Kitagawa 2021; Read, forthcoming). 

To illustrate the importance of these issues in practice, I estimate the macroeconomic effects of a 

100 basis point shock to the federal funds rate under different combinations of identifying 

restrictions: the sign restrictions on impulse responses to a monetary policy shock proposed in Uhlig 

(2005); the sign and zero restrictions on the systematic component of monetary policy proposed in 

Arias, Caldara and Rubio-Ramírez (2019); and the ‘narrative restrictions’ proposed in Antolín-Díaz 

and Rubio-Ramírez (2018). 

Under the restrictions considered in Arias et al (2019), the sufficient condition described above is 

satisfied, so zero is always included in the identified set for the normalising impulse response.6 This 

suggests that identified sets for the impulse responses to a 100 basis point shock may always be 

unbounded. Numerical approximations of the bounds of the identified set suggest that this is indeed 

the case. These restrictions are therefore extremely uninformative about the effects of a 100 basis 

point shock, and outputs obtained using standard Bayesian inference are misleading about the 

informativeness of the data and identifying restrictions. Combining these restrictions with the sign 

restrictions on impulse responses considered in Uhlig (2005) yields identified sets that are bounded 

with posterior probability close to, but less than, 100 per cent. In this case, since the identified sets 

appear to be unbounded with positive posterior probability, the sets of posterior means for the 

output response to a 100 basis point shock are unbounded. Nevertheless, the sets of posterior 

medians remain bounded, because the identified sets are unbounded with low posterior probability. 

                                                      

6  I do not make a judgement about whether it is reasonable that the federal funds rate does not respond on impact to 

a monetary policy shock. I seek to clarify that existing identifying restrictions do not necessarily rule this possibility 

out, and the implications that this has for drawing inferences about the effects of unit shocks. 
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The set of posterior medians for the output response includes zero at almost all horizons of interest, 

and the restrictions are unable to rule out large increases in output following a positive 100 basis 

point shock. 

Additionally imposing narrative restrictions on the sign of the monetary policy shock in October 1979 

and its contribution to the change in the federal funds rate in this month (as in Antolín-Díaz and 

Rubio-Ramírez (2018)) results in the identified sets being bounded with 100 per cent posterior 

probability. This implies that the sets of posterior means and all posterior quantiles are bounded. 

The additional restrictions substantially tighten the set of posterior medians and robust credible 

intervals. The results under this set of restrictions are consistent with the largest effects of monetary 

policy on output occurring after about two years and lying towards the lower end of the range of 

existing estimates summarised in Ramey (2016). 

Finally, I discuss the possibility of using alternative identifying restrictions to ensure that the 

identified sets for the impulse responses to a unit shock are bounded. A straightforward solution 

would be to directly bound the normalising impulse response away from zero; however, I argue that 

it may be difficult to justify such restrictions and inferences may be extremely sensitive to changes 

in the imposed bound. A lower bound on the forecast error variance decomposition, such as those 

proposed in Volpicella (forthcoming), will indirectly constrain the impulse response of the normalising 

variable to be nonzero, but – again – such restrictions may be difficult to justify in practice and yield 

results that are highly sensitive to the imposed bound. 

The remainder of the paper is structured as follows. Section 2 outlines the SVAR framework and the 

robust Bayesian approach to inference. Section 3 uses a bivariate SVAR to outline the issues 

associated with conducting inference about impulse responses to a unit shock. Section 4 describes 

how to check whether identified sets for impulse responses to a unit shock are unbounded in a more 

general setting. Section 5 estimates the macroeconomic effects of a 100 basis point shock to the 

federal funds rate under different sets of identifying restrictions. Section 6 discusses using alternative 

restrictions to ensure boundedness of the identified sets. Section 7 concludes. Proofs and additional 

details are contained in the appendices. 

Notation. For a matrix 𝑿, vec(𝑿) is the vectorisation of 𝑿. When 𝑿 is symmetric, vech(𝑿) is the 

half-vectorisation of 𝑿, which stacks the elements of 𝑿 that lie on or below the diagonal into a vector. 

𝒆𝑖,𝑛 is the 𝑖th column of the 𝑛 × 𝑛 identity matrix, 𝑰𝑛. 𝟎𝑛×𝑚 is an 𝑛 ×𝑚 matrix of zeros. 

2. Framework 

This section describes the SVAR model, outlines the concepts of identifying restrictions and identified 

sets, and describes the robust Bayesian approach to inference. 

2.1 SVAR and Orthogonal Reduced Form 

Let 𝒚𝑡 be an 𝑛 × 1 vector of variables following the SVAR(𝑝) process: 

𝑨0𝒚𝑡 = 𝑨+𝒙𝑡 + 𝜺𝑡 , 𝜺𝒕~𝑁(𝟎𝑛×1, 𝑰𝑛), 
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where 𝑨0 is an invertible 𝑛 × 𝑛 matrix with positive diagonal elements (which is a normalisation on 

the signs of the structural shocks) and 𝒙𝑡 = (𝒚𝑡−1
′ , … , 𝒚𝑡−𝑝

′ )′. The ‘orthogonal reduced form’ of the 

model is: 

𝒚𝑡 = 𝑩𝒙𝑡 + 𝚺𝑡𝑟𝑸𝜺𝑡, 

where 𝑩 = (𝑩1, … , 𝑩𝑝) = 𝑨0
−1𝑨+ is the matrix of reduced-form coefficients, 𝚺𝑡𝑟 is the lower-

triangular Cholesky factor of the variance-covariance matrix of the reduced-form VAR innovations, 

𝚺 = 𝐸(𝒖𝑡𝒖𝑡′) = 𝑨0
−1(𝑨0

−1)′ with 𝒖𝑡 = 𝒚𝑡 −𝑩𝒙𝑡, and 𝑸 is an 𝑛 × 𝑛 orthonormal matrix (i.e. 𝑸𝑸′ = 𝑰𝑛). 

The reduced-form parameters are denoted by 𝝓 = (vec(𝑩)′,vech(𝚺𝑡𝑟)
′)′ ∈ 𝚽 and the space of 𝑛 × 𝑛 

orthonormal matrices by 𝒪(𝑛). 

The impulse responses to standard-deviation shocks are obtained from the coefficients of the vector 

moving average representation of the VAR: 

𝒚𝑡 = ∑𝑪ℎ

∞

ℎ=0

𝚺𝑡𝑟𝑸𝜺𝑡−ℎ, 

where 𝑪ℎ is defined recursively by 𝑪ℎ = ∑ 𝑩𝑙𝑪ℎ−𝑙
min{ℎ,𝑝}
𝑙=1  for ℎ ≥ 1 with 𝑪0 = 𝑰𝑛. The (𝑖, 𝑗)th element 

of the matrix 𝑪ℎ𝚺𝑡𝑟𝑸 is the horizon-ℎ impulse response of the 𝑖th variable to the 𝑗th structural shock, 

denoted by 𝜂𝑖,𝑗,ℎ(𝝓,𝑸) = 𝒄𝑖ℎ
′ (𝝓)𝒒𝑗, where 𝒄𝑖ℎ

′ (𝝓) = 𝒆𝑖,𝑛
′ 𝑪ℎ𝚺𝑡𝑟 is the 𝑖th row of 𝑪ℎ𝚺𝑡𝑟 and 𝒒𝑗 = 𝑸𝒆𝑗,𝑛 

is the 𝑗th column of 𝑸. The horizon-ℎ impulse response of the 𝑖th variable to a shock in the first 

variable that raises the first variable by one unit on impact is then 

�̃�𝑖,1,ℎ(𝝓,𝑸) =
𝜂𝑖,1,ℎ(𝝓,𝑸)

𝜂1,1,0(𝝓,𝑸)
=
𝒄𝑖ℎ
′ (𝝓)𝒒1
𝐞1,𝑛
′ 𝚺𝑡𝑟𝒒1

, 

which is well-defined whenever 𝜂1,1,0(𝝓,𝑸) ≠ 0. In what follows, I refer to this parameter as an 

‘impulse response to a unit shock’ and the impulse response in the denominator as the ‘normalising 

impulse response’. The assumption that the normalising impulse response is the impact response of 

the first variable to the first shock is made to ease notation. In some contexts, it may be natural to 

normalise the impulse responses such that a specific variable increases by one unit at some longer 

(non-impact) horizon; for example, when estimating the effects of news shocks, the natural 

normalising variable may not respond at shorter horizons. The discussion below generalises 

straightforwardly to this more general setting. 

2.2 Identifying Restrictions and Identified Sets 

Imposing identifying restrictions on functions of the structural parameters is equivalent to imposing 

restrictions on 𝑸 given 𝝓; for example, consider a sign restriction on an impulse response such that  

𝜂𝑖,𝑗,ℎ(𝝓,𝑸) = 𝒄𝑖ℎ
′ (𝝓)𝒒𝑗 ≥ 0. This is a linear inequality restriction on 𝒒𝑗, where the coefficients in the 

restriction are a function of 𝝓. More generally, let 𝑆(𝝓, 𝑸) ≥ 𝟎𝑠×1 represent a collection of 𝑠 sign 

restrictions (including the sign normalisation diag(𝑨0) ≥ 𝟎𝑛×1). Similarly, represent a collection of 𝑓 
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zero restrictions by 𝐹(𝝓,𝑸) = 𝟎𝑓×1. For example, these could include zero restrictions on impulse 

responses, elements of 𝑨0 or long-run cumulative impulse responses.7  

Let 𝑓𝑖 represent the number of zero restrictions constraining the 𝑖th column of 𝑸 with ∑ 𝑓𝑖
𝑛
𝑖=1 = 𝑓. I 

assume that the variables are ordered such that 𝑓𝑖 is weakly decreasing and that 𝑓𝑖 ≤ 𝑛 − 𝑖 for 𝑖 =

1,… , 𝑛 with strict inequality for at least one 𝑖; this is a sufficient condition for the model to be set-

identified (Rubio-Ramírez et al 2010; Bacchiocchi and Kitagawa 2021). 

Given a collection of sign and zero restrictions, the identified set for 𝑸 – which collects observationally 

equivalent parameter values (i.e. parameter values corresponding to the same value of the likelihood 

function) – is 

𝑄(𝝓|𝑆, 𝐹) = {𝑸 ∈ 𝒪(𝑛) ∶ 𝑆(𝝓,𝑸) ≥ 𝟎𝑠×1, 𝐹(𝝓,𝑸) = 𝟎𝑓×1}. 

The identified set for a particular impulse response is then the set of values of that impulse response 

as 𝑸 varies over its identified set; that is, 𝜂𝑖,𝑗,ℎ(𝝓|𝑆, 𝐹) =  {𝜂𝑖,𝑗,ℎ(𝝓,𝑸): 𝑸 ∈ 𝑄(𝝓|𝑆, 𝐹)} or 

�̃�𝑖,𝑗,ℎ(𝝓|𝑆, 𝐹) =  {�̃�𝑖,𝑗,ℎ(𝝓,𝑸):𝑸 ∈ 𝑄(𝝓|𝑆, 𝐹)}. Note that identified sets may be empty. 

2.3 Robust Bayesian Inference in Set-identified SVARs 

The standard approach to conducting Bayesian inference in set-identified SVARs involves specifying 

a prior for the reduced-form parameters 𝝓 and a uniform prior for the orthonormal matrix 𝑸 (Uhlig 

2005; Rubio-Ramírez et al 2010; Arias et al 2018). To draw from the resulting posterior in practice, 

one samples values of 𝝓 from its posterior and 𝑸 from a uniform distribution over 𝑄(𝝓|𝐹) and 

discards draws that violate the sign restrictions. Assume there is a scalar parameter of interest that 

is a function of the structural parameters, 𝜂 ≡ 𝜂(𝝓,𝑸) (e.g. a particular impulse response). Draws 

of 𝜂 are obtained by transforming the draws of 𝝓 and 𝑸, and the posterior is summarised using 

quantities such as the posterior mean and quantiles. 

