This document will attempt to take the user through how to replicate the analysis in RDP 2021-04: Monetary Policy, Equity Markets and the Information Effect by Calvin He. The analysis below is not in the same order as in the RDP, but rather organised by topic and output. Figure numbers and captions are the same as they are in the RDP for ease of cross-referencing.

Most of the data used in this document are derived series. This document will not show how these derived series were constructed. Please see ./analysis/monetary-policy-surprises.Rmd for details on the construction of the monetary policy surprises using synthetic data.

1 Set up

Attach required libraries and load user defined functions.

library(data.table)
library(lmtest)
library(sandwich)
library(lubridate)
library(broom)
library(readr)
library(here)
library(strucchange)
library(kableExtra)
library(patchwork)
library(tidyverse)
purrr::walk(list.files(here::here("R"), full.names = T), source) # import user defined functions

2 Import monetary policy surprises

To conduct the main analysis, first we need to import the monetary policy surprises. Two types are used in the analysis:

  1. mp_surprises which is the main monetary policy surprise series constructed from using only monetary policy announcements
mp_surprises <- read_csv(here::here("data", "mp-surprises", "mp-surprises.csv" ))
  1. mp_surprises_all is constructed in the same way as mp_surprises but the series is augmented to also include the release of the SMP, RBA Board minutes and speeches delivered by the Governor. I have joined these data with mp_dates which categorises each date to a type of monetary policy event.
mp_surprises_all <- read_csv(here::here("data", "mp-surprises", "mp-surprises-all.csv" ))
mp_dates <- read_csv(here::here("data", "mp-surprises", "mp-dates.csv" )) %>% 
  filter(date_time >= min(mp_surprises_all$decision_date_time))

mp_surprises_all <- mp_surprises_all %>% left_join(mp_dates, by = c("decision_date_time" = "date_time"))

mp_surprises_all
## # A tibble: 614 x 5
##    decision_date decision_date_time  pc1_scaled cashrate_change type           
##    <date>        <dttm>                   <dbl>           <dbl> <chr>          
##  1 2001-04-04    2001-04-04 09:30:00   -0.104             -0.5  board_meeting  
##  2 2001-05-02    2001-05-02 09:30:00    0.0361             0    board_meeting  
##  3 2001-06-06    2001-06-06 09:30:00    0.0511             0    board_meeting  
##  4 2001-06-14    2001-06-14 12:30:00   -0.00153           NA    speech_governor
##  5 2001-07-04    2001-07-04 09:30:00   -0.00561            0    board_meeting  
##  6 2001-07-10    2001-07-10 18:30:00   -0.0216            NA    speech_governor
##  7 2001-08-08    2001-08-08 09:30:00    0.0126             0    board_meeting  
##  8 2001-08-13    2001-08-13 11:30:00    0.00606           NA    smp            
##  9 2001-09-05    2001-09-05 09:30:00   -0.0444            -0.25 board_meeting  
## 10 2001-10-03    2001-10-03 09:30:00    0.0870            -0.25 board_meeting  
## # ... with 604 more rows

Both monetary policy surprise objects contain two types of ‘monetary policy surprises’

  1. cashrate_change: this is the cash rate change announced after the RBA Board meeting
  2. pc1_scaled: this is the primary measure of monetary policy surprises used in the analysis. See section 4.2.2 of the RDP for further details.

3 ASX 200

All results using the ASX 200 index as the dependent variable are replicated below. This includes Figures 3, 12, 14, 16 and 7.

3.1 Monetary policy announcements

The general process to obtain the results is as follows:

  1. Import the changes in the in the ASX 200 index around monetary policy announcements (./data/equities/asx-shock.csv).
  2. Join the ASX 200 changes to the monetary policy surprises (mp_surprises)
  3. Using a specification table, then run various regressions within the same dataframe row-by-row.
    • This leaves a dataframe with the results of various specifications of the ASX 200 index responses to monetary policy surprises.

First, import the changes in the ASX 200 around monetary policy announcements.

equities_surprise <- read_csv(here::here("data", "equities", "asx-shock.csv"))

Next, join the change in the ASX 200 with the monetary policy surprises. This creates the necessary data for the regressions

mp_equities <- left_join(mp_surprises , equities_surprise  , by = c("decision_date_time" = "date_time"))
mp_equities
## # A tibble: 212 x 5
##    decision_date decision_date_time  pc1_scaled cashrate_change asx_shock
##    <date>        <dttm>                   <dbl>           <dbl>     <dbl>
##  1 2001-04-04    2001-04-04 09:30:00  -0.110              -0.5     -0.506
##  2 2001-05-02    2001-05-02 09:30:00   0.0396              0        0.533
##  3 2001-06-06    2001-06-06 09:30:00   0.0559              0        0.391
##  4 2001-07-04    2001-07-04 09:30:00  -0.00503             0       -0.716
##  5 2001-08-08    2001-08-08 09:30:00   0.0146              0        0.120
##  6 2001-09-05    2001-09-05 09:30:00  -0.0455             -0.25    -0.296
##  7 2001-10-03    2001-10-03 09:30:00   0.0942             -0.25     0.105
##  8 2001-11-07    2001-11-07 09:30:00   0.000254            0       -0.277
##  9 2001-12-05    2001-12-05 09:30:00  NA                  -0.25     0.710
## 10 2002-02-06    2002-02-06 09:30:00  NA                   0       -0.281
## # ... with 202 more rows

I will first create a basic specification table (spec). This table effectively contains ‘options’ for the regression and includes:

  1. remove_gfc: should the global financial crisis period be excluded?
  2. asymmetry: should the regression estimate positive and negative surprises separately?
spec <- expand_grid(remove_gfc = c(T, F) ,
                    asymmetry = c(T, F)) %>%
  filter(!(remove_gfc == T &  asymmetry == T))

Using the specification table, I will add the data and row-by-row perform information effect regressions. The output from each row will differ based on the specifications. For each specification, three regressions are run using the info_regressions function:

  1. pc1_scaled: using the monetary policy surprise (pc1_