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Abstract

This paper develops an open economy growth model with land and housing services to account for interna-

tional evidence on the behavior of housing prices since 1970. An 18-country panel data set on housing prices

and other aggregate variables indicates a �multiplier�e¤ect in which housing price growth varies much more

than one-for-one with overall economic growth, both across countries and within countries over time. The

key insight is that a low elasticity of substitution between housing services and other consumption predicts

precisely such strong price responses to changes in permanent income. To the extent such changes are highly

persistent, housing prices can have a �bubbly� appearance in which prices rise faster than income for an

extended period, then collapse and grow more slowly than the overall economy. The model also suggests

that exogenous changes in world real interest rates have a modest impact on housing price growth, and do

not explain. Finally, in contrast to the U.S. case, variation (cross-sectionally and over time) in hours of

work appears to be more important than variation in productivity in accounting for variation in permanent

income growth and hence in housing prices.



With the rapid growth of housing prices since the mid-1990�s in most of the world�s advanced economies,

as well as the recent dramatic downturns, increased attention has been given to the causes and e¤ects of

�uctuations in housing prices and investment. Much of the focus has been on credit markets, and in particular

the subprime mortgage market in the United States. Price appreciation in the U.S. was not, however, out of

line with that of other advanced economies� in fact the in�ation-adjusted housing price growth since 1997

was slightly below the average of 18 countries according to data from the Bank for International Settlements

(BIS).1 Nor was this the �rst time housing prices experienced such a sustained appreciation, as similar (albeit

less sustained) episodes occurred in many countries in the 1970s and again in the 1980s.

Figure 1 depicts the behavior of in�ation-adjusted housing prices since 1970 for those 18 countries. The

key question for this paper is to what extent we can rationalize these movements both in the cross-section

(e.g. over some given time period, the cross-sectional variation in prices) and time series (within a given

country, or on average across many countries). Among other things, the chart shows the substantial upward

movement in prices across 15 of the 18 countries since the mid-1990s (the exceptions being Germany, Japan,

and Switzerland). We can also see that the U.S. is pretty much in the middle of the pack throughout the

35-year period covered by the dataset.

This paper highlights a key fact about medium frequency house price �uctuations, namely that their

amplitude greatly exceeds the amplitude of �uctuations in overall economic growth� both across countries

and over time. This fact is not an outgrowth of recent �nancial innovation, but appears to be relatively

stable over time. The paper then explores the extent to which a relatively simple model, in particular one

devoid of �nancial frictions or bubbles, can account for this stylized fact. The model is a stochastic growth

model with two goods (housing services and non-housing consumption) and three inputs (capital, labor, and

land). Two key features of the model are a non-unit cross elasticity of substitution between housing and

other goods2 , and greater land intensity in the production of housing services. Both assumptions are justi�ed

empirically, and are essential in delivering the result that house prices indeed should move substantially more

than one for one with growth. Exogenous changes in interest rates also a¤ect house prices, but the impact

is essentially one for one with overall economic growth.

1Those countries are: The U.S., Japan, the U.K., Germany, France, Italy, Canada, Spain, Australia, Netherlands, Belgium,
Sweden, Switzerland, Denmark, Norway, Finland, New Zealand, and Ireland.

2This parameter has been featured in many studies related to housing (e.g. Li et al, 2008; Piazzesi and Schneider, 2007;
Flavin-Nakagawa, 2004.). At the same time, many others have assumed, presumably for convenience or tractability, a value of
one for this elasticity (e.g. Iacoviello-Neri, 2006, Kiyotaki et al, 2007). Kahn (2008) provides evidence based on both aggregate
and microeconomic data that this elasticity is considerably less than one.
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1 Background

Housing has grown as a share of expenditures and wealth in many developed economies. In the U.S., the

real value of housing wealth, as measured by �ow of funds data, has grown an average of 4.6 percent since

1952. This compares with 3.4 percent growth of private net worth excluding real estate, and 3.5 percent

growth of personal consumption expenditures over the same time period. Figure 2 plots the ratio of nominal

housing wealth to nominal consumption expenditure. This ratio has increase by more than 50 percent since

1952. Figure 3 plots the much more volatile ratio of housing wealth to total net worth. While the enormous

volatility of non-real estate wealth (mostly the stock market) hinders precise inferences about relative trends,

the upward drift of this ratio is apparent, and not just the result of the runup in real estate wealth over the

last decade . The bottom line is that real estate has gone from 27 percent of net worth in 1952 to 39 percent

by 2008.3In OECD data, the ratio of housing services in total expenditures

One possible explanation for the relative increase in housing prices is a simple income e¤ect, or non-

homogeneity in preferences. As people get wealthier, they may prefer to have more of their consumption

coming from housing services, the price of which will tend to rise because of its being relatively intensive

in land, a �xed factor. The (nominal) share of housing services in U.S. GDP has gone from 7.5 percent in

1952 to over 10 percent in 2005. The share of housing services in consumer expenditures has gone from 12.2

percent to 14.6 percent over the same period, but data going back to 1929 (Figure 4) show little long-term

trend over a period in which wealth has grown enormously, but a positive association with the relative price

of housing services (except in recent years). This paper will focus on productivity growth� in particular,

productivity growth in the production of goods other than housing services. The relatively large share of

land and structures, two inputs usually thought to be less amenable to technical progress, in the value of

housing makes this story plausible. This paper will argue that the timing of low-frequency changes in both

housing prices and productivity suggests that this mechanism is important.

In fact, in the model it will be the price of land (endogenously driven by changes in real growth and

interest rates) that is the key driver of housing prices. There is some evidence that in fact the increase in

housing wealth does not stem from an increase in the value of houses per se, but rather from the increase

in the value of the land upon which they are built. First, a price index that include the value of land, the

Conventional Mortgage Home Price Index, has increased approximately 0.75% faster than indexes that do

not, such as the Census�s Composite Construction Cost index, on an annual basis. Davis and Heathcote

(2004) compute a land price index based on this type of di¤erential and �nd that land values have increased

3Davis and Heathcote (2005), however, argue that there are problems with the Flow of Funds data, particularly over long
periods of time, and construct their own measures of housing wealth (though only going back to 1975) that exhibit a less
clearcut trend.
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at an average annual rate of approximately 3.5% (in�ation-adjusted) over the period 1975-2005.

Of course there should be no surprise that there is a qualitative connection between economic growth

and housing prices. The real issue is quantitative: Can a plausibly parameterized growth model account

quantitatively for the boom and bust of housing markets over the past 35-40 years, or is there much left over

that requires market failures, �nancial frictions, or bubbles to explain? Figures 5abc provide some more

detailed facts about the connection between home price appreciation and real growth. They show a fairly

consistent pattern in which variation in house price growth appears to be roughly double the di¤erences in

real consumption growth rates, which can be viewed as a proxy for changes in permanent income. The

pattern is robust across di¤erent time periods (Figures 5a and 5b), or comparing changes within countries

across the two periods (Figure 5c), which removes country �xed e¤ects. It is magnitudes of this sort� the

tendency for housing prices to move much more than one-for-one with broader real measures of growth� that

this paper seeks to understand. Although the data do not cover a long span of time, the robustness of this

�multiplier�phenomenon suggests that it is not merely an outgrowth of credit market innovations or other

relatively recent phenomena. Rather, it suggests a deeper explanation not tied to particular institutions or

transitory developments.