Let 𝜋𝝓 be a prior for 𝝓 ∈ 𝚽, where 𝚽 is the space of reduced-form parameters such that 𝑄(𝝓|𝑆, 𝐹) 

is nonempty. A joint prior for the full set of parameters 𝜽 = (𝝓′,vec(𝑸)′)′ can be decomposed as 

𝜋𝜽 = 𝜋𝑸|𝝓𝜋𝝓, where 𝜋𝑸|𝝓 is the conditional prior for 𝑸 given 𝝓 (which assigns zero prior density 

outside of 𝑄(𝝓|𝑆, 𝐹)). After observing the data 𝒀, the posterior is 𝜋𝜽|𝒀 = 𝜋𝝓|𝒀𝜋𝑸|𝝓, where 𝜋𝝓|𝒀 is the 

posterior for 𝝓. The prior for 𝝓 is updated by the data (through the likelihood), whereas the 

conditional prior for 𝑸 given 𝝓 is not, because 𝑸 does not appear in the likelihood. This raises the 

concern that posterior inferences may be sensitive to the choice of 𝜋𝑸|𝝓, and suggests that it may 

be important for researchers to assess or eliminate this sensitivity.8 

                                                      

7  See Stock and Watson (2016) or Kilian and Lütkepohl (2017) for overviews of approaches to identification in SVARs. 

See Giacomini and Kitagawa (2021) for more information about the form of the mappings 𝑆(𝝓,𝑸) and 𝐹(𝝓,𝑸) under 

different types of identifying restrictions. 

8  Inoue and Kilian (2022), Kilian (forthcoming) and Rubio-Ramírez (forthcoming) argue that posterior sensitivity to the 

choice of prior is typically not quantitatively important in SVAR applications. However, the evidence that they cite is 

based on comparing prior and posterior distributions of impulse responses. As discussed in Poirier (1998) and 

Giacomini Kitagawa and Read (2021b, forthcoming), this comparison is not informative about posterior sensitivity 

when models are set-identified; instead, the relevant measure of posterior sensitivity is the extent to which the 

posterior changes when the unrevisable component of the prior changes. 
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To this end, I adopt the ‘robust’ (multiple-prior) Bayesian approach to inference in set-identified 

models proposed by Giacomini and Kitagawa (2021). In the context of an SVAR, this approach 
eliminates the source of posterior sensitivity arising due to the fact that 𝜋𝑸|𝝓 is never updated. The 

key feature of the approach is that it replaces 𝜋𝑸|𝝓 with the class of all conditional priors that are 

consistent with the identifying restrictions: 

Π𝑸|𝝓 = {𝜋𝑸|𝝓 ∶ 𝜋𝑸|𝝓(𝑄(𝝓|𝑆, 𝐹)) = 1}. 

Combining the class of priors, Π𝑸|𝝓, with 𝜋𝝓|𝒀 generates a class of posteriors for 𝜽: 

Π𝜽|𝒀 = {𝜋𝜽|𝒀 = 𝜋𝑸|𝝓𝜋𝝓|𝒀 ∶ 𝜋𝑸|𝝓 ∈ Π𝑸|𝝓}. 

The class of posteriors for 𝜽 induces a class of posteriors for 𝜂, Π𝜂|𝒀. Giacomini and Kitagawa (2021) 

suggest summarising Π𝜂|𝒀 by reporting the ‘set of posterior means’: 

[∫ ℓ(𝝓)𝑑𝜋𝝓|𝒀
𝚽

, ∫ 𝑢(𝝓)𝑑𝜋𝝓|𝒀
𝚽

], 

where ℓ(𝝓) = inf{𝜂(𝝓,𝑸) ∶ 𝑸 ∈ 𝑸(𝝓|𝑆, 𝐹)} is the lower bound of the identified set for 𝜂 and 𝑢(𝝓) =

sup{𝜂(𝝓,𝑸) ∶ 𝑸 ∈ 𝑸(𝝓|𝑆, 𝐹)} is the upper bound. The set of posterior means is an interval that 

contains all posterior means corresponding to the posteriors in Π𝜂|𝒀.
9 They also suggest reporting a 

robust credible region with credibility level 𝛼, which is an interval estimate for 𝜂 such that the 

posterior probability put on the interval is at least 𝛼 for all posteriors in Π𝜂|𝒀. Additionally, the class 

of posteriors generates a set of posterior probabilities assigned to any given hypothesis (e.g. that 

the output response to a monetary policy shock is negative at some horizon). This set can be 

summarised by the posterior lower and upper probabilities, which are, respectively, the smallest and 
largest posterior probabilities assigned to the hypothesis over all posteriors in Π𝜂|𝒀. 

3. The Unit-effect Normalisation in a Bivariate SVAR 

To illustrate the issues that arise when conducting inference about impulse responses to a unit 

shock, I consider the simplest possible SVAR – a bivariate SVAR with no dynamics – identified using 

sign restrictions on impulse responses. This allows me to analytically derive identified sets for the 

impulse responses. See Appendix A for derivations of the results in this section. 

The simplified model is 𝑨0𝒚𝑡 = 𝜺𝑡 , where 𝒚𝑡 = (𝑦1𝑡 , 𝑦2𝑡)
′, 𝜺𝑡 = (𝜀1𝑡 , 𝜀2𝑡)′ and 𝐸(𝜺𝑡𝜺𝒕

′) = 𝑰2. The 

orthogonal reduced form of this model is 𝒚𝑡 = 𝚺𝑡𝑟𝑸𝜺𝑡, where 𝚺𝑡𝑟 is the lower-triangular Cholesky 

factor of 𝚺 = 𝐸(𝒚𝑡𝒚𝑡
′) and 𝑸 is a 2 × 2 orthonormal matrix. I denote the reduced-form parameter as 

𝝓 = vech(𝚺𝑡𝑟) = (𝜎11, 𝜎21, 𝜎22)′ with 𝜎11, 𝜎22 > 0. In the bivariate case, the space of 2 × 2 

orthonormal matrices can be represented as 

𝒪(2) = {[
cos 𝜃 − sin 𝜃
sin𝜃 cos 𝜃

] : 𝜃 ∈ [−𝜋, 𝜋]} ∪ {[
cos 𝜃 sin𝜃
sin 𝜃 −cos 𝜃

] : 𝜃 ∈ [−𝜋, 𝜋]}, 

                                                      

9  The set of posterior means is always an interval regardless of whether the identified sets are convex. 
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where the first set is the set of ‘rotation’ matrices and the second is the set of ‘reflection’ matrices. 

Henceforth, I leave it implicit that 𝜃 ∈ [−𝜋, 𝜋].10 

In the absence of any identifying restrictions, the identified set for 𝑨0
−1 (the matrix of impact impulse 

responses) is 

𝑨0
−1 ∈ {[

𝜎11 cos 𝜃 −𝜎11 sin𝜃
𝜎21 cos 𝜃 + 𝜎22 sin 𝜃 𝜎22 cos 𝜃 − 𝜎21 sin𝜃

]} ∪ {[
𝜎11 cos 𝜃 𝜎11 sin𝜃

𝜎21 cos 𝜃 + 𝜎22 sin𝜃 𝜎21 sin 𝜃 − 𝜎22 cos 𝜃
]}, 

and the identified set for 𝑨0 (the matrix of structural coefficients) is 

𝑨0 ∈ {
1

𝜎11𝜎22
[
𝜎22 cos𝜃 − 𝜎21 sin 𝜃 𝜎11 sin𝜃
−𝜎21 cos 𝜃 − 𝜎22 sin𝜃 𝜎11 cos 𝜃

]} ∪ {
1

𝜎11𝜎22
[
𝜎22 cos 𝜃 − 𝜎21 sin 𝜃 𝜎11 sin 𝜃
𝜎21 cos 𝜃 + 𝜎22 sin 𝜃 −𝜎11 cos 𝜃

]}. 

Throughout, I impose the ‘sign normalisation’ diag(𝑨0) ≥ 𝟎2×1.
11 

Consider the case where the impact response of the first variable to the first shock is restricted to 

be nonnegative (𝜂1,1,0 ≡ 𝐞1,2
′ 𝐀0

−1𝐞1,2 ≥ 0) and the impact response of the second variable to the first 

shock is restricted to be nonpositive (𝜂2,1,0 ≡ 𝐞2,2
′ 𝐀0

−1𝐞1,2 ≤ 0). The identifying restrictions generate 

an identified set for 𝜃, which can in turn be used to obtain an identified set for 𝜂1,1,0: 

𝜂1,1,0 ∈

{
 
 

 
 [𝜎11cos (arctan (min {

𝜎22
𝜎21

,
𝜎21
𝜎22

})) , 𝜎11] if 𝜎21 < 0

[0, 𝜎11 cos (arctan (−
𝜎21
𝜎22

))] if 𝜎21 ≥ 0.

 

The identified set for 𝜂1,1,0 excludes zero when 𝜎21 < 0, but it includes zero when 𝜎21 ≥ 0. The sign 

restrictions therefore cannot rule out the possibility that a structural shock to the first variable results 

in no change in the first variable. 

The impulse response of the second variable to a unit shock in the first variable is 

�̃�2,1,0 ≡
𝜂2,1,0
𝜂1,1,0

=
𝜎21 cos 𝜃 + 𝜎22 sin𝜃

𝜎11 cos 𝜃
=
𝜎21
𝜎11

+
𝜎22
𝜎11

tan 𝜃. 

The identified set for this impulse response is 

�̃�2,1,0 ∈ {
[
𝜎21
𝜎11

+
𝜎22
2

𝜎11𝜎21
, 0] if 𝜎21 < 0

(−∞,0] if 𝜎21 ≥ 0.

 

                                                      

10  Baumeister and Hamilton (2015) use a similar example to show that the standard uniform prior over 𝑸 is informative 

about impulse responses. In particular, the implicit prior over the impulse response to a unit shock is a Cauchy 

distribution that is truncated by the sign restrictions, where the points of truncation depend on the reduced-form 

parameters. In contrast to their example, my example focuses on the identified set for the impulse response to a unit 

shock as the object of interest. 

11  If the bivariate system were interpreted as a model of supply and demand, the sign normalisation imposes that positive 

supply and demand shocks represent outward shifts in the supply and demand curves, respectively. 
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When 𝜎21 < 0, the lower bound of this identified set is negative and finite, while the upper bound is 

zero. The identified set for �̃�2,1,0 is therefore bounded. In contrast, when 𝜎21 ≥ 0, the identified set 

for �̃�2,1,0 is unbounded (below); �̃�2,1,0 diverges to −∞ as 𝜃 approaches −𝜋/2 (which is the lower 

bound of the identified set for 𝜃) from above, which is equivalent to 𝜂1,1,0 approaching zero from 

above. The upper bound of the identified set for this impulse response is equal to zero, so the sign 

restrictions are completely uninformative about �̃�2,1,0 outside of its sign (which is imposed). 

Figure 1: Identified Sets for 𝒒1 in Bivariate Model 

 

Notes:  This figure depicts the identified set for 𝒒1 = (𝑞𝟏,𝟏, 𝑞𝟏,𝟐)′ under the sign normalisation and sign restrictions described in the 

text. The black circle is the unit circle. The straight lines represent the boundaries of the half-spaces generated by the 

identifying restrictions: ‘SN’ corresponds to the sign normalisation 𝒆1,2
′ 𝑨0𝒆1,2 ≥ 0; ‘SR1’ corresponds to the sign restriction 

𝜂1,1,0 ≥ 0; ‘SR2’ corresponds to the sign restriction 𝜂2,1,0 ≤ 0. The coloured arcs represent the sets of values of 𝒒1 satisfying 

each individual restriction; the arc of the unit circle where the three coloured arcs overlap is the identified set for 𝒒1. 

