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Abstract 

We apply the growth-at-risk framework to the Australian economy. This allows us to estimate how 

important current financial conditions are in explaining future downside risk to key macroeconomic 

variables. As such, it provides a way to quantify the economic costs of financial instability. In order 

to implement this framework, we develop a new financial conditions index for Australia and show 

that it correlates closely with previous episodes of financial instability. We find that more restrictive 

financial conditions play an important role in explaining downside risk to growth in both GDP and 

employment and upside risk to changes in the unemployment rate. Our measure of financial 

conditions is, however, less useful for explaining risks to growth in household consumption and 

business investment. Overall, the framework provides a useful characterisation of the relationship 

between financial stability and economic activity in Australia. 

JEL Classification Numbers: C32, C53, C55, E27, E32, E44 
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1. Introduction 

Financial stability risks are difficult to quantify and hard to map to economic outcomes. But for 

central banks with a financial stability mandate, the issue is crucial. For example, when inflation is 

contained and financial conditions are expansionary, flexible inflation-targeting central banks need 

to weigh the near-term benefits of easier monetary policy and stronger near-term growth prospects 

against the costs of doing so: specifically, the build-up of financial vulnerabilities that could pose 

risks to future growth and employment. The ability to quantify and communicate financial stability 

risks is also essential for other policymakers, such as prudential regulators and governments, who 

have a broader range of policy tools available to them to mitigate financial stability risks. 

In addition to difficulties associated with identifying financial stability risks, policymakers face the 

added challenge of quantifying what the economic costs of financial instability might be. In part, this 

is because it is not easy to disentangle economic and financial risks that often coincide.1 Much of 

the literature on this topic focuses on estimating the costs of financial crises after they have occurred. 

Although there is considerable variation in the way economic costs are measured, there is a broad 

consensus that financial crises are followed by economically significant and prolonged declines in 

output and output growth (see Bordo and Meissner (2016) for a comprehensive review). 

It is more difficult, however, to estimate the expected costs of financial instability before any 

instability has been realised. Fundamentally, this requires policymakers to form an assessment of 

both the estimated economic cost in the event that a crisis were to occur and the estimated 

probability of the crisis occurring in the first place. A risk-neutral policymaker would simply multiply 

the expected economic cost of a crisis by the estimated probability of that crisis taking place and 

focus on the product of these two variables. But in practice, central banks are not risk neutral. Risk-

averse policymakers will seek to reduce the probability of extremely bad outcomes occurring, and 

so the expected economic cost of a crisis will also be a variable of interest in its own right 

(Cecchetti 2006). The higher the expected cost, the more likely it is that the central bank will judge 

it to be optimal to sacrifice some amount of expected output so as to avoid a potentially catastrophic 

scenario, even if the event is not considered to be particularly likely. 

While it might be tempting to rely on changes in policymakers’ central forecasts to assess changes 

in the expected economic cost of a crisis, this is likely to be misleading in practice. This is because 

this approach relies on the assumption that the distribution of possible economic outcomes simply 

shifts higher or lower over time, without changing shape. The reality is more complex. Financial 

stability risks are highly nonlinear: for example, asset prices typically fall at a faster rate during post-

bubble busts than they rise during the preceding booms. The global financial crisis (GFC) showed 

that financial stress at a single financial institution can, under certain conditions, spread quickly 

through the network of interbank exposures (Haldane 2009). This implies that in adverse scenarios, 

the distribution of economic outcomes is likely to not only shift lower, but also develop a longer left 

tail. This provides a strong argument for estimating expected economic costs of crises by modelling 

the relationship between the entire distribution of a chosen measure of financial stability and the 

entire distribution of economic outcomes. 

                                                      

1 In a recent paper, Falconio and Manganelli (2020) suggest that controlling for economic risk eliminates the direct 

effect of financial shocks on the real economy. This suggests that financial shocks instead have an indirect effect on 

the real economy via their effect on economic uncertainty. 
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The ‘growth-at-risk’ (GaR) framework was developed by Adrian, Boyarchenko and Giannone (2019) 

to do precisely this. The idea behind GaR is similar to ‘value-at-risk’ (VaR), which is a popular 

measure of risk used in finance. The concept builds on Manzan (2015) and links current financial 

conditions to the distribution of future economic outcomes. Specifically, it aims to quantify the 

magnitude of expected losses in economic activity caused by financial conditions. In practice, it 

achieves this by modelling the lower (left) tail of the distribution of future economic outcomes over 

time. 

Using US data, Adrian et al (2019) show that the distribution of future GDP growth evolves over 

time, with the left tail (i.e. downside risk) becoming longer as prevailing financial conditions become 

more restrictive. The GaR approach has subsequently been applied by the Bank of Canada (Duprey 

and Ueberfeldt 2018), the Bank of Japan (Bank of Japan 2018), the Board of Governors of the 

Federal Reserve System (Kiley 2018; Loria, Matthes and Zhang 2019), the Bank of England (Aikman 

et al 2018) and the European Central Bank (ECB) (European Central Bank 2018). The International 

Monetary Fund (IMF) is also an active contributor in this area, with the GaR approach now included 

in its macrofinancial surveillance toolkit. 

Our work contributes to this literature by developing a GaR model for Australia using a novel quantile 

regression approach known as ‘quantile spacings’. In addition to focusing on downside risk to 

aggregate GDP, we also examine other more granular indicators of macroeconomic outcomes – 

namely, household consumption, non-mining business investment, employment and the 

unemployment rate. We do this because these more granular variables have important links to 

financial stability in their own right. For example, excessive household debt can weigh on household 

consumption (Price, Beckers and La Cava 2019) and the investment of firms with excessive debt is 

more sensitive to interest rates (Gebauer, Setzer and Westphal 2018; Hambur and La Cava 2018). 

The financial conditions faced by firms can also affect their employment decisions. For example, 

Chodorow-Reich (2014) finds that tighter credit conditions for small businesses cause declines in 

employment. More generally, weak labour market outcomes could have adverse feedback effects on 

financial stability by creating debt-servicing challenges for some households and leading to higher 

rates of non-performing loans at financial institutions. 

In order to implement the GaR framework for Australia we need to develop a financial conditions 

index (FCI) to provide a summary measure of prevailing financial conditions. Following the GFC, 

FCIs emerged as a potentially useful metric of financial conditions, based on the work of Hatzius 

et al (2010). FCIs are constructed as a weighted average of a broad range of indicators, including 

asset prices, credit, money, interest rates and the exchange rate. Subsequently, many policy 

institutions have constructed FCIs to regularly monitor financial conditions, including the IMF, a 

number of Federal Reserve Banks (Brave and Butters 2010), the ECB, the Bank of England 

(Kapetanios, Price and Young 2017) and the Bank of Canada (Gauthier, Graham and Liu 2004). One 

advantage of using a composite indicator such as an FCI in the GaR framework is that it is allows 

financial conditions to affect risk to economic activity through a variety of channels. 

Similar to other economies, we find that our FCI helps to explain downside risks to future GDP 

growth in Australia at horizons of both one quarter and one year. We also find strong relationships 

between the FCI and risks to our 2 labour market indicators. However, the FCI is surprisingly of 

relatively little use in explaining downside risk to household consumption or business investment. 

While the GaR approach is a flexible and parsimonious framework, there are 2 key caveats to note. 
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First, it is reduced form in nature and is not well suited to identifying causal relationships. Second, 

there is estimation uncertainty for some of the results. 

We start by describing the methodology used to implement the GaR framework in Australia, including 

the construction of the FCI, in the next section. Further technical details related to the FCI as well 

as some additional results are provided in the appendices. 

2. Modelling Risks to Economic Activity from Changing Financial Conditions 

We follow a four-step process to model the risks posed to economic activity from financial conditions: 

1. We develop a summary indicator to represent ‘financial conditions’ (the FCI), which will be an 

explanatory variable in subsequent regressions. 

2. We estimate the conditional distribution of future economic activity given current economic 

activity and the FCI using a novel quantile regression approach known as ‘quantile spacings’. 

This yields a series of fitted regressions for discrete quantiles of the distribution over time – for 

example, one equation for the 0.05 quantile (5th percentile) of the distribution of future 

economic activity, one equation for the 0.25 quantile, and so on. 

3. We compute a sequence of probability density functions (PDFs) by mapping the estimated 

discrete quantiles at each point in time to a (continuous) skewed t distribution.2 

4. We use these smoothed PDFs to quantify downside risk to future economic activity by measuring 

the area in the left tail of the distributions. This measure of risk is known as ‘expected shortfall’. 

