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Why such an analysis is relevant?

• Both households and policy makers are concerned whether we are saving
enough for retirement

• Policy measures such as an increase in retirement age, increase in
mandatory contributions, are being considered and implemented
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Overview of the Australian Retirement System

• Age-pension: targeted income support for pension age retirees

▶ The maximum basic rate is $1,358 per fortnight for a couple in 2021

▶ The proportion of the population aged 65 and over receiving age pension has
declined from 74% in 2001 to 62% in 2021

• Superannuation: mandatory contributions towards retirement savings

▶ Superannuation Guarantee (SG) has increased from 3% in 1992 to 10% in
2022

▶ Superannuation coverage has increased from 29% of employed persons in
1974 to 90% 2012

▶ Superannuation assets totalled $3.5 trillion in 2021, around 150% of GDP

• Voluntary savings
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Related literature

• Pay-as-you-go pension

▶ Overlapping generations model: Auerbach and Kotlikof (1987)

▶ Literature with income risk: Imrohoroglu, Imrohoroglu, and Joines (1995),
Nishiyama and Smetters (2007), Imrohoroglu and Kitao (2009), Kitao (2014)

• Means tested age-pension and Superannuation in Australia

▶ Kudrna and Woodland (2011), Hulley, McKibbin, Pedersen, and Thorp (2013),
Chomik, Piggott, Woodland, Kudrna, and Kumru (2015)

▶ Barrett and Tseng (2008), Connolly and Kohler (2004), Kudrna and Woodland
(2010, 2013), Kingston and Thorp (2019), Chung, Kudrna, and Woodland
(2018), MARIA (2017)
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What we plan to do in this paper

• Construct a quantitative incomplete markets life-cycle model to evaluate
changes in retirement policies and examine their distributional
consequences

• Use SIH and ALife data for Australia to discipline our analysis

• Key features of our model

▶ Households are heterogeneous due to life-cycle differences and idiosyncratic
income uncertainty

▶ Households work and endogenously choose when to retire
▶ Three are three assets during working life, two liquid assets (bonds and

equities) and a illiquid asset (superannuation). In retirement there are two
liquid assets
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Data

• ATO Longitudinal Information Files (ALife): Superannuation data from
1997-2018 and income data from 1991-2018

• Survey of Income and Housing (SIH) 2017-18: Information on other
assets

▶ Bonds include bonds, debentures and accounts held with financial institutions
(excl. offset accounts)

▶ Equities include net value of financial and non-housing assets such as
shares, public and private trusts, own businesses

▶ The share of bonds in total wealth (net of housing) is 11% and the share of
equity is 48% in 2018
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Contributions to Super - ALife 2018
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Superannuation balances - ALife 2018
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Contributions to Super have increased over time - ALife 2018
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Other Assets - SIH 2017/18
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Age-pension from ALife 2018
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Earnings process from ALife 1996-2018

• Predictable age profile of labour income, 25-60
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Model



Model: Overview

• Incomplete markets life-cycle partial equilibrium model with endogenous
retirement

• Time is continuous

• There is a continuum of households indexed by age, their holdings of
liquid assets x , illiquid assets a , and their idiosyncratic labor productivity
z which follows an exogenous Markov process

• Three assets to capture the unintended consequences of tax advantages
to Super.
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Assets over the life-cycle
• Before retirement households save in two liquid and one illiquid asset

▶ Liquid wealth, x, has bonds and equities, where p is a portfolio decision

b = px

e = (1− p)x

x = b+ e

▶ Illiquid wealth

• Mandatory: A fraction of labour income, ξ, is automatically deposited into a

• Voluntary: at rate δ, get opportunity to adjust between liquid, x and illiquid wealth,
a. If choose to adjust, must pay a fixed cost κ

• After retirement super becomes liquid and households save in two liquid
assets

b = ps

e = (1− p)s

s = x+ a
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Optimization problem

max
T∗,{ct,pt}t≥0

E0

[∫ T∗

0

e−ρtu(ct, bt)dt+

∫ T

T∗
e−ρtu(ct, bt)dt

]

for t < T ∗

ẋt = (1− τ)[(1− ξ)wzt + rbptxt + re (1− pt)xt]− ct

ȧt = (1− τs) (r
aat + ξwtzt)

at ≥ 0 and xt ≥ 0

for t ≥ T ∗

sT∗ = xT∗ + aT∗

ṡt = (1− τs) [r
bptst + re(1− pt)st] + pent − ct

st ≥ 0

▶▶• where zt ∈ {z1, ..., zJ} is the exogenous discrete-state Poisson process for
productivity with hazard rate λj,j′
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Recursive form - Hamilton Jacobi Bellman equation

