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Abstract

Drift and volatility are two mainsprings of asset price dynamics. While

volatilities have been studied extensively in the literature, drifts are com-

monly believed to be impossible to estimate and largely ignored in the

literature. This paper shows how to detect drift using realized autocovari-

ance implemented on high-frequency data. We use a theoretical treatment

in which the classical model for the efficient price, an Itō semimartingale

possibly contaminated by microstructure noise, is enriched with drift and

volatility explosions. Our theory advocates a novel decomposition for real-

ized variance into a drift and a volatility component, which leads to signif-

icant improvements in volatility forecasting.
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1 Introduction

The availability of intraday high-frequency data has fostered the rapid develop-

ment of financial econometrics over the past two decades. In the high-frequency

financial econometrics literature, asset prices are typically modelled as an Itō

semi-martingale process with two main components: drift and diffusion. While

the diffusion component has played a central role, the drift term is largely ig-

nored in the literature, as under standard model assumptions the drift term is

asymptotically dominated by the diffusion component.1

There is, however, substantial empirical evidence documenting the presence of non-

negligible drifts in asset prices in both low frequency (daily, weekly, or monthly)

and high-frequency settings. The non-negligible drift can take various forms in

discrete and continuous time models. A special case of the Itō semi-martingale

process is the well-known Ornstein-Uhlenbeck (OU) process, whose exact discrete-

time solution is an AR(1) process (Arnold, 1974). The non-negligible drift can

appear as either a large intercept or the autoregressive coefficient deviating from

unity in the AR(1) model. In the low-frequency setting, Phillips and Shi (2019)

find the presence of a large random intercept in the AR(1) model for log prices

and bond yields during crisis periods. There is also a large literature showing

temporary deviations from the random walk of log prices in the low-frequency

data setting2 and more recently in the high-frequency setting by Laurent and Shi

(2022). Finally, Christensen et al. (2022) find episodes of drift bursting across

equities, fixed income, currencies, and commodities.

Drift is an elusive quantity, a fact which is well known since, at least, Merton

(1980). Existing methods for estimating the drift of asset returns require a long

span of data (see, e.g., Bandi and Phillips, 2003), and even in this case, the

estimate is noisy. Estimating drift locally, using high-frequency data, is just im-
1See, for example, Andersen and Bollerslev (1998); Barndorff-Nielsen and Shephard (2002b);

Lee and Mykland (2008); Andersen et al. (2012). There are a few exceptions. For example, to
reveal the impact of drifts on their respective estimators, Bollerslev et al. (2020) investigate the
second-order asymptotics and Laurent and Shi (2020) study their finite sample theory. Barndorff-
Nielsen et al. (2010) show that drift induces biases for realized semivariance.

2See, for example, Fama and French (1988); Bekaert and Hodrick (1992); Bessembinder and
Chan (1992); Campbell and Ammer (1993); Campbell and Hamao (1992); Phillips et al. (2011);
Phillips and Yu (2011); Phillips et al. (2015); Shi and Song (2016).
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possible (see, e.g., Bandi, 2002; Kristensen, 2010) since the variance of the local

drift estimator diverges to infinity. In portfolio management, people simply give

up at estimating a useless drift from historical data (Michaud, 1989) and either

resort to sophisticated techniques to grasp some signal in the conditional mean or

even prefer to use subjective views à la Black-Litterman.

This paper shows that drift can be quantified using high-frequency data, even

when the sampling frequency shrinks indefinitely in a fixed time span, and its

significant presence is massively revealed by financial price data. As a relevant

application of our findings, we show that drift identification yields substantial

improvements in volatility forecasting.

The point that drift is not invisible to high-frequency in-fill sampling is more sub-

tle and less intuitive and represents the central contribution of this paper. Drift,

of course, appears as a small sample correction in all quantities estimated using

financial return. This correction vanishes asymptotically, unless the drift gets very

large, an occurrence which happens undeniably often in financial data (Laurent

and Shi, 2020, 2022) and that can be formally tested (Christensen et al., 2022).

In this paper, we show the realized autocovariance is sufficient to isolate the drift

component. Borrowing from Christensen et al. (2022), we build a model specifica-

tion in continuous time (encompassing traditional financial models and enriching

them with drift and volatility explosions) under which the drift is proportional

to the first-order term in the asymptotically vanishing serial covariance. Our

theoretical contribution is thus to provide the asymptotic distribution of serial

covariance under all possible settings of drift/volatility explosion, assessing under

which circumstances the drift is the dominating asymptotic term.

Relating our work to existing works on realized volatility estimation, we show

indeed that the serial covariance is just the difference between realized variance

and the Rice estimator (Rice, 1984), which is specifically designed to remove drift

(see, e.g., Andersen et al., 2021, who use a similar idea in concurrent work). We

show that both realized variance and the Rice estimator are biased in the presence

of an exploding drift, but the bias of the Rice estimator is smaller. So, it makes

perfect sense that their difference measures drift, as we indeed show.

Importantly, our theoretical results imply that the leading term in the serial co-
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variance as the sampling frequency increases should be positive when the drift is

large, while it should be centered around zero otherwise. A realistic simulation

study which includes standard features of the price process (stochastic volatility,

intraday volatility effects, and market microstructure noise) reveals that, when

computing serial covariance at a frequency large enough, a constant drift or an

OU process (as in Laurent and Shi, 2020) inducing a daily price change of 5% can

easily be revealed. Interestingly, a much smaller price change is needed to reveal

drift when the drift explodes, as in Christensen et al. (2022).

As mentioned, our paper is close to Andersen et al. (2021), which studies the

Rice estimator as a drift-robust replacement of realized variance under drift ex-

plosion. A crucial difference in our paper is that we do not truncate returns using

the Mancini (2009) technique. Truncation, which was originally designed to re-

move jumps, annihilates all returns which vanish at a slower rate than a threshold

(with a slightly higher order than the Brownian component). Thus, its effect is to

eliminate both returns associated with explosive drift and returns associated with

explosive volatility, since both vanish at a slower rate than the threshold. Thus,

if the interest is in estimating drift, we should not truncate. Without truncation,

the bias term due to the drift has the same vanishing rate in realized volatility,

the Rice estimator, and the autocovariance. However, drift is the prevailing term

in the autocovariance only. Moreover, in the autocovariance, jumps are anyway

removed asymptotically by a mechanism identical to that of bipower variation

(Barndorff-Nielsen and Shephard, 2006), so there is no need of truncating to get

rid of them. Another important difference with their paper is that we add an

explicit volatility explosion term. This theoretical addition is compelling from

an economic standpoint, since an exploding volatility is a necessary ingredient to

soften the violation of no-arbitrage principle under drift explosion (see the dis-

cussion in Christensen et al., 2022). The joint presence of a drift and a volatility

explosion allows us to study accurately the interplay between the two explosion

rates in determining the central limit theorems for realized variance, Rice estima-

tor, and the autocovariance.

Our asymptotic theory has relevant consequences for volatility forecasting. We

decompose realized variance into a volatility and a drift component. If the two
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components have different persistence, this implies that realized autocovariance

(estimating drift) should forecast future realized variances, even in the absence of

interaction effects between the two quantities. Moreover, following the reasoning

of Bollerslev et al. (2016) for the quarticity expanded heterogeneous autoregression

model (HARQ), a new interaction term in which realized autocovariance multiplies

a realized quarticity estimator is predicted to have forecasting power on top of the

interaction term of the HARQ model. These two novel explanatory variables for

future realized volatility are unexplored in the vast volatility forecasting literature.

In our empirical application, we prove that the two predicted effects are significant

and that they lead to significant improvements in the quality of the volatility

forecast, corroborating our theoretical analysis. Moreover, we show that serial

covariance is often significantly positive and never significantly negative, in line

with our theory. Our empirical analysis thus reveals the massive presence of price

drifts in the data, especially in periods with visible trends, like the dotcom bubble

in the late 1990s and early 2000s and the recent COVID-19 pandemic.

The rest of the paper is organized as follows. Section 2 introduces our model

specification, which allows for both drift and volatility bursting and incorporates

the standard Itō semi-martingale process as a special case. Section 3 presents the

three estimators (realized volatility, Rice estimator, and realized autocovariance)

and provides their asymptotic properties under the general model specification.

A preliminary analysis of a noise-robust version of the realized autocovariance is

also conducted here. Section 4 discusses the implications of our theoretical results

for volatility forecasting. The simulation study is detailed in Section 5. Section 6

presents the realized autocovariance estimates and the in-sample estimation and

out-of-sample forecasting results using the new volatility forecasting models (along

with the most relevant benchmark models) for the Nasdaq Composite index. Main

proofs are collected in Appendix A. Additional mathematical results are presented

in the Online Appendices B and C.
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2 The model

We start with preliminary considerations. Denoting by Xt the logarithmic price,

a standard way to model (discrete) returns at a given frequency ∆n is to write

Xt�∆n �Xt � µt∆n � σt
a

∆nεt, (1)

where εt is iid noise with mean zero and unit variance. We wish to measure the

extent of µt (the drift) over a window relative to σt (the volatility). In the fixed

∆n case, we cannot identify both terms (the drift µt and the volatility σt) in the

above equation unless we dispose of an infinite number of returns over a window

of an infinite size. As it is well known, we can instead identify the volatility only

using infill asymptotics, that is a setting in which

i) ∆n Ñ 0;

ii) Eq. (1) becomes an Itō semimartingale (possibly, with jumps);

iii) µt is a locally bounded stochastic process.

In this setting, we can estimate spot volatility (Jacod and Protter, 2011) and the

integrated variance
³T
0 σ

2
sds consistently, while the drift becomes invisible since

∆n   
?

∆n in the limit.