It measures the average severity of extreme tail events given that a loss has occurred (that is, 

it abstracts from the probability of a loss occurring in the first place). In contrast, the more well-

known VaR measure conflates the magnitude of the potential loss with the probability of it 

occurring.3 

2.2 A summary indicator of financial conditions in Australia 

To implement the GaR framework for Australia we require a summary indicator of financial conditions 

that are not otherwise directly observable. Since there is currently no existing indicator available for 

Australia, our first task is to develop an FCI. We follow previous work by other central banks 

(e.g. Brave and Butters 2010) and construct our FCI using a dynamic factor model (DFM). The model 

incorporates 75 individual data series covering various aspects of the financial system, including 

measures of: asset prices; interest rates and spreads; credit and money; debt securities outstanding; 

leverage; banking sector risk; financial system complexity; financial market risk; and survey 

measures of businesses’ and consumers’ views on financial conditions. Within these categories, we 

include a mix of Australian and US variables, with the US data included to capture spillover effects 

from US financial variables to other markets (Zdzienicka et al 2015). The FCI is constructed at a 

quarterly frequency, to match both the lowest frequency of its individual component series and the 

                                                      

2 We use a continuous distribution because computing the area in the tails requires us to use (numerical) integration. 

3 An additional technical reason for preferring expected shortfall over VaR is that it is a ‘coherent’ measure of risk while 

VaR is not. This is because VaR violates the sub-additivity property. 
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lowest frequency of the economic variables we are trying to predict.4,5 Appendix A.1 describes the 

dataset in more detail, while Appendix A.2 describes the methodology used to construct the index 

and Appendix A.3 sets out which components have had the most influence on the overall measure. 

The appropriateness of the estimation method used for the FCI is examined in Appendix A.4 and 

Appendix A.5 focuses on assessing the correlations between the FCI and 5 measures of economic 

activity, including through Granger causality tests. 

Figure 1 illustrates our estimated FCI for the time period 1976:Q4 to 2020:Q3.6 The FCI can be 

interpreted as indicating that financial conditions are generally ‘restrictive’ when it takes on values 

greater than zero, and generally ‘expansionary’ when it takes on values less than zero.7 The shaded 

region in the figure is the 95 per cent confidence interval for the FCI and its narrowness indicates 

that our estimate is relatively precise.8 This high degree of precision is important as it reduces – 

though does not eliminate – concerns about estimation uncertainty from the use of the FCI as a 

‘generated regressor’ in our subsequent quantile regressions (Bai and Ng 2006). 

Figure 1: Financial Conditions Index 

 

Note: Shaded region represents 95 per cent confidence interval 

Movements in the FCI correspond to known historical events. For example, the FCI suggests financial 

conditions were more expansionary in the late 1980s, consistent with the rapid growth in credit and 

asset prices (particularly residential and commercial property prices) over that period. However, 

                                                      

4 We convert any series available at higher frequencies to a quarterly frequency by computing the quarter average for 

‘flow’ variables or using the quarter-ended value for ‘stock’ variables. 

5 The FCI developed by Hatzius et al (2010) for the United States is also quarterly. 

6 The estimated FCI for September quarter 2020 includes only 42 of the 75 variables owing to data availability at the 

time of estimation. 

7 There is no clear convention regarding the sign of the FCI, but we follow the Federal Reserve Bank of Chicago in 

defining more restrictive conditions with positive values and expansionary conditions with negative values. 

Appendix A.2 describes how we implement this specific sign convention when estimating the FCI. 

8 The narrowness of the estimated confidence interval is related to the number of variables in our dataset ( N ), which 

is large relative to the number of observations for each variable (T ). 
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financial conditions became very restrictive around the time of the early 1990s recession as credit 

supply contracted sharply and commercial property prices fell from very high levels. From the 

mid 1990s to the early 2000s the FCI remained around zero, corresponding with the start in Australia 

of the period now referred to as the ‘Great Moderation’ (Simon 2001). The FCI indicates financial 

conditions became more expansionary from around 2006–07 before tightening significantly during 

the GFC (i.e. 2008–09). 

More recently, financial conditions deteriorated sharply with the onset of the COVID-19 pandemic, 

driven in particular by declines in asset prices, weaker growth in measures of credit and money and 

heightened measures of financial market risk. Notably, however, our estimates suggest that financial 

conditions since March 2020 have not been as restrictive as they were during the GFC, similar to the 

results of Groen, Nattinger and Noble (2020). While this is likely due in part to the significant policy 

responses by central banks, fiscal authorities and financial system supervisors, it also reflects the 

improved resilience of the financial system since the GFC (Kearns 2020). 

In addition to having a reasonably close correlation with major historical events, Granger causality 

tests confirm that the FCI contains predictive information about each of the 5 measures of economic 

activity considered in this paper (GDP, household consumption, business investment, employment 

and the unemployment rate). This suggests that the FCI is not simply capturing information that is 

already directly available from the economic variables themselves. 

Having constructed an FCI with a number of appealing properties, the next step is to incorporate it 

into our GaR framework using the three-stage approach described below. 

2.3 Stage 1: modelling the distribution of economic activity for discrete quantiles 

In the first stage, we employ a variant of quantile regression (QR) to model the conditional 

relationship between future economic activity (the dependent variable, denoted as t hy   where h  is 

the forecast step length) and current economic activity, current financial conditions and a constant 

(the explanatory variables, collectively denoted as tx ). Current financial conditions are measured by 

the FCI. 

In contrast to ordinary least squares (OLS) regressions, which estimate the conditional mean of the 

dependent variable, quantile regressions estimate the entire conditional distribution of the 

dependent variable. That is, the location, scale and shape of the distribution of the dependent 

variable is determined by the explanatory variables and the explanatory variables are able to have 

different effects on different parts of the distribution. However, one problem with using a standard 

QR approach when implementing the GaR framework is that it can generate quantile estimates that 

cross (Carriero, Clack and Marcellino 2020). This is problematic because a quantile function is, by 

definition, monotonic (e.g. the 0.05 quantile always lies below the 0.1 quantile), but this important 

property is violated if quantiles cross (e.g. the model predicted value for the 0.05 quantile lies above 

the prediction for the 0.1 quantile). 

The crossing problem is more likely to be an issue with models that include lags of the dependent 

variable. This is because the set of explanatory variables that are used in estimation is determined 

within the model (Koenker 2005). Additionally, when crossing does occur, it is generally confined to 

the outlying regions of the sample space, which could affect our ability to estimate downside risk. 
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To avoid this potential issue, we use the ‘quantile spacing’ method proposed by Schmidt and 

Zhu (2016) for estimating multiple conditional quantiles. In addition to enforcing the monotonicity 

of the estimated quantiles, the authors show that their model can potentially better capture 

nonlinearities in data as well.9 This makes the quantile spacing technique ideal for modelling GaR. 

It works by first modelling the level of a central quantile and then adding/subtracting a series of 

‘spacing functions’ to produce the other, non-crossing, quantiles. 

More formally, the quantile spacing method can be described as follows. Let  ;q x  be the 

conditional quantile function of t hy   for each quantile  0,1   such that: 

    ; inf : t h tq x y P y y x x          (1) 

Our goal is to estimate a model for p  conditional quantiles associated with the quantiles 1, , p   

and we label the thj  conditional quantile of interest by    ;j t jq x q x . Specifically, we 

parameterise the individual conditional quantiles as: 

    

 

0

* 1

0

0 1* 1

if *

exp if *

exp if *

t

j

j t t t kk j

j

t t kk j

x j j

q x x x j j

x x j j



 

 





 


 


   


   






 (2) 

The process starts by modelling the level of a central quantile, which we set to be the conditional 

median. That is, * 0.5j   for  * 1, ,j p . Then all other quantiles of interest are defined by 

adding/subtracting a series of non-negative spacing functions to this central quantile. This ensures 

that all quantiles will be monotonic by construction.10 

The method we use for estimating the various j coefficients follows the iterative process outlined 

in Schmidt and Zhu (2016). Note the interpretation of an individual j coefficient within each of the 

spacing functions differs from a standard QR model. In this framework they represent a semi-

elasticity. That is, for any j ≠ j*, we have that: 

     1logj j t j t

t

q x q x
x

 


   

 (3) 

                                                      

9 In an empirical application related to forecasting the distribution of stock returns, Schmidt and Zhu (2016) show that 

their method outperforms the standard QR method for most quantiles, especially on the lower tail of the distribution. 

They suggest this could translate into a better estimate for tail measures such as VaR. 

10 A second issue with standard QR discussed in Carriero et al (2020) concerns estimating tail quantiles with small sample 

sizes. The problem relates to quantile estimates that can be seen as unrealistically extreme. The quantile spacing 

method is also susceptible to this issue given the use of the exponential function in Equation (2). To mitigate this 

problem we use a form of winsoring when constructing the quantile estimates. 
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which is the percentage change in the distance between two quantiles caused by a marginal change 

in tx . A positive j  value in a spacing below (above) the central quantile indicates that increasing 

tx  increases downside (upside) risk by flattening the left (right) tail, all else equal. 

We fit the model using quantiles  0.05,0.25,0.50,0.75,0.95   and estimate the distribution of 

economic activity one quarter ahead (i.e. 1h  ) for quarterly growth and 4 quarters ahead 

(i.e. 4h  ) for year-ended growth. Besides the inclusion of the median, these are the same values 

originally specified by Adrian et al (2019).11 The estimation period is 1976:Q4 to 2020:Q2, which is 

the minimum available sample period for our national account measures of economic activity. The 

main output of this process is a set of predicted values for each quantile of the distribution of 

economic activity over time denoted as  ˆ
tQ x . 