Figure 1 provides some alternative geometric intuition behind this result. Given that the identifying 

restrictions constrain 𝒒1 only, they can be represented as three half-spaces (corresponding to the 

sign normalisation plus the two sign restrictions on impulse responses) in two-dimensional space 

(Figure 1).12 The identified set for 𝒒1 is given by the intersection of these half-spaces with the unit 

circle. When this identified set includes the boundary of the half-space corresponding to the sign 

restriction on the impact response of the first variable to the first shock, 𝜂1,1,0 ≥ 0, the impulse 

response of the second variable to a unit shock in the first variable, �̃�2,1,0, can be made arbitrarily 

large by considering a sequence for 𝒒1 (equivalently, 𝜃) converging to the point of singularity, 𝜂1,1,0 =

0. Whether it is possible to do this depends on the sign of 𝜎21; when 𝜎21 < 0, the intersection of the 

                                                      

12  Similar graphical illustrations are presented in Granziera et al (2018) and Amir-Ahmadi and Drautzburg (2021). 
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half-spaces always excludes this point of singularity (Panel (a)); when 𝜎21 ≥ 0, the point of 

singularity is included (Panel (b)).13 

Note that these results are not dependent on the fact that the sign restrictions are imposed on only 

a single column of 𝑸. Under the additional restrictions that the impulse responses of both variables 

to the second shock are positive, the identified set for 𝜂1,1,0 continues to include zero when 𝜎21 ≥ 0 

and the identified set for �̃�2,1,0 is unbounded (see Appendix A.2 for details). The results are also not 

dependent on imposing the sign restrictions with weak, rather than strict, inequality. Replacing the 

set of sign restrictions (including the sign normalisations) with strict inequalities yields identified sets 

that are open, rather than closed, intervals, but the identified set for �̃�2,1,0 remains unbounded when 

𝜎21 ≥ 0. 

This example highlights that the identified set for the impulse response to a unit shock may be 

unbounded if the identified set for the impact response of the normalising variable to a standard-

deviation shock includes zero. The exercise also demonstrates that sign restrictions may or may not 

be informative about impulse responses to a unit shock. Whether this is the case depends on the 

values of the reduced-form parameters. The following sections discuss some implications of 

unboundedness for conducting inference about the impulse responses to a unit shock.14 

3.1 Robust Bayesian Inference Under Unboundedness 

For ease of exposition, I make the simplifying assumption that 𝜋𝝓|𝒀 is supported only on two values 

of the reduced-form parameters: 𝝓𝑎 = (𝜎11, 𝜎21
𝑎 , 𝜎22)′ and 𝝓𝑏 = (𝜎11, 𝜎21

𝑏 , 𝜎22)′, where 𝜎21
𝑎 < 0 ≤ 𝜎21

𝑏 . 

I denote the lower bound of the identified set for �̃�2,1,0 when 𝝓 = 𝝓𝑎 by 𝐿(𝝓𝑎) and the posterior 

probability that 𝜎21 = 𝜎21
𝑎  by 𝛼. Under this assumption, the identified set for �̃�2,1,0 is [𝐿(𝝓

𝑎), 0] with 

posterior probability 𝛼 and it is (−∞, 0] with posterior probability 1 − 𝛼.  

The set of posterior means, which has bounds equal to the posterior means of the bounds of the 
identified set, will be (−∞, 0] unless 𝛼 = 1. Consequently, if 𝜋𝝓|𝒀 places positive posterior probability 

on the event 𝜎21 = 𝜎21
𝑏 ≥ 0, the set of posterior means is completely uninformative about the impulse 

response to a unit shock (other than its sign, which is imposed by the sign restrictions). 

The median of the upper bound of the identified set is zero regardless of the value of 𝛼. When 𝛼 ≥

0.5, the posterior median of the lower bound of the identified set is 𝐿(𝝓𝑎). The set of posterior 

medians – which is an interval with lower (upper) bound equal to the posterior median of the lower 

(upper) bound of the identified set – will therefore be bounded despite the set of posterior means 

being unbounded. In contrast, when 𝛼 < 0.5, the posterior median of the lower bound of the 

identified set is −∞, so the set of posterior medians is unbounded. By similar logic, the set of 

posterior 𝜏-quantiles will be bounded so long as 𝛼 ≥ 𝜏. The class of posteriors may therefore still 

                                                      

13  When imposing only the sign normalisation, the identified set for 𝜂2,1,0 is always (−∞,∞); in this case, it is possible to 

approach the point of singularity 𝜂1,1,0 = 0 from the positive or negative direction regardless of the value of 𝜎21. When 

imposing the sign normalisation and the sign restriction 𝜂1,1,0 ≥ 0, the identified set for 𝜂2,1,0 is always (−∞, 0]; in this 

case, the point of singularity can be approached from the positive direction only. 

14  Identified sets can also be unbounded when the parameter of interest is the structural coefficient on a particular 

variable after normalising the coefficient on another variable to equal unity (i.e. the ratio of elements of 𝑨0). If the 

identified set for the normalising coefficient includes zero, the identified set for the ratio of coefficients may be 

unbounded. 
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contain useful information about particular posterior quantiles even when the identified set is 

unbounded with positive posterior probability. 

A robust credible interval with credibility 1 − 𝜏 can be constructed by taking the 𝜏/2 quantile of ℓ(𝝓) 

and the 1 − 𝜏/2 quantile of 𝑢(𝝓). Whether the robust credible interval is bounded will therefore 

depend on the credibility level and 𝛼. In particular, boundedness of the robust credible interval 

requires that the sets of 𝜏/2 and 1 − 𝜏/2 quantiles are both bounded, which will be the case in the 

current example if 𝛼 ≥ 𝜏/2. 

Consider the hypothesis that �̃�2,1,0 ≤ 𝑥 for some 𝑥 < 0. The posterior lower probability of this 

hypothesis is equal to the posterior probability that the identified set is contained within the interval 

(−∞, 𝑥]. This probability is zero for all 𝑥 < 0. The posterior upper probability of the hypothesis is 

equal to the posterior probability that the identified set intersects the interval (−∞, 𝑥]. The posterior 

upper probability is one for 𝐿(𝝓𝑎) ≤ 𝑥 < 0 and is 1 − 𝛼 for 𝑥 < 𝐿(𝝓𝑎). The set of posterior 

probabilities for the hypothesis �̃�2,1,0 ≤ 𝑥 is therefore [0,1] for 𝐿(𝝓𝑎) ≤ 𝑥 < 0 and is [0,1 − 𝛼] for 𝑥 <

𝐿(𝝓𝑎). As 𝛼 approaches zero, so that the identified set is almost always unbounded, the set of 

posterior probabilities converges to the unit interval for all values of 𝑥. In this case, the sign 

restrictions are not informative about the hypothesis regardless of the value of 𝑥. In contrast, as 𝛼 

approaches one, the set of posterior probabilities converges to zero for sufficiently negative values 

of 𝑥 (i.e. for 𝑥 < 𝐿(𝝓𝑎)). In this case, we can conclude that ‘large’ responses are assigned low 

posterior probability regardless of the choice of conditional prior. 

This discussion illustrates that it is still possible to extract information about the impulse responses 

to a unit shock using the robust Bayesian approach to inference when the identified set is unbounded 

with positive posterior probability. The takeaways from this stylised model extend to the general 

case of an 𝑛-dimensional SVAR with dynamics and/or where the posterior for 𝝓 has continuous 

support. 

3.1.1 Frequentist validity of robust Bayesian approach 

For general set-identified models, Giacomini and Kitagawa (2021) provide high-level conditions 

under which their robust Bayesian approach to inference has a valid frequentist interpretation, in 

the sense that the set of posterior means is consistent for the true identified set (i.e. the identified 

set when 𝝓 is equal to its true value, 𝝓0) and the robust credible interval has correct frequentist 

coverage for the true identified set. In the context of SVARs and when the parameter of interest is 

an impulse response to a standard-deviation shock, Giacomini and Kitagawa (2021) provide sufficient 

conditions under which these high-level conditions will hold. In particular, the set of posterior means 

can be interpreted as a consistent estimator of the true identified set if the identified set is convex 

and continuous at 𝝓 = 𝝓𝟎. Additionally, if the endpoints of the identified set (ℓ(𝝓) and 𝑢(𝝓)) are 

differentiable in 𝝓 at 𝝓 = 𝝓𝟎 with nonzero derivatives, the robust credible interval has valid 

frequentist coverage of the true identified set. 

When the parameter of interest is an impulse response to a unit shock, the high-level conditions for 

frequentist validity of the robust Bayesian approach are not necessarily satisfied. For example, these 

conditions include the assumption that the true identified set is bounded. Consequently, the robust 

Bayesian approach to inference is not guaranteed to have an asymptotically valid frequentist 

interpretation when the parameter of interest is an impulse response to a unit shock. 
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To illustrate, consider the bivariate model and assume that 𝝓0 is such that 𝜎21 ≥ 0, so the true 

identified set is unbounded. For values of 𝝓 in a small neighbourhood of 𝝓0, 𝑙(𝝓) = −∞ and 𝑢(𝝓) =

0, so naively applying the robust Bayesian approach in this case will (asymptotically) yield a robust 

credible interval of (−∞, 0]. Clearly, this interval always (weakly) includes the true identified set, so 

the asymptotic frequentist coverage probability will be trivially equal to one, which is greater than 

the nominal credibility level 𝜏 (i.e. the robust credible interval is conservative).15 

3.2 Frequentist Estimation Under Unboundedness 

Unboundedness may also arise when estimating or conducting inference about impulse responses 

to a unit shock in a frequentist framework. Let �̂� = (�̂�11, �̂�21, �̂�22)′ be the MLE of 𝝓. In the current 

bivariate example, if �̂� is such that �̂�21 < 0, the frequentist estimate of the identified set for �̃�2,1,0 – 

which simply plugs the MLE of �̂� into the expression for the identified set given in Section 3.1 – will 

be bounded. In contrast, if �̂� is such that �̂�21 ≥ 0, a frequentist estimate of the identified set for 

�̃�2,1,0 will be unbounded. 

4. Checking for Unboundedness in SVARs 

As noted above, the lessons from the bivariate model of Section 3 extend to the general setting of 

an 𝑛-dimensional SVAR with dynamics. They also extend to the case where there are both sign and 

zero restrictions on the structural parameters. In this general setting, analytical expressions for 

identified sets are not usually available and it is necessary to approximate the bounds of the 

identified set numerically. This section explains how to check whether the identified sets for the 

impulse responses to a unit shock may be unbounded in this setting. 

Checking whether the identified set is unbounded is helpful for understanding whether particular 

inferential outputs (e.g. sets of posterior means or quantiles) are themselves unbounded. From a 

practical standpoint, it is also important to check whether the identified set is unbounded to 

understand the properties of numerical approximations of the identified set. One approach to 

computing the bounds of the identified set is to use a numerical optimisation routine where the 

objective function to be minimised or maximised is �̃�𝑖,𝑗,ℎ(𝝓,𝑸) and the constraints are the set of 

identifying restrictions. If the identified set is unbounded, standard gradient-based numerical 

optimisation routines (e.g. an interior-point algorithm) will terminate at some large, but arbitrary, 

value of the objective function. Another approach to computing the bounds is to obtain many random 

draws of 𝑸 from a distribution over 𝑄(𝝓|𝑆, 𝐹) (e.g. a uniform distribution) and compute the minimum 

and maximum over these draws. When the identified set is bounded, the approximation error from 

this approach will vanish as the number of draws increases, but this will not be the case when the 

identified set is unbounded. 

In the 𝑛-variable SVAR (described in Section 2), assume that the sign restrictions 𝑆(𝝓,𝑸) ≥ 𝟎𝑠×1 

include the restriction that the impact response of the first variable to the first shock is nonnegative, 

𝜂1,1,0 = 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 ≥ 0. For example, in the context of estimating the effects of monetary policy 

                                                      

15  In the current bivariate example and when 𝝓0 is such that 𝜎21 < 0, the true identified set is bounded, but the robust 

credible interval has an asymptotic frequentist coverage probability equal to 1 − 𝜏/2 > 1 − 𝜏 (i.e. the robust credible 

interval is conservative). This arises because the upper bound of the identified set is degenerate and is therefore not 

differentiable in 𝝓 with non-zero derivative. When there are additional sign restrictions on the impulse responses to 

the second shock, both the lower and upper bound are differentiable in 𝝓 at 𝝓 = 𝝓𝟎 (see Appendix A.2), and the 

robust credible interval has correct coverage asymptotically. 
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shocks, this restriction would require that a positive monetary policy shock (the first shock) does not 

decrease the federal funds rate (the first variable) on impact. Such a restriction seems natural. The 

identified set for �̃�𝑖,1,ℎ, (𝑖, ℎ) ≠ (1,0), will be unbounded only if the identified set for 𝜂1,1,0 includes 

zero.16 This will be the case if there exists 𝑸 satisfying the zero restrictions, the ‘binding’ sign 

restriction on 𝜂1,1,0 (𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 = 0), and any remaining sign restrictions. The following proposition 

formalises this claim. 