The fact that changes within a country over time appear to produce somewhat larger responses of housing

prices than the cross-section (the slope is 2.6 versus 2) turns out also to be consistent with the story developed

in this paper. When a country�s trend growth rate changes, housing prices jump before settling into a more

stable growth trend. This �news�e¤ect is not present if one just compares two countries with persistently

di¤erent growth trends.

2 Related Literature

Research on aggregate housing prices has emphasized demographics, income trends, and government policy

as fundamental drivers. In one well-known study, Mankiw and Weil (1989) argued that population demo-

graphics were the prime determinant, and predicted that prices would fall in the subsequent two decades

with the maturation of the baby boom generation and resulting decline in the growth rate of the prime

home-owning age group. While their prediction proved inaccurate, Martin (2005) renewed the argument

for an important role for demographics. Glaeser et al (2005) argues that price increases since 1970 largely

re�ect arti�cial supply restrictions. Gyourko et al (2006) also cite inelastically supplied land as a key driver

of the phenomenon they call �superstar cities.�Van Nieuwerbergh and Weill (2006), however, argue that so

long as there are regional markets in which such restrictions are not present, the aggregate impact of restric-

tions in some local markets is likely to be modest� in other words, they primarily a¤ect the cross-sectional
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distribution of housing prices as opposed to the aggregate. Iacoviello and Neri (2006) examine the role of

monetary policy with credit market frictions.

Consistent with the approach in this proposal, Attanasio et al (2005) �nd, using data from the U.K,

that �common causality� drives the comovement of house prices and consumption, as opposed to wealth

or the collateral channels. Also consistent with the approach adopted here, Kiyotaki et al (2007) �nd that

credit market frictions primarily a¤ect own vs. rent decisions as opposed to prices. Piskorski and Tchistyi

(2008) examine optimal mortgage lending in a setting where housing prices obey essentially the same type

of regime-switching behavior assumed here, and �nd that �many features of subprime lending observed in

practice are consistent with economic e¢ ciency and rationality of both borrowers and lenders,�though, as

they point out, there may be negative externalities associated with massive defaults in a downturn.

Case and Shiller (2003) and Himmelberg et al (2005) investigate the bubble hypothesis, looking across

a large number of cities, and both suggest that the phenomenon is limited to a few localities. As with the

research above on inelastic land supplies, these papers emphasize the cross-sectional variation of house prices

across metropolitan areas rather than aggregate time series variation.

One important innovation in this project is to allow for unbalanced sectoral growth. General equilibrium

models with production have generally either assumed Cobb-Douglas preferences (e.g. Davis and Heathcote,

2005, Kiyotaki et al., 2007, Iacoviello and Neri, 2006) or have abstracted from longer-term growth issues (e.g.

Van Nieuwerburgh and Weill, 2007). This is the �rst housing model (to my knowledge) with production

that features balanced aggregate growth and systematically varying sectoral shares due to non-unit elastic

preferences away from the balanced growth path. The importance of this is that it is more consistent with

aggregate growth facts as well as with the evidence on substitution elasticities found by numerous authors

(see the discussion below), and also enables the model to match the volatility of housing prices in a plausible

and disciplined way. The model framework is based on recent work of Ngai and Pissarides (2007).

3 A Growth Model with Housing

For the sake of exposition, this section presents the closed economy general equilibrium growth model de-

veloped in Kahn (2008). The model has two sectors, a �manufacturing�sector that uses land, labor, and

capital to produce non-housing related goods and services, as well as capital� including the capital that goes

into housing services. A second sector uses capital, labor, and land to produce a �ow of housing services.

The model exhibits balanced aggregate growth, but unequal growth across sectors. The extension to a small

open economy setting is then straightforward.

After describing the production technology of �rms and the preferences and budgets of consumers, the
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model is solved as the solution to a planner�s problem. I show that the aggregate behavior is isomorphic to

the one-sector growth model, which is then extended to a small open economy in a standard way. Implicitly

the assumption is that capital �ows across borders (albeit with the interest rate dependent on the magnitude

of net borrowing so as to keep net foreign assets stationary), while labor does not. Markets are incomplete

because there is no direct risk-sharing across borders.

Within each country, the problem of resource allocation across sectors is a relatively straight-forward

static problem. This is obviously unrealistic for understanding short-run dynamics, but reasonable for the

kinds of medium-frequency questions that are the focus of this investigation.

3.1 Firms and Consumers

Competitive �nal goods �rms produce two types of goods: A �manufactured�good Ym, and housing services

Yh. Under perfect competition the �nal goods �rms make zero pro�ts and have perfectly elastic supplies of

Ym and Yh at the above prices. The production functions for the two types of goods are

Yj = AjK
�
j L

�j
j (eNj)

1����j

for j = m;h, where Kj is capital allocated to j, Lj is land, and eNj is labor input, with e representing work

e¤ort (i.e. hours) per person and N population. The goods producers rent inputs in competitive markets.

In particular, capital is rented from �nal goods producers of Ym.In the j sector, the representative �rm�s

nominal pro�t in period t is given by

PjtYjt �WtetNmt �R`tLmt �RktKmt (1)

where R` and Rk are nominal rental rates for land and capital respectively, and Wt is the nominal wage.

There are Nt representative agents at time t supplying Ntet labor, where N is exogenous, growing

exponentially at constant rate �, and e endogenous, but, as usual in growth models, constant on a balanced

growth path. Let C denote the aggregate non-housing consumption good, and H aggregate housing services.

We let c � C=N and h � H=N denote per capita quantities. The representative consumer then cares about

c and h, and dislikes working. He solves the problem

max U = Et

1X
s=0

(1 + �)
�s
�
ln

�h
!cc

(��1)=�
t+s + !hh

(��1)=�
t+s

i�=(��1)�
�  (et+s)

�
(2)
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subject to

Pm;t+s (ct+s + �t+s) + Ph;t+sht+s + Vt+s [(1 + �) `t+s � `t+s�1] + bt+s= (1 +Rt+s)

� bt+s�1 + (1� �e)Wt+set+s + (1 + �)Rk;t+sPm;t+s�1kt+s�1 (3)

+R`;t+sVt+s�1`t+s�1 + dm;t+s + dh;t+s + Tt+s (4)

(1 + �) kt+s = (1� �) kt+s�1 + z (�t+s�1=kt+s�1) kt+s�1 (j = m;h) (5)

where �t denotes total capital investment at date t, djt nominal dividends (for simplicity assumed to be

distributed in a lump-sum fashion) from the pro�ts of intermediate goods producers in sector j, bt nominal

one-period discount bonds, Vt the price of land at date t, Wt the wage, and kt and `t per capita capital and

land holdings at date t. Labor market distortions are captured by �e, and Tt is a lump-sum distribution

(e.g. of tax revenues from � s). The constraints re�ect the fact that population is growing, so that per capita

stocks get de�ated at rate �. Both kt and `t denote the sum of capital and land in both sectors. The

function z (x) represents adjustment costs, which will be discussed in more detail below.

3.2 Equilibrium Growth

Aggregating over producers in each sector, we have

Ct + It = AmtK
�
mtL

�m
mt (etNmt)

1����m

Kt � (1� �)Kt�1 = z (It=Kt�1)Kt�1

Ht = AhtK
�
htL

�m
ht (etNht)

1����h

where

Lmt + Lht = �L

Kmt +Kht = Kt�1

Nmt +Nht = Nt

The stocks of capital and land in the h sector would correspond to residential real estate. Labor in

this sector would be partly non-market household labor, and partly service sector labor (particularly for

apartment buildings). We assume (mainly for convenience) that capital�s share is the same in both sectors,
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but labor�s share is higher in manufacturing (implying of course that land�s share is higher in the housing

sector, i.e. �h > �m).