The above discussion is classical, but is useful in pointing at a direction in which

drift becomes visible even when ∆n Ñ 0: allowing for unbounded drift in the

data generating process, which is what we do in this paper. With this additional

flexibility with respect to the traditional model, the asymptotic ranking between

drift and volatility inverts and we are able to identify the drift part. In particular,

the point of this paper is to show that when the drift is unbounded, realized

volatility remains a consistent estimator of the volatility, and the integrated square

drift is proportional to realized autocovariance. Using the two quantities thus

allows to estimate drift and volatility separately in small samples.

Following the above intuition, the model we study in this paper deviates from

the classical Itō semi-martingale by allowing both volatility and drift to explode

locally, still preserving the continuity of price paths. Since our interest is in under-

standing the contribution of drift to quadratic variation and autocovariation, we
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exclude jumps in the primitive assumptions. This is completely harmless. Jumps

can be inserted in our picture at any moment without affecting main intuitions,

since the estimators we are going to consider preserve their consistency properties

even in their presence. Jumps would just change the estimation target and the

asymptotic variance of the considered estimators in a straightforward manner.

Let X � pXtq0¤t¤1 denote the log-price of a traded security. We assume the

following.

Assumption 2.1. X is defined on a filtered probability space pΩ,F , pFtqt¥0,Pq
and assumed to be an Itō semimartingale described by the dynamics:

Xt �
» t

0
µs

�
1� s

τ

	�α
ds�

» t

0
σs

�
1� s

τ

	�β
dWs, (2)

where 0 ¤ α   1, 0 ¤ β   1
2 , τ ¡ 0, X0 is F0-measurable, µ � pµtq0¤t¤1

is a locally bounded, predictable drift and |µs| is strictly positive (almost surely),

σ � pσtq0¤t¤1 is an adapted, càdlàg and strictly positive (almost surely) volatility,

W � pWtq0¤t¤1 is a standard Brownian motion. The coefficients µs and σs are

such that, for a suitable Γ ¡ 2α�minp1{2, 1� 2βq � 2 and C ¡ 0, and for |u� s|
small enough, we have

Eu^s
�|µu � µs|2 � |σu � σs|2

� ¤ C|u� s|Γ, (3)

where Etr�s � Er�|Fts.

Assumption 2.1 is mild. We just assume that the coefficients µs and σs are stochas-

tically continuous and locally bounded, an assumption which encompasses vir-

tually all continuous-time specifications in financial economics. The condition

Γ ¡ 2α � minp1{2, 1 � 2βq � 2 is imposed to avoid that the stochasticity of the

bias term dominates the variance terms, and is also very mild (since, in the worst

possible case, α � 1� ε and β   1{4 and in this case we have Γ ¡ 1{2� 2ε).

This model allows for drift explosion (when α ¡ 0) and for volatility explosion

(when β ¡ 0), capturing both flash crashes and longer term market deviations.

Without loss of generality, both the drift and the volatility components burst at

t � τ and from now on we assume τ � 1.

Remark 2.1. The rationale of the model is the following. In the classical case
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without explosions, when α � β � 0, drift and volatility coefficients of the Itō

semi-martingale are bounded stochastic processes. In this case, the drift is just

invisible to high-frequency data. The reason is simply that, when ∆n ¤ t ¤ 1 and

for a small ∆n,

α � 0 ñ
» t

t�∆n

µsds � Op p∆nq (4)

and

β � 0 ñ
» t

t�∆n

σsdWs � Op

�
∆1{2
n

�
, (5)

so that the volatility always dominates the drift term in high-frequency returns.

The only way to make the drift prevailing over volatility is to have it exploding,

that is α ¡ 0. When α ¡ 0 and β ¡ 0, the order of magnitude of the drift and

diffusion components over the interval rt�∆n, ts are, respectively,» t

t�∆n

µsp1� sq�αds � Op

�
∆1�α
n

�
and

» t

t�∆n

σsp1� sq�βdWs � Op

�
∆1{2�β
n

�
,

so that the drift can dominate volatility when α � β ¡ 1{2.

Remark 2.2. As for our preliminary discussion, our modeling choice should be

considered as a technical way to represent the fact that, in some situations, the

drift might be as large as to dominate the volatility component. Our specification

is thus meant to capture drift explosions, as in Christensen et al. (2022), drifts

following an Ornstein-Uhlenbeck (OU) model, as in Laurent and Shi (2020, 2022);

Phillips et al. (2015); Phillips and Shi (2019), or just large constant drifts, as in

one of our simulation settings below.

Remark 2.3. The no-arbitrage condition requires α � β   1{2, so that the so-

called structural condition:» 1

0

�
µsp1� sq�α
σsp1� sq�β


2

ds �
» 1

0

µ2
s

σ2
s

p1� sq�2pα�βqds   8

is satisfied. This means that for the drift strictly prevailing over volatility in high-

frequency returns, absence of arbitrage has to be violated locally. Of course, this is

only an asymptotic condition. The actual possibility of arbitrage violation is more

nuanced in small samples.
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3 The estimators

We assume to observe X (the logarithmic price) at n � 1 equally spaced points

0,∆n, 2∆n, . . . , n∆n � 1 in r0, 1s, with ∆n � 1{n. We write ti � i∆n with

i � 0, . . . , n. The high-frequency return is denoted by ∆n
iX � Xi∆n �Xpi�1q∆n .

3.1 Realized volatility

The first estimator we consider is the well-known realized volatility, defined as:

RV �
ņ

i�1
p∆n

iXq2 . (6)

We first show that RV remains a consistent estimator of the integrated variance

IV �
» 1

0
σ2
sp1� sq�2βds, (7)

even under model (2) with drift and volatility explosions.

Lemma 3.1. Under Assumption 2.1, as nÑ 8, we have RV pÝÑ IV.

The intuition for the above result is the following. Assume µt � 1 and σt � 0. We

then have:

RV �
ņ

i�1

�» ti

ti�1

p1� sq�αds

2

� ∆2�2α
n

p1� αq2
ņ

j�1

�
j1�α � pj � 1q1�α�2

loooooooooooooomoooooooooooooon
convergent when α¡1{2

. (8)

Thus, even an explosive drift vanishes asymptotically in realized variance (in the

case α ¤ 1{2, convergence to zero is even faster) at rate ∆2�2α
n . This calculation is

generalized in the proof of Theorem 3.1 to the case with the coefficients µt and σt
as in Assumption 2.1. However, Eq. (8) also suggests that the bias due to the drift

term can be the leading term in the asymptotic error of RV for sufficiently large

α, since the vanishing rate can get arbitrarily slow. For example, when β � 0, the

order of the bias term is ∆2�2α
n while the order of the variance term is ∆1{2

n , so

that the bias dominates when α ¡ 3{4. If volatility explodes too, convergence of

RV to IV is also slower. This intuition is proved formally, in the general case, in

Theorem 3.1 below.
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For its statement, we need to introduce two quantities which are related, in the

case of constant coefficients µt and σt, to the Riemann ζ, a function which comes

out naturally from the limit of the series in (8). To unify the notation across

theorems, we define the quantity ζfpc1,d1,k1q,...,pcM ,dM ,kM q for a stochastic process f

using M triplets pcm, dm, kmq with m � 1, . . . ,M , and by K � maxm�1,...,Mpkmq,
as

ζfpc1,d1,k1q,...,pcM ,dM ,kM q :� lim
nÑ8

n�Ķ

j�1
fpn�jq∆n

M¹
m�1

�pj � kmq1�cm � pj � km � 1q1�cm
�dm

p1� cmqdm
.

(9)

Theorem 3.1. Under Assumption 2.1, as n Ñ 8, the limiting distribution of

RV� IV is as follows.

(1) When β   1{4 and α   3{4:

n1{2 rRV� IVs dÑ N
�

0, 2
» 1

0
σ4
sp1� sq�4βds



.

(2) When β ¡ 1{4 and α � β   1{2:

n1�2β rRV� IVs dÑ N
�

0, 2ζσ4

p2β,2,0q

	
.

(3) When β   1{4, α ¡ 3{4 and α � β   1:

n1{2
�
RV� IV�∆2�2α

n ζµ
2

pα,2,0q

�
dÑ N

�
0, 2

» 1

0
σ4
sp1� sq�4βds



.

(4) When α � β ¡ 1 and α � β ¡ 1{2:

n3{2�α�β
�
RV� IV�∆2�2α

n ζµ
2

pα,2,0q

�
dÑ N

�
0, 4ζµ

2σ2

pα,2,0q,p2β,1,0q

	
.

The above convergences are stable in law. See Corollary B.1 in the Online Ap-

pendix B for border cases.

Theorem 3.1 shows that the asymptotic distribution of RV depends on the values

of the drift explosion rate (α) and the volatility explosion rate (β). We identify

four main cases in the pα, βq space, illustrated in Figure 1. In case (1), in which

both explosions in drift and in volatility are “moderate”, we recover the standard
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Figure 1: The different regions in the pα, βq plain for convergence in Theorems 3.1, 3.2, 3.3.

limit for RV. Case (1) is local to the standard model in which α � β � 0.

Even in this case the arbitrage condition may be violated when α � β ¡ 1{2.
The variance of RV can get arbitrarily large as β Ñ 1{4 from the left, since³1
0p1 � sq�4βds � 1{p1 � 4βq. In case (2), volatility explosion dominates drift

explosion. In this case the convergence rate of RV to IV is slowed down with respect

to case (1). In cases (3) and (4) the bias term due to drift explosion dominates

the variance term (and arbitrage is always violated). In all cases, consistency is

however preserved since the bias term is of order ∆2�2α
n Ñ 0 with α   1, so it is

always vanishing, even if the vanishing rate can be arbitrarily slow as α approaches

1. The difference between case (3) and case (4) is in the dominating term in the

variance, and the corresponding convergence rate which is slower in (4) than in

(3).

3.2 Rice estimator

To attenuate the bias due to the drift we borrow from the difference estimator

proposed by Rice (1984) (see Hans-Georg and Stadtmüller (1988) and Hall et al.