2.4 Stage 2: constructing a sequence of PDFs of economic activity 

After fitting the quantile regression using the quantiles specified by  , the next stage is to construct 

a sequence of continuous PDFs. We do this by mapping the fitted values from the quantile 

regressions onto a parametric distribution. This serves to smooth the fitted quantile regression values 

and provides a complete PDF. This, in turn, allows us to quantify GaR as the area in the tails of the 

distribution using integration. We follow Adrian et al (2019) and choose the skewed t distribution 

(ST).12 The version of the ST distribution we use is the one proposed by Hansen (1994).13 It is 

defined by the PDF: 

  

 
  

1

2

22

1

2
; , , ,

1
sign 1

q

q

f x q

x
q q

q x

  


 

  

 
 

 

 
  
 

 
  
   

 (4) 

where     is the Gamma function,   is the location of x  and   is the scale term. The parameter 

  controls the skewness while q  is the degrees of freedom term which controls the ‘heaviness’ of 

the tails (and the probability of outliers). The distribution is symmetric for 0   and positively 

skewed for positive values of   and vice versa.14 

We estimate the four parameters  , , ,t t t tq    which characterise the ST distribution for each time 

period in the sample. We do this by minimising the sum of squared errors between the set of fitted 

                                                      

11 In the quantile spacing setting, Schmidt and Zhu (2016) suggest these particular values will also characterise the 

effect of a one unit change in our explanatory variables on the width of the left tail, left shoulder (i.e. the area between 

the peak of the distribution and the tail), right shoulder and right tail of the distribution. 

12 This distribution is very flexible and nests other well-known distributions, including the Gaussian, Laplace, Student’s t 

or Cauchy. 

13 This ST specification differs to Adrian et al (2019) who use the ST distribution developed by Azzalini and 

Capitanio (2003). We chose the version proposed by Hansen (1994) for computational reasons. 

14 The parameters of the ST distribution have the following restrictions: 0  , 1 1   , and 0q  . If 0   the ST 

becomes the Student’s t  distribution. If q    the ST becomes a skewed Gaussian distribution. If 0    and q    

the ST becomes the Gaussian distribution. 
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quantile functions  ˆ
tQ x  and the theoretical ST distribution quantile function  1 ; , , ,t t t tF q     

based on the 0.05, 0.25, 0.50, 0.75 and 0.95 quantiles as follows: 

       
2

1

, , ,

ˆ ˆˆ ˆ ˆ, , , argmin ; , , ,t t t t t t t t t
q

q Q x F q


  

         (5) 

This can be viewed as an over-identified nonlinear cross-sectional regression of the predicted 

quantiles on the theoretical quantiles of the ST distribution.15 With these 4 sequences of estimated 

parameter values we can construct a sequence of skewed t PDFs for each time period by plugging 

the values obtained for the 4 parameters at each time period into Equation (4). 

2.5 Stage 3: quantifying tail risks to economic activity 

Once we have our estimated sequences of predicted PDFs we can quantify downside and upside 

risks to future economic activity using expected shortfall and its counterpart, expected ‘long rise’. 

These two measures of risk are preferable to VaR since they summarise the tail behaviour of the 

estimated distribution of economic activity in absolute terms. Both measures are calculated for a 

given threshold quantile   and are defined to be the average loss (gain) in economic activity given 

that a loss (gain) has occurred at or below (above) that quantile (i.e. the VaR threshold). That is, 

they provide a numerical answer to the question: if economic activity exceeds the   quantile 

threshold, how bad (good) could economic outcomes be on average? In practice, this is achieved 

by measuring the area under the predicted PDF below (above) the relevant quantile. We can define 

these measures of tail risk more formally as: 

 
 1

t h t h t h

t h t h t h

SF y y

LR y y





  

  

    

    

 (6) 

Our focus will be on downside risk as measured by expected shortfall ( t hSF  ), but we will also 

highlight upside risk using expected long rise ( t hLR  ) to show that economic activity can respond 

asymmetrically to tighter and looser financial conditions. 

3. How Do Financial Conditions Affect Risks to Economic Outcomes? 

We repeat the processes outlined in Section 2 using 5 measures of economic activity: real GDP 

growth, real household consumption growth, real non-mining business investment growth, 

employment growth and the change in the unemployment rate. Specifically, the distributions of 

future growth in each measure of economic activity are estimated using current growth in the 

relevant measure of economic activity, the FCI and a constant as explanatory variables. For each 

measure of economic activity the exercise is undertaken using both quarterly and year-ended 

changes to examine any possible differences in the near-term and longer-term effects of financial 

conditions on downside risk. Future work could examine longer time horizons, creating a ‘term 

structure of growth at risk’ as developed in Adrian et al (2018). Alternatively, we could compile a 

                                                      

15 We employ parameter transformations on ˆt , ˆt  and ˆtq  when solving the minimisation problem to the ensure the 

ST parameter restrictions are enforced. 
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more detailed set of explanatory variables in order to better isolate the channels through which 

financial conditions influence economic risk. 

Our main findings are: 

1. The FCI contains some useful information about different parts of the distribution of each of the 

5 measures of economic activity we consider. This insight would be lost if we were to focus 

solely on the central tendency. 

2. The influence of financial conditions on the different measures of future economic activity tends 

to be asymmetric: the lower part of the distribution is often more variable than the upper part 

and the estimates of downside risk are more variable than the estimates of upside risk. 

3. Financial conditions are estimated to be a better predictor of future downside risk to GDP and 

employment growth (and upside risk to the unemployment rate) than they are of household 

consumption and business investment. 

3.1 Estimated distributions of economic activity 

We begin by looking at the QR model results to see if the coefficient estimates related to the FCI 

have different values for the different quantiles examined. This will provide evidence on whether 

the FCI is more important for explaining some parts of the distribution of economic activity than 

others. Figure 2 plots the coefficient estimates (columns) and 95 per cent confidence intervals 

(dashed lines) for the QR with real GDP and the FCI as the independent variables for 

 0.05,0.25,0.50,0.75,0.95 .  16 The top row shows the coefficient estimates for quarterly growth 

in GDP while the bottom row shows the coefficient estimates for year-ended growth. For space 

reasons we will discuss the results for all 5 measures of economic activity in this section, but choose 

to only present figures for GDP and employment growth. All other figures are presented in 

Appendix B. 

We find that the coefficient point estimates take on different values for the different quantiles 

considered, but the differences are not statistically significant. The coefficient estimate for the FCI 

at the median (0.5 quantile) is negative, indicating that more restrictive financial conditions in the 

current period tend to result in lower median GDP growth in the future for both quarterly and year-

ended horizons. However, the coefficient estimates for the FCI associated with the tails of the 

distribution (i.e. the 0.05 and 0.95 quantiles) are positive. This indicates that tighter current financial 

conditions tend to widen the distribution of future GDP growth in both the left and right tails. This 

widening is more pronounced for the left tail of year-ended GDP growth than it is for quarterly GDP 

growth. Further, most of the coefficients on the lag of GDP growth are estimated to be smaller than 

the coefficients on the FCI, suggesting that current financial conditions are potentially more 

informative than current GDP growth in explaining the quantiles of future GDP growth. 

                                                      

16 The 95 per cent confidence intervals were constructed from bootstrapped standard errors using the stationary 

bootstrap developed in Politis and Romano (1994), assuming an average block length of 8 quarters and 1,000 

replications. Note, we computed the standard errors in this way because the bootstrap methods proposed in Schmidt 

and Zhu (2016) ignore any potential serial correlation that might be present in the data. 
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Figure 2: GDP – Quantile Regression Coefficient Estimates 

Current GDP regressed on lagged GDP and the FCI 

 

Note: Dashed lines represent 95 per cent confidence intervals computed using the stationary bootstrap proposed in Politis and 

Romano (1994) assuming an average block length of 8 quarters and 1,000 replications 

Sources: ABS; Authors’ calculations 

The coefficient estimates for the other more granular measures of economic activity are broadly 

consistent with those for GDP growth. Generally, more restrictive current financial conditions have 

a negative relationship with the median future outcome for all the measures of activity (besides the 

unemployment rate which is, as expected, positive). However, among the other measures of 

economic activity, more restrictive current financial conditions only tend to widen the distribution for 

employment growth and the unemployment rate. In contrast, more restrictive current financial 

conditions tend to narrow the distribution of household consumption growth, and have a mixed 

effect on the upper and lower tails of the distribution of business investment (refer to Appendix B.1 

for more detail). 