Let c and h denote per capita quantities of C and H, while k; `; ki; `h refer to per worker quantities

in sector i (e.g. kht � Kht=Nht; kt � Kt=Nt+1, i.e. no subscript refers to aggregates), while nit � Nit=Nt,

(i = m;h).4 Given the assumption of perfect competition, we can assume the economy solves the following

planner�s problem:

max U = E0

( 1X
t=0

(1 + �)
�t
ln

�h
!cc

(��1)=�
t + !hh

(��1)=�
t

i�=(��1)�
�  (et)

)
(6)

subject to resource constraints (expressed in per capita units)

ct + it = Amtk
�
mt`

�m
mt e

1����m
t nmt (7)

(1 + �) kt � (1� �) kt�1 = z (it=kt�1) kt�1 (8)

ht = Ahtk
�
ht`

�h
ht e

1����h
t nht (9)

kmtnmt + khtnht = kt�1 (10)

`mtnmt + `htnht = `t (11)

nmt + nht = 1: (12)

Total land �L is assumed �xed; so `t=`t�1 = (1 + �)
�1, and we can normalize �L = 1. Average technological

progress in sector i, i.e. the average growth rate of Ai, is denoted 
i (i = m;h). We assume e is the same

in the two sectors, and that �h � �m. Note that the timing assumptions in (10) and (11) are such that

while aggregate capital k is chosen one period ahead of time, and total land and labor are exogenous, for

simplicity the sectoral allocations are determined contemporaneously.

Note that technical progress in the h sector is unrelated to technological progress in construction. (In

fact, home construction occurs in the m sector in this model.) Rather, it refers to an increase in the housing

services from given stocks of Kh, Lh, and labor inputs eNh. What this means in practice depends on exactly

what the term �housing services�encompasses, and on how one measures Kh. In the model it is assumed

for simplicity to be indistinguishable from Km other than by its allocation to the h sector. In particular, it

is assumed to have the same price as Km and C. In principle it would include both residential structures

and housing service-related consumer durables (home appliances). Lh would include both non-market and

market labor involved in household production� time devoted to housework, food preparation, home and

4The derivations here draw on Ngai and Pissarides (2007), albeit in discrete time, and adding a �xed factor with heterogeneous
technology.
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yard maintenance, and the like.

The model obviously abstracts from a number of potentially important factors. First and foremost,

the housing and construction sectors are heavily a¤ected by government intervention, both via distortionary

taxation and regulations. In particular, much land in the U.S. (and in most other countries as well) is

neither residential nor commercial, and is either owned or heavily restricted in its use by the government.

Second, there is tremendous heterogeneity in land and housing values. Land near navigable bodies of water,

or ports, or along coastlines is much more valuable than land that does not have these features. Obviously

this model will have nothing directly to say about the cross-sectional distribution of land values or housing

prices (though many of the factors that a¤ect them over time undoubtedly come into play in the cross-section

as well). Nonetheless if all of these factors remain relatively constant over time, then ignoring them in a

model such as this should not be too great a sin.

The dynamic �rst-order conditions for capital accumulation are as follows:

�t z
0 (it=kt�1) = �mt (13)

�t (1 + �) (1 + �) = Et

n
�mt+1Amt+1�k

��1
mt+1`

�m
mt+1e

1����m
t + (14)

�t+1 [z (it+1=kt)� (it+1=kt) z0 (it+1=kt) + 1� �]g

where �mt; �ht; and �t are shadow prices on the resource constraints (7), (9) ; and (8). Note that in the

absence of adjustment costs, i.e. when z (x) = x, we have �t = �mt; and (72) becomes

�mt (1 + �) (1 + �) = Et

n
�mt+1

h
Amt+1�k

��1
mt+1`

�m
mt+1e

1����m
t + 1� �

io
(15)

which is just the familiar condition that the intertemporal marginal rate of substitution equals the marginal

product of capital.

The static �rst-order conditions can be shown to imply that

km
kh

=
1� �� �h
1� �� �m

(16)

`m
`h

=
�m
�h

1� �� �h
1� �� �m

; (17)
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Let pt denote the relative price of housing services in terms of manufactured goods. We have

pt =
�ht
�mt

=
Amtk

��1
mt `

�m
mt e

1����m
t

Ahtk
��1
ht `

�h
ht e

1����h
t

(18)

=
Amt
Aht

�
�m
�h

��m � 1� �� �h
1� �� �m

��+�m�1�`ht
et

��(�h��m)

Thus growth in the price of housing services re�ects both relative productivity growth in manufacturing

and the increasing scarcity of land.

Finally, the �rst-order condition for work e¤ort, taking into account the distortion �e, can be expressed

as

 0 (et) = (1� �e)�mt (1� �� �h)Amtk��1mt `
�m
mt e

����m
t kt�1 (19)

which equates the marginal rate of substitution between consumption and leisure with the marginal product

of labor expressed in terms of m sector output. For now we will assume that �e = 0, but will relax this

later.

3.3 Aggregate Growth under Certainty

Let total expenditure c + ph be denoted by x. It also turns out that �m = x�1 (see the proof in the

Appendix), hence �mt=�mt�1 = xt�1=xt. We can aggregate the two resource constraints as follows:For the

dynamic equations describing the evolution of kt, it, and xt we then have

xt + it = Amtk
��1
mt `

�m
mt e

1����m
t kt�1 (20)

(1 + �) kt = z (it=kt�1) kt�1 + (1� �) kt�1 (21)

qt (1 + �) (1 + �) = Et

n
(xt=xt+1)

h
Amt+1�k

��1
mt+1`

�m
mt+1e

1����m
t + (22)

qt+1 [z (it+1=kt) + 1� �]� it+1=kt]g

where qt � �t=�mt = [z
0 (it=kt�1)]

�1, the shadow value of capital in terms of m output. Note that in the

absence of adjustment costs, i.e. when z (x) = x, we have �t = �mt; and (72) becomes

�mt (1 + �) (1 + �) = Et
�
�mt+1

�
Amt+1�k

��1
mt+1 + 1� �

�	
(23)

which is just the familiar condition that the intertemporal marginal rate of substitution equals the marginal

product of capital. Apart from the inclusion of land as a factor of production, the only di¤erence with the

standard neoclassical growth model is the distinction between km and k, which is addressed below.
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We will de�ne aggregate balanced growth under certainty as an equilibrium path in which x and k both

grow at a constant rate, and in which the interest rate (i.e. the marginal product of capital) is also constant.

We will also assume that z (i=k) = i=k and z0 (i=k) = 1 at the steady state value of i=k, so that adjustment

costs are zero on the balanced growth path. Balanced growth clearly requires that Amtk
��1
mt `

�m
mt e

1����m
t be

constant, which amounts to a linear restriction on the growth rates in the m sector of the capital-labor ratio,

technological progress, and the land-labor ratio. Therefore, let

Zt �
h
Amt`

�m
mt e

1����m
t

i1=(1��)
(24)

and de�ne variables with �~�over them to be de�ated by Zt, e.g. ~kmt � kmt=Zt. We then have

xt=kt�1 + it=kt�1 = ~k��1mt (25)

(1 + �) kt=kt�1 = z (it=kt�1) + 1� � (26)

(xt+1=xt) (1 + �) (1 + �) qt = �~k��1mt+1 + (27)

qt+1 [z (it+1=kt) + 1� �]� (it+1=kt)

With ~km constant under balanced growth, k and x both grow at the same constant rate.