(1990) for extensions and refinements, and Von Neumann et al. (1941) for an

early treatment and an historical discussion of the estimator), defined, for a given
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integer k ¡ 0, as

RiceVpkq � 1
2

ņ

i�k�1

�
∆n
iX �∆n

i�kX
�2
. (10)

The estimator (10) is still consistent, as RV, for integrated variance. The idea of

this estimator is simply to eliminate the drift by taking first differences (in our

case, of returns). The following theorem shows that the estimator based on this

commonly used technique in nonparametric regression is still consistent, but it

cannot eliminate the asymptotic bias. However, it can strongly attenuate it, at

the cost of an inflated variance.

Theorem 3.2. Under Assumption 2.1, as nÑ 8, RiceVpkq pÝÑ ³1
0 σ

2
sp1�sq�2βds.

The limiting distribution of RiceVpkq � IV is as follows.

(1) When β   1{4 and α   3{4:

n1{2 rRiceVpkq � IVs dÑ N
�

0, 3
» 1

0
σ4
sp1� sq�4βds



.

(2) When β ¡ 1{4 and α � β   1{2:

n1�2β rRiceVpkq � IVs dÑ N
�

0, 2ζσ4

p2β,2,0q � ζσ
4

p2β,1,kq,p2β,1,0q

	
.

(3) When β   1{4, α ¡ 3{4 and α � β   1:

n1{2
�
RiceVpkq � IV�∆2�2α

n

�
ζµ

2

pα,2,0q � ζµ
2

pα,1,0q,pα,1,kq

	�
dÑ N

�
0, 3

» 1

0
σ4
sp1� sq�4βds



.

(4) When α � β ¡ 1 and α � β ¡ 1{2:

n3{2�α�β
�
RiceVpkq � IV�∆2�2α

n

�
ζµ

2

pα,2,0q � ζµ
2

pα,1,0q,pα,1,kq

	�
dÑ N

�
0, V RiceV

4 pα, βq� ,
where

V RiceV
4 pα, βq �4ζµ

2σ2

pα,2,0q,p2β,1,0q � ζµ
2σ2

p2β,1,kq,pα,2,0q � ζµ
2σ2

p2β,1,0q,pα,2,kq

� 4ζµ
2σ2

pα,1,kq,p2β,1,kq,pα,1,0q � 4ζµ
2σ2

pα,1,kq,p2β,1,0q,pα,1,0q

� 2ζµ
2σ2

pα,1,2kq,p2β,1,kq,pα,1,0q.

(11)

The above convergences are stable in law. See Corollary B.2 in the Online Ap-
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Figure 2: The attenuation of the bias and change in the variance of the RiceVpkq estimator, as a function
of k, relative to the RV estimator, in the case with constant µt and σt in model (2).

pendix B for border cases.

The structure of Theorem 3.2 is similar to that of Theorem 3.1, since the same four

areas in the α � β region in Figure 1 are identified. In case (1), the only effect of

the RiceVpkq estimator is to inflate the asymptotic variance of 50%. The variance

is also inflated in case (2), where the inflation depends on β and k. Figure 2 Panel

B illustrates the inflation rate in the case of constant σt for RiceVpkq, showing that

it decreases with k and with the explosion rate β. In particular, with exploding
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volatility the advantage in precision of RV versus RiceVpkq attenuates strongly. In
case (4), as shown in Panel C of Figure 2, the variance of the RiceVpkq estimator

can even be smaller than that of RV. Panel A of Figure 2 shows the bias reduction

as a function of k in the case of constant drift coefficient µt and when the drift is

dominating, that is in case (3) and (4). The size of the reduction is larger with

smaller α and it is largest for k � 1. As Figure 2 shows, we expect a bias reduction

up to 25% for sensible values of α.

The estimator (10) has also been studied by Andersen et al. (2021). They also

find a reduction in the bias with respect to RV. In our setting, there are two

main differences. The first is that we have volatility explosions, and we study

the interplay between the drift and volatility explosion rates in determining the

asymptotic limit (Figure 1). The second difference is that they truncate returns

whose absolute value is above the threshold c∆ω
n, with c and ω being constants.

As a result, they also find a bias reduction driven by a faster rate of convergence of

the bias to zero. The fact that their rate of convergence of the bias is faster comes

from truncation. As discussed in the introduction, truncating will eliminate the

largest returns due to drift explosion. In our case, in which we do not truncate,

the rate of convergence of the bias to zero is the same as that for RV (∆2�2α
n ), and

the reduction in the bias comes from a smaller constant in front of the bias term.

An important motivation for not truncating comes from the analysis of the next

estimator.

3.3 Realized autocovariance and realized drift

We finally come to our definition of realized drift. It is clear now that the difference

RiceVpkq � RV can be dominated by the bias (at the first order) and therefore

proportional to the squared drift when the drift is large enough. Simple math

however shows that this difference is, apart from a negligble end-effect, the realized

autocovariance estimator:

RACpkq �
ņ

i�k�1
∆n
iX∆n

i�kX. (12)
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From the proof of Theorem 3.2, we indeed have:

RACpkq � RV�RiceVpkq � opp1q,

where the opp1q term is the end effect. This means that, in model (2), the autoco-

variance estimator is actually estimating drift. This intuition is formalized in the

following Theorem.

Theorem 3.3. Under Assumption 2.1, as n Ñ 8, RACpkq pÝÑ 0. The limiting

distribution of RACpkq is as follows.

(1) When β   1{4 and α   3{4:

n1{2 RACpkq dÑ N
�

0,
» 1

0
σ4
sp1� sq�4βds



.

(2) When β ¡ 1{4 and α � β   1{2:

n1�2β RACpkq dÑ N
�

0, ζσ4

p2β,1,kq,p2β,1,0q

	
.

(3) When β   1{4, α ¡ 3{4 and α � β   1:

n1{2
�
RACpkq �∆2�2α

n ζµ
2

pα,1,0q,pα,1,kq

�
dÑ N

�
0,
» 1

0
σ4
sp1� sq�4βds



.

(4) When α � β   1 and α � β ¡ 1{2:

n3{2�α�β
�
RACpkq �∆2�2α

n ζµ
2

pα,1,0q,pα,1,kq

�
dÑ N

�
0, V RAC

4 pα, βq� ,
where

V RAC
4 pα, βq � ζµ

2σ2

p2β,1,kq,pα,2,0q � ζµ
2σ2

p2β,1,0q,pα,2,kq � ζµ
2σ2

p2β,1,kq,pα,1,0q,pα,1,2kq. (13)

The above convergences are stable in law. See Corollary B.3 in the Online Ap-

pendix B for border cases.

We see from Theorem 3.3 that, even if RAC vanishes asymptotically, it does so

with a different rate in the four different cases. In particular, in cases (3) and (4),

the dominating order of RAC is proportional to the squared drift. Our notion of
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realized drift thus comes from the results in cases (3) and (4). When we are in

these situations, in which drift explodes at a sufficiently high rate, we have:

RDriftpkq :� 1
∆2�2α
n

RACpkq pÑ ζµ
2

pα,1,0q,pα,1,kq.

When µt � µ, that is when the drift coefficient is constant, we have by definition

(9)

ζµ
2

pα,1,0q,pα,1,kq � µ2 ζk,α
p1� αq2 ,

where

ζk,α �
�8̧

j�1
pj1�α � pj � 1q1�αqppj � kq1�α � pj � k � 1q1�αq

is a constant. For example, with constant µt � µ in model (2) (such that the total

drift is µp1� tq�α) and α � 0.9, we have:

1
∆0.2
n

RACp1q pÑ 8.10µ2,

and
1

∆0.2
n

RACp2q pÑ 5.20µ2.

Theorem 3.3 allows us to make the following predictions:

1. If drift is “small", RAC is centered around zero.

2. If drift is “large", RAC is centered on a positive value which grows with µ2
t

and declines with increasing ∆n.

Remark 3.1. In our main model (2), there is a single explosion (of drift and

volatility) at the end-point. We could have an explosion at the beginning, or mul-

tiple explosions (as in a V-shape, see Flora and Renò, 2021). In this case, the

structure of Theorems 3.1, 3.2, 3.3 would remain unchanged with the same four

cases and the same rates of convergence for the bias and the variance term in each

case. What would change is the coefficient (straightforwardly) in cases (2), (3)

and (4).

Remark 3.2. We can safely introduce jumps in the primitive process (2) without

altering the intuition of Theorem 3.3. Jumps indeed will be asymptotically elimi-

nated via the same mechanism which eliminates the bias in bipower variaton, that
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is the product of two consecutive returns, see e.g. Barndorff-Nielsen and Shephard

(2006). Jump will just impact the asymptotic variance in a straightforward way

in all four cases.

3.4 Market microstructure noise

Market microstructure noise is going to play a role in RAC, actually dominating

it completely in the limit. In this sense, our results can be seen as complementary

to those of the celebrated illiquidity estimator of Roll (1984). In his model, the

bid-ask spread can be recovered from the serial autocovariance, but only when it is

negative (since that would be the signature of the bid-ask bounce). In our model,

in which frictions are absent, a positive serial autocovariance is a signature of the

presence of large drift. If the microstructure noise is present, ∆n should be small

(to get closer to the asymptotic limit) but at the same time large enough to avoid

distortions from market microstructure noise.

Recently, new approaches have been proposed to estimate the serial autocovariance

in realistic frictional models, see, for example, Jacod et al. (2017) and Li and Linton

(2022). Consider the noise contaminated data

Xo
i∆n

� Xi∆n � ωεi, (14)

where Xi∆n is the log prices of the underlying asset with its dynamic given in

Assumption 2.1, ω ¡ 0, and εi is the noise, as defined below.

Assumption 3.4. Assume that the noise component tεiuni�1 is independent of X,

stationary, mean zero, variance one, and with finite moments of all orders. Denote

by γs � Epεi, εi�sq for any integer s ¥ 0. We further assume that for some v ¡ 1

and K ¡ 0,

|γk| ¤ K

sv
.