The QR coefficient estimates can now be used to compute the fitted values of the QR model. These 

fitted values will in turn be used to generate the sequence of continuous PDFs and estimates of 

downside risks to economic activity. Figures 3 and 4 display the quarterly and year-ended fitted 

quantiles for GDP and employment growth. 
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Figure 3: GDP – Fitted Quantiles 

 

Notes: ‘GDP’ is the growth rate of real gross domestic product; actual quarterly growth rate for 2020:Q2 is –7 per cent 

Sources: ABS; Authors’ calculations 

These figures show the estimated median, together with the estimated 0.25–0.75 and 0.05–0.95 

quantile ranges for the fitted values of GDP and employment growth. The two figures highlight a 

key result: namely, that the outer part of the estimated distributions of both GDP and employment 

growth at both time horizons is more variable than the median. Further, in both cases there is also 

an asymmetric response. The lower parts of the estimated distributions are much more variable than 

the upper parts, especially for the year-ended horizon. This result is also found for the 

unemployment rate and, to a lesser extent, for household consumption and business investment. In 

the recent COVID-19 pandemic, the speed and depth of the contraction in economic activity during 

the March and June quarters of 2020 was far greater than that predicted by the quarterly versions 

of the QR model, highlighting the extreme, sudden and exogenous nature of the event. However, 

the year-ended estimates tended to fare much better (as the effect of June quarter 2020 is effectively 

‘smoothed’), with the exception of household consumption (refer to Appendix B.2 for more detail). 
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Figure 4: Employment – Fitted Quantiles 

 

Notes: ‘Employment’ is the growth rate of total employment; actual quarterly growth rate for 2020:Q2 is –5 per cent 

Sources: ABS; Authors’ calculations 

These findings underscore the benefit of modelling the entire distribution in circumstances when tail 

risk is of primary concern. Indeed, this result is even more evident when viewing the estimated 

sequences of PDFs produced from the fitted QR models for quarterly GDP growth over time 

(Figure 5). 
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Figure 5: GDP – Sequence of PDFs 

Quarterly growth 

 

Sources: ABS; Authors’ calculations 

The figure highlights that the location, scale and shape of the distribution for quarterly GDP growth 

all change over the sample period. The biggest changes occur around times of major downturns 

such as the 1982 recession, the 1989–91 recession, the GFC in 2008 and more recently the 

COVID-19 pandemic. 

3.2 Downside and upside risks to economic activity 

We now present the estimates of downside and upside risk to economic activity over both time 

horizons. These estimates are calculated as the area in the tails of the previously computed 

sequences of PDFs. In computing these measures of risk we employ a threshold quantile of 0.05   

for both horizons. The results for GDP growth and employment growth are displayed in Figures 6 

and 7. 
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Figure 6: GDP – Downside and Upside Risk 

 

Notes: ‘GDP’ is the growth rate of real gross domestic product; actual quarterly growth rate for 2020:Q2 is –7 per cent;   is set 

equal to 5 per cent; thicker darker-coloured line is estimated with the FCI; thinner lighter-coloured line is estimated without 

the FCI 

Sources: ABS; Authors’ calculations 
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Figure 7: Employment – Downside and Upside Risk 

 

Notes: ‘Employment’ is the growth rate of total employment;   is set equal to 5 per cent; thicker darker-coloured line is estimated 

with the FCI; thinner lighter-coloured line is estimated without the FCI 

Sources: ABS; Authors’ calculations 

The ‘Downside risk’ lines show our estimate of what realised growth in either GDP or employment 

would have been if it was in the bottom 5 per cent of the fitted distributions at each point in time.17 

Similarly, the ‘Upside risk’ lines show our estimate of what growth in GDP or employment would 

have been if it was in the top 5 per cent of the fitted distributions at each point in time. The ‘Actual’ 

line represents the observed values for GDP growth and employment growth. For both downside 

and upside risk, the thicker darker-coloured lines signify the estimates obtained when both economic 

activity and financial conditions are included as explanatory variables in the QR model. In contrast, 

the thinner lighter-coloured lines signify the equivalent estimates when the FCI is excluded from the 

QR model and only current economic activity is used in estimation. As such, the difference between 

                                                      

17 More specifically, it is the average of all estimated outcomes below the 0.05 quantile of the fitted distribution. 
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the thicker and thinner lines in each figure demonstrates the contribution that financial conditions 

make to the estimate of tail risk for that measure of economic activity. 

The results show that estimates of downside and upside risk for GDP growth are much more variable 

when financial conditions are accounted for; especially around 1991–92 and 2008–09. This was also 

the case in the first half of 2020, with the model’s estimates of downside risk to GDP growth 

performing relatively better in capturing the actual decline in GDP growth (at both horizons) than 

the estimates that exclude financial conditions as an explanatory variable. This suggests that the 

FCI contains useful information about downside risks to GDP growth, over and above measures of 

current GDP growth. For employment growth, however, the results indicate the FCI is more useful 

for explaining downside risks at a year-ended horizon than at a quarterly horizon. 

The FCI also makes meaningful contributions to the estimates of upside risk to the unemployment 

rate (i.e. the risk of a large increase in unemployment), predominately at a year-ended time horizon. 

Downside risk is estimated to be more variable than upside risk for GDP and employment, while 

upside risk to the unemployment rate is estimated to be more variable than downside risk. In 

contrast, the aggregate FCI seems to make relatively little difference to the estimates of downside 

risk for household consumption and business investment, with the results for business investment 

also puzzling in that they display more variation in upside risk than they do in downside risk (refer 

to Appendix B.3 for detailed results for these activity measures). It is possible that more 

disaggregated measures of financial conditions could yield different results. 

Overall, the results indicate that the ability of financial conditions to explain changes in downside 

risk to different measures of economic activity in Australia is mixed. For some series, financial 

conditions seem to provide useful additional information (i.e. GDP, employment and the 

unemployment rate) while for other series, financial conditions seem less informative (i.e. household 

consumption and business investment). It is possible that a model with more structure would allow 

us to more clearly identify the link between financial conditions and macroeconomic risk – including 

for variables like household consumption and business investment – however, this is beyond the 

scope of the GaR framework presented in this paper. Moreover, it is also important to note that 

because financial crises in Australia have been rare (in the period covered by our dataset there have 

only been two significant financial crises) the FCI’s ability to contribute additional information about 

tail risk is likely to be limited to these two time periods. 

4. Conclusion 

We make 3 important contributions. First, we develop a financial conditions index for Australia. This 

measure incorporates a broad range of individual indicators over a relatively long time period. Our 

measure correlates closely with previous financial boom and bust cycles in Australia, and also 

appears to have some ability to predict some measures of economic activity. In light of this, we 

suggest the FCI is a useful complement to existing qualitative and disaggregated approaches to 

monitoring financial conditions and financial stability risks in Australia. 

Second, we use this FCI to develop a growth-at-risk framework for Australia. This adds to a rapidly 

growing body of literature which has developed similar models for a range of other countries. The 

GaR approach allows us to quantify the effect of current financial conditions on expected future 

downside risks to economic activity. We find that downside risk to economic activity from changes 
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in financial conditions tends to be more volatile than upside risk. This insight would be missed if we 

only considered the central tendency and not the full distribution of economic outcomes as they 

relate to financial conditions. As such, the approach provides a potential way of quantifying the 

economic costs of financial instability risks. 

Third, in contrast to other papers which have focused solely on quantifying downside risk to GDP 

growth, we examine the relationship between financial conditions and a broader range of 

macroeconomic variables. In particular, we expand the GaR framework to also examine household 

consumption, business investment and labour market variables (both employment growth and the 

unemployment rate). All of these variables have potentially important links to financial stability in 

their own right. We find that our FCI provides information about downside risks to GDP and 

employment growth and upside risks to changes in the unemployment rate. However, the FCI is 

much less useful for explaining downside risks to growth in household consumption and business 

investment. 

Finally, we note that there are some limitations of the GaR approach. First, while the GaR framework 

is a flexible and parsimonious approach, it is also a reduced-form model and most appropriate for 

comparative statics analysis. To get a better understanding of the links between financial conditions 

and economic activity would require a more structured modelling approach. Second, there is some 

uncertainty with some of our estimation results. As such, the GaR approach is best thought of as a 

useful complement to other existing approaches to monitoring the potential economic costs of 

financial instability, rather than a tool to be relied on in isolation. 
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Appendix A: Estimating a Financial Conditions Index for Australia 

A.1 The financial conditions index dataset 

The specific series used to estimate the FCI were chosen to cover a broad range of indicators of 

financial conditions. The rationale is that financial instability can manifest itself, and impact on the 

real economy, in a wide variety of ways. This means it is not only important to include variables that 

have historically shown themselves to be relevant (e.g. housing and commercial property prices) but 

also to include variables that are emerging as potential sources of future risk (e.g. indicators of 

financial system complexity). The set of variables used in this paper have considerable, though not 

complete, overlap with those that have been identified as important in other research (e.g. Aikman 

et al 2018; Prasad et al 2019). 

Our main selection criterion was that the series needed to be available at least since the mid 1990s 

so as to capture as much time variation as possible, particularly given that historical episodes of 

financial instability in Australia have so far been few and far between.18 One downside of this 

approach is that it excludes some measures that are likely to be very relevant today – and going 

forward – because they do not have sufficiently long histories. Relatedly, the approach is vulnerable 

to the criticism that it can over-weight measures that happen to be available for longer periods of 

time. 

The resulting set of variables we use can be grouped into the following categories: asset prices 

(18 series); interest rates and spreads (17); credit and money (14); debt securities outstanding (11); 

indicators of leverage (5); indicators of banking sector risk (4); indicators of financial system 

‘complexity’ (2); indicators of financial market risk (2); and surveys’ indicators of businesses’ and 

consumers’ views on financial conditions (2). Our dataset spans the sample period 1976:Q3 to 

2020:Q3, however, many financial variables we use only have a relatively short history which means 

our dataset is unbalanced. It starts with 37 series, increases to 54 series by 1987 and to the full 

dataset of 75 series by mid 1994 but, due to data availability, there are only 42 series for September 

quarter 2020 (Figure A1). 