From (10)-(12) and (16)-(17) we have

kmt

�
1� �� �m
1� �� �h

nht + nmt

�
= kt�1. (28)

Now let

Qt � 1� �� �m
1� �� �h

nht + nmt (29)

= 1 + �nht (30)

where

� � �h � �m
1� �� �h

: (31)

Then we have kmt = kt�1=Qt, and we can de�ne k̂t � kt= (ZtQt). This gives a normalization of kt

that is constant on the balanced growth path. Note that if �m = �h, then Q = 1 and we would have

kmt = kht = kt�1. But with �m > �h, Q > 1 and nh and nm are changing over time (unless � = 1). In

particular, if � < 1 and 
m � 
h, then nh (and hence Q) grows over time.
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Thus, strictly speaking, balanced growth requires one of these knife-edge conditions: � = 1, �m = �h, or

(1 + 
m) (1 + �)
�h��m = 1 + 
h (32)

None of these is very palatable: Kahn (2008) provides evidence that � is substantially less than one, and

cites other studies with similar �ndings based on micro data. I also show that � has important implications

for housing price dynamics, so assuming � = 1 for convenience is not innocuous. Similar comments apply to

the assumption �m = �h. To assume (32) is less problematic, as it is tantamount to assuming that pt does

not grow over time. It does imply that 
h > 
m, which is hard to believe but also hard to refute directly

since 
h is di¢ cult to measure. If (32) fails to hold (say if 
m � 
h, so that p drifts higher over time), the

dynamic response of the model will be a function of the level of pt� in particular the aggregate growth rate

varies over time and is only asymptotically constant.

It turns out, however, that the consequences of assuming this when it is false are in fact innocuous:

Both the variation in the growth rate over time and the di¤erences in dynamics are tiny (see Kahn, 2008).

Thus when (32) does not hold, the model exhibits near-balanced aggregate growth and unbalanced sectoral

dynamics, as in Ngai and Pissarides (2007). In other words, over a wide range of parameters, growth

is so close to balanced even when p is growing over time that it is reasonable to treat it as balanced for

computational purposes. Consequently in what follows, results that pertain to the balanced growth path

also apply (approximately) in the case where 
m and 
h are constant but (32) does not hold. In particular,

the benchmark assumption for the model simulations below will be that (1 + 
m) (1 + �)
�h��m > 1+ 
h, so

that p grows over time.

On the balanced aggregate growth path, ZQ grows at a constant rate: In fact it is straightforward to

show that its growth rate g satis�es

h
(1 + 
m) (1 + �)

��m
i1=(1��)

� 1 + g� � G� (33)

We then have ~kmt = kmt=Zt = kt�1= (QtZt) = k̂t�1Qt�1Zt�1= (QtZt) = k̂t�1=Gt. Aggregate output per

capita (in terms of manufactured goods), which we denote yt, is Amtk�t `
�m
mt etnmt + ptAhtk

�
ht`

�h
ht etnht, or

(after substituting for pt and simplifying as before):

yt = Amtk
�
mt`

�m
mt e

1����m
t Qt = ~k

�
mtZtQt; (34)

so we can also de�ne ŷt = yt= (ZtQt) = ~k�mt =
h
k̂t�1=Gt

i�
and x̂t = xt= (ZtQt).5 There is also constant

5On the quasi-balanced growth path in which p grows over time, Kahn (2008) shows that ZQ grows at a rate that is virtually
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work e¤ort along a balanced growth path. From (19) we have

 0 (et) = �mt (1� �� �h)Amtk��1mt `
�m
mt e

����m
t kt�1

which after normalization with Z yields

 0 (et) et = (1� �� �h) ~k��1mt kt�1=xt

= (1� �� �h) ~k�mt=x̂t

Since ~kmt and x̂t are constant along the balanced growth path, et is constant as well.

We can now characterize the dynamics in terms of stationary variables:

x̂t + {̂t =
h
k̂t�1=Gt

i�
(35)

Gt (1 + �) k̂t = Gt {̂t + (1� �) k̂t�1 (36)

(x̂t+1=x̂t)Gt (1 + �) (1 + �) qt = �
h
k̂t=Gt

i��1
+ 1� � (37)

qt = z0
�
Gt {̂t=k̂t�1

��1
(38)

where Gt = QtZt= (Qt�1Zt�1). Since along the balanced growth path Gt is constant, z (x) = x, and q = 1,

we have

x̂+ {̂ =
h
k̂=G

i�
(39)

(1 + �)G =
h
k̂=G

i��1
�Gx̂=k̂ + 1� � (40)

(1 + �) (1 + �)G = �
h
k̂=G

i��1
+ 1� �: (41)

which is exactly as in the standard neoclassical growth model. The innovation in this paper is to simultane-

ously characterize the behavior of sectoral variables, and in particular housing prices and investment, within

the aggregate steady state.

3.4 Open Economy

It is now relatively straightforward to extend the model to a small open economy framework in which

interest rates are subject to exogenous shocks. Here the assumption is that land and labor are immobile

constant but (on average) slightly faster than that given by (33). This faster growth is the consequence of resources (capital,
land, and labor) �owing into the h sector.
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across countries, but capital �ows across borders in a near-frictionless manner. Deviations from the closed

economy equilibrium interest rates associated with changes in net foreign assets. Each country is assumed to

have no impact on world interest rates, and the structural shocks that presumably are behind the �exogenous�

changes in interest rates are not modeled.

Markets are incomplete, since the only way for a country to insure against idiosyncratic shocks is through

capital �ows. One example of such a model is Correia et al (1993). Letting Bt denote the stock of net

foreign assets, and Rt the gross real interest rate (return from t� 1 to t). The only friction is that to deal

with the potential unit root problem for Bt, we assume Rt depends negatively on Bt, suitably normalized.6

Individual decision-makers take Rt as given.

Without loss of generality we can assume that Bt only a¤ects the resource constraint in the m sector.

We then have, instead of (7),

ct + it = Amtk
�
mt`

�m
mt e

1����m
t nmt � bt +Rtbt�1= (1 + �)

where bt � Bt=Nt. When we combine this with expenditures on ht, we get

xt + it = Amtk
��1
mt `

�m
mt e

1����m
t kt�1 � bt +Rtbt�1= (1 + �) .

This implies an intertemporal �rst-order condition

(1 + �) (1 + �)�mt = Et
�
�mt+1Rt+1

	
where, again, �mt = 1=xt.

Let b̂t � Bt= (QtZtNt), the normalized stock of net foreign assets, with a steady state value b̂. The

6Schmitt-Grohe and Uribe (2003) discuss a variety of methods for models to deal with this problem, and conclude that it
does not make much di¤erence which method is used.
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�rst-order conditions would then be:

Gt (1 + �) k̂t = Gt {̂t + (1� �) k̂t�1 (42)

x̂t + {̂t =
h
k̂t�1=Gt

i�
� b̂t +Rtb̂t�1= [(1 + �)Gt] (43)

(1 + �) (1 + �) = Et
�
(x̂t=x̂t+1)G

�1
t+1Rt+1

	
(44)

qt (1 + �) (1 + �) = Et

�
(x̂t=x̂t+1)G

�1
t+1

�
�
h
k̂t=Gt+1

i��1
+ (45)

qt+1

h
z
�
Gt+1 {̂t+1=k̂t

�
+ 1� �

i
�Gt+1 {̂t+1=k̂t

io
(46)

Rt = R0t

�
1� �

�
b̂t

��
(47)

where we assume that �
�
b̂
�
= 0, �0 (b) � 0 8b, and R0t is the exogenous �base rate�for b̂t = b̂.