The realized autocovariance can be computed from pre-averaged noise-contaminated

returns r̄oi∆n
in the spirit of Jacod et al. (2009). That is,

RACo pknq �
ņ

i�kn�1
r̄oi∆n

r̄opi�knq∆n
, (15)
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where the pre-averaged return

r̄oi∆n
�

lņ

j�1
g

�
j

ln


�
Xo
pi�jq∆n

�Xo
pi�j�1q∆n

�
with g p.q being the weight function (see Assumption A.1 in the Appendix for its

precise definition) and ln being the pre-averging window. We assume that the

pre-averaging window is smaller than autocovariance lag order (i.e., ln   kn) and

ln diverges to infinity as nÑ 8.

The pre-averaged noise contaminated return can be rewritten as

r̄oi∆n
� �

ln�1̧

j�0
hnjX

o
pi�jq∆n

� �
ln�1̧

j�0
hnj
�
Xpi�jq∆n � ωεpi�jq∆n

� � r̄i∆n�ω
ln�1̧

j�0
hnj εpi�jq∆n ,

where hnj � g
�
j�1
ln

	
� g

�
j
ln

	
and r̄i∆n � �°ln�1

j�0 hnjXpi�jq∆n . The realized auto-

covariance consists of four components:

RACo pknq �
ņ

i�kn�1

�
r̄i∆n r̄pi�knq∆n � ωr̄i∆n

ln�1̧

j�0
hnj εpi�kn�jq∆n (16)

�ωr̄pi�knq∆n

ln�1̧

j�0
hnj εpi�jq∆n � ω2

ln�1̧

j1�0
hnj1εpi�kn�j1q∆n

ln�1̧

j2�0
hnj2εpi�j2q∆n

�
.

The first term of (16) is the signal component, while the remaining three terms

are brought by the noise. We show in the theorem below that RACo is dominated

by the signal term when the pre-averaging window ln satisfies suitable conditions.

Theorem 3.5. Under the model specification of (14) and Assumption 3.4 and

A.1, as nÑ 8, the realized autocovariance estimator

RACo pknq �
ņ

i�kn�1
r̄i∆n r̄pi�knq∆n � opp1q (17)

conditional on ∆2p1�αq
n l3n Ñ 8, where ln   kn and ln, kn Ñ 8.

The above Theorem (whose proof can be found in the Online Appendix C) shows

that pre-averaging data before applying the RAC estimator delivers an estimator

that is equivalent to RAC applied to uncontaminated data. To get this, we need to

pre-average on enough data such that we can “clean” market microstructure noise

without smoothing the exploding drift (according to the condition ∆2p1�αq
n l3n Ñ 8).

18



A comprehensive investigation of the limiting properties of RACo pknq is left for

future research.

4 Implications for volatility forecasting

Our new asymptotic theory for the more flexible data generating process (2) has

relevant direct implications for volatility forecasting. This is a direct consequence

of the decomposition:

RVt � RiceVt�RACt, (18)

where t denotes the measurement day, and, here and in what follows, we write

RiceVt � RiceVtp1q and RACt � RACtp1q. RiceVt is designed to capture volatility,

while RACt to capture drift. If the two components have independent dynamics (a

conjecture which is corroborated by our empirical analysis below), that should im-

prove the forecasting of realized volatility, a topic which has been the subject of an

extensive empirical literature. Moreover, the reasoning put forward in Bollerslev

et al. (2016) implies that additional interaction terms should be added to improve

forecasts.

To clarify and formalize this intuition define ‘Integrated Variance’ as

IVt �
³t
t�1 σ

2
sp1� sq�2βds and ‘Integrated Drift’ as IDt � ∆2�2α

n ζµ
2

pα,1,0qpα,1,1q. Then,

based on Theorems 3.2 and 3.3, we write3

RiceVt � IVt�vt,
RACt � IDt�ωt,

(19)

where vt and ωt are independent mixture normal distributions with mean zero and

variance depending on ∆n, α and β. It follows from Eq. (18) that

RVt � IDt� IVt�ωt � vt. (20)

Now assume that the true dynamics of the true, unobservable objects is given by
3In Eq. (19) we are neglecting the bias term in RiceV. However, this can be added easily since

it is roughly proportional (and exactly proportional when µt is a constant) to IDt (see Theorem
3.2). Results in this section would not change.
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AR(1) processes with independent shocks, namely:

IVt �φ0 � φ1 IVt�1�u1t,

IDt �γ0 � γ1 IDt�1�u2t,
(21)

where u1t, u2t are independent (among them and with vt, ωt) i.i.d. noise. It follows

immediately that

RVt � φ0�γ0�φ1 RVt�1�pγ1�φ1qRACt�1�vt�ωt�φ1vt�1�γ1ωt�1�u1t�u2t. (22)

Thus, our theory implies, when γ1 � φ1, a direct impact of RAC on future realized

volatility, which has been unexplored by the forecasting literature so far.

Moreover, assume that we misspecify the realized variance dynamics as:

RVt � β0 � β1 RVt�1�α1 RACt�1�εt. (23)

That is, we ignore the moving average components in Eq. (22). Following Boller-

slev et al. (2016), it is immediate to show that

β1 � φ1

�
1� Vpvt�1q

VpIVt�1q

�1

,

α1 � γ1

�
1� Vpωt�1q

VpIVt�1q

�1

� φ1.

Then, if we use the asymptotic theory for RV and RAC in Case (1) and write

Vpvt�1q � 2∆n IQt�1, Vpωt�1q � ∆n IQt�1,

where IQt �
³t
t�1 σ

4
sp1� sq�4βds, using Taylor expansion we have:

β1 � φ1

�
1� 2∆n � IQt�1

VpIVt�1q


, α1 � γ1

�
1� ∆n � IQt�1

VpIVt�1q


� φ1,

which predicts a negative load of IQt�1 RVt�1 and IQt�1 RACt�1 on future realized

variance. The first term is the main feature of the HARQ model of Bollerslev

et al. (2016). The second term is predicted by our theory, and is also unexplored

by the forecasting literature.

The new predicted effects should hold even when there is no dependence between

the IVt and IDt dynamics, as postulated in the model (21). Of course, drift may
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predicts future integrated volatility and vice versa. Moreover, drift could impact

RiceVt through its bias term, which we ignored here for simplicity. In these cases

(which are actually found to be relevant in our empirical analysis), the predicted

effects on realized variance forecasting are reinforced.

Summarizing, the theoretical treatment in Section 3 implies that, in the classical

realized volatility forecasting exercise, two new terms should be considered as

explanatory variables: the realized autocovariance, and an interaction term in

which realized autocovariance is multiplied by an integrated quarticity estimator.

Before testing these implications on real data, we study the properties of the

realized autocovariance in the presence of price drift on simulated data.

5 Simulation study

The purpose of this section is to show that drift is not invisible to high-frequency

data and that it can be detected, in small samples, from the realized autocovari-

ance estimator even in presence of stochastic volatility, intraday volatility effects

and market microstructure noise.

The three models considered in this section are embedded in the following speci-

fication for the observed log-prices Xt:

Xt �Mt � Zt � εt, for t � 0, . . . , 1, (24)

where

dMt �

$'''&'''%
µcdt Constant drift

µlMtdt OU or linear drift

µe p1� tq�α dt Nonlinear drift

(25)

and

dZt � vtdWt with vt � σtft (26)

dσ2
t � κpγ � σ2

t qdt� ζσtdW
σ
t (27)

εt � Np0, 0.25∆nv
2
t q. (28)
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The drift is specified through Mt. The first model is a Constant Drift Model whose

magnitude is governed by µc. The second one is an OU process, as in Laurent and

Shi (2020). We refer to this model as Linear Drift Model as it generates a linear

drift when µl � 0. Finally, the third model, called Nonlinear Drift Model, has an

explosive drift as in (2). We fix α � 0.9 and τ � 1 so that this DGP corresponds to

case (3) of Theorem 3.3, where the magnitude of the drift is controlled through the

µe parameter only. A zero-drift model can be obtained by setting either µc � 0,

µl � 0 or µe � 0. Volatility burst is not considered in this simulation, and we

use the same volatility trajectory for all models (and all replications) for ease of

comparison.

Our theory predicts that for the given parameters the drift is the asymptotic

dominating term only in the Nonlinear Drift Model, while for the other two the

dominating term is the variance. However, it is clear that the bias induced by the

drift will also be present in the other two models, despite asymptotically vanishing.

The point of our simulation experiments is to study the behavior of the realized

autocovariance in small samples, where the bias term could be non-negligible even

with non-exploding drift. In this sense, this Section complements the asymptotic

theoretical results in the previous sections.

In Equation (26), Zt is an Itō semimartingale with zero drift and stochastic

volatility vt, while Wt and W σ
t are two correlated standard Brownian motions

with EpdWtdW
σ
t q � ρdt. The spot volatility vt is the product of the condi-

tional volatility σt (with a Heston specification) and a diurnal component ft. The

intraday periodicity is obtained as in Laurent and Shi (2020), matching with

that of the Nasdaq composite index. We configure the variance process to match

key features of real financial high-frequency data as in Aït-Sahalia and Kimmel

(2007) and Christensen et al. (2022). The annualized parameters of the model are

pκ, θ, ζ, ρq � p5, 0.0225, 0.4,�?0.5q. A value of θ � 0.0225 implies an uncondi-

tional standard deviation of 15% per annum for log-returns. The first spot variance

of each simulation is drawn from its stationary law, i.e. σ2
0 � Γ p2κθζ�2, 2κζ�2q.

The third component ofXt, i.e. εt, is the market microstructure noise. The noise is

conditionally heteroscedastic and positively related to the riskiness of the efficient

log-price (e.g., Bandi and Russell, 2011; Oomen, 2006; Kalnina and Linton, 2008)
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Figure 3: One typical sample path of the simulated Heston volatility σt, intraday periodicity ft, spot
volatility σtft, and microstructure noise εt at the one-second frequency over 6.5 hours.

and corresponds to a medium level of contamination (see Christensen et al., 2014).