                                                      

18 This decision also has a practical purpose. We initialise our DFM using parameter estimates derived from principal 

components analysis which requires a balanced dataset. Hence, a dataset with lots of very short series could result in 

less precise starting values which will affect the estimation of the FCI. 
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Figure A1: Pattern of Data Availability by Category 

 

Sources: ABS; ACCI–Westpac; APRA; ASX; Austraclear Limited; Australian Office of Financial Management; Authors’ calculations; 

Bloomberg; CoreLogic; Federal Reserve Bank of St. Louis; MSCI; Private Placement Monitor; RBA; Refinitiv; State borrowing 

authorities; Westpac and Melbourne Institute 

Before estimating the FCI we transform all variables in our dataset to be stationary and standardise 

them to have zero mean and unit variance.19 Because all of our variables are nominal, we control 

for potential structural breaks in the mean of each series in our dataset following the introduction 

of inflation targeting by the RBA in 1993 by ‘dynamically demeaning’ each series using a rolling 

10-year backward-looking estimate of the sample mean (rather than using the full sample mean). 

Using a rolling estimate of the sample mean allows us to be agnostic about the precise date the 

break occurred and is preferable to estimating a specific break date for each series in the dataset, 

which could be subject to large estimation uncertainty.20 The choice of a 10-year window follows 

Kamber, Morley and Wong (2018), but is not specifically related to the length of business or financial 

cycles in our case. Note, dynamically demeaning all series even if no series has a structural break in 

the mean should not cause any estimation problems. If there is no structural break in a particular 

series then the rolling window estimated sample mean for that series should be equal to its full 

sample mean. 

Some previous papers have ‘purged’ the financial data of correlations with measures of economic 

activity before estimating the FCI by using the residuals from regressions of the financial variables 

on a set of variables related to ‘macroeconomic conditions’ (e.g. Hatzius et al 2010). However, we 

follow Kapetanios et al (2017) who argue that purging the data with a prior regression may reduce 

its usefulness as a summary measure. For example, if the only common shock in the economy at a 

given point in time was financial in nature, then this type of analysis would amount to purging the 

financial series of precisely the information we are aiming to summarise. Table A1 provides a 

                                                      

19 Variables are made stationary by taking logs and/or differences as appropriate. 

20 This will also be useful to correct for any structural drift in the mean of any series as well. 
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complete list of all series we use to estimate the FCI and specifies the source, the start and end 

dates as well as the specific transformation we apply to each series. 

Table A1: Financial Conditions Dataset 

1976:Q4–2020:Q3 
(continued next page) 

No Variable Source Economy Start date End date Transformation 

code 

Survey measures 

1 Business: difficulty getting finance ACCI-WBC Aus 1966:Q2 2020:Q3 FD 

2 Consumer: family finances now WBC-MI Aus 1974:Q4 2020:Q3 LV 

Interest rates and spreads 

3 Overnight cash rate (OCR) RBA Aus 1976:Q3 2020:Q3 FD 

4 3-month bank bill rate ASX; RBA Aus 1976:Q3 2020:Q3 FD 

5 3-year Australian Government security 

(AGS) yield 

RBA Aus 1992:Q3 2020:Q3 FD 

6 5-year AGS yield RBA Aus 1976:Q3 2020:Q3 FD 

7 10-year AGS yield RBA Aus 1969:Q3 2020:Q3 FD 

8 Spread: 3-month bank bill to OCR ASX; RBA Aus 1972:Q1 2020:Q3 LV 

9 Spread: 3-year AGS to OCR RBA Aus 1992:Q3 2020:Q3 LV 

10 Spread: 5-year AGS to OCR RBA Aus 1969:Q3 2020:Q3 LV 

11 Spread: 10-year AGS to OCR RBA Aus 1976:Q3 2020:Q3 LV 

12 Federal funds rate (FFR) FRED US 1959:Q3 2020:Q3 FD 

13 3-month Treasury bill (Tbill) yield FRED US 1959:Q3 2020:Q3 FD 

14 3-year Treasury bond (TB) yield FRED US 1959:Q3 2020:Q3 FD 

15 10-year TB yield FRED US 1959:Q3 2020:Q3 FD 

16 Spread: 3-month Tbill to FFR FRED US 1959:Q3 2020:Q3 LV 

17 Spread: 3-year TB to FFR FRED US 1959:Q3 2020:Q3 LV 

18 Spread: 10-year TB to FFR FRED US 1959:Q3 2020:Q3 LV 

19 Spread: 10-year AGS to 10-year USTB RBA; FRED Aus/US 1969:Q3 2020:Q3 LV 

Credit and money 

20 Total credit RBA Aus 1976:Q3 2020:Q3 LD 

21 Housing credit RBA Aus 1976:Q3 2020:Q3 LD 

22 Personal credit RBA Aus 1976:Q3 2020:Q3 LD 

23 Business credit RBA Aus 1976:Q3 2020:Q3 LD 

24 Owner-occupier housing loan 

approvals (excl refinancing) 

ABS Aus 1985:Q1 2020:Q2 LD 

25 Investor housing loan approvals (excl 

refinancing) 

ABS Aus 1985:Q1 2020:Q2 LD 

26 Commercial fixed term loan approvals 

(excl refinancing) 

ABS Aus 1985:Q1 2020:Q2 LD 

27 Commercial revolving credit approvals 

(excl refinancing) 

ABS Aus 1985:Q1 2020:Q2 LD 
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Table A1: Financial Conditions Dataset 

1976:Q4–2020:Q3 
(continued next page) 

No Variable Source Economy Start date End date Transformation 

code 

28 Personal fixed term loan approvals 

(excl refinancing) 

ABS Aus 1985:Q1 2020:Q2 LD 

29 Personal revolving credit approvals 

(excl refinancing) 

ABS Aus 1985:Q1 2020:Q2 LD 

30 M1 RBA Aus 1975:Q1 2020:Q3 LD 

31 M3 RBA Aus 1976:Q3 2020:Q3 LD 

32 Broad money RBA Aus 1976:Q3 2020:Q3 LD 

33 Money base RBA Aus 1975:Q1 2020:Q3 LD 

Asset prices 

34 Dwelling price index CoreLogic Aus 1980:Q1 2020:Q3 LD 

35 House price index CoreLogic Aus 1980:Q1 2020:Q3 LD 

36 Apartment price index CoreLogic Aus 1980:Q1 2020:Q3 LD 

37 Dwelling price index FRED US 1987:Q1 2020:Q2 LD 

38 All commercial property return index MSCI Aus 1984:Q4 2020:Q2 LD 

39 Retail property return index MSCI Aus 1984:Q4 2020:Q2 LD 

40 Office property return index MSCI Aus 1984:Q4 2020:Q2 LD 

41 Industrial property return index MSCI Aus 1984:Q4 2020:Q2 LD 

42 ASX 200 Index Refinitiv Aus 1973:Q1 2020:Q3 LD 

43 ASX 200 Financials Index Refinitiv Aus 1973:Q1 2020:Q3 LD 

44 ASX 200 Real Estate Index Refinitiv Aus 1973:Q1 2020:Q3 LD 

45 ASX 200 Resources Index Refinitiv Aus 1973:Q1 2020:Q3 LD 

46 ASX 200 Industrials Index Refinitiv Aus 1973:Q1 2020:Q3 LD 

47 S&P 500 Index FRED US 1960:Q1 2020:Q3 LD 

48 RBA Index of Commodity Prices (AUD) RBA Aus 1959:Q3 2020:Q3 LD 

49 Gold (3pm London bullion market, 

USD) 

FRED US 1968:Q2 2020:Q3 LD 

50 Crude oil (West Texas intermediate, 

USD) 

FRED US 1968:Q2 2020:Q3 LD 

51 Australian dollar trade-weighted index RBA Aus 1970:Q3 2020:Q3 LD 

Debt securities outstanding 

52 Short-term: Australia: banks APRA; 

Austraclear 

Limited; RBA 

Aus 1992:Q4 2020:Q2 LD 

53 Short-term: Australia: non-financial 

corporations 

Austraclear 

Limited; RBA 

Aus 1992:Q4 2020:Q2 LD 

54 Long-term: banks Bloomberg; 

RBA 

Aus 1992:Q4 2020:Q2 LD 

55 Long-term: Australia: non-financial 

corporations 

Bloomberg; 

RBA 

Aus 1992:Q4 2020:Q2 LD 
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Table A1: Financial Conditions Dataset 

1976:Q4–2020:Q3 
(continued next page) 

No Variable Source Economy Start date End date Transformation 

code 

56 Short-term: Australia: government AOFM; 

Austraclear 

Limited; RBA 

Aus 1992:Q4 2020:Q2 LD 

57 Long-term: Australia: government AOFM; RBA; 

State 

borrowing 

authorities 

Aus 1992:Q4 2020:Q2 LD 

58 Long-term: overseas: non-government ABS; 

Bloomberg; 