In the steady state we then have

G (1 + �) = G{̂=k̂ + (1� �)

x̂+ {̂ =
h
k̂=G

i�
+ �b̂

(1 + �) (1 + �)G = R0

�
h
k̂=G

i��1
+ 1� � = R0

Since steady state k̂; {̂, and R must be as in the closed economy case (to avoid having B grow relative to the

rest of the economy), the only di¤erence is that the steady state level of b̂ a¤ects the steady state level of

x̂. The Appendix provides details on the solution of the model.

3.5 Sectoral Growth

The sectoral variables can be solved for directly as functions of the aggregates. We can write the relevant

static �rst-order conditions for p; nh; `m; h; km, and c as functions Amt, Aht, and the aggregates kt�1 and
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xt:

ptht = Amtk
�
mt`

�m
mt e

1����m
t (1 + �)nht= (1 + �nht) (48)

1 = !c� (ct; ht)
�(��1)=�

c
�1=�
t xt (49)

ht=ct = p��t (!h=!c)
� (50)

`mt =
�L

Nt

�m=�h
nht (1 + � � �m=�h) + �m=�h

(51)

pt =
Amt
Aht

�
�m
�h

��h
(1 + �)

1����h
�
`mt
et

��(�h��m)
: (52)

kmt = kt�1= (1 + � nht) (53)

 0 (et)xt = (1� �� �h)Amtk�mt`
�m
mt e

����m
t (1 + � nht) : (54)

Only in the knife-edge cases of � = 1 or (32) will these variables exhibit balanced growth in the sense of

either being constant or growing at the same rate as the aggregate economy.

Although land is not explicitly priced in the model, we can compute its shadow rental price vt in terms

of manufactured goods:

vt = �mAmtk
�
mt`

�m�1
mt e

1����m
t (55)

To a �rst approximation we can say that the land rental price grows at rate g + � on the balanced growth

path� exactly g + � if � = 1, a bit faster if � < 1 and p is growing.

3.6 Stochastic Growth

We suppose that the growth rate of Ah is �xed at 
h, but that of Am follows a Markov regime-switching

process:

Amt=Amt�1 = (1 + ~
mt) �t=�t�1 (56)

where

~
mt =

8><>: 
1m if �t = 1


0m �t = 0
(57)

�t is a transitory disturbance, and �t is a state variable with Markov transition matrix �, where �[i; j] =

Pr
�
�t = jj�t�1 = i

�
: Since the columns of � must sum to one, we write it as

� =

264 �1 1� �0

1� �1 �0

375 : (58)

15



If the diagonal elements of � are close to one, the growth states will be highly persistent, and a shift from

one state to the other will carry with it a sizeable adjustment in the long-term level of Am. Since the

stationary distribution of � is �� �
�

1��0
2��1��0

1��1
2��1��0

�0
, the average growth rate of Am is

�
m =
1� �0

2� �1 � �0

1m +

1� �1
2� �1 � �0


0m: (59)

For concreteness we will call � = 1 the �high-growth�regime, and � = 0 the "low-growth" regime, i.e. we

assume 
1m > 
0m.

Elaborating on Hamilton (1994), we can describe � as an AR(1) process. We have

�t = 1� �0 + (�1 + �0 � 1) �t�1 + vt (60)

where Et�1 (vt) = 0, and is distributed as follows:

vt =

8>>>>>>><>>>>>>>:

1� �1 Prob �1

��1 Prob 1� �1

� (1� �0) Prob �0

�0 Prob 1� �0

if �t�1 = 1

if �t�1 = 0

: (61)

Note that while E
�
vtj�t�1

�
= 0, vt is not identically distributed over time, as the conditional distribution

depends on �t�1.

The log deviation version of Gt can be written as

Gt =
1

1� �

�
~
mt � �
m
1 + �
m

+��t +
�nh

1 + �nh
�nht � �m�`mt + (1� �� �m)�et

�
(62)

We suppose that �t = �1�t�1 + �2�t�1 + �t, where �t is i.i.d. with a zero mean. In what follows, we will

�rst assume that economic agents observe both zt and �t before making their period t decisions.
7

In principle the parameters of the growth process
�

1m; 


0
m; �0; �1

�
would be country-speci�c. In the

simulations of the model we will choose them to correspond to observed growth rates over 10 to 15 year

periods for each country. It would be more realistic to have spillovers across countries, but for the questions

addressed here, and the country-by-country approach, it would be an unnecessary complication. The main

point of the simulations is to gauge the relative medium-frequency volatility of house price and income

7 Note that (62) means that, strictly speaking, the dynamics of the model are not independent of the initial position in
levels, as nh will will not be stationary. As indicated earlier, this variation is miniscule, because nh evolves slowly and the
coe¢ cient on (nht � nht�1) above is su¢ ciently small and insensitive to nh that growth is virtually constant. See Kahn (2008)
for more details.
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growth, which is likely to depend more on the persistence of growth variations rather than on its amplitude.

3.7 Asset Prices

Thus far we have only described the behavior of the price of housing services and rental prices for land. The

term �housing prices�generally refers to asset values of homes, both the structures and the land. In this

model we can calculate the value of what might be called �real estate wealth,�which would be the total value

of capital and land allocated to the housing services sector. The value of the capital is just Kh = khnh.

The asset value of the land Lh = `hnh requires some computation, as described below. Given a land price,

which we will denote by Vt (expressed in terms of m sector output), valuing a representative house requires

constructing an index, because the composition of the representative house changes over time due to changes

in the price of land. Given a path fKht; Lhtg we will de�ne a �constant-quality�house price index Pht as a

Laspeyres index by choosing a base year, say t = 0, and setting Pht = 100 (VtLh0 +Kh0) = (V0Lh0 +Kh0).

We know that Vt is the present discounted value of the stream of rents fvtg:

Vt = vt + Et f�t;1Vt+1g = Et

( 1X
�=0

�t;�vt+�

)
(63)

where

�t;� =
�m;t+�

�mt (1 + �)
�
(1 + �)

� =
xt

xt+� (1 + �)
�
(1 + �)

� (64)

is the stochastic discount factor. On the balanced growth path we have ��1 = (1 + g) (1 + �) (1 + �),

and v̂t, as mentioned previously, is (for plausible parameters) almost constant but technically a function

of Amt=Aht and Nt (for � < 1 it is increasing in both arguments). Hence while the capital stock and the

aggregate output grow at g + �, the price of land, and hence the price of �houses�(capital plus land in the

h sector) grows at a rate (slightly) faster than g + �: We will examine the behavior of land prices o¤ the

steady state later after describing the model under stochastic growth.