Figure 3 displays a typical sample path of the simulated 1-second Heston volatility

σt, intraday periodicity ft, spot volatility σtft, and microstructure noise εt over

6.5 hours. Typical sample paths of log-prices simulated from the Constant Drift

Model, the Linear Drift Model, and the Nonlinear Drift Model (at the one-second

frequency, over 6.5 hours, and with an initial logarithmic price of 7) are plotted in

Figure 4. The parameters have been chosen so that the daily price change is about

2% for all models (i.e., µc � 0.2, µl � 0.0028 and µe � 0.78). While the patterns

of the Constant Drift Model and the Linear Drift Model are almost identical, the

log-prices of the Nonlinear Drift Model show a clear exponential trend at the end

of the day.

We compute RACp1q under various drift specifications. For each model, 101 values

of the drift parameters µc, µl and µe are considered. For the Constant Drift Model

we consider values of µc between 0 and 0.1. For the Linear Drift Model µl varies

between 0 and 0.014. Finally, for the Nonlinear Drift Model µe varies between 0

and 0.0156. The parameters have been chosen so that the daily price change is
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Figure 4: One typical sample path of the simulated log-prices of the Constant Drift Model, the Linear
Drift Model, and the Nonlinear Drift Model at the 1-second frequency generating a return of about 2%
over 6.5 hours.

maximum 5%. The values of µc, µl and µe are not very informative except that

the larger they are the stronger the drift. For ease of comparison, we show on the

x-axis of each graph the average daily returns, rather than the values of µc, µl and

µe.

Confidence bands of RACp1q are computed as using two methods, an infeasible and

a feasible one. For the infeasible method, 95% confidence bands are computed as

RAC plus the 2.55% and 97.5% quantiles of the empirical distribution of RAC

under the null of a zero drift. Feasible 95% confidence bands are computed as

rRAC�qnp0.025q stdRAC,RAC�qnp0.975q stdRACs , (29)

where qnpαq is the α quantile of the standard normal distribution.

The stdRAC under the null of no drift is proportional to IQ as shown in Theorem

3.2. The RQ estimator

RQ � 1
3∆n

ņ

i�1
p∆n

iXq4 , (30)

has been shown to be a consistent estimator of IQ (Barndorff-Nielsen and Shep-
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hard, 2002a) when there is no drift burst. Based on the results for RV in Theorem

3.1, we expect the realized quarticity estimator to be biased in the presence of

large drifts. A natural alternative is

RiceQ � 1
6∆n

ņ

j�3

�
∆n
jX �∆n

j�1X
�2 �∆n

j�1X �∆n
j�2X

�2
, (31)

defined in the spirit of the RiceVp1q estimator for IV. Like RiceV, RiceQ is expected

to reduce the bias of RQ when there is a large drift but be less efficient than RQ

when there is a small or no drift. A drift robust estimator for the standard

deviation stdRAC is therefore
a

RiceQ {n.
The former method is infeasible in practice as the true dynamic of Zt is unknown,

while the latter method does not require such knowledge as a priori and hence it is

feasible. These confidence bands can be used as a test in which the null hypothesis

is region (1) (see Figure 1) against all other cases.

Figure 5 presents the average RACp1q in the first column and the frequencies

of rejections (i.e., percentages of RAC estimates outside confidence bands) in the

second column. Here, we generate data at the one-second frequency and aggregate

them at the 5-minute frequency (i.e., ∆n � 300). In each of the graphs on the left,

the red dashed line EpRACq is the average of 1,000 RACp1q computed from the

simulated data. The two blue solid (resp. purple dotted) lines correspond to the

feasible (resp. infeasible) 95% confidence bands computed from RiceQ (resp. via

simulations). The right panel contains three graphs displaying the percentages of

RAC estimates outside of the 95% feasible (blue solid line) and infeasible (purple

doted line) confidence bands.

Evidently, RACp1q increases with the magnitude of the drift. For a given level

of daily return, RACp1q responds more strongly to the non-linear drift than to

the constant or linear drift. Indeed, for a daily return of 2% about 40% of the

RACp1q estimates from the Nonlinear drift Model are tested to be significantly

different from zero, compared to about 15% for the Constant Drift Model and the

Linear Drift Model. The feasible and infeasible confidence bands provide similar

result, which is reassuring of the estimation accuracy of RiceQ for the asymptotic

variance of RAC. Results also suggest that the feasible confidence bands are a
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Figure 5: RACp1q computed from 5-minute returns as a function of the average daily return for the
three models.
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little bit too narrow (left panels) and lead to a small size distortion (right panels).

This is a finite sample issue that can be resolved using data sampled at a higher

frequency. Indeed, unreported results suggest that the size distortion is negligible

when RACp1q and RiceQ are computed on 1 minute data.

6 Empirical Application

The database contains intraday prices of the Nasdaq Composite Index over a

period spanning 2.5 decades from January 1996 to December 2020 for a total

of 6,087 days. The data are obtained from Refinitive Tick History at the one-

second frequency, filtered using standard techniques to remove large errors in the

database, and aggregated at the 5-minute frequency to show that our theory has

relevant implications for the most popular frequency in volatility forecasting.
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Realized Drift Estimates

As it is new to the literature, the dynamic of RAC is itself interesting. The top

panel of Figure 6 shows the daily estimates of RACp1q, which are computed from 5-

minute returns and standardized by
a

RiceQ {n (consistent with our simulations),

where n � 78 is the number of 5-minute returns per day. The standardized RAC

is labelled as ‘z-stat’ on the graph. We see that the RAC estimator tends to be

mostly positive, in keeping with our theory and the constant presence of a drift.

In addition to the z-statistic, defined as RACp1q{aRiceQ {n, the top panel of

Figure 6 displays two solid lines corresponding to the 0.5% and 99.5% quantiles

of the standard normal distribution. These values can serve as critical values (at

the level 1% for a two sided test and 0.05% for one-sided alternatives) for a test

of case (1) again all other cases (see again Figure 1).

The bottom panel of Figure 6 plots the logarithm of significantly positive RAC

estimates only (i.e., values above the 99.5% quantile of the standard normal dis-

tribution). We can see that the null hypothesis is often rejected. With a two

sided test at level 1% (resp. 10%), the null hypothesis is rejected in about 17.2 %

(resp. 29.5%) of the days. Interestingly, at the 1% level, all rejections are due to

a positive RACp1q.4 These results indicate pervasive presence of drift in the data.

Strongest rejections are observed in particular during the dotcom bubble of the

late 1990s and early 2000s, the 2008 subprime mortgage crisis period, and at the

onset of the coronavirus pandemic in 2020.

In-sample Estimation

We study the implications of our theory for volatility dynamics described in Sec-
tion 4. In place of the pedagogical dynamics (23), we use the Heterogenous
AutoRegressive (HAR) model of Corsi (2009). As in Section 4, we denote by
RiceVt :� RiceVtp1q and by RACt :� RACtp1q. For the interaction terms, which
are modeled as in Bollerslev et al. (2016), an estimator for IQ is required. We use
RiceQ (resp. RQ) instead of IQ for its interaction with RiceV and RAC (resp. RV).
Furthermore, since the signal in the realized drift estimator is always positive, we
replace the raw RAC series with RAC� � maxp0,RACq, when used for forecast-

4At the level 10%, we observe only 6 rejections with a negative RACp1q.
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Figure 6: The RAC estimator on Nasdaq Composite Index 5-minute data from 1996 to 2020.

ing RiceV and RV.5 As such, we propose the following three general forecasting
models:

RACt � δ0 � pδd � δQd
a

RiceQt�1qRACt�1 �δw RACt�1:t�5 �δm RACt�1:t�22 �ε1t, (32)

RiceVt � β0 � pβd � βQd
a

RiceQt�1qRiceVt�1 �βw RiceVt�1:t�5 �βm RiceVt�1:t�22

�pγd � γQd
a

RiceQt�1qRAC�t�1 �γw RAC�t�1:t�5 �γm RAC�t�1:t�22 �ε2t, (33)

RVt � α0 � pαd � αQd
a

RQt�1qRVt�1 �αw RVt�1:t�5 �αm RVt�1:t�22

�pλd � λQd
a

RiceQt�1qRAC�t�1 �λw RAC�t�1:t�5 �λm RAC�t�1:t�22 �εt, (34)

referred to as RAC-HARQ, RiceV-HARQ-DQ and RV-HARQ-DQ, respectively,

where ‘D’ is for drift and ‘Q’ for quarticity. Note that the model (34) for re-

alized variance nests the HAR and the HARQ model.

Table 1 provides the summary statistics of RV, RiceV, RAC, RQ and RiceQ. Notice
5A natural alternative would be to consider only significantly positive values of RAC, e.g.,

RAC: � RAC when RAC ¡ qnp0.975q stdRAC and RAC: � 0 otherwise. We tested this specification
but found RAC� to deliver better results.
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Table 1: Summary Statistics on RV, RiceV,RAC, RQ and RiceQ computed on 5-minute returns

RV�102 RiceV�102 RAC�102 RQ�104 RiceQ�104

Min 0.00024 0.00021 -0.03022 0.00000 0.00000
Mean 0.01123 0.00974 0.00119 0.00087 0.00055
Median 0.00500 0.00440 0.00032 0.00002 0.00002
Var 0.00046 0.00032 0.00003 0.00018 0.00002
Max 0.47138 0.28321 0.24352 0.85896 0.18173
Skewness 1.55677 1.35413 4.73689 10.04570 4.53927
Kurtosis 20.0791 14.2539 174.9571 588.5733 130.1705
ρ1 0.71574 0.74351 0.22567 0.10821 0.24918
ρ5 0.54095 0.58472 0.14932 0.05116 0.21694
ρ10 0.46818 0.49955 0.16380 0.02631 0.12310

Note: The table provides summary statistics (i.e., minimum, mean, median,
variance, maximum, skewness, kurtosis as well as the autocorrelations at lags 1,
5 and 10) on the key variables used in the empirical application. RV, RiceV and
RAC have been multiplied by 102 while RQ and RiceQ have been multiplied by
104.

that for readability of the table RV, RiceV and RAC have been multiplied by

102 while RQ and RiceQ have been multiplied by 104. The long memory feature

of RV and RiceV (to a lesser extent RAC) is obvious from their slow decaying

autocorrelation functions. As expected, the RiceV estimator is much smoother

than RV with smaller variance and narrower range. Similarly, among the two IQ

estimators, RiceQ is smoother than RQ with less observations on the extreme tails

(substantially smaller kurtosis).