Private 

Placement 

Monitor; RBA 

Aus 1992:Q4 2020:Q2 LD 

59 Short-term: Australia: asset-backed 

securities 

ABS; 

Bloomberg; 

RBA 

Aus 1992:Q4 2020:Q2 LD 

60 Long-term: Australia: asset-backed 

securities 

ABS; 

Bloomberg; 

RBA 

Aus 1992:Q4 2020:Q2 LD 

61 Long-term: overseas: asset-backed 

securities 

ABS; 

Bloomberg; 

RBA 

Aus 1992:Q4 2020:Q2 LD 

62 Residential mortgage-backed securities ABS; 

Bloomberg; 

RBA 

Aus 1992:Q4 2020:Q2 LD 

Banking sector 

63 Tier 1 capital ratio APRA; RBA Aus 1989:Q2 2020:Q2 FD 

64 Non-performing assets ratio APRA; RBA Aus 1990:Q2 2020:Q2 FD 

65 Distance to default RBA Aus 1983:Q1 2020:Q2 LV 

66 Wholesale debt spread to AGS Bloomberg; 

RBA 

Aus 1994:Q2 2020:Q2 FD 

Financial system complexity (ratio) 

67 Total financial institutions’ assets to 

nominal GDP 

ABS; RBA Aus 1990:Q1 2020:Q2 LD 

68 Total off-balance sheet business to 

total fixed income assets 

ABS; RBA Aus 1990:Q1 2020:Q2 LD 

Leverage measures (ratio) 

69 Household debt to assets ABS; RBA Aus 1988:Q3 2020:Q2 LD 

70 Household debt to income ABS; RBA Aus 1988:Q2 2020:Q2 LD 

71 Household interest payments to 

income 

RBA Aus 1977:Q1 2020:Q2 LD 

72 Current account balance to nominal 

GDP 

ABS Aus 1959:Q3 2020:Q2 FD 

73 Net total foreign liabilities to nominal 

GDP 

ABS Aus 1988:Q3 2020:Q2 FD 
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Table A1: Financial Conditions Dataset 

1976:Q4–2020:Q3 
(continued) 

No Variable Source Economy Start date End date Transformation 

code 

Risk indicators 

74 Chicago Board Options Exchange 

equity volatility 

FRED US 1986:Q4 2020:Q3 LV 

75 Moody’s corporate bond yield spread: 

BAA to AAA 

FRED US 1959:Q3 2020:Q3 LV 

Notes: ‘ABS’ is Australian Bureau of Statistics, ‘ACCI-WBC’ is Australian Chamber of Commerce and Industry–Westpac, ‘AOFM’ is the 

Australian Office of Financial Management, ‘FRED’ is Federal Reserve Economic Database, Federal Reserve Bank of St. Louis, 

‘WBC-MI’ is Westpac and Melbourne Institute; ‘Transformation code’ indicates the method used to transform the data to be 

stationary if necessary, ‘FD’ indicates first difference, ‘LD’ indicates log difference and ‘LV’ indicates level 

 

A.2 Constructing the financial conditions index 

The general form of the DFM we use to estimate the FCI follows Bai and Wang (2015) and is defined 

as: 
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where ty  is 1N   vector of observables, tf  is a 1q  vector of the dynamic factors, and j  is the 

dynamic factor loadings for t jf   with 0,1, ,j s  and t = 1,…,T. The dynamic factors follow a 

VAR(p) process with j  a q q  matrix of autoregressive coefficients (with all roots outside the unit 

circle). The number of dynamic factors is q  (the dimension of tf ) which is irrespective of s  and .p  

The covariance matrix of t  in the measurement equation is given by R  with dimension N N  and 

is restricted to be a diagonal matrix. In the state equation, the covariance matrix of t  corresponds 

to the q q  matrix Q . We assume that   0t t    (i.e. the 2 noise processes are independent). 

This specification of the DFM has 2 different sources of dynamics. First, there are s  lagged factors 

representing a dynamic relationship between the observable series ty  and the factors tf . Second, 

the dynamics of the factors is assumed to be captured by a VAR(p) process. Bai and Wang (2015) 

argue that it is the first source of dynamics that makes this specification a true dynamic factor model 

because it is these dynamics that make the biggest distinction between dynamic and static factor 

analysis.21 The state-space representation of the DFM specified by Equation (A2) is: 

 
1

t t t

t t t

y F

F F G





  

 
 (A2) 

The measurement equation takes the form of a static factor model (Stock and Watson 2002) with 

 1r q s   static factors. Now, define  max , 1k p s   and set 1p k     if 1k s p   . 

                                                      

21 Bai and Wang regard the specification to be a static factor model when there are no lags in the measurement equation 

(i.e. 0s  ). 
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Let  1, ,t t t kF f f  
  , then the N qk  factor loadings matrix  , the qk qk  matrix of VAR 

coefficients   and the qk q  selector matrix G  have the following form: 

  

1 2 1

0 1

0 0 0 0

, , , , ,

0 0 0 0 0

0 0 0 0
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q q q q q
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q q q q q
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      
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   
          
   
   
   
   

 (A3) 

when k p s  , let  * , ,t t t sF f f    be a subvector of tF . Then the factor loadings matrix   and 

the VAR coefficient matrix   become: 
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 (A4) 

Note, the selector matrix G  does not change in this alternative setting. The benefit of this modelling 

strategy over others, such as traditional static factor models based on principal components analysis 

(PCA), is that it explicitly incorporates dynamics into the estimation and can easily and efficiently 

handle unbalanced datasets such as the one we use. 

When implementing the DFM we assume one common factor (i.e. 1q  ) is adequate to capture the 

common variation we are most interested in from our dataset. This decision was made because we 

want a single index to represent ‘financial conditions’. Multiple factors would require us to combine 

them into a single index and it is unclear what the optimal way to do this is. Moreover, the modified 

Bai and Ng (2002) information criterion proposed by Coroneo, Giannone and Modugno (2016) 

suggests one factor is sufficient.22 

The dynamics of the factor are assumed to follow an AR(1) process (i.e. 1p  ). This was determined 

by the Schwarz information criterion (SIC), together with plots of the sample autocorrelation function 

(ACF) and sample partial ACF for the common factor based on an initial estimate of the common 

factor obtained by PCA. 

  

                                                      

22 Note, this information criterion is only designed to be used to determine the number of static factors in a dataset and 

not the number of dynamic factors in a dataset. Our dynamic factor model with one factor and one lag can be rewritten 

as a static factor model with 2 factors. As a robustness check we test whether the inclusion of the lag (i.e. the second 

static factor) is supported by the data and we find that it is. These results are in Appendix A.4. 
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We choose to include one lag of the factor in the measurement equation (i.e. s = 1) because some 

of the series in our dataset are market determined. These series will tend to be less persistent (and 

potentially more volatile) than the other series in our dataset which are not market determined. A 

DFM with dynamic loadings will be able to accommodate this explicitly. 

Following Doz, Giannone and Reichlin (2011, 2012) we estimate the DFM by quasi-maximum 

likelihood.23 Estimation consists of 2 parts. First, the parameters of the state-space representation 

of the DFM are obtained by applying PCA to a balanced subset of the dataset which contains all 

75 series. Second, the Kalman filter is applied on the original unbalanced dataset in order to obtain 

estimates of the factors using only the information available at each point in time. 

For the observations  1, , TY y y , factors  1, , TF F F  and parameter vector 

 , , ,R Q     the complete data log likelihood is given by: 

 

     

   

     
 

 

1

1

1
1 12

1

1 0 0 1 0 0

1
; ; log

2 2

1 1
log

2 2

1 1
log log 2

2 2 2

T

t t t tt

T

t t t tt

T
Y F y f R y f R

T
F F GQ G F F Q

T p r
F F G G P G G F F G P G










 



      
 

      
 
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  (A5) 

We estimate the parameter vector   using the expectation-maximisation (EM) algorithm and the 

Kalman filter and Rauch-Tung-Striebel (RTS) smoother recursions (for more details, see Anderson 

and Moore (1979)). To do this, we set the initial values in the state-space equations using the first 

r  principal components-based estimates of the factors and OLS estimates of the parameters  , 
 , R  and Q  treating the principal components factors as the true common factors. From these 

starting values we then alternate between 2 steps. First, we estimate the expected value of the 

common factors given the data and previously estimated model parameters (the ‘E-step’). This 

involves running the Kalman filter and RTS smoother recursions and getting a new estimate of the 

common factors denoted by ˆ;tF Y  
 

, where ̂  is the vector of estimated model parameters from 

the previous step. Then using these updated estimates of the common factors we compute new 

parameter estimates by maximising the expected log likelihood with respect to   (the ‘M-step’). 

To account for missing observations in ty  we define the known matrix tW  which is a diagonal matrix 

of size N  with the thi  diagonal element equal to zero if ,i ty  is missing and equal to one otherwise. 