Proposition 4.1. (Necessary condition for unbounded identified sets.) Assume 𝑄(𝝓|𝑆, 𝐹) is 

nonempty and interest is in the impulse response to a unit shock in the first variable at some fixed 

and finite horizon ℎ. The identified set for the impulse response to a unit shock to the first variable, 
�̃�𝑖,1,ℎ(𝝓|𝑆, 𝐹), is unbounded for (𝑖, ℎ) ≠ (1,0) only if 0 ∈ 𝜂1,1,0(𝝓|𝑆, 𝐹). 

Proposition 4.1 provides a necessary condition for the unboundedness of �̃�𝑖,1,ℎ(𝝓|𝑆, 𝐹). Intuitively, if 

the identified set for 𝜂1,1,0 does not contain zero, it is not possible to construct a sequence for 𝑸 

converging to the point where 𝜂1,1,0 = 0 such that �̃�𝑖,1,ℎ diverges. If the identified set for 𝜂1,1,0 

includes zero, it may be possible to construct a sequence for 𝑸 converging to the point 𝜂1,1,0 = 0 

such that �̃�𝑖,1,ℎ diverges. However, the condition does not guarantee that �̃�𝑖,1,ℎ(𝝓|𝑆, 𝐹) is unbounded. 

To give an example, consider an extension of the bivariate model of Section 3 with dynamics: 

𝒚𝑡 = 𝑩1𝒚𝑡−1 + 𝚺𝑡𝑟𝑸𝜺𝑡 . 

Assume that 𝑩1 is diagonal with diagonal elements diag(𝑩1) = (𝑏11, 𝑏22)′. When 𝜎21 ≥ 0, the 

identified set for 𝜂1,1,0 includes zero. However, the identified set for �̃�1,1,ℎ is 𝑏11
ℎ , which is finite for 

any value of 𝑏11 and finite ℎ.17 

In what follows, I discuss how to check whether 𝜂1,1,0(𝝓|𝑆, 𝐹) includes zero, in which case 

�̃�𝑖,1,ℎ(𝝓|𝑆, 𝐹) may be unbounded. 

Consider imposing a set of zero and sign restrictions constraining 𝒒1 only, 𝐹(𝝓,𝑸) = 𝐹(𝝓)𝒒1 = 𝟎𝑓×1 

and 𝑆(𝝓,𝑸) = 𝑆(𝝓)𝒒1 ≥ 𝟎𝑠×1. In this setting, the following proposition states a sufficient condition 

for the identified set for 𝜂1,1,0 to include zero. 

Proposition 4.2. (Sufficient condition for identified set for 𝜂1,1,0 to include zero.) Assume that any 

sign and zero restrictions constrain 𝒒1 only, 𝜂1,1,0 = 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 ≥ 0 is contained within the set of sign 

restrictions 𝑆(𝝓)𝒒1 ≥ 𝟎𝑠×1 and the number of zero restrictions in 𝐹(𝝓)𝒒1 = 𝟎𝑓×1 satisfies 0 ≤ 𝑓 <

𝑛 − 1 with rank(𝐹(𝝓)) = 𝑟. If 𝑠 + 𝑓 ≤ 𝑛, then 0 ∈ 𝜂1,1,0(𝝓|𝑆, 𝐹). 

The sufficient condition in Proposition 4.2 can be used to verify whether the identified set for 𝜂1,1,0 

includes zero at any value of 𝝓. The condition is easily verifiable; it simply requires counting the 

number of sign and zero restrictions imposed. Although the proposition only applies when the 

identifying restrictions constrain a single column of 𝑸, this is the case in many empirical applications; 

examples include Uhlig (2005) and Arias et al (2019) (see also the references in Gafarov et al 

                                                      

16  I abstract from the possibility of imposing sign restrictions with strict inequality (i.e. 𝑆(𝝓) > 𝟎𝑠×1). In that case, 

identified sets will be an open intervals. Consequently, the identified set for 𝜂𝑖,1,ℎ could be unbounded without the 

identified set for 𝜂1,1,0 including zero. When allowing for strict inequalities, the identified set for 𝜂𝑖,1,ℎ will be unbounded 

only if the closure of the identified set for 𝜂1,1,0 includes zero. 

17  I am indebted to Thorsten Drautzburg for suggesting this example. 
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(2018)). The assumption that 0 ≤ 𝑓 < 𝑛 − 1 rules out the case where 𝒒1 (and thus any impulse 

response to the first shock) is point-identified.18 If the set of sign restrictions does not include the 

restriction 𝜂1,1,0 = 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 ≥ 0, the sufficient condition for unboundedness becomes 𝑠 + 𝑓 ≤ 𝑛 − 1; 

the intuition in this case is that, if 𝑠 + 𝑓 ≤ 𝑛 − 1, we can augment the system of identifying 

restrictions with 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 ≥ 0 and then apply Proposition 4.2. 

While the condition 𝑠 + 𝑓 ≤ 𝑛 is unlikely to hold in applications that impose dynamic sign restrictions 

(i.e. sign restrictions at multiple horizons), these restrictions are not always imposed. For example, 

the condition is satisfied in Arias et al (2019), who identify a monetary policy shock by imposing sign 

and zero restrictions on elements of 𝑨0 (see Section 5). To identify an unconventional monetary 

policy shock, Gafarov et al (2018) impose four restrictions (one zero restriction and three signs 

restrictions) in a four-variable system. Beaudry, Nam and Wang (2011) identify an ‘optimism’ shock 

by imposing two restrictions (one zero restriction and one sign restriction) in a five-variable system. 

When 𝑠 + 𝑓 > 𝑛, whether it is possible to construct a vector satisfying 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 = 0 and the 

remaining identifying restrictions depends on the reduced-form parameters. Geometrically, the 

condition 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 = 0 and the zero restrictions are jointly satisfied when 𝒒1 lies in an (𝑛 − 𝑓 − 1)-

dimensional hyperplane that is orthogonal to 𝒆1,𝑛
′ 𝚺𝑡𝑟 and the rows of 𝐹(𝝓), while the remaining sign 

restrictions in 𝑆(𝝓) require 𝒒1 to lie within the intersection of 𝑠 − 1 half-spaces. The identified set 

for 𝜂1,1,0 will include zero if and only if the intersection of this hyperplane and these half-spaces is 

nonempty. When 𝑠 + 𝑓 > 𝑛, the hyperplane and half-spaces are not guaranteed to intersect; 

whether they intersect depends on the values of the reduced-form parameters, which determine the 

orientations of the hyperplane and half-spaces. To give an example using the bivariate model of 

Section 3, 𝑠 = 3 > 2 = 𝑛, so the condition in Proposition 4.2 is not satisfied and zero is not 

necessarily included within the identified set for the normalising impulse response; in particular, zero 

is excluded when 𝜎21 < 0 (see Figure 1 in Section 3 for a graphical illustration). 

When the conditions in Proposition 4.2 do not hold, one can use numerical methods to check whether 

𝜂1,1,0(𝝓|𝑆, 𝐹) includes zero and thus whether �̃�𝑖,1,ℎ(𝝓|𝑆, 𝐹) may be unbounded. Let �̃�(𝝓,𝑸) =

𝟎(𝑓+1)×1 represent an augmented set of zero restrictions that includes a ‘binding’ version of the sign 

restriction on 𝜂1,1,0 (i.e. 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 = 0) and let �̃�(𝝓,𝑸) ≥ 𝟎(𝑠−1)×1 collect the remaining sign 

restrictions. The identified set for 𝜂1,1,0 includes zero if and only if the identified set for 𝑸 given the 

augmented set of restrictions, 𝑄(𝝓|�̃�, �̃�), is nonempty. In the case where the identifying restrictions 

constrain 𝒒1 only, the algorithms proposed in Read (forthcoming) can be used to determine whether 

𝑄(𝝓|�̃�, �̃�) is nonempty.19 When the identifying restrictions constrain multiple columns of 𝑸, one can 

check whether 𝑄(𝝓|�̃�, �̃�) is nonempty by drawing from a uniform distribution over 𝑄(𝝓|�̃�) (e.g. 

using the algorithms in Arias et al (2018) or Giacomini and Kitagawa (2021)) until a draw is obtained 

satisfying the remaining sign restrictions. If no such draw can be obtained after a large number of 

draws, this suggests that 𝑄(𝝓|�̃�, �̃�) is empty, in which case �̃�𝑖,1,ℎ(𝝓|𝑆, 𝐹) is bounded. 

                                                      

18  When 𝑓 = 𝑛 − 1 and rank(𝐹(𝝓)) = 𝑛 − 1, the identified set for 𝜂1,1,0 (which is a singleton) excludes zero so long as 

rank((𝐹(𝝓)′, 𝚺𝑡𝑟
′ 𝒆1,𝑛,)′) = 𝑛. This condition would be violated in the (unrealistic) instance where the zero restrictions 

in 𝐹(𝝓) include the restriction that 𝜂1,1,0 = 0. Note that the condition 0 ≤ 𝑓 < 𝑛 − 1 implicitly rules out the possibility 

that 𝑛 = 1, in which case the impulse responses would be trivially point-identified. 
19  If 𝑓 = 𝑛 − 2, the unit-length vector �̃�1 satisfying  �̃�(𝝓)�̃�1 = 𝟎(𝑓+1)×1 is pinned down up to sign; such a vector can be 

found by computing an orthonormal basis for the null space of �̃�(𝝓). If either �̃�(𝝓)�̃�1 ≥ 𝟎(𝑠−1)×1 or −�̃�(𝝓)�̃�1 ≥

𝟎(𝑠−1)×1, then 𝑄(𝝓|�̃�, �̃�) is nonempty. For 0 ≤ 𝑓 < 𝑛 − 2, the algorithm described in Read (forthcoming) is applicable. 
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5. Estimating the Effects of a 100 Basis Point Federal Funds Rate Shock 

This section illustrates the empirical relevance of the issues discussed above by estimating the 

macroeconomic effects of a 100 basis point shock to the federal funds rate under different sets of 

identifying restrictions that have been used previously in the literature. 

I use the reduced-form VAR considered in Uhlig (2005), Antolín-Díaz and Rubio-Ramírez (2018) and 

Arias et al (2019). The model’s endogenous variables are real GDP (𝐺𝐷𝑃𝑡), the GDP deflator 

(𝐺𝐷𝑃𝐷𝐸𝐹𝑡), a commodity price index (𝐶𝑂𝑀𝑡), total reserves (𝑇𝑅𝑡), nonborrowed reserves (𝑁𝐵𝑅𝑡) 

(all in natural logarithms) and the federal funds rate (𝐹𝐹𝑅𝑡). The data are monthly and run from 

January 1965 to November 2007.20 The VAR includes 12 lags of the variables and a constant. I 

assume a Jeffreys’ (improper) prior over the reduced-form parameters, so 𝜋𝝓 ∝ |𝚺|
−(𝑛−1)/2. This 

means that the posterior for 𝝓 is a normal-inverse-Wishart distribution, from which it is 

straightforward to obtain independent draws (e.g. Del Negro and Schorfheide 2011). Under each 

set of restrictions below, I obtain 10,000 draws from the posterior for 𝝓 such that the identified set 

is nonempty.21 The papers listed above conduct Bayesian inference under a uniform prior for 𝑸 and 

primarily present impulse responses to a standard-deviation monetary policy shock.22 In contrast, I 

focus on the impulse responses to a 100 basis point shock as the parameters of interest. 

First, I consider the identifying restrictions proposed in Arias et al (2019), who impose sign and zero 

restrictions on the structural equation for the federal funds rate, which they interpret as the 

monetary policy reaction function. The restrictions impose that the coefficients on 𝑇𝑅𝑡 and 𝑁𝐵𝑅𝑡 in 

the structural equation for 𝐹𝐹𝑅𝑡 are zero, which means that the Federal Reserve does not react to 

changes in reserves when setting the federal funds rate. They also impose sign restrictions on the 

coefficients of 𝐺𝐷𝑃𝑡 and 𝐺𝐷𝑃𝐷𝐸𝐹𝑡 such that the Federal Reserve does not increase the federal funds 

rate in response to lower output or prices, which is consistent with the types of policy rules typically 

specified in New Keynesian dynamic stochastic general equilibrium (DSGE) models. Finally, the 

impact response of 𝐹𝐹𝑅𝑡 to the monetary policy shock is restricted to be nonnegative, so that a 

monetary policy shock does not decrease 𝐹𝐹𝑅𝑡 on impact, which seems natural. I denote this set of 

identifying restrictions as Restriction (1). 