To model the dynamic of RAC, we also consider a RAC–HAR model obtained by

setting δQd � 0 in (32). For RiceV, in addition to the RiceV-HARQ-DQ in (33), we

consider four other models nested in this model, i.e.,

RiceV-HAR: when γd � γw � γm � γQd � βQd � 0;

RiceV-HARQ: when γd � γw � γm � γQd � 0;

RiceV-HAR-D: when βQd � γQd � 0;

RiceV-HARQ-D: when γQd � 0.

Similarly, for RV we rely on the RV-HARQ-DQ (34) as well as the following four

specifications:
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RV-HAR: when λd � λw � λm � λQd � αQd � 0;

RV–HARQ: when λd � λw � λm � λQd � 0;

RV–HAR-D: when αQd � λQd � 0;

RV–HARQ-D: when λQd � 0.
Estimates of the competing models for RAC, RiceV, and RV obtained on the full

sample are reported respectively in Tables 2, 3 and 4. Several observations arise

from the in-sample estimation results.

Table 2: In-sample estimation results for RACt
RAC–HAR RAC–HARQ

δ0: Constant 0.000 0.000
(5.466) (4.454)

δd : RACt�1 0.036 0.207
(1.104) (2.486)

δw : RACt�1:t�5 0.225 0.220
(2.201) (2.224)

δm : RACt�1:t�22 0.525 0.463
(2.920) (2.795)

δQd : RACt�1
a

RiceQt�1 -1.116
(-2.113)

Log-likelihood 23401.968 23427.394
σ � 104 51.103 50.893
Adj.R2 0.158 0.165

Note: OLS estimates of the HAR-type models on the full pe-
riod. Robust (HAC) t-statistics are reported in parenthesis.
The last three lines contain respectively the log-likelihood,
the standard deviation of the the residuals (multiplied by
104) and the adjusted R-squared.

First, the RAC series is persistent. The estimated coefficients of the lag one of

the daily, weekly, and monthly average of RAC in Table 2 are all significant and

positive at the 5% nominal level in the RAC–HARQ model. Furthermore, RAC

responds negatively and significantly to the interaction term. The adjusted R-

squared of the RAC–HARQ model is 16.5% which suggests that a large part of

RAC remains unpredicted by the model. This is mainly due to the fact that RAC

essentially measures noise when the drift is negligible. Persistence in the RAC

and its association with price drift may explain the findings of DeMiguel et al.

(2014), who show that serial correlation can be used to forecast expected means

to improve portfolio allocation.

Second, the realized drift measure RAC is found to be crucial for forecasting RiceV.

The RACt�1 term in Table 3 is significant and positive at the 5% nominal level

whenever it is included in the model, i.e., for the RiceV–HAR-D, RiceV–HARQ-D
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Table 3: In-sample estimation results for RiceVt
RiceV–HAR RiceV–HARQ RiceV–HAR-D RiceV–HARQ-D RiceV–HARQ-DQ

β0: Constant 0.001 0.000 0.001 0.000 0.000
(3.937) (1.107) (3.807) (1.320) (1.159)

βd : RiceVt�1 0.413 0.633 0.360 0.576 0.526
(9.601) (8.072) (7.660) (7.710) (7.156)

βw : RiceVt�1:t�5 0.357 0.310 0.406 0.356 0.358
(4.068) (3.350) (4.566) (3.828) (3.730)

βm : RiceVt�1:t�22 0.137 0.080 0.134 0.088 0.101
(2.253) (1.248) (1.952) (1.177) (1.380)

βQd : RiceVt�1
a

RiceQt�1 -0.981 -0.925 -0.608
(-3.140) (-3.077) (-1.968)

γd : RACt�1 0.292 0.249 0.726
(1.783) (1.732) (3.277)

γw : RACt�1:t�5 -0.211 -0.190 -0.218
(-0.773) (-0.803) (-0.958)

γm : RACt�1:t�22 -0.026 -0.073 -0.224
(-0.094) (-0.288) (-0.995)

γQd : RACt�1
a

RiceQt�1 -3.080
(-2.644)

Log-likelihood 18625.158 18701.771 18658.535 18726.148 18755.035
σ � 104 112.316 110.915 111.727 110.498 109.982
Adj.R2 0.603 0.613 0.607 0.616 0.620

Note: See Table 2.

and RiceV–HARQ-DQ models. The interaction term RACt�1
a

RiceQt�1 in the

RiceV-HARQ-DQ model plays a non-negligible role with a highly significant and

negative coefficient. RiceV-HARQ-DQ turns out to be the best specification for

modeling RiceV, with an adjusted R-squared of 62%. Furthermore, the restrictions

for the RiceV-HAR and RiceV-HARQ models are rejected at any conventional level

using either a likelihood ratio test or a Wald test based on a robust estimation the

variance covariance matrix (not reported here).

Table 4: In-sample estimation results for RVt

RV–HAR RV–HARQ RV–HAR-D RV–HARQ-D RV–HARQ-DQ
α0: Constant 0.001 0.000 0.001 0.000 0.000

(4.329) (1.882) (4.121) (1.360) (1.514)
αd : RVt�1 0.409 0.630 0.467 0.600 0.570

(8.604) (10.249) (7.771) (10.195) (10.191)
αw : RVt�1:t�5 0.314 0.233 0.362 0.312 0.318

(3.599) (2.505) (3.960) (3.199) (3.237)
αm : RVt�1:t�22 0.177 0.129 0.095 0.085 0.086

(2.539) (2.020) (1.214) (1.050) (1.089)
αQd : RVt�1

a
RQt�1 -0.567 -0.690 -0.414

(-9.632) (-4.986) (-1.892)
λd : RACt�1 -0.218 0.327 0.541

(-1.061) (1.541) (2.420)
λw : RACt�1:t�5 -0.428 -0.398 -0.416

(-1.192) (-1.345) (-1.408)
λm : RACt�1:t�22 0.478 0.174 0.134

(0.985) (0.445) (0.359)
λQd : RACt�1

a
RiceQt�1 -3.047

(-1.890)
Log-likelihood 17213.253 17314.699 17237.423 17326.936 17335.068
σ � 104 141.751 139.411 141.222 139.165 138.990
Adj.R2 0.565 0.579 0.568 0.580 0.581

Note: See Table 2.
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Similar results are observed in Table 4 for the models fitted to RV. The realized

drift measure RAC is found to be significantly positive at the 5% nominal level in

the RV–HARQ-DQ model while the interaction term RACt�1
a

RiceQt�1 is found

to be significantly negative (at the 5% nominal level).

Out-of-sample Forecasting

We examine the one-step-ahead out-of-sample forecasting performance of the com-

peting models for RiceV, RAC and RV. All models are estimated on the first 2,000

observations to produce the one-step-ahead forecasts for June 1, 2004. The mod-

els are then re-estimated on an expanding window each time a new observation

becomes available.

For each model i, the forecasts ŷpiqt�1 are compared to the true values yt�1 using

three different loss functions Li,t, i.e.,6

MSFEi,t �
�
ŷ
piq
t�1 � yt�1

	2
,

MAFEi,t �
���ŷpiqt�1 � yt�1

��� ,
QLIKEi,t � log yt�1 � ŷ

piq
t�1
yt�1

.

The model confidence set (MCS) of Hansen et al. (2011) is employed to rank the

models. Let M0 be the set of competing models. Their relative performance is

measured by di,j,t � Li,t � Lj,t for all i, j P M0.

The MCS test is an iterative procedure. For iteration s, it applies a model equiv-

alence test for the null hypothesis of

H0,Ms : E pdij,tq � 0 for all i, j P Ms � M0,

against the alternative

HA,Ms : E pdij,tq � 0 for some i, j P Ms.

IfH0,Ms is ‘accepted’ the confidence set M̂1�α � Ms, otherwise use an elimination

rule to remove objects from Ms and repeat the test. Let PH0,Ms
be the p-value

6QLIKE is not considered when forecasting RAC because RAC can take negative values while
QLIKE is suited for strictly positive variables only.
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associated with the null hypothesis H0,Ms and eMs be the model eliminated from

set Ms when H0,Ms is rejected. The MCS p-value for model eMs is defined by

p̂eMs
� max

k¤s
PH0,Mk

,

where M1 � M2 . . . � Ms. To make sure that our empirical results are not

specific to the chosen forecasting period, we apply the MCS test on rolling win-

dows of 500 observations over the full forecasting period. The total number of

one-step-ahead forecasts is 4,087 so that the total number of rolling windows of

500 observations is 3, 587. For each window, the distribution of the MCS test is

obtained from 10,000 bootstrap samples with a block length of 5 observations to

account for the possible presence of serial correlation and heteroskedasticity in the

loss differences. Table 5 reports the percentages of rolling window MSC p-values

(out of 3,587) being above the thresholds of 25%, 10% and 5% for the competing

models.

The out-of-sample forecasting results for RAC suggest that RAC–HARQ is a better

specification than RAC–HAR, with either MSFE or MAFE. For instance, with the

MSFE loss function and a threshold of 10%, the RAC–HARQ (resp. RAC–HAR)

belongs to the set of superior models in 97.6% (resp. 66.7%) of the cases.