3.8 Calibration

Most of the parameters take on standard values: � = 0:33, � = 0:01, � = 0:05 (a compromise for structures

and equipment): The parameters �h and �m should re�ect the shares of land in the cost of housing services

and non-housing output respectively. We set �h = 0:5 and �m = 0:05: Since housing services represent

about 20 percent of overall consumer expenditures, we set !h = 0:2, !c = 0:8. We set the time preference

rate � equal to 0.01: Finally, we choose the parameters of the regime-switching process for productivity to

correspond roughly to the results in KR:
�

1m � �m�

�
= (1� �) = 0:029; 
0m = 0:013, �1 = 0:99, �0 = 0:983.
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Thus high growth regimes are slightly more persistent than low-growth, and implied the overall mean growth

rate of Am; �
m, is 2.31 percent. Finally, based on the analysis in Kahn (2008), and consistent with broad

range of estimates based on micro data, we set � = 0:3.

3.9 Model Simulations

On the balanced growth path, the model separates conveniently into its dynamic aggregate component,

which is essentially the neoclassical growth model, and the sectoral variables, which are static functions of

the aggregate state variables. With shocks that push the variables away from balanced growth, it is not

quite as simple: The growth rate depends (very slightly) on the movements in resources from one sector to

the other that occur because � 6= 1. This makes nh a state variable, because the growth rate gt depends on

nht and nht�1. We can still use standard methods (e.g. Uhlig, 1997) to obtain a solution for the linearized

aggregate model in the normalized variables.

The key to doing interesting simulations is to take the peculiar error structure of the disturbance process

into account. Even though the conditional expectation of the errors in the zt process (the regime states)

is zero, actual realizations of zero are not possible, and in fact given the values of q1 and q0, a small error

(of absolute value 1 � q0 or 1 � q1) that leaves z unchanged is highly likely in any given time period. So

rather than consider a one-time shock to v, it makes sense to consider a single large shock (a regime-switch)

followed by a sequence of identical small shocks that leave the regime unchanged for an extended period of

time. Such a path is more like a modal outcome or scenario, and hence more interesting than the usual

impulse response involving a shock at a single date.

Figure 6 gives an example of this type of simulation. The economy is in the low growth regime in periods

1 to 11, and then switches to the high growth regime, where it remains. The �gure plots the behavior of the

asset price of a house (a �xed-weight combination of capital and land� see the Appendix) against per capita

income, for � = 0:3 and 0:9. House prices are clearly much more responsive, both at impact and during

the regimes, in the � = 0:3 case. When the regime shift occurs, the price jumps about 5 percent if � = 0:3

versus around 2 percent if � = 0:9. During the high-growth regime the growth rate of the price is about

0.5 percent (annualized) faster if � = 0:3 versus � = 0:9. Prices actually accelerate as long as the economy

remains in the high-growth regime, the more so the lower is �.

A regime-switch simulation such as is depicted in Figure 6 is unrealistic in another important dimension,

however. It assumes perfect information about the switch, which is implausible if applied to the data point

by point at high frequencies. Kahn (2008) explores the idea of gradual learning about regime switches,

which naturally has the e¤ect of smoothing out the jumps. Since here the focus is on averages over decades
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or longer, the short-run dynamics and their interaction with imperfect information are a secondary issue.

4 Results

The goal of the simulation exercises is to gauge whether the model can match the stylized fact in the data that

housing price growth responds in a roughly two-for-one fashion to di¤erences in overall growth (as measured

by consumption growth). There are two ways to do this, corresponding to the two types of comparisons

from Figure 5. Corresponding to Figure 5c, we can simulate a regime shift and compare the di¤erence

in house price growth across the two regimes with the di¤erence in consumption growth. Alternatively,

corresponding to Figures 5a and 5b, we can compare across two separate simulations that result in di¤erent

consumption growth rates� either because of being in di¤erent growth regimes, or spending more time in

one regime versus the other.

Table 1 provides results to illustrate the responsiveness of housing prices to changes (or di¤erences) in

growth trends. These are shown for a range of values of the elasticity parameter �. These comparisons

show that while overall growth (as measured by consumption growth) is not substantially a¤ected by �, the

responsiveness of housing price growth is. For the benchmark value of � = 0:3, a switch to a high-growth

regime that results in the growth rate of consumption increasing by about 1.1 percent results in housing

prices accelerating by more than 3 percent. This is consistent with the results in Figure 5c, where the slope

is 2.6, meaning that a one percent increase in consumption growth would induce a 2.6 percent increase in

housing prices. The case of � = 0:9 illustrates the fact that as preferences move close to Cobb-Douglass,

housing price growth responds by roughly one-to-one with overall growth.

The other simulations in Table 1 correspond more to the cross-sectional results in Figures 5a and 5b.

The results compare housing price growth and consumption growth for a country that is in a sustained

low-growth regime with those for a country in a sustained high-growth regime. Here again housing prices

are more responsive to changes in overall growth the smaller the value of �, again broadly consistent with

the �gures. In the benchmark � = 0:3 case, for example, housing price growth increases by just over 2

percent versus a 1.4 percent increase in consumption growth. Whereas for the regime switch case the model

predicts a slightly larger multiplier e¤ect than is in the data, for this case the model somewhat underpredicts

the multiplier. The model does have the prediction that the multiplier will be larger for the regime-switch

case than for the sustained low vs. high growth comparison, which is borne out by Figure 5. So the

model is successful qualitatively at producing an economically signi�cant more than one-for-one response

of housing prices to growth, and in particular obtains the qualitative result that the response is greater for

within-country changes than across country di¤erences.
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One can also use this framework to gauge the impact of persistent changes in real interest rates on

housing prices. Of course, given the small open economy assumption, interest rate movements play no role

in the relative movements of housing prices across countries, only in the common component. For example,

in Figures 5a and 5b we see that the regression line is approximately one percent (100 basis points) higher

in the 1990-2005 period than in the 1980-90 period. This represents a common increase in house prices

not explained by increases in consumption growth. (In fact, the mean growth rate of consumption was

essentially the same in the two periods.) Interest rates (speci�cally lower real interest rates in the later time

period) could be one candidate to explain this.

Figure 7 depicts the impact of a highly persistent (serial correlation parameter 0.99) decline in the �base�

real interest rate R0t . The initial decline in the rate is large, about 150 basis points. The impact e¤ect

on both house prices and total expenditures is large (about 5 percent), but this is a one-time level e¤ect

that dissipates along with the interest rate shock. A sustained increase in the growth rate of housing prices

of the sort we see in the data would appear to require a continued decline in interest rates. Moreover,

such a decline would stimulate overall consumption expenditures, which is not evident in the data. Thus it

would appear that while a real interest rate reduction may have contributed modestly to the international

housing price boom, the model suggests it is a relatively small part of the overall story. It cannot explain

the cross-sectional variation in housing price growth, and cannot (at least in this model) explain the fact

that housing prices accelerated by more than overall economic activity of the advanced economies.

4.1 Permanent Income: Productivity or Hours?

The discussion thus far has used relative consumption growth as a proxy for relative changes in permanent

income. For the United States, Kahn (2008) �nds that productivity growth alone explains a considerable

part of the �uctuations in housing prices around their long-term trend. Since income growth can be

decomposed into productivity (output per hour) growth and growth in labor input (hours), one question is

whether relative productivity growth is an important factor across countries in explaining relative housing

price growth.

To answer this, I examine the relationship between the growth of housing prices, consumption, produc-

tivity, and hours across these countries. In contrast to what one might expect from the U.S. case, it turns

out that much of the action across countries is in hours rather than productivity, especially with regard to

the post-1990 boom. This is illustrated in Figures 8 and 9, which depict the cross-sectional relationship

between consumption growth and, alternately, hours growth and productivity growth. It also shows up in

variance decompositions. For example, in the 1990-2005 period, productivity growth and hours growth are
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almost orthogonal (correlation �0:09), and the R2 in a univariate cross-section regression of consumption

growth on hours growth is 0.67, whereas on productivity growth it is 0.12.