                                                      

20  I use the updated version of the dataset from Antolín-Díaz and Rubio-Ramírez (2018). The monthly series for 𝐺𝐷𝑃𝑡 

and 𝐺𝐷𝑃𝐷𝐸𝐹𝑡 are obtained by interpolation; see Arias et al (2019) for details. 

21  When the restrictions constrain a single column of 𝑸 only (i.e. under Restrictions (1) and (2)), I check whether the 

identified set is nonempty at each draw of 𝝓 using Algorithm 4.1 in Read (forthcoming). 

22  Uhlig (2005) and Arias et al (2019) present impulse responses to a standard-deviation shock. Antolín-Díaz and Rubio-

Ramírez (2018) present impulse responses that are normalised such that the median impact response of the federal 

funds rate is 25 basis points. 
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Figure 2: Impulse Responses to 100 Basis Point Shock – Restriction (1) 

 

Notes:  Results obtained under the identifying restrictions in Arias et al (2019). 

Figure 2 presents the impulse responses of 𝐹𝐹𝑅𝑡 and 𝐺𝐷𝑃𝑡 to a 100 basis point monetary policy 

shock obtained under Restriction (1) and the conditionally uniform prior for 𝑸 given 𝝓. Based on the 

posterior median, output falls by a maximum of about one per cent. The 68 per cent credible 

intervals include declines in output of close to 4 per cent, so there is considerable posterior 

probability assigned to very large declines in output. This set of restrictions involves four sign 

restrictions (including the sign normalisation on the (1,1) element of 𝑨0) and two zero restrictions, 

so the total number of restrictions is equal to the dimension of the SVAR. This means that the 

sufficient condition in Proposition 4.2 of Section 4 is satisfied, so zero is always included within the 

identified set for the impact response of the federal funds rate; in other words, the identifying 

restrictions cannot rule out the possibility that the federal funds rate does not respond to a monetary 

policy shock on impact. Examining the approximated bounds of the identified sets for the impulse 

responses to a 100 basis point shock suggests that these identified sets are unbounded at every 

draw of 𝝓. In turn, this means that the set of posterior means and the sets of posterior 𝜏-quantiles 

are unbounded for all 𝜏 ∈ [0,1]. Consequently, the restrictions are extremely uninformative about 

the impulse responses to a 100 basis point shock to the federal funds rate. An implication is that the 

results obtained under the conditionally uniform prior in Figure 2 are predominately driven by the 

choice of conditional prior rather than information in the data and identifying restrictions. 

Next, I combine the restrictions from Arias et al (2019) with the sign restrictions on impulse 

responses proposed in Uhlig (2005). These sign restrictions impose that the impulse response of 

𝐹𝐹𝑅𝑡+ℎ to the monetary policy shock is nonnegative and the impulse responses of 𝐺𝐷𝑃𝐷𝐸𝐹𝑡+ℎ, 
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𝐶𝑂𝑀𝑡+ℎ and 𝑁𝐵𝑅𝑡+ℎ are nonpositive for ℎ = 0,1, … ,5.23 I refer to this set of restrictions as 

Restriction (2). Under a conditionally uniform prior, the additional sign restrictions appreciably 

tighten the posterior distribution of the impulse responses to a 100 basis point shock (Figure 3). The 

posterior median suggests that output falls by a maximum of 0.4 per cent about two years after the 

shock and the 68 per cent credible intervals no longer contain extremely large values; for example, 

at the two-year horizon the credible intervals span declines in output of 0.1–0.6 per cent. To what 

extent is the unrevisable component of the prior driving these results? 

Figure 3: Impulse Responses to 100 Basis Point Shock – Restriction (2) 

 

Notes:  Results obtained under a combination of the identifying restrictions in Uhlig (2005) and Arias et al (2019). 

Under these restrictions, there are two zero restrictions and 27 sign restrictions, so the sufficient 

condition in Proposition 4.2 is not satisfied. This means that the identified set for the impact response 

of the federal funds rate does not necessarily include zero. I therefore numerically check whether 

the identified set for 𝜂1,1,0 includes zero at each draw from the reduced-form posterior.24 The 

identified set for the impact response of the federal funds rate includes zero in only 0.06 per cent of 

draws from the posterior, which implies that the identified sets for the impulse responses to a unit 

shock are bounded close to 100 per cent of the time. Examining the numerical approximations of 

the identified set suggests that the identified sets for the impulse responses to a unit shock are 

                                                      

23  Uhlig (2005) also considers restricting the impulse responses at shorter and longer horizons than six months in 

robustness exercises. The choice of horizon here does not affect whether the sufficient condition in Proposition 4.2 

applies. However, the proportion of draws at which the identified set for 𝜂1,1,0 includes zero and the width of the sets 

of posterior medians and robust credible intervals vary across the different sets of restrictions. Appendix C presents 

additional results obtained when the impulse responses are restricted up to horizon 𝐻 ∈ {2,12,24}. 

24  Following the discussion in Section 4, I check whether 𝑄(𝝓|�̃�, �̃�) is empty using Algorithm 4.1 from Read 

(forthcoming), which is applicable here because only a single column of 𝑸 is restricted.  
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indeed unbounded at some draws of 𝝓.25 Since the identified sets appear to be unbounded with 

positive probability, the sets of posterior means for the output responses to a 100 basis point shock 

will also unbounded. Nevertheless, the sets of posterior medians remains bounded, because the 

identified sets are unbounded less in less than 50 per cent of draws. The robust credible intervals 

are also bounded so long as the credibility level is not too extreme (i.e. not greater than 99.4 per 

cent). To summarise the set of posteriors, I present the set of posterior medians and a 68 per cent 

robust credible interval.26 

The set of posterior medians for the output response to a 100 basis point shock includes zero at 

essentially all horizons. The 68 per cent robust credible intervals for the output response include 

both large negative and large positive responses. Hence, under Restriction (2), there is substantial 

uncertainty about the output response to a 100 basis point monetary policy shock after eliminating 

the effect of the unrevisable component of the prior. 

Finally, I add the ‘narrative restrictions’ proposed in Antolín-Díaz and Rubio-Ramírez (2018) to 

Restriction (2). I refer to this set of restrictions as Restriction (3). Narrative restrictions are 

restrictions on functions of the structural shocks in specific periods (as opposed to restrictions on 

functions of the structural parameters) that represent information about the nature of the shocks 

hitting the economy during particular historical episodes.27 The specific narrative restrictions imposed 

are that the monetary policy shock was positive and was the ‘overwhelming’ contributor to the 

observed unexpected change (i.e. the forecast error) in the federal funds rate in October 1979. This 

is the month in which the Federal Reserve unexpectedly and dramatically raised the federal funds 

rate following Paul Volcker becoming chairman, and is widely considered an example of a monetary 

policy shock (e.g. Romer and Romer 1989). 

The contribution of the 𝑗th structural shock to the one-step-ahead forecast error in variable 𝑖 in 
period 𝑡 is 𝐻𝑖,𝑗,𝑡 = 𝜂𝑖,𝑗,0(𝝓,𝑸)𝜀𝑗,𝑡 = 𝒆𝑖,𝑛

′ 𝚺𝑡𝑟𝒒𝑗𝒒𝑗
′𝚺𝑡𝑟

−1𝒖𝑡. The restriction that the monetary policy shock 

was the ‘overwhelming’ contributor to the observed unexpected change in the federal funds rate 

means that the absolute contribution of the monetary policy shock to the forecast error in the federal 

funds rate is greater than the sum of the absolute contributions of all other shocks, or |𝐻𝑖,𝑗,𝑡| ≥

∑ |𝐻𝑖,𝑘,𝑡|𝑘≠𝑗 . This is a restriction on the historical decomposition that simultaneously constrains all 

columns of 𝑸. Consequently, it is necessary to numerically approximate whether the identified set 

                                                      

25  I approximate the bounds of the identified set at each draw of 𝝓 by obtaining 10,000 draws of 𝑸 from a uniform 

distribution over 𝑄(𝝓|𝑆, 𝐹), computing the impulse responses to a unit shock at each draw of 𝑸 and taking the 

minimum and maximum over the draws. I draw from the uniform distribution over 𝑄(𝝓|𝑆, 𝐹) using the Gibbs sampler 

described in Read (forthcoming), which extends the Gibbs sampler proposed in Amir-Ahmadi and Drautzburg (2021) 

to additionally allow for zero restrictions. 

26  For each horizon and variable of interest, I construct the 68 per cent robust credible interval by computing the 16th 

percentile of the posterior distribution of ℓ(𝝓) and the 84th percentile of the posterior distribution of 𝑢(𝝓). This 

construction differs to the shortest robust credible interval that is proposed in Giacomini and Kitagawa (2021); 

computing the shortest credible interval requires searching over a grid of possible values, which can be computationally 

difficult when the identified set is sometimes unbounded. 

27  Giacomini, Kitagawa and Read (2021a) discuss identification and inference under narrative restrictions. They propose 

extending the robust Bayesian approach to inference from Giacomini and Kitagawa (2021) to this setting to avoid 

undesirable features of the standard Bayesian approach to inference that arise when using narrative restrictions. Under 

narrative restrictions, the sign restrictions are functions of the data through the reduced-form VAR innovations that 

enter the restrictions. Consequently, the standard definition of an identified set does not apply; Giacomini et al (2021a) 

instead introduce the concept of a ‘conditional’ identified set, which is the identified set that would be obtained after 

conditioning on the data that directly enter the narrative restrictions. I leave this dependence implicit in the notation 

and refer to the identified set interchangeably with the conditional identified set. 
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for the impact response of the federal funds rate includes zero. Following the approach described in 

Section 4, I use 100,000 draws of 𝑸 from a uniform distribution over 𝑄(𝝓|�̃�) to check this.28 

Figure 4: Impulse Responses to 100 Basis Point Shock – Restriction (3) 

 

Notes:  Results obtained under a combination of the identifying restrictions in Uhlig (2005), Antolín-Díaz and Rubio-Ramírez (2018) 

and Arias et al (2019). 

Under Restriction (3), the identified set for the impact response of the federal funds rate excludes 

zero in 100 per cent of draws from the reduced-form posterior, which implies that the identified sets 

for the impulse responses to a 100 basis point shock are always bounded. Consequently, the sets of 

posterior means and all posterior quantiles for the impulse responses to a 100 basis point shock are 

bounded. The set of posterior medians excludes zero at most horizons and the 68 per cent robust 

credible intervals are substantially narrower than under Restriction (2) (Figure 4). Nevertheless, the 

robust credible intervals continue to include zero at all horizons and there remains substantial 

uncertainty about the output response to a 100 basis point shock. 

Table 1 tabulates the posterior lower and upper probabilities that the decline in output is more 

extreme than a given threshold at selected horizons. Under Restriction (2), the posterior lower and 

upper probabilities that the output response is negative include both small values and values close 

to one at all horizons, which indicates that the data and identifying restrictions are fairly 

uninformative about the sign of the output response. In contrast, under Restriction (3), the posterior 

lower probability that the output response is negative at the two-year horizon is around 75 per cent 

and the posterior upper probability of this hypothesis is 100 per cent. The hypothesis that output 

declines following a positive monetary policy shock therefore receives reasonably high posterior 

                                                      

28  I approximate the identified set as being empty if I cannot obtain a draw of 𝑸 satisfying the identifying restrictions 

after 100,000 draws. Conditional on the identified set being nonempty, I approximate its bounds by obtaining 10,000 

draws from a uniform distribution over 𝑄(𝝓|𝑺, 𝐹) and computing the minimum and maximum impulse responses over 

these draws. The numerical methods used to obtain the results under these restrictions are computationally 

burdensome, so I base the results on 1,000 (rather than 10,000) draws of 𝝓 such that the identified set is nonempty. 
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probability uniformly over the class of posteriors that are consistent with the identifying restrictions. 