For the two volatility measures, HARQ performs better than HAR based on

QLIKE and MAFE but not with MSFE. Most importantly, our proposed model

specifications RiceV-HARQ-DQ and RV-HARQ-DQ are superior to their respec-

tive alternative specifications in out-of-sample forecasting regardless of the cri-

terion used. The most striking results are from the MAFE loss function and a

threshold of 10% where RiceV-HARQ-DQ and RV-HARQ-DQ belong to the MCS

in 100% of the cases while their HARQ versions belong to the MCS in respectively

59.2% and 45.5% of the cases.

The out-of-sample forecasting and in-sample estimation results thus corroborate

our theoretical conjecture that explicitly accounting for the drift using the pro-

posed realized autocovariance estimator improves the forecasting quality of both

RiceV and RV over the standard HAR and HARQ specifications.
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Table 5: Results of the MCS test for the one-step-ahead forecasts of RAC, RiceV, and RV

α HAR HARQ HAR-D HARQ-D HARQ-DQ
MSFE for RAC

25% 35.406 89.796
10% 66.741 97.658
5% 75.300 98.411

MAFE for RAC
25% 12.434 99.387
10% 16.839 100.00
5% 22.080 100.00

MSFE for RiceV
25% 96.320 83.607 99.777 85.782 97.212
10% 99.721 86.813 100.00 88.793 99.721
5% 100.00 88.737 100.00 95.344 100.00

MAFE for RiceV
25% 38.054 36.772 38.472 39.197 100.00
10% 45.219 59.297 52.272 55.227 100.00
5% 49.122 69.083 57.987 60.190 100.00

QLIKE for RiceV
25% 46.334 72.010 50.739 74.854 88.152
10% 68.414 80.374 70.449 88.124 97.073
5% 74.854 85.336 75.272 95.790 99.610

MSFE for RV
25% 97.101 91.943 80.485 94.257 98.216
10% 99.638 99.387 87.232 98.996 99.582
5% 99.944 100.00 92.166 100.00 100.00

MAFE for RV
25% 20.630 44.299 8.5587 78.701 87.538
10% 33.203 45.526 20.296 85.503 100.00
5% 41.149 48.982 26.791 88.096 100.00

QLIKE for RV
25% 28.938 96.905 30.555 99.861 99.024
10% 37.106 98.996 39.281 100.00 100.00
5% 47.198 99.526 48.313 100.00 100.00

Note: The MCS test is applied on rolling windows of 500 obser-
vations. This figures in the table correspond to the percentages
of the rolling window MSC p-values being above the thresholds of
25%, 10% and 5% for the competing models over the full forecasting
period.

7 Conclusion

We show that realized autocovariance (RAC) reveals realized drift, at first order,

when the observation frequency increases, in a model which allows for drift and

volatility explosion. When drift is too small, realized autocovariance is instead

distributed around zero (with a predictable variance), in line with the efficient
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market hypothesis in a frictionless market. The evidence is corroborated by sim-

ulations which show that serial covariance can indeed detect drift, and that the

presence of additional market frictions does not impair its ability to do so.

The theory also implies a novel decomposition of realized variance into a drift and a

volatility component, estimated by realized autocovariance and an estimator based

on first differences of high-frequency returns (the Rice estimator) respectively.

The decomposition allows for distinct dynamics of the drift and the volatility

component.

In our empirical application we show that RAC is largely positive in the data,

peaking at times of well known sustained trends and persistent. Finally, we show

that past values of RAC help to improve the quality of the in-sample estimation

and out-of-sample prediction of the realized variance of the Nasdaq Composite

Index over the standard HAR and HARQ specifications.

We thus conclude that realized drift is an important feature of volatility dynamics

which has been neglected by the econometric literature so far. We also pose

new challenges and questions for future research in financial economics. What is

the role of drift in asset pricing? Can drift improve portfolio allocations? Does

drift contain new relevant economic information with respect to volatility? These

questions are left for future research
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A Mathematical annex
In the proofs, we denote by ti � i∆n for i � 1, . . . , n. We also write, for two
random variables X and Y , X p� Y when X � Y p1 � opp1qq, while for two real
series an and bn, we write an � bn when an � bnp1 � op1qq. The constant C is
generic and may change from line to line.
We define

ζ 1fpd1,k1q,...,pdM ,kM q :� 2d1�...�dM lim
nÑ8

1
log n

n�Ķ

j�1
fpn�jq∆n

M¹
m�1

�pj � kmq1{2 � pj � km � 1q1{2�dm
.

(35)

Proof of Lemma 3.1, Theorem 3.1 and Corollary B.1. By Ito’s lemma, we have

RV �
ņ

i�1

�» ti

ti�1

µsp1� sq�αds�
» ti

ti�1

σsp1� sq�βdWs


2

�
» 1

t1

σ2
sp1� sq�2βds�R1,n �R2,n �R3,n,

where

R1,n �
ņ

i�1

�» ti

ti�1

µup1� uq�αdu

2

R2,n � 2
ņ

i�1

�» ti

ti�1

µsp1� sq�αds

�» ti

ti�1

σsp1� sq�βdWs



R3,n � 2

ņ

i�1

» ti

ti�1

�» s

ti�1

σup1� uq�βdWu



σsp1� sq�βdWs.
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Write R1,n, using the stochastic continuity and boundedness properties of µs, as

R1,n �
ņ

i�1

�
µ2
ti�1

�Opp∆Γ
nq
	�» ti

ti�1

p1� sq�αds

2

� ∆2p1�αq
n

p1� αq2
ņ

j�1
µ2
tn�j

�
j1�α � pj � 1q1�α�2

loooooooooooooooooooooooomoooooooooooooooooooooooon
R1,a,n

�Opp∆Γ
nq∆2p1�αq

n

ņ

j�1

�
j1�α � pj � 1q1�α�2

looooooooooooooooooooooooomooooooooooooooooooooooooon
R1,b,n

.

where we changed index using j � n� i� 1. Now consider the sum:

Sn �
ņ

j�1

�
j1�α � pj � 1q1�α�2

,

and notice that this series is convergent when α ¡ 1{2 and divergent when α ¤ 1{2.
(i) When α ¡ 1{2, by the boundedness of µt and the convergence of Sn, we

have that
°n
j�1 µ

2
tn�j

pj1�α � pj � 1q1�αq2 is convergent almost surely. Thus,
using definition (9),

∆2α�2
n R1,a,n

pÑ ζµ2,α.

(ii) When α   1{2, we use the following argument. By the mean-value theorem
there exists ξj Psj � 1, jr (even when j � 1) such that

j1�α � pj � 1q1�α � p1� αqξ�αj .

Thus
R1,a,n � ∆2p1�αq

n

ņ

j�1
µ2
tn�j

ξ�2α
j ,

and by a simple Riemann argument, and changing back to index i � n�j�1,
we obtain

∆�1
n R1,a,n

a.s.Ñ
» 1

0
µ2
sp1� sq�2αds (36)

since
³1
0p1� sq�2αds is convergent when α   1{2.

(iii) When α � 1{2, neither ³1
0p1�sq�1ds nor Sn is convergent. We can, however,

find the rate of divergence using properties of the harmonic sum and the
mean-value theorem as in point (ii) above. Indeed, using the fact that pj �
1q ¤ ξj ¤ j, and noticing that ξ1 � p1� αq1{α, we have

ņ

j�1
µ2

tn�j
ξ�1
j ¥ C

ņ

j�1

1
j
¥ C logpnq,

ņ

j�1
µ2

tn�j
ξ�1
j ¤ C

�
p1� αq1{α �

ņ

j�2

1
j � 1

�
¤ C logpnq.
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This proves that

lim
nÑ8

1
log n

ņ

j�1
µ2
tn�j

ξ�1
j

exists and is bounded almost surely. Thus, we can conclude that when α � 1
2 ,

using definition (35),

p∆n logpnqq�1R1,a,n
pÑ ζ 1µ2 .

Summarizing, $'&'%
nR1,a,n

a.s.Ñ ³1
0 µ

2
sp1� sq�2αds if α   1{2

n2p1�αqR1,a,n
pÑ ζµ2,α if α ¡ 1{2

n
logpnqR1,a,n

pÑ ζ 1µ2 if α � 1{2
.

For R2,n, we have, using similar reasoning,

R2,n
p�2

ņ

i�1
µti�1σti�1

�» ti

ti�1

p1� sq�αds

�» ti

ti�1

p1� sq�βdWs



:�

ņ

i�1
υ2,i,

and now we apply Theorem 2.2.14 in Jacod and Protter (2011). The crucial orders
are:

ņ

i�1
Ei�1 rυ2,is � 0

and
ņ

i�1
Ei�1

�
υ2

2,i
� �4

ņ

i�1
µ2
ti�1

σ2
ti�1

�» ti

ti�1

p1� sq�αds

2

Ei�1

��» ti

ti�1

p1� sq�βdWs


2
�

�4
ņ

i�1
µ2
ti�1

σ2
ti�1

�» ti

ti�1

p1� sq�αds

2 » ti

ti�1

p1� sq�2βds

� 4∆3�2α�2β
n

p1� αq2 p1� 2βq
ņ

j�1
µ2
tn�j

σ2
tn�j

�
j1�α � pj � 1q1�α�2 �

j1�2β � pj � 1q1�2β� .
Thus, we have the following results:

(i) When α � β   1{2,

∆�2
n

ņ

i�1
Ei�1

�
υ2

2,i
� a.s.Ñ 4

» 1

0
µ2
sσ

2
sp1� sq�2α�2βds;

(ii) When α � β ¡ 1{2, we have

∆2α�2β�3
n

ņ

i�1
Ei�1

�
υ2

2,i
� pÑ 4ζµ

2σ2

pα,2,0q,p2β,1,0q;
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(iii) When α � β � 1{2,

∆�2
n logpnq�1

ņ

i�1
Ei�1

�
υ2

2,i
� pÑ 4ζ 1µ

2σ2

p2,0q .