While it seems likely that a shock that results in persistent increases in hours of work would also increase

housing prices, the quantitative impact is less clear, in particular with regard to the multiplier e¤ect. If we

look back at (18) we see that the �ow price of housing services pt is positively related to work e¤ort et, but

this channel lacks the direct impact of changes in relative productivity growth. Here we can reintroduce the

labor market distortion �e and consider the impact of sustained changes to it, and the resulting changes in

work e¤ort e, corresponding to hours of work per capita in the data. The sustained changes in hours that

are evident in Figure 8 clearly require similarly sustained changes in �e. To do so, however, in the context of

the relatively simplistic labor supply behavior embodied in (19) above, requires growth regimes in (1� �e).

These can be incorporated into the model, and simulations suggest that the e¤ects are similar in direction to

those of productivity growth regime changes, but the relative impact on housing prices is more modest, and

there is no multiplier. But even to the extent this can work mechanically, there is no empirical counterpart

to such regimes. If we look more closely at labor market reforms in countries such as Ireland, we tend to see

more or less one-time changes in distortions followed by a dynamic response in labor market activity that

works itself out over many years, along with induced demographic changes such as immigration. Short-run

dynamics in the response of other variables may also play an important role. This suggests further work is

needed in sorting out the role of labor market changes versus productivity growth in gaining a more complete

understanding of the dynamics of the housing sector.

5 Conclusions and Future Research

This paper has developed a small open economy growth model with land, housing services, and other goods

and shown that it is capable both qualitatively and quantitatively of explaining a substantial portion of

the roughly two-to-one responsiveness of housing prices to changes in overall economic growth seen in the

major industrialized economies, and the even larger multiplier for within-country changes in growth. The

paper also shows, however, that, in contrast to the United States, persistent changes (or di¤erences across

countries) in hours of work appear to be more important than changes (or di¤erences) in productivity

growth in accounting for changes in overall economic growth. While sustained labor market changes also

a¤ect house prices, the e¤ects are likely to be more modest than those coming from changes in productivity

growth. This suggests a need to incorporate labor market distortions in the analysis, but also a richer model

of labor market activity that can mimic the dynamic response to changes in labor market distortions that

can propagate over many years.
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Other sources of short-run dynamics may prove important as well. One potentially important simplifying

assumption in this regard is the �exible neoclassical technology for producing housing services. In particular,

existing housing capital (i.e. the structures) can be freely recombined with land and labor in any ratio at each

date. In reality, of course, most housing structures are �xed on particular plots of land for decades, with only

modest changes in capital-land ratios from additions or other modi�cations. Thus a putty-clay framework

would be a natural extension of the present model, and one that would likely result in substantially more

price responsiveness, as most of the housing stock would be stuck with �xed capital-land ratios when the

price of land changes.
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6 Appendix

6.1 Solving the Closed Economy Model

Proof that �m = x�1: �m = uc = �c=�. Since � is homogeneous of degree one, � = �cc + �hh. Also

p = �h=�c, so � = �c (c+ ph) = �cx. Hence �c=� = x�1.

The �rst-order conditions for the planner are as follows: Letting � (c; h) �
�
!cc

(��1)=� + !hh
(��1)=���=(��1),

we have:

!c�
�(��1)=�c

�1=�
t = �mt (65)

!h�
�(��1)=�h

�1=�
t = �ht (66)

 0 (et) = �mt (1� �� �m)Amtk�mt`
�m
mt e

����m
t nmt (67)

+�ht (1� �� �h)Ahtk�ht`
�h
ht e

����h
t nht

�mt�mAmtk
�
mt`

�m�1
mt e

1����m
t = �ht�hAhtk

�
ht`

�h�1
ht e

1����h
t (68)

�mtAmtk
��1
mt `

�m
mt e

1����m
t = �htAhtk

��1
ht `

�h
h e

1����h
t (69)

�mtAmtk
�
mt`

�m
mt e

1����m
t = �htAhte

1����h
t � (70)h

�k��1ht `
�h
ht e

1����h
t kmt + �hk

�
ht`

�h�1
ht e

1����h
t `mt + (1� �� �h) k�ht`

�h
ht e

1����h
t

i
(71)

�mt (1 + �) (1 + �) = Et

n
�mt+1Amt+1�k

��1
mt+1`

�m
mt+1e

1����m
t + 1� �

o
(72)

�mt and �ht are shadow prices on the resource constraints (7), (9) ; and (8). Note that in the absence of

adjustment costs, i.e. when z (x) = x, we have �t = �mt; and (72) becomes

�mt (1 + �) (1 + �) = Et

n
�mt+1

h
Amt+1�k

��1
mt+1`

�m
mt+1e

1����m
t + 1� �

io
(73)

which is just the familiar condition that the intertemporal marginal rate of substitution equals the marginal

product of capital.
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To solve the model, �rst we linearize the system

x̂t + {̂t =
h
k̂t�1=Gt

i�
Gt (1 + �) k̂t = z

�
Gt {̂t=k̂t�1

�
k̂t�1 + (1� �) k̂t�1

(1 + �) (1 + �) qt = Et

�
(x̂t=x̂t+1)G

�1
t+1

�
�
h
k̂t=Gt+1

i��1
+

qt+1

h
z
�
Gt+1 {̂t+1=k̂t

�
+ 1� �

i
�Gt+1 {̂t+1=k̂t

io
qt = z0

�
Gt {̂t=k̂t�1

��1

around the quasi-steady state values k̂, x̂, and G.. After some rearranging, and letting R � �
h
k̂=G

i��1
+

1� � = (1 + �) (1 + �)G, the linearized versions of the four equations can be expressed as

G (1 + �) k̂t = R
�
k̂t�1 �Gt

�
� x̂t

h
Gx̂=k̂

i
x̂t

h
Gx̂=k̂

i
+ {̂t

h
G{̂=k̂

i
= [R� (1� �)]

�
k̂t�1 �Gt

�
Rqt = Et f[x̂t � x̂t+1 �Gt+1]R

�� (1� �)
 
k̂

G

!��1 �
k̂t �Gt+1

�
+ qt+1

�
G{̂=k̂ + 1� �

�9=;
0 = qt + z

00
�
G{̂=k̂

��
Gt + {̂t � k̂t�1

�

Note that

�

 
k̂

G

!��1
+ 1� � = (1 + �) (1 + �)G

Gx̂=k̂ =

 
k̂

G

!��1
+ 1� � � (1 + �)G:

The log deviation version of Gt can be written as

Gt =
1

1� �

�
~
mt � �
m
1 + �
m

+��t +
�nh

1 + �nh
�nht � �m�`mt + (1� �� �m)�et

�
(74)

where �nht, �`mt, and �et are deviations from their local means given growth at G. Thus Gt re�ects the

endogenous resource shift toward or away from the h sector in response to the shock.