Both sets of identifying restrictions effectively rule out relatively large declines in output following a 

100 basis point shock; for example, under Restriction (3), the posterior lower probability that output 

declines by more than 1 per cent two years after the shock is zero and the posterior upper probability 

is around 5 per cent.  

Table 1: Posterior Lower and Upper Probabilities that Decline in Output Exceeds 
Threshold Following 100 Basis Point Shock(a) 

Horizon\threshold 

(%) 

Lower probability  Upper probability 

0 –0.25 –0.5 –1  0 –0.25 –0.5 –1 

 Restriction (2) 

Impact 0.00 0.00 0.00 0.00  0.95 0.75 0.48 0.10 

One year 0.13 0.01 0.00 0.00  0.99 0.84 0.48 0.06 

Two years 0.27 0.11 0.03 0.00  1.00 1.00 0.93 0.07 

Three years 0.23 0.11 0.04 0.00  1.00 0.99 0.88 0.11 

Four years 0.23 0.12 0.05 0.00  1.00 0.98 0.80 0.15 

 Restriction (3) 

Impact 0.00 0.00 0.00 0.00  0.95 0.73 0.45 0.04 

One year 0.27 0.03 0.00 0.00  0.99 0.84 0.47 0.04 

Two years 0.76 0.36 0.08 0.00  1.00 1.00 0.93 0.06 

Three years 0.64 0.33 0.11 0.01  1.00 0.99 0.88 0.10 

Four years 0.57 0.30 0.12 0.01  1.00 0.98 0.79 0.13 

Note: (a) Posterior lower (upper) probability is the smallest (largest) posterior probability obtainable within the class of posteriors 

consistent with the identifying restrictions. 

 

The existing literature contains a wide range of estimates for the output effects of a 100 basis point 

shock to the federal funds rate; for example, Ramey (2016) reports a range of existing estimates 

for the trough in the response of output under different samples, specifications and approaches to 

identification. These estimates range from as low as 0.6 per cent to as high as 5 per cent. The 

estimates tend to suggest that the trough in the response of output occurs around two years after 

the shock, which is consistent with the estimates obtained under Restriction (3). The results under 

Restriction (3) are broadly consistent with the effects of monetary policy lying towards the smaller 

end of the range of existing estimates. 

6. Ruling Out Unboundedness Using Alternative Restrictions 

In the context of estimating the effects of monetary policy, unboundedness of the impulse responses 

to a unit shock may arise when the identified set for the impact response of the federal funds rate 

to the monetary policy shock includes zero. A zero value for this impulse response may strike some 

researchers as implausible. Imposing sign, zero or narrative restrictions of the types considered 

above can indirectly rule this possibility out. This section discusses alternative restrictions that could 

potentially be used to rule out the possibility that the monetary policy shock has no impact effect on 
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the federal funds rate. Although this discussion is framed in the context of estimating the effects of 

monetary policy, it also applies more generally to other settings. 

6.1 Direct Bounds on Impulse Responses 

One possibility is to directly restrict the impact response of the federal funds rate to the monetary 

policy shock so that it is greater than some (strictly positive) number (i.e. 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 ≥ 𝜆, where 𝜆 >

0 is a specified scalar). However, it seems difficult to justify such restrictions on the basis of economic 

theory – what is the smallest plausible impact effect of a ‘standard-deviation’ monetary policy shock 

on the federal funds rate? Restrictions of this type could potentially be justified on the basis of prior 

estimates (e.g. from other SVARs or from estimated DSGE models), but these prior estimates may 

themselves be based on assumptions that lack credibility. Conversely, one could impose bounds on 

the responses of variables to a unit shock such that unbounded impulse responses are ruled out by 

assumption. However, it seems similarly difficult to come up with hard bounds on the responses of 

variables to a 100 basis point shock without these bounds being somewhat arbitrary. Moreover, in 

either case, when identified sets are unbounded in the absence of such restrictions, inferences may 

be highly sensitive to changes in the imposed bounds. 

To illustrate, return to the bivariate example of Section 3 and consider imposing (in addition to the 

sign restrictions) the restriction that 𝜂1,1,0 ≥ 𝜆 for some 𝜆 > 0. When 𝜎21 ≥ 0 and 0 < 𝜆 ≤ 𝜎11, the 

identified set for �̃�2,1,0 is
29 

�̃�2,1,0 ∈ [
𝜎21
𝜎11

−
σ22
𝜆
√(1 − (

𝜆

𝜎11
)
2

) , 0]. 

The additional restriction therefore results in the identified set being bounded; in the absence of this 

restriction (or in the limit as 𝜆 converges to zero from above), the identified set is (−∞, 0]. However, 

the lower bound of the identified set is sensitive to the choice of 𝜆, particularly for small values of 

𝜆; the derivative of the lower bound tends to ∞ as 𝜆 approaches zero from above. Setting 𝜆 to some 

small positive number to rule out an unbounded identified set for �̃�2,1,0 will therefore yield an 

identified set that is highly sensitive to the exact choice of 𝜆. 

6.2 Bounds on the Forecast Error Variance Decomposition 

Rather than directly restricting the impact effect of the monetary policy shock on the federal funds 

rate, one could instead consider restricting the one-step-ahead forecast error variance 

decomposition (FEVD) of the federal funds rate with respect to the monetary policy shock. This is 

the contribution of the monetary policy shock to the one-step-ahead forecast error variance (FEV) 

of the federal funds rate. For example, Volpicella (forthcoming) proposes imposing bounds on the 

FEVD, where the bounds are elicited from a range of estimated DSGE models. 

Such restrictions may indirectly rule out the possibility that the monetary policy shock has no impact 

effect on the federal funds rate; intuitively, a strictly positive lower bound on the contribution of the 

monetary policy shock to the one-step-ahead FEV of the federal funds rate means that the impact 

                                                      

29  If 𝜆 > 𝜎11, the identified set is empty. See Appendix A.3 for details about this example. 
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effect of the shock itself must be strictly positive. More formally, the horizon-ℎ FEVD of the 𝑖th 

variable with respect to the 𝑗th shock is 

𝐹𝐸𝑉𝐷𝑖,𝑗,ℎ(𝝓,𝑸) =
∑ 𝒄𝑖𝑙

′ (𝝓)𝒒𝑗𝒒𝑗𝒄𝑖𝑙(𝝓)
ℎ−1
𝑙=0

∑ 𝒄𝑖𝑙
′ (𝝓)𝒄𝑖𝑙(𝝓)

ℎ−1
𝑙=0

. 

The impact effect of the 𝑗th shock on the 𝑖th variable (𝒄𝑖0
′ (𝝓)𝒒𝑗 = 𝒆𝑖,𝑛

′ 𝚺𝑡𝑟𝒒𝑗) is zero if and only if 

𝐹𝐸𝑉𝐷𝑖,𝑗,0(𝝓,𝑸) = 0, so bounding 𝐹𝐸𝑉𝐷𝑖,𝑗,0(𝝓,𝑸) away from zero indirectly bounds the impact 

response away from zero. However, if the assumptions underlying the DSGE models that are used 

to elicit these bounds lack credibility, the derived bounds on the FEVDs will also lack credibility. As 

in the case where the normalising impulse response is directly bounded away from zero, the 

identified set obtained under some small lower bound on the FEVD will also be sensitive to the choice 

of this lower bound when the identified set is unbounded in the absence of this restriction (see 

Appendix A.3 for an analysis of this case in the context of the bivariate model). 

7. Conclusion 

In SVARs that are set-identified using sign and/or zero restrictions, the identified set for the impulse 

responses to a unit shock may be unbounded. This raises complications when conducting inference 

about these impulse responses, because particular inferential outputs may be unbounded. However, 

it may still be possible to draw useful inferences about impulse responses to a unit shock when the 

identified set is unbounded with positive posterior probability. 

The empirical exercise in this paper demonstrates the importance of these issues. Under the 

identifying restrictions considered in Arias et al (2019), the identified set for the impulse response 

to a 100 basis point monetary policy shock appears to be unbounded at all horizons and for all values 

of the reduced-form parameters. The identifying restrictions are therefore extremely uninformative 

about the magnitude of these impulse responses, standard Bayesian inference is misleading about 

the information contained in the data given the identifying restrictions, and posterior inferences are 

highly sensitive to the choice of conditional prior for the orthonormal matrix. After adding the sign 

restrictions on impulse responses from Uhlig (2005), the identified set is bounded with high posterior 

probability. Additionally adding the narrative restrictions from Antolín-Díaz and Rubio-Ramírez (2018) 

yields a bounded identified set in 100 per cent of draws from the reduced-form posterior. The results 

under the latter two sets of restrictions are broadly consistent with the effects of US monetary policy 

lying towards the smaller end of the range of existing estimates. 
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Appendix A: Derivations for Bivariate SVAR 

A.1 Sign Restrictions on Impulse Responses 

This appendix derives the identified sets for the impulse responses to a unit shock under the sign 

restrictions on impulse responses presented in Section 3. 

In the absence of any identifying restrictions, the identified set for 𝑨0
−1 (the matrix of impact impulse 

responses) is 

𝑨0
−1 ∈ {[

𝜎11 cos 𝜃 −𝜎11 sin𝜃
𝜎21 cos 𝜃 + 𝜎22 sin 𝜃 𝜎22 cos 𝜃 − 𝜎21 sin𝜃

]} ∪ {[
𝜎11 cos 𝜃 𝜎11 sin𝜃

𝜎21 cos 𝜃 + 𝜎22 sin𝜃 𝜎21 sin 𝜃 − 𝜎22 cos 𝜃
]}, 

and the identified set for 𝑨0 is 

𝑨0 ∈ {
1

𝜎11𝜎22
[
𝜎22 cos𝜃 − 𝜎21 sin 𝜃 𝜎11 sin𝜃
−𝜎21 cos 𝜃 − 𝜎22 sin𝜃 𝜎11 cos 𝜃

]} ∪ {
1

𝜎11𝜎22
[
𝜎22 cos 𝜃 − 𝜎21 sin 𝜃 𝜎11 sin 𝜃
𝜎21 cos 𝜃 + 𝜎22 sin 𝜃 −𝜎11 cos 𝜃

]}. 

The impact response of the second variable to a shock that raises the first variable by one unit is  

�̃�2,1,0 =
𝜂2,1,0
𝜂1,1,0

=
𝜎21 cos 𝜃 + 𝜎22 sin𝜃

𝜎11 cos 𝜃
=
𝜎21
𝜎11

+
𝜎22
𝜎11

tan 𝜃. 

Under the sign restrictions on impulse responses described in Section 3 (including the sign 

normalisation), the parameter 𝜃 is restricted to lie within the following set: 

𝜃 ∈ {𝜃: 𝜎11 cos 𝜃 ≥ 0, 𝜎21 cos 𝜃 ≤ −𝜎22 sin 𝜃 , 𝜎22 cos 𝜃 ≥ 𝜎21 sin𝜃} 

∪ {𝜃: 𝜎11 cos 𝜃 ≥ 0, 𝜎21 cos 𝜃 ≤ −𝜎22 sin 𝜃 , 𝜎22 cos 𝜃 ≥ 𝜎21 sin 𝜃 ,−𝜎11 cos 𝜃 ≥ 0}. 

There are two cases to consider depending on the sign of 𝜎21. If 𝜎21 < 0,  the second set is empty. 

The first set is equivalent to 

{𝜃: cos𝜃 > 0, tan 𝜃 ≤ −
𝜎21
𝜎22

, tan 𝜃 ≥
𝜎22
𝜎21

}. 

This set of inequalities implies that the identified set for 𝜃 is 

𝜃 ∈ [arctan (
𝜎22
𝜎21

) , arctan (−
𝜎21
𝜎22

)]. 

The identified set for the impact response of the first variable to the first shock, 𝜂11 = 𝜎11 cos𝜃, is 

then 

𝜂1,1,0 ∈ [𝜎11cos(arctan (min {
𝜎22
𝜎21

,
𝜎21
𝜎22

})) , 𝜎11]. 

The identified set for this impulse response is bounded away from zero. In this case, the identified 

set for �̃�2,1,0 is 
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�̃�2,1,0 ∈ [
𝜎21
𝜎11

+
𝜎22
2

𝜎11𝜎21
, 0], 

which is bounded. 