The matrix tW  acts a selector matrix and ensures only the available data are used in the Kalman 

filter and RTS smoother recursions. The updating equations for the parameters  ,  , R  and Q  

are as follows: 

  

                                                      

23 Estimation is ‘quasi’ maximum likelihood because the model is misspecified. This comes from assuming that R  the 

covariance matrix of the idiosyncratic component is diagonal. Additionally, we also assume that both noise processes 

are Gaussian. However, in large samples, this has been shown to be no issue (see Doz et al (2012), Bai and Li (2016) 

and Barigozzi and Luciani (2019)). 



26 

  

To compute the next   we use: 

       
1

1 1
ˆ ˆvec ; vec ;

T T

t t t t t tnew t t
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

 
      
      (A6) 

To compute the next   we use: 

     
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To compute the next R  we use: 
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 (A8) 

To compute the next Q  we use: 

     11 1
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The initial state 0F  and initial state variance 0P  are given by: 
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See Ghahramani and Hinton (1996) and Bańbura and Modugno (2014) for more details on these 

calculations. We judge convergence to be when mc  is less than 10–4, with mc  given by: 
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 (A11) 

and 1, ,m M  is the number of evaluations needed to achieve convergence up to a maximum M  

set by the researcher. We set 500M   but we only needed 8 evaluations in our case. 

A convenient feature of this specification is that the computational complexity of the Kalman filter 

and RTS smoother recursions depends only on the size of the state. In our case this corresponds to 

r  and is independent of the size of the cross-section N . Note, while the EM algorithm will converge 

to a maximum, it is not guaranteed to find the global maximum and can converge to a local 

maximum. We can reduce the probability of this occurring by starting the algorithm with the PC-

based estimates which are consistent for large cross-sections (see Stock and Watson (2002) and Bai 

and Ng (2002)). 
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A common issue with estimating factor models is the lack of identification. In our case this means 

the likelihood of our model is invariant to any invertible linear transformation of the factors. That is, 

for any invertible matrix H  the parameters  , , ,R Q     and  1 1, , ,H H H H R HQH       

are observationally equivalent and hence   is not identifiable from the data. In order to achieve 

identifiability of  , we need to impose an identifying restriction. We implement the restriction ‘DFM2’ 

suggested by Bai and Wang (2015).24 This identifying restriction specifies the first q q  block of 0  

in   to be an identity matrix: 

 0 *
0

q 
   

 
 (A12) 

where *
0  is an  N q q   unrestricted block of 0 . This parameterisation of 0  is also called the 

‘named factor’ normalisation because it associates each factor with a specific variable (Stock and 

Watson 2016). 

When implementing this identifying restriction it is important to order the variables in Y  so that the 

first q  variables are the naming variables. In practice, the naming variables need to be reasonably 

different from each other and sufficiently representative of groups of other variables so that the 

innovations to their common components span the same space as the factor innovations. In our 

work we choose to put the series ‘survey: difficulty getting finance for business’ as the first series. 

Increases in this series reflect greater difficulty for businesses getting access to finance while 

decreases in this series reflect less difficulty for businesses in getting access to finance. A benefit of 

this normalisation is that it also identifies the sign of the estimated common factor. It is common for 

more restrictive financial conditions to be reflected by increases in the FCI and for more expansionary 

financial conditions to be reflected by decreases in the FCI (see Brave and Butters (2010)). Hence, 

being able to impose this sign convention with our FCI is beneficial. The named factor normalisation 

means the interpretation of the factor loadings on the other variables changes. They become 

measures of the correlation of each series with the factor relative to the named factor series. 

To impose this identifying linear restriction in estimation we need to modify the M-step used to 

estimate   to incorporate the linear restriction specified by: 

  vecM h    (A13) 

where M  is a selector matrix with dimension  2q N r   with 0  or 1 elements specifying the 

coefficients that will be restricted. The vector h  is of dimension 2 1q   also with 0  or 1 elements 

and are the values that the coefficients will be restricted to be. The updating equation incorporating 

the identifying restriction for   becomes: 
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 (A14) 

                                                      

24 The identifying restriction ‘DFM2’ is similar to the identifying restrictions ‘PC3’ suggested by Bai and Ng (2013) and 

‘IC1’ suggested by Bai and Li (2016). 
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where r  is the estimated factor loadings with the identifying restriction and u  is the unrestricted 

estimated factor loadings given previously by Equation (A6), see Wu, Pai and Hosking (1996) and 

Bańbura and Modugno (2014) for more information. 

A.3 Which series are most important for financial conditions? 

The sign and magnitude of the combined values of the 2 factor loadings for each series indicate the 

relative strength and direction of that series’ relationship with the estimated FCI. Figure A2 highlights 

the 10 most important series by positive and negative combined weights. Series with a negative 

(positive) combined weight tend to move in the opposite (same) direction to the FCI, falling (rising) 

when the FCI indicates financial conditions are restrictive and rising (falling) when the FCI indicates 

financial conditions are expansionary. 

The series which are most strongly related to the contemporaneous value of the FCI tend to have 

negative weights. These same series also tend to be negatively related to the one-period lag of the 

FCI as well. These include property prices, growth in credit aggregates and one survey measure 

related to consumer expectations of their finances. Of these, commercial property has the highest 

combined weighting and as a result has the strongest relationship with the FCI. This is unsurprising 

given the highly procyclical nature of commercial property returns during the only 2 episodes of 

significant financial instability in our sample. Coupled with the fact that the commercial property 

sector has historically been a relatively important source of risk to banks’ balance sheets (Ellis and 

Naughtin 2010), these results underscore the importance of monitoring developments in this sector 

on an ongoing basis. 

In contrast, only one-quarter of the dataset are positively related to the FCI, with the magnitude of 

the combined weights typically much smaller than those series with negative signs. The strongest 

positive correlations belong mostly to interest rate spreads. Note, we have not included the series 

‘survey: difficulty getting finance for business’ since the first factor loading is restricted to be unity 

by design (see Appendix A.2). 
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Figure A2: FCI Main Contributing Series 

Top 10 positive and negative weights combined 

 

Note: Weights are the estimated factor loadings for each series excluding the named factor series ‘survey: difficulty getting finance 

for business’ 

Sources: ACCI–Westpac; APRA; Austraclear Limited; Australian Office of Financial Management; Authors’ calculations; CoreLogic; 

Federal Reserve Bank of St. Louis; MSCI; RBA; State borrowing authorities; Westpac and Melbourne Institute 

A.4 Robustness checks for the FCI 

We undertake 2 checks of our preferred estimated FCI to confirm its soundness as a measure of 

financial conditions. The first is a comparison of the DFM methodology against an alternative method 

for estimating the FCI. The second is a comparison of our preferred estimated FCI (estimated using 

the DFM approach) and the named factor series ‘survey: difficulty getting finance for business’. The 

named factor series is the one we choose to restrict the factor loading to be unity in estimation for 

identification purposes. Both comparisons are shown in Figure A3. 
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Figure A3: FCI Comparisons 

 

Notes: The ‘Static factor model’ estimates were renormalised to match the profile of the dynamic factor model FCI; the ‘named factor’ 

series has been standardised to have zero mean and unit variance 

The top panel compares our preferred estimated FCI with another FCI produced using a static factor 

model (SFM). The DFM technique is preferable to the SFM technique since it allows the FCI to be 

estimated over a longer time period (SFMs are estimated by PCA and require balanced datasets). 

Further, since the DFM explicitly incorporates dynamics, it produces an indicator that appears 

smoother than the indicator based on the SFM estimate. 

The bottom panel shows the estimated FCI and the named factor series ‘survey: difficulty getting 

finance for business’. Both series display a reasonably similar ‘low frequency’ pattern, but the 

movements between the two series are not exactly the same. This shows that the named factor 

series is not significantly influencing the profile of the estimated FCI besides helping to identify its 

scale, as intended. 

A further robustness check of the DFM methodology is to formally test whether the dataset as a 

whole supports the inclusion of a lag of the factor in the measurement equation. We test this using 

a likelihood ratio ( LR ) test.25 This is easy to do since we get the log likelihood as a by-product of 

the Kalman filter. To compute the LR  statistic we estimate the DFM twice. Once with the lag 

included to get the value of the unrestricted log likelihood u  and again with the lag excluded to 

get the value of the restricted log likelihood r . The LR  test statistic is then computed as: 

    
22 ~r u kLR     (A15) 

where k  is the number of restrictions to be tested. Under the null hypothesis the test is distributed 

as chi-squared with k  degrees of freedom. The test result is shown in Table A2. The test statistic is 

very large at 1,091 and with 75k   parameter restrictions the associated p-value is effectively zero. 
                                                      

25 Our decision to use the LR  test relies on Bai and Wang (2015)’s suggestion that a Wald test for parameter restrictions 

in the DFM is feasible and a Wald test is asymptotically equivalent to a LR  test (see Buse (1982)). 
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This suggests there is little evidence against the DFM methodology we have used to construct the 

FCI. 

Table A2: Does the Data Support Factor Dynamics? 