The near-balanced growth behavior of the system means that we can approximate the growth rates of
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the sectoral variables by linearizing the system

ptht = Amtk
�
mt`

�m
mt e

1����m
t (1 + �)nht= (1 + �nht) (75)

1 = !c� (ct; ht)
�(��1)=�

c
�1=�
t xt (76)

ht=ct = p��t (!h=!c)
� (77)

`mt =
�L

Nt

�m=�h
nht (1 + � � �m=�h) + �m=�h

(78)

pt =
Amt
Aht

�
�m
�h

��h
(1 + �)

1����h `
�(�h��m)
mt : (79)

kmt = kt�1= (1 + � nht) (80)

 0 (et)xt = (1� �� �h)Amtk�mt`
�m
mt e

����m
t (1 + � nht) : (81)

in logarithmic �rst di¤erences around the values that obtain under aggregate growth of G and population

growth �. Here we can assume that km and x grow at G, while h, c, nh, and `m each grow at locally

constant rates, which as described in Kahn (2008) is a good approximation over periods of many decades.

This results in a system of the form:

��st = 
�mt (82)

where st � [pt ct ht `mt nht kmt et]0 and �mt �
�

mt �xt �kt�1 0 0

�0
, all in deviations. � is 7�7

and 
 is 7� 5.

The local constant growth rates can be found from

��1
��m (83)

where ��m =

�

mt g g � 
h

�0
. We then have

�st = ��1
�mt (84)

Gt = � 0�mt = �0��1
�mt +
1

1� �
mt (85)

where � is 5 � 1 and � =
�
0 0 0 �m

1�� � nh= (1 + � nh) 0 1����m
1��

�0
from (74) above. Thus the

growth rate can be expressed in terms of the �rst di¤erences of the aggregate exogenous and endogenous

variables.
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The result is a system is of the form:

0 = A

266666664

k̂t

k̂t�1

x̂t

x̂t�1

377777775
+B

266666664

k̂t�1

k̂t�2

x̂t�1

x̂t�2

377777775
+C

266664
Gt

{̂t

qt

377775+D�t

0 = Et

8>>>>>>><>>>>>>>:
F

266666664

k̂t+1

k̂t

x̂t+1

x̂t

377777775
+G

266666664

k̂t

k̂t�1

x̂t

x̂t�1

377777775
+H

266666664

k̂t�1

k̂t�2

x̂t�1

x̂t�2

377777775
+ J

266664
Gt+1

{̂t+1

qt+1

377775+K
266664
Gt

{̂t

qt

377775+ L�t+1 +M�t
9>>>>>>>=>>>>>>>;

�t+1 = N�t + �t+1

where

�t =

�
�̂t �t �t�1

�0
;

�̂t � �t � ��, and

A =

2666666666666664

(1 + �)G 0 Gx̂=k̂ 0

0 ��3 ��2 0

0 0 Gx̂=k̂ 0

0 0 0 0

0 1 0 0

0 0 0 1

3777777777777775
; B =

2666666666666664

�R 0 0 0

0 �3 �2 0

� [R� (1� �)] 0 0 0

�z00 0 0 0

�1 0 0 0

0 0 �1 0

3777777777777775
;

C =

2666666666666664

R 0 0

1 0 0

R� (1� �) Gx̂=k̂ 0

z00 z00 1

0 0 0

0 0 0

3777777777777775
; D =

2666666666666664

0 0 0

�
�
�1 +

1
1��

�

1m�


0
m

1+�
m
�1 1

0 0 0

0 0 0

0 0 0

0 0 0

3777777777777775
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F =

�
0 0 �R 0

�
; G =

�
� (1� �) [R� (1� �)] 0 R 0

�
H =

�
0 0 0 0

�
J =

�
(1� �) [R� (1� �)]�R 0 G{̂=k̂ + 1� �

�
K =

�
0 0 �R

�
; L = 0; M = 0

N =

266664
�1 + �0 � 1 0 0

0 �1 �2

0 1 0

377775
and

�t =

266664
vt

ut

0

377775
where v1t and v2t are as de�ned earlier. We can then use the method of undetermined coe¢ cients outlined

by Uhlig (1997) to �nd the solution of the model in the form

266666664

k̂t

k̂t�1

x̂t

x̂t�1

377777775
= P

266666664

k̂t�1

k̂t�2

x̂t�1

x̂t�2

377777775
+Q�t;

266664
Gt

{̂t

qt

377775 = R
266666664

k̂t�1

k̂t�2

x̂t�1

x̂t�2

377777775
+ S�t

�t = N�t�1 + �t.

where in this we know that the (2; 1) and (4; 3) elements of P are 1 and the remaining elements of the two

rows are zeros. Given paths for k̂t, x̂t, and Amt we can compute the path of st, i.e. the levels of the sectoral

variables and work e¤ort, using the system (75)� (81) The rates of change of these variables will be very

similar to those computed from (84), the linearized system.
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6.2 Small Open Economy

The linearized aggregate equations can be expressed as

G (1 + �) k̂t = R
�
k̂t�1 �Gt

�
� x̂t

h
Gx̂=k̂

i
(86)

x̂t

h
x̂G=k̂

i
+ {̂t

h
{̂G=k̂

i
= �

h
k̂=G

i��1 �
k̂t�1 �Gt

�
(87)

+(1 + �)
�
b̂G=k̂

��
b̂t�1 + R̂t �Gt

�
�
�
b̂G=k̂

�
b̂t (88)

0 = Et fx̂t � x̂t+1 �Gt+1 +Rt+1g (89)

Rqt = Et f[x̂t � x̂t+1 �Gt+1]R (90)

�� (1� �)
 
k̂

G

!��1 �
k̂t �Gt+1

�
+ qt+1

�
G{̂=k̂ + 1� �

�9=; (91)

0 = qt + z
00
�
G{̂=k̂

��
Gt + {̂t � k̂t�1

�
(92)

Rt = R0t � �0
�
b̂
�
b̂b̂t (93)

We have one additional state variable now, b̂t, an additional endogenous variable Rt, and an additional

exogenous stochastic variable R0t .

The result is a system is of the form:
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where

�t =

�
�̂t �t �t�1 R0t

�0
;
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�̂t � �t � ��, and

A =
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and

�t =

266666664

vt

ut

0

�t

377777775
where v1t and v2t are as de�ned earlier. We can then use the method of undetermined coe¢ cients outlined

by Uhlig (1997) to �nd the solution of the model in the form

266666666664

k̂t

k̂t�1

x̂t

x̂t�1

b̂t

377777777775
= P

266666666664

k̂t�1

k̂t�2

x̂t�1

x̂t�2

b̂t�1

377777777775
+Q�t;
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{̂t

qt

Rt
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= R
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k̂t�1

k̂t�2

x̂t�1

x̂t�2

b̂t�1

377777777775
+ S�t

�t = N�t�1 + �t.

where in this we know that the (2; 1) and (4; 3) elements of P are 1 and the remaining elements of the two

rows are zeros. Given paths for k̂t, x̂t, and Amt we can compute the path of st, i.e. the levels of the sectoral

variables and work e¤ort, using the system (75)� (81) The rates of change of these variables will be very

similar to those computed from (84), the linearized system.
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Table 1: Simulated E¤ects of Trend Growth Di¤erence on Housing Price Growth

Changes in Consumption (x) Growth vs. Housing Price (Ph) Growth

� = 0:15 � = 0:3 � = 0:5 � = 0:9

Change in % growth rate of x Ph x Ph x Ph x Ph

Low-to-High Switch� 1.10 4.01 1.09 3.13 1.07 2.29 1.04 1.27

High vs. Low�� 1.39 2.55 1.38 2.04 1.36 1.73 1.34 1.24

�10-year simulation, switch after 5 years.

��10-years in high-growth regime vs. 10 years in low-growth regime
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