Similarly, if 𝜎21 > 0, 𝜃 is restricted to lie in the set 

𝜃 ∈ {𝜃: cos 𝜃 > 0, tan 𝜃 ≤ −
𝜎21
𝜎22

, tan 𝜃 ≤
𝜎22
𝜎21

} ∪ {−
𝜋

2
}. 

The second inequality implies that tan 𝜃 ≤ 0, so the last inequality never binds. The identified set for 

𝜃 is therefore  

𝜃 ∈ [−
𝜋

2
, arctan (−

𝜎21
𝜎22

)], 

and the identified set for 𝜂1,1,0 is 

𝜂1,1,0 ∈ [0, 𝜎11 cos (arctan (−
𝜎21
𝜎22

))]. 

If 𝜎21 = 0, 𝜃 is restricted to the set  

𝜃 ∈ {𝜃: cos 𝜃 ≥ 0, 0 ≤ −𝜎22 sin𝜃} ∪ {𝜃: 0 ≤ −𝜎22 sin𝜃 , cos𝜃 ≥ 0,−𝜎11 cos 𝜃 ≥ 0}. 

The first set implies 𝜃 ∈ [−𝜋/2,0] and the second implies 𝜃 = −𝜋/2, so 𝜂1,1,0 ∈ [0, 𝜎11]. The 

expression for the identified set for 𝜂1,1,0 when 𝜎21 > 0 therefore also applies when 𝜎21 = 0. tan 𝜃 →

−∞ as 𝜃 approaches −𝜋/2 from above. tan 𝜃 is strictly increasing over the identified set for 𝜃, so 

the upper bound for the identified set for �̃�2,1,0 is obtained by evaluating �̃�2,1,0 at the upper bound 

of the identified set for 𝜃. Consequently, �̃�2,1,0 ∈ (−∞, 0]. 

A.2 Sign Restrictions on Impulse Responses to Multiple Shocks 

If we additionally impose the sign restrictions that 𝜂1,2,0 ≡ 𝐞1,2
′ 𝐀0

−1𝐞2,2 ≥ 0 and 𝜂2,2,0 ≡ 𝐞2,2
′ 𝐀0

−1𝐞2,2 ≥

0, the parameter 𝜃 is restricted to lie within the following set: 

𝜃 ∈ {𝜃: 𝜎11 cos 𝜃 ≥ 0, 𝜎21 cos 𝜃 ≤ −𝜎22 sin𝜃 , 𝜎22 cos 𝜃 ≥ 𝜎21 sin 𝜃 ,−𝜎11 sin 𝜃 ≥ 0} 

∪ {
𝜃: 𝜎11 cos𝜃 ≥ 0, 𝜎21 cos𝜃 ≤ −𝜎22 sin𝜃 , 𝜎22 cos𝜃 ≥ 𝜎21 sin𝜃 ,−𝜎11 cos𝜃 ≥ 0,

σ21 sin𝜃 ≥ 𝜎22 cos 𝜃 , 𝜎11 sin 𝜃 ≥ 0
}. 

Using working similar that in Appendix A.1, the identified sets for 𝜃, 𝜂1,1,0 and �̃�2,1,0 are given by: 

𝜃 ∈ {

[arctan (
𝜎22
𝜎21

) , 0] if 𝜎21 < 0

[−
𝜋

2
, arctan (−

𝜎21
𝜎22

)] if 𝜎21 ≥ 0
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𝜂1,1,0 ∈

{
 
 

 
 [𝜎11 cos (arctan (

𝜎22
𝜎21

)) , 𝜎11] if 𝜎21 < 0

[0, 𝜎11 cos (arctan (−
𝜎21
𝜎22

))] if 𝜎21 ≥ 0

 

�̃�2,1,0 ∈ {
[
𝜎21
𝜎11

+
𝜎22
2

𝜎11𝜎21
,
𝜎21
𝜎11

] if 𝜎21 < 0

(−∞, 0] if 𝜎21 ≥ 0

 

As in the case where there are sign restrictions on the impulse responses to the first shock only, the 

identified set for 𝜂1,1,0 includes zero when 𝜎21 ≥ 0 and the identified set for �̃�2,1,0 is unbounded. In 

the case where 𝜎21 ≥ 0, the additional sign restrictions serve to tighten the identified set (the upper 

bound is now strictly less than zero). 

A.3 Magnitude Restrictions 

In addition to the sign restrictions considered in the previous section, consider the restriction that 

𝜂1,1,0 ≥ 𝜆 for some 𝜆 > 0. Under this set of restrictions, 𝜃 is restricted to lie within the set: 

𝜃 ∈ {𝜃: 𝜎11 cos 𝜃 ≥ λ, 𝜎21 cos 𝜃 ≤ −𝜎22 sin 𝜃 , 𝜎22 cos 𝜃 ≥ 𝜎21 sin𝜃} 

∪ {𝜃: 𝜎11 cos 𝜃 ≥ λ, 𝜎21 cos 𝜃 ≤ −𝜎22 sin 𝜃 , 𝜎22 cos 𝜃 ≥ 𝜎21 sin𝜃 ,−𝜎11 cos 𝜃 ≥ 0}. 

The second set is always empty, since 𝜎11 cos 𝜃 ≥ λ and −𝜎11 cos 𝜃 ≥ 0 cannot hold simultaneously 

when 𝜆 > 0. The identified set for 𝜃 is empty if 𝜆 > 𝜎11, since cos 𝜃 ≤ 1 for all 𝜃. 

If 𝜎21 ≥ 0, the first set is equivalent to 

𝜃 ∈ {𝜃: cos 𝜃 ≥
𝜆

𝜎11
, tan 𝜃 ≤ −

𝜎21
𝜎22

, tan 𝜃 ≤
𝜎22
𝜎21

}. 

The last inequality never binds and the identified set for 𝜃 is 

𝜃 ∈ [−arccos (
𝜆

𝜎11
) , arctan (−

𝜎21
𝜎22

)]. 

The identified set for �̃�2,1,0 is therefore 

�̃�2,1,0 ∈ [
𝜎21
𝜎11

+
𝜎22
𝜎11

tan (− arccos (
𝜆

𝜎11
)) , 0]. 

The lower bound of this identified set, ℓ(𝝓, 𝜆), can be expressed as 

ℓ(𝝓, 𝜆) =
𝜎21
𝜎11

−
σ22
𝜆
√(1 − (

𝜆

𝜎11
)
2

), 
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which converges to −∞ as 𝜆 approaches zero from above. The derivative of ℓ(𝝓, 𝜆) with respect to 

𝜆 is 

𝜕ℓ(𝝓, 𝜆)

𝜕𝜆
=

(1 − (
𝜆
𝜎11

)
2

)

−
1
2

𝜆2
. 

In the limit as 𝜆 approaches zero from above, this derivative approaches ∞, which implies that the 

lower bound is extremely sensitive to small changes in 𝜆 when 𝜆 is close to zero. 

A.4 Bounds on the FEVD 

The FEV of of 𝑦1𝑡 is 𝜎11
2  and the contribution of 𝜀1𝑡 to the FEV of 𝑦1𝑡 is 𝜎11

2 cos2 𝜃. The FEVD of 𝑦1𝑡 

with respect to 𝜀1𝑡, 𝐹𝐸𝑉𝐷𝜀1𝑡
𝑦1𝑡, is therefore cos2 𝜃. Consider imposing the restriction that 𝐹𝐸𝑉𝐷𝜀1𝑡

𝑦1𝑡 ≥ 𝜅 

for some 0 < 𝜅 ≤ 1 in addition to the sign restrictions considered in Section 3 and Appendix A.1. 

Under this set of restrictions, 𝜃 is restricted to lie within the following set: 

𝜃 ∈ {𝜃: 𝜎11 cos𝜃 ≥ 0, 𝜎21 cos𝜃 ≤ −𝜎22 sin 𝜃 , 𝜎22 cos 𝜃 ≥ 𝜎21 sin𝜃 , cos
2 𝜃 ≥ 𝜅 } 

∪ {𝜃: 𝜎11 cos 𝜃 ≥ 0, 𝜎21 cos 𝜃 ≤ −𝜎22 sin𝜃 , 𝜎22 cos𝜃 ≥ 𝜎21 sin𝜃 ,−𝜎11 cos𝜃 ≥ 0, cos
2 𝜃 ≥ 𝜅}. 

When 𝜎21 ≥ 0, the first set is equivalent to 

𝜃 ∈ {𝜃: cos 𝜃 > 0, tan 𝜃 ≤ −
𝜎21
𝜎22

, tan 𝜃 ≤
𝜎22
𝜎21

, −arccos√𝜅 ≤ 𝜃 ≤ arccos√𝜅 }. 

The inequalities tan 𝜃 ≤ 𝜎22/𝜎21 and 𝜃 ≤ arccos√𝜅  never bind and the identified set for 𝜃 is  

𝜃 ∈ [−arccos√𝜅, arctan (−
𝜎21
𝜎22

)]. 

The identified set for �̃�2,1,0 is therefore  

�̃�2,1,0 ∈ [
𝜎21
𝜎11

+
𝜎22
𝜎11

tan(− arccos(√𝜅)) , 0]. 

The lower bound of this identified set, ℓ(𝝓, 𝜅), can be expressed as 

𝑙(𝝓, 𝜅) =
𝜎21
𝜎11

−
σ22
𝜎11

√1 − 𝜅

√𝜅
. 

The lower bound converges to −∞ as 𝜅 approaches zero from above. The derivative of ℓ(𝝓, 𝜅) with 

respect to 𝜅  is 

𝜕ℓ(𝝓, 𝜅)

𝜕𝜅
=
1

2

𝜎22
𝜎11

𝜅−
3
2(1 − 𝜅)−

1
2. 
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In the limit as 𝜅 approaches zero from above, this derivative approaches ∞, which implies that the 

lower bound is extremely sensitive to small changes in 𝜅 when 𝜅 is close to zero. 

To summarise, under the additional restriction on the FEVD, the identified set is bounded; in the 

absence of this restriction (or as 𝜅 converges to zero from above), the identified set is (−∞, 0]. 

However, as in the case where the normalising impulse response is directly bounded away from 

zero, the lower bound of the identified set is sensitive to the choice of 𝜅, particularly for small values 

of 𝜅; the derivative of the lower bound tends to ∞ as 𝜅 approaches zero from above. Setting 𝜅 to 

some small positive number to rule out an unbounded identified set for �̃�2,1,0 will therefore yield an 

identified set that is highly sensitive to the choice of 𝜅. 
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Appendix B: Proofs of Propositions 

Proof of Proposition 4.1. Assume 𝜂1,1,0(𝝓|𝑆, 𝐹) does not include zero, so 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 > 0 for any 

𝑸 ∈ 𝑄(𝝓|𝑆, 𝐹). There exists 𝛿 > 0 such that 𝒆1,𝑛
′ 𝚺𝑡𝑟𝒒1 > 𝛿 for all 𝑸 ∈ 𝑄(𝝓|𝑆, 𝐹). Given that the 

impulse response horizon ℎ is fixed and finite, |𝜂𝑖,𝑗,ℎ(𝝓,𝑸)| < ∞ for all 𝝓 ∈ 𝚽 and 𝑸 ∈ 𝑄(𝝓|𝑆, 𝐹).30 

There thus exists 𝜅 < ∞ such that |𝜂𝑖,1,ℎ(𝝓,𝑸)| < 𝜅 for all 𝝓 ∈ 𝚽 and 𝑸 ∈ 𝑄(𝝓|𝑆, 𝐹). It follows that 

|�̃�𝑖,1,ℎ(𝝓,𝑸)| <
𝜅

𝛿
< ∞ for all 𝝓 ∈ 𝚽 and 𝑸 ∈ 𝑄(𝝓|𝑆, 𝐹), so �̃�𝑖,1,ℎ(𝝓|𝑆, 𝐹) must be bounded.    □ 

Proof of Proposition 4.2. Assume that the sign restrictions are ordered such that the first row of 

𝑆(𝝓) is 𝒆1,𝑛
′ 𝚺𝑡𝑟. Since 𝚺𝑡𝑟 is lower triangular, the condition 𝒆1,𝑛

′ 𝚺𝑡𝑟𝒒1 = 0 is satisfied only for values 

of 𝒒1 such that 𝒒1 = (0, 𝒒1,2:𝑛
′ )′, where 𝒒1,2:𝑛 is an (𝑛 − 1)-dimensional vector.31 For such a value of 

𝒒1, the entries in the first columns of 𝐹(𝝓) and 𝑆(𝝓) do not enter the equality restrictions in 

𝐹(𝝓)𝒒1 = 𝟎𝑟×1 and the last 𝑠 − 1 inequalities in 𝑆(𝝓)𝒒1 ≥ 𝟎𝑠×1, respectively. Let �̈�(𝝓) represent the 

matrix of coefficients in the zero restrictions after dropping the first column and let �̈�(𝝓) represent 

the matrix of coefficients in the sign restrictions after dropping the first row and column. According 

to Proposition 3.1 of Read (forthcoming), the system of sign and zero restrictions in ℝ𝑛−1, 
�̈�(𝝓)𝒒1,2:𝑛 = 𝟎𝑓×1 and �̈�(𝝓)𝒒1,2:𝑛 ≥ 𝟎(𝑠−1)×1, can be expressed as an equivalent system of sign 

restrictions in ℝ𝑛−𝑓−1. Let �̆�(𝝓)�̌� = 𝟎(𝑠−1)×1 represent the transformed system of sign restrictions, 

where �̌� ∈ ℝ𝑛−𝑓−1 and �̆�(𝝓) is obtained from �̈�(𝝓) using the transformation described in 

Read (forthcoming). Corollary 3.1 of Read (forthcoming) implies that the identified set for 𝜂1,1,0 will 

include zero if and only if there exists �̌� satisfying �̆�(𝝓)�̌� ≥ 𝟎(𝑠−1)×1. In what follows, I show that 

such a vector always exists under the assumptions of the proposition. 