Likelihood ratio test 

Number of parameter restrictions ( k ) 75 

Unrestricted log likelihood ( u ) –16,145.5 

Restricted log likelihood ( r ) –16,691.2 

Test statistic 1,091.4 

p-value 0.0 

Note: Test statistic is computed as  2 r u   which is distributed as chi-squared with k  degrees of freedom under the null 

 

A.5 Assessing the relationship between financial conditions and economic outcomes 

We start by assessing the FCI’s ability to predict 5 separate summary measures of economic activity: 

real GDP, real household final consumption expenditure, the unemployment rate, employment and 

real non-mining business investment. We examine both quarterly and year-ended changes in these 

variables over the period 1976:Q4 to 2020:Q2.26 

Figure A4 plots the FCI against the 5 measures of economic activity for quarterly and year-ended 

time horizons. Each series has been standardised to have zero mean and unit variance. Most series 

exhibit reasonable contemporaneous relationships with the FCI, although the strength varies. Four 

of the measures of economic activity are negatively related to financial conditions (more restrictive 

financial conditions correspond to weaker growth), while change in unemployment rate has a 

positive relationship (more restrictive financial conditions are associated with an increase in the 

unemployment rate). 

Estimates of the sample cross-correlation between the measures of activity and the FCI for both 

time horizons are provided in Table A3. 

                                                      

26 The original frequency of the unemployment rate and the employment series is monthly. We convert both series to a 

quarterly frequency by taking the quarter-ended monthly value. 
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Figure A4: Economic Activity and Financial Conditions 

 

Notes: All economic activity series are standardised to have zero mean and unit variance; ‘GDP’ is the growth rate of real gross 

domestic product; ‘HFCE’ is the growth rate of real household final consumption expenditure; ‘UR’ is the change in the total 

unemployment rate; ‘EMP’ is the growth rate of total employment; ‘NMBI’ is the growth rate of real business investment 

excluding mining investment 

Sources: ABS; Authors’ calculations; RBA 

The contemporaneous sample correlations between the measures of economic activity and the FCI 

are strongest for the 2 labour market variables and weakest for consumption. Across variables, 

correlations tend to be stronger for year-ended, rather than quarterly, changes reflecting the fact 

that year-ended changes are relatively smoother. The sample cross-correlation between these 

measures of economic activity and the FCI at different lag lengths suggest there might be a lead/lag 

relationship between the FCI and the various measures of economic activity. 
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Table A3: Correlation between Economic Activity and the FCI 

Full sample cross-correlation coefficients 

 Quarterly  Year-ended 

 Contemporaneous Maximum(a) Lag(b)  Contemporaneous Maximum(a) Lag(b) 

GDP –0.27 –0.27 0  –0.43 –0.45 1 

Consumption –0.21 –0.22 1  –0.30 –0.35 1 

Unemployment rate 0.44 0.44 0  0.51 0.55 1 

Employment –0.46 –0.47 1  –0.60 –0.67 1 

Business investment –0.28 –0.28 –1  –0.46 –0.46 0 

Notes: All series are in growth rates besides the unemployment rate which is in differences 

 (a) Largest sample cross-correlation between the FCI and the measure of economic activity from lags –12 to +12 quarters 

 (b) The time period associated with the maximum sample cross-correlation; a negative value means the FCI leads the 

measure of economic activity while a positive value means the FCI lags the measure of economic activity 

 

However, sample cross-correlations between two serially correlated time series can sometimes 

indicate spurious relationships (see Cryer and Chan (2008)). To formally assess these potential 

lead/lag relationships we use Granger causality tests. This attempts to determine if the lags of one 

time series have information that is useful for predicting another time series over and above the 

information already contained in the lags of that second series. The test can be sensitive to the 

choice of lag length, so we test for lag lengths from one to four quarters.27 We can infer Granger 

causality when there is evidence that the FCI Granger-causes the measure of economic activity and 

no evidence that the measure of economic activity Granger-causes the FCI. The results are in 

Table A4. 

The results suggest that the FCI does contain predictive information about the 5 measures of 

economic activity at a quarterly time horizon, although the results for household consumption are 

only significant at the 10 per cent level for the first lag. At a year-ended time horizon the results are 

similar for GDP, household consumption, the unemployment rate and employment. In contrast, the 

FCI only provides additional predictive information for business investment at longer lag lengths 

(i.e. lags greater than 2). 

                                                      

27 We chose to use a maximum of 4 lags based on sample cross-correlation analysis in Table A2. 
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Table A4: Sequential Granger Causality Tests – p-values 

 Lag length 

 1 2 3 4 

Quarterly 

GDP does not Granger-cause FCI 0.85 1.00 1.00 1.00 

FCI does not Granger-cause GDP 0.02 0.00 0.00 0.00 

HFCE does not Granger-cause FCI 1.00 1.00 1.00 1.00 

FCI does not Granger-cause HFCE 0.09 0.00 0.01 0.01 

UR does not Granger-cause FCI 1.00 1.00 1.00 1.00 

FCI does not Granger-cause UR 0.00 0.00 0.00 0.00 

EMP does not Granger-cause FCI 0.74 0.23 0.26 0.74 

FCI does not Granger-cause EMP 0.00 0.00 0.00 0.00 

NMBI does not Granger-cause FCI 0.78 0.92 0.72 0.85 

FCI does not Granger-cause NMBI 0.00 0.02 0.00 0.00 

Year-ended 

GDP does not Granger-cause FCI 1.00 1.00 1.00 1.00 

FCI does not Granger-cause GDP 0.02 0.00 0.00 0.00 

HFCE does not Granger-cause FCI 0.43 0.73 0.28 0.59 

FCI does not Granger-cause HFCE 0.06 0.00 0.00 0.03 

UR does not Granger-cause FCI 0.27 1.00 1.00 1.00 

FCI does not Granger-cause UR 0.00 0.00 0.00 0.00 

EMP does not Granger-cause FCI 0.61 0.90 1.00 1.00 

FCI does not Granger-cause EMP 0.00 0.00 0.00 0.00 

NMBI does not Granger-cause FCI 1.00 1.00 1.00 1.00 

FCI does not Granger-cause NMBI 0.04 0.11 0.00 0.00 

Notes: All p-values have been adjusted using the Bonferroni correction method; ‘GDP’ is the growth rate of real gross domestic 

product; ‘HFCE’ is the growth rate of real household final consumption expenditure; ‘UR’ is the change in the total 

unemployment rate; ‘EMP’ is the growth rate of total employment; ‘NMBI’ is the growth rate of real business investment 

excluding mining investment 
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Appendix B: Additional Growth-at-Risk Results 

B.1 Quantile regression coefficient estimates 

Figure B1: Household Consumption – Quantile Regression Coefficient Estimates 

Current consumption regressed on lagged consumption and the FCI 

 

Note: Dashed lines represent 95 per cent confidence intervals computed using the stationary bootstrap proposed in Politis and 

Romano (1994) assuming an average block length of 8 quarters and 1,000 replications 

Sources: ABS; Authors’ calculations 
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Figure B2: Unemployment Rate – Quantile Regression Coefficient Estimates 

Current unemployment rate regressed on lagged unemployment rate and the FCI 

 

Note: Dashed lines represent 95 per cent confidence intervals computed using the stationary bootstrap proposed in Politis and 

Romano (1994) assuming an average block length of 8 quarters and 1,000 replications 

Sources: ABS; Authors’ calculations 
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Figure B3: Employment – Quantile Regression Coefficient Estimates 

Current employment regressed on lagged employment and the FCI 

 

Note: Dashed lines represent 95 per cent confidence intervals computed using the stationary bootstrap proposed in Politis and 

Romano (1994) assuming an average block length of 8 quarters and 1,000 replications 

Sources: ABS; Authors’ calculations 
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Figure B4: Business Investment – Quantile Regression Coefficient Estimates 

Current business investment regressed on lagged business investment and the FCI 

 

Note: Dashed lines represent 95 per cent confidence intervals computed using the stationary bootstrap proposed in Politis and 

Romano (1994) assuming an average block length of 8 quarters and 1,000 replications 

Sources: ABS; Authors’ calculations 
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B.2 Fitted quantile ranges 

Figure B5: Economic Activity – Fitted Quantiles 

 

Notes: ‘HFCE’ is the growth rate of real household final consumption expenditure, actual HFCE quarterly growth rate for 2020:Q2 is 

–12.1 per cent, actual HFCE year-ended growth rate for 2020:Q2 is –12.8 per cent; ‘UR’ is the change in the total 

unemployment rate; ‘NMBI’ is the growth rate of real business investment excluding mining investment 

Sources: ABS; Authors’ calculations; RBA 
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B.3 Downside and upside risk estimates 

Figure B6: Economic Activity – Downside and Upside Risk 

 

Notes: ‘HFCE’ is the growth rate of real household final consumption expenditure, actual HFCE quarterly growth rate for 2020:Q2 is 

–12.1 per cent, actual HFCE year-ended growth rate for 2020:Q2 is –12.8 per cent; ‘UR’ is the change in the total 

unemployment rate; ‘NMBI’ is the growth rate of real business investment excluding mining investment;  is set equal to 

5 per cent; thicker darker-coloured line is estimated with the FCI; thinner lighter-coloured line is estimated without the FCI 

Sources: ABS; Authors’ calculations; RBA 
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