This implies that$'''&'''%
nR2,n

dÑ N
�

0, 4
³1
0 µ

2
sσ

2
sp1� sq�2α�2βds

	
if α � β   1{2

n
3
2�pα�βqR2,n

dÑ N
�

0, 4ζµ
2σ2

pα,2,0q,p2β,1,0q

	
if α � β ¡ 1{2

n
plognq1{2R2,n

dÑ N
�

0, 4ζ 1µ
2σ2

p2,0q

	
if α � β � 1{2.

For R3,n, we have

R3,n
p� 2

ņ

i�1
σ2
ti�1

» ti

ti�1

�» s

ti�1

p1� uq�βdWu



p1� sq�βdWs :�

ņ

i�1
υ3,i.

We again have
°n
i�1Ei�1 rυ3,is � 0 and the crucial order is

ņ

i�1
Ei�1

�
υ2

3,i
� � 4

ņ

i�1
σ4
ti�1

» ti

ti�1

Ei�1

�» s

ti�1

p1� uq�βdWu


2

p1� sq�2βds

� 4
ņ

i�1
σ4
ti�1

» ti

ti�1

�» s

ti�1

p1� uq�2βds



p1� sq�2βds

� 2
ņ

i�1
σ4
ti�1

�» ti

ti�1

p1� sq�2βds

�2

� 2∆2�4β
n

p1� 2βq2
ņ

j�1
σ4
tn�j

�
j1�2β � pj � 1q1�2β

�2

p� 2∆2�4β
n

n�1̧

j�1
σ4
tn�j

ξ�4β
j ,

and reasoning exactly as before we have three cases and we can prove that:$'''&'''%
n1{2R3,n

dÑ N
�

0, 2
³1
0 σ

4
sp1� sq�4βds

	
if β   1{4

n1�2βR3,n
dÑ N

�
0, 2ζσ4

p2β,2,0q

	
if 1{4   β   1{2�

n
logpnq

	1{2
R3,n

dÑ N
�

0, 2ζ 1σ4

p2,0q

	
if β � 1{4.

One can see that when 0 ¤ α   1 and 0 ¤ β   1{2, the three quantities converge
to zero at various rates as nÑ 8. Therefore,

RV�
» 1

0
σ2
sp1� sq�2βds � R1,n �R2,n �R3,n

pÑ 0.
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The limiting distribution of RV� ³1
0 σ

2
sp1�sq�2βds in various cases comes from the

specific analysis of different orders. For example, in case (4) R1,n is the dominating
term, followed by R2,n.

Proof of Theorem 3.2 and Corollary B.2. It is convenient to write:

RiceV � RV�
ņ

i�k�1
∆n
iX∆n

i�kX � opp1q,

where the opp1q is an end effect. Decomposing RiceV as in Theorem 3.1, we can
now write:

RiceV � rR1,n � rR2,n � rR3,n,

where

rR1,n :� R1,n �
ņ

i�k�1

�» i∆n

pi�1q∆n

µsp1� sq�αds

�» pi�kq∆n

pi�k�1q∆n

µsp1� sq�αds
�

rR2,n :�R2,n �
ņ

i�k�1

�» i∆n

pi�1q∆n

µsp1� sq�αds

�» pi�kq∆n

pi�k�1q∆n

σsp1� sq�βdWs

�

�
ņ

i�k�1

�» i∆n

pi�1q∆n

σsp1� sq�βdWs


�» pi�kq∆n

pi�k�1q∆n

µsp1� sq�αds
�

rR3,n :�R3,n �
ņ

i�k�1

�» i∆n

pi�1q∆n

σsp1� sq�βdWs


�» pi�kq∆n

pi�k�1q∆n

σsp1� sq�βdWs

�
.

For the first term, we have, using again the stochastic continuity and j � n� i�1,

rR1,n
p� ∆2p1�αq

n

p1� αq2
ņ

j�1
µ2
tn�j

�
j1�α � pj � 1q1�α�2

� ∆2p1�αq
n

p1� αq2
n�ķ

j�1
µ2
tn�j

�
j1�α � pj � 1q1�α� �pj � kq1�α � pj � k � 1q1�α� .

Now, notice that the the series

S 1n �
n�ķ

j�1

�
j1�α � pj � 1q1�α� �j1�α � pj � 1q1�α � pj � kq1�α � pj � k � 1q1�α�

is almost surely convergent for all α ¡ 0. Indeed, by the mean-value theorem
applied twice

S 1n � p1� αq2
n�ķ

j�1
ξ�αj

�
ξ�αj � ξ�αj�k

� �kαp1� αq2
n�ķ

j�1
ξ�αj pξ1jq�α�1
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¤ kαp1� αq2
n�ķ

j�1
j�2α�1

for suitable numbers ξ1j Psξj, ξj�kr. Thus, S 1n is always convergent when α ¡ 0.
This proves that, when α ¡ 0,

∆2α�2
n

rR1,n
pÑ ζµ

2

pα,2,0q � ζµ
2

pα,1,0q,pα,1,kq

while when α � 0 we simply have:

rR1,n
p� ∆2

n

p1� αq2
�

ņ

j�1
µ2
tn�j

�
n�ķ

j�1
µ2
tn�j

�
� ∆2

n

p1� αq2
ņ

j�n�k�1
µ2
tn�j

� Op

�
∆2
n

�
.

For the third term, we write: rR3,n �
°n
i�k�1 rv3,i � opp1q, where the opp1q term is

taking care of the end effect and the continuity of the coefficients (since k∆n Ñ 0
for every fixed k), and

rv3,i �2σ2
ti�1

» ti

ti�1

�» s

ti�1

p1� uq�βdWu



p1� sq�βdWs

� σ2
ti�1

�» ti

ti�1

p1� sq�βdWs


�» ti�k

ti�k�1

p1� sq�βdWs

�
.

We now we apply Theorem 2.2.14 in Jacod and Protter (2011). First,
ņ

i�k�1
Ei�1 rrv3,is � 0,

and,
ņ

i�k�1
Ei�1

�rv2
3,i
� �4σ4

ti�1

» ti

ti�1

�» s

ti�1

p1� uq�2βdu



p1� sq�2βds

� σ4
ti�1

�» ti

ti�1

p1� sq�2βds


�» ti�k

ti�k�1

p1� sq�βdWs

�2

.

Now, invoking again a suitable law of large numbers and changing index to j �
n� i� 1, we have:

ņ

i�k�1
Ei�1

�rv2
3,i
� p� 2 ∆2�4β

n

p1� 2βq2
n�ķ

j�1
σ4
tn�j

�
j1�2β � pj � 1q1�2β

�2

� ∆2�4β
n

p1� 2βq2
n�ķ

j�1
σ4
tn�j

�
pj � kq1�2β � pj � k � 1q1�2β

� �
j1�2β � pj � 1q1�2β

�
p� 3∆2�4β

n

n�ķ

j�1
σ4
tn�j

j�4β
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which allows us to conclude, when β ¡ 1{4,

∆2β�1
n

rR3,n
dÑ N

�
0, 2ζσ4

p2β,2,0q � ζσ
4

p2β,1,kq,p2β,1,0q

	
.

When instead β   1{4, using p1� ti� k∆nq�4β � p1� tiq�4β � 4βk∆np1� tiq�4β�1

we have:
∆�1{2
n

rR3,n
dÑ N

�
0, 3

» 1

0
σ4
sp1� sq�4βds



.

Finally, when β � 1{4, reasoning as above,�
n

log pnq

1{2 rR3,n

dÑ N
�

0, 2ζ 1σ4

p2,0q � ζ 1σ
4

p1,kq,p1,0q

	
.

For the second term, we write rR2,n �
°n
i�k�1 rv12,i � opp1q, where the opp1q term is

again taking care of the end effect and the continuity of the coefficients, and

rv12,i �2µti�1σti�1

�» ti

ti�1

p1� sq�αds

�» ti

ti�1

p1� sq�βdWs



� µti�1σti�1

�» ti

ti�1

p1� sq�βdWs


�» ti�k

ti�k�1

p1� sq�αds
�

� µti�1σti�1

�» ti�k

ti�k�1

p1� sq�βdWs

��» ti

ti�1

p1� sq�αds


.

We now rearrange the sum and write: rR2,n �
°n�k
i�k�1 rv2,i � opp1q, where

rv2,i �µti�1σti�1

�» ti

ti�1

p1� sq�βdWs


�
2
» ti

ti�1

p1� sq�αds�
» ti�k

ti�k�1

p1� sq�αds�
» ti�k

ti�k�1

p1� sq�αds
�
,

so that we have
°n�k
i�k�1Ei�1 rrv2,is � 0. The crucial order is now, using again

j � n� i� 1,

n�ķ

i�k�1
Ei�1

�rv2
2,i
� � n�ķ

i�k�1
µ2
ti�1

σ2
ti�1

�» ti

ti�1

p1� sq�2βds




�
�

2
» ti

ti�1

p1� sq�αds�
» ti�k

ti�k�1

p1� sq�αds�
» ti�k

ti�k�1

p1� sq�αds
�2

� ∆3�2α�2β
n

p1� αq2 p1� 2βq
n�ķ

j�k�1
µ2
tn�j

σ2
tn�j

�
j1�2β � pj � 1q1�2β�

� �
2
�
j1�α � pj � 1q1�α�� �pj � kq1�α � pj � k � 1q1�α�� �pj � kq1�α � pj � k � 1q1�α��2

which allows us to conclude, when α � β ¡ 1{2 (which is the only case in which
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rR2,n dominates rR3,n),

∆α�β� 3
2

n R2,n
dÑ N

�
0, V RiceV

4 pα, βq� ,
where V RiceV

4 pα, βq is given by Eq. (11).

Proof of Theorem 3.3 and Corollary B.3. The proof follows among the same line
of the proof of Theorems 3.1 and 3.2.

Assumption A.1. The weight function g p.q has the following properties: (1)
g : r0, 1s Ñ R continuous and piecewise continuously differentiable with a piecewise
Lipschitz derivative g1; (2) g p0q � g p1q � 0; (3)

³1
0 g psq2 ds   8.
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