Consider the case where rank (�̆�(𝝓)) = 𝑠 − 1. By Gordan’s Theorem (e.g. Mangasarian 1969; 

Border 2020), either �̆�(𝝓)𝒙 > 𝟎(𝑠−1)×1 for some 𝒙 ∈ ℝ𝑛−𝑓−1 or �̆�(𝝓)′𝒚 = 𝟎(𝑛−𝑟−1)×1 for some 𝒚 ≠

𝟎(𝑠−1)×1. Since �̆�(𝝓) has full rank, there cannot exist a 𝒚 ≠ 𝟎(𝑠−1)×1 such that �̆�(𝝓)′𝒚 = 𝟎(𝑛−𝑓−1)×1, 

so there must exist �̌� satisfying �̆�(𝝓)�̌� > 𝟎(𝑠−1)×1. Any �̌� satisfying �̆�(𝝓)�̌� > 𝟎(𝑠−1)×1 also satisfies 

�̆�(𝝓)�̌� ≥ 𝟎(𝑠−1)×1. Next, consider the case where rank (�̆�(𝝓)) < 𝑠 − 1 and let 𝑁(�̆�(𝝓)) represent an 

orthonormal basis for the null space of �̆�(𝝓). By the rank-nullity theorem, 𝑁(�̆�(𝝓)) has dimension 

(𝑛 − 𝑓 − 1) − rank (�̆�(𝝓)). Since rank (�̆�(𝝓)) < 𝑠 − 1 and 𝑠 + 𝑓 ≤ 𝑛, 𝑁(�̆�(𝝓)) will have dimension 

strictly greater than one. Thus, when rank (�̆�(𝝓)) < 𝑠 − 1, it is always possible to construct a unit-

length vector satisfying �̆�(𝝓)�̌� = 𝟎(𝑠−1)×1 by taking any column of 𝑁(�̆�(𝝓)). Such a vector clearly 

satisfies �̆�(𝝓)�̌� ≥ 𝟎(𝑠−1)×1.                   □ 

  

                                                      

30  Allowing for arbitrarily large impulse-response horizons ℎ would require restricting the support of the reduced-form 

parameter space 𝚽 such that the infinite-order vector moving average representation of the VAR exists; this will be 

the case if the eigenvalues of the companion matrix lie inside the unit circle (e.g. Hamilton 1994; Kilian and Lütkepohl 

2017). By avoiding this assumption I allow for mildly explosive processes.  

31  This assumes that the (1,1) element of 𝚺𝑡𝑟 is nonzero, which is guaranteed so long as 𝚺 is nonsingular.  
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Appendix C: Additional Empirical Results 

Figure 5 presents additional results obtained under Restriction (2) when the horizon over which the 

sign restrictions are imposed (𝐻) is varied. For 𝐻 = 2, the identified set for 𝜂1,1,0 includes zero in 

only 1.2 per cent of draws from the posterior. However, the set of posterior medians and 68 per 

cent robust credible intervals for the output response are extremely wide. Increasing 𝐻 reduces the 

proportion of draws where the identified set for 𝜂1,1,0 includes zero: for 𝐻 = 5, the identified set 

includes zero in 0.6 per cent of draws; and for 𝐻 = 11 or 23, there are no draws where the identified 

set includes zero. Increasing the number of sign restrictions also appreciably tightens the set of 

posterior medians and robust credible intervals. 

Figure 5: Impulse Responses to 100 Basis Point Shock – Alternative Horizons 

 

Notes:  Results obtained under a combination of the identifying restrictions in Uhlig (2005) and Arias et al (2019). 𝐻 is the horizon 

over which the impulse responses are restricted. 

 

H=2

0

4

ppt

Horizon (months)

H=5

0

4

%

Horizon (months)H=11

0 12 24 36 48
-2

-1

0

1

ppt

Posterior median

68 per cent credible interval

H=23

12 24 36 48
-2

-1

0

1

ppt

Set of posterior medians

68 per cent robust credible interval



30 

DRAFT 

References 

Amir-Ahmadi P and T Drautzburg (2021), ‘Identification and Inference with Ranking Restrictions’, 

Quantitative Economics, 12(1), 1–39.  

Antolín-Díaz J and JF Rubio-Ramírez (2018), ‘Narrative Sign Restrictions for SVARs’, American Economic 

Review, 108(10), pp 2802–29. 

Arias JE, D Caldara and JF Rubio-Ramírez (2019), ‘The Systematic Component of Monetary Policy in 

SVARs: An Agnostic Identification Procedure’, Journal of Monetary Economics, 101, pp 1–13. 

Arias JE, JF Rubio-Ramírez and DF Waggoner (2018), ‘Inference Based on Structural Vector 

Autoregressions Identified with Sign and Zero Restrictions: Theory and Applications, Econometrica, 86(2), pp 

685–720. 

Bacchiocchi E and T Kitagawa (2021), ‘A Note on Global Identification in Structural Vector 

Autoregressions’, cemmap working paper CWP03/21. 

Baumeister C and JD Hamilton (2015), ‘Sign Restrictions, Structural Vector Autoregressions, and Useful 

Prior Information’, Econometrica, 83(5), 1963–1999. 

Baumeister C and JD Hamilton (2018), ‘Inference in Structural Vector Autoregression When the 

Identifying Assumptions Are Not Fully Believed: Re-evaluating the Role of Monetary Policy in Economic 

Fluctuations’, 100, 48–65. 

Baumeister C and JD Hamilton (2019), ‘Structural Interpretation of Vector Autoregressions with 

Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks’, American Economic Review, 

109(5), pp 1873–1910. 

Beaudry P, D Nam and J Wang (2011), ‘Do Mood Swings Drive Business Cycles and Is It Rational?’, NBER 

Working Paper No 17651. 

Border KC (2020), ‘Alternative Linear Inequalities’, Unpublished manuscript, California Institute of 

Technology, available at <https://healy.econ.ohio-state.edu/kcb/Notes/Alternative.pdf>. 

Del Negro M and F Schorfheide (2011), ‘Bayesian Macroeconometrics’, in Geweke J, G Koop and H Van 

Dijk (eds), Oxford Handbook of Bayesian Econometrics, Oxford University Press, Oxford, pp 293–389. 

Fry R and A Pagan (2011), ‘Sign Restrictions in Structural Vector Autoregressions: A Critical Review’, Journal 

of Economic Literature, 49(4), pp 938–960. 

Gafarov B, M Meier and JL Montiel Olea (2018), ‘Delta-method Inference for a Class of Set-identified 

SVARs’, Journal of Econometrics, 203(2), 316–237. 

Giacomini R and T Kitagawa (2021), ‘Robust Bayesian Inference for Set-Identified Models’, Econometrica, 

89(4), pp 1519–1556. 

Giacomini R, T Kitagawa and M Read (2021a), ‘Identification and Inference Under Narrative Restrictions’, 

Unpublished manuscript, February. Available at <https://arxiv.org/abs/2102.06456>. 

https://healy.econ.ohio-state.edu/kcb/Notes/Alternative.pdf


31 

DRAFT 

Giacomini R, T Kitagawa and M Read (2021b), ‘Robust Bayesian Analysis for Econometrics’, Centre for 

Economic Policy Research Discussion Paper DP16488. 

Giacomini R, T Kitagawa and M Read (2022), ‘Robust Bayesian Inference in Proxy SVARs’, Journal of 

Econometrics, 228(1), pp 107–126. 

Giacomini R, T Kitagawa and M Read (forthcoming), ‘Narrative Restrictions and Proxies: Rejoinder’, 

Journal of Business and Economic Statistics. 

Granziera E, HR Moon and F Schorfheide (2018), ‘Inference for VARs Identified with Sign Restrictions’, 

Quantitative Economics, 9(3), pp 1087–1121. 

Hamilton JD (1994), Time Series Analysis, Princeton University Press, Princeton. 

Inoue A and L Kilian (2022), ‘The Role of the Prior in Estimating VAR Models with Sign Restrictions’, 

Unpublished Manuscript.  

Kilian L and H Lütkepohl (2017), Structural Vector Autoregressive Analysis, Cambridge University Press, 

Cambridge. 

Kilian L (forthcoming), ‘Comment on Giacomini, Kitagawa and Read’s ‘Narrative Restrictions and Proxies’’, 

Journal of Business and Economic Statistics. 

Mangasarian OL (1969), ‘Nonlinear Programming’, McGraw-Hill, New York. 

Poirier DJ (1998), ‘Revising Beliefs in Nonidentified Models’, Econometric Theory, 14(4), pp 483–509. 

Ramey VA (2016), ‘Macroeconomic Shocks and Their Propagation’, in JB Taylor and H Uhlig (eds), Handbook 

of Macroeconomics: Volume 2A, Handbooks in Economics, Elsevier, Amsterdam, pp 71–162. 

Read M (forthcoming), ‘Algorithms for Inference in SVARs Identified with Sign and Zero Restrictions’, The 

Econometrics Journal. 

Romer CD and DH Romer (1989), ‘Does Monetary Policy Matter? A New Test in the Spirit of Friedman and 

Schwartz’, in OJ Blanchard and S Fischer (eds), NBER Macroeconomics Annual, Volume 4, MIT Press, 

Cambridge, pp 121–84. 

Rubio-Ramírez JF, DF Waggoner and T Zha (2010), ‘Structural Vector Autoregressions: Theory of 

Identification and Algorithms for Inference’, Review of Economic Studies, 77(2), pp 665–696. 

Rubio-Ramírez JF (forthcoming), ‘Comments on “Narrative Restrictions and Proxies” by Giacomini, 

Kitagawa, and Read’, Journal of Business and Economic Statistics. 

Stock JH and MW Watson (2016), ‘Dynamic Factor Models, Factor-augmented Vector Autoregressions and 

Structural Vector Autoregressions in Macroeconomics’, in Taylor JB and H Uhlig (eds), Handbook of 

Macroeconomics: Volume 2A, Handbooks in Economics, Elsevier, Amsterdam, pp 415–525. 

Stock JH and MW Watson (2018), ‘Identification and Estimation of Dynamic Causal Effects in 

Macroeconomics Using External Instruments’, The Economic Journal, 128(610), 917–948.  



32 

DRAFT 

Uhlig H (2005), ‘What Are the Effects of Monetary Policy On Output? Results From an Agnostic Identification 

Procedure’, Journal of Monetary Economics, 52(2), pp 381–419.  

Volpicella A (forthcoming), ‘SVARs Identification Through Bounds on the Forecast Error Variance’, Journal 

of Business and Economic Statistics. 