• Working life

ρV w
t (x, a, z) = max

{c,p}
u(c, px)

+
∂V w

t

∂x
ẋt +

∂V w
t

∂a
ȧt

+
∑
j′ ̸=j

λj,j′ [V
w
t (x, a, zj′)− V w

t (x, a, zj)]

+ δ [V ∗
t (x, a, z)− V w

t (x, a, z)]

+
∂V w

t

∂t

• Retired life
ρV r

t (s) = max
{c,p}

u(c, ps) +
∂V r

t

∂s
ṡt +

∂V r
t

∂t
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Recursive form (cont’d)

• Decision to retire at T ∗ ∈ [T , T ] depends on

max{V w
t (x, a, z), V r

t (x+ a)}

Retire if V r
t > V w

t .

• Decision to adjust between liquid and illiquid assets

V ∗
t (x, a, z) =max {Wt (x, a, z) , V

w
t (x, a, z)}

Wt (x, a, z) =max
x′,a′

V w
t (x′, a′, z)

a′ =

{
a− x′−x

1−τcon
− κ if x′−x

(1−τcon)
≥ −(dmax

con − ξwz)

a− (x′ − x) + τcon (d
max
con − ξwz)− κ if x′−x

(1−τcon)
< − (dmax

con − ξwz)

x′ ≤ x
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Solution method

• Requires solving PDEs: Hamilton-Jacobi-Bellman equation for individual
choices and Kolmogorov Forward equation for evolution of distribution
(Kaplan, Moll and Violante, 2018)

• New aspects: life-cycle model, three-assets and endogenous retirement

• Solution to the HJB are value functions V w
t (x, a, z), V r

t (s), policy functions
cwt (x, a, z), crt (s), pwt (x, a, z), and prt (s)

• Solution to the KFE are stationary distributions gt(x, a, z) and gt(s)
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Numerical experiments



Functional forms

• The utility function

u(ct, bt) =
c1−σ
t − 1

1− σ
+ ψb b

1−σb

t

1− σb
,

• Age-pension

pen(st) =

{
¯pen− ϕpen(st − s) if s ≤ st < s̄

0 otherwise
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Age-pension function
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Income process

• Idiosyncratic labour productivity is given by

ln zt = ln z1,t + ln z2,t,

• Each component evolves according to a jump-drift process

• Jumps arrive at a Poisson rate λ

• Given a jump, a new productivity state z′ ∼ N(0, σ2)

• Between jumps the stochastic process drifts back to zero at rate β

Calibrated values of the income process
transitory persistent

arrival rate λ 0.080 0.007
mean reversion β 0.762 0.009
standard deviation σ 1.74 1.53
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Parameters
CALIBRATED PARAMETER VALUES

Demographics and preferences
(T , T̄ , T ) (58, 66, 80)
exp(−ρ) discount rate 0.97
σ−1 IES 0.5

σb−1
IES-bonds 0.5

ψb weight on bonds 0.0025

Prices and adjustment cost
ra return on super 0.05
re return on equity 0.05
rb return on bonds 0.02
τ tax on earnings 0.30

Superannuation and age-pension
τs tax on super contr. 0.15
ξ SG rate 0.10
δ adjust. rate 0.10
κ adjust. cost 0.00
ϕpen taper rate 0.076
¯pen max. pension 38, 000

(s, s̄) pension thresholds (405, 000− 901, 500)
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No Super and Super



Plots by age (means): No Super and Super
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Distribution of assets during working life
• No Super (left panel) and Super (right panel)
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Plots by age
• No Super (left panel) and Super (right panel)
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Age-pension



Plots by age (means): No Age-pension and Age-pension
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Distribution of assets during working life
• No Age-pension and Age-pension
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Plots by age
• No Age-pension (left panel) and Age-pension (right panel)
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Next steps

• Calibrate the model carefully. Bring the model closer to data

• Extend the current model to a general equilibrium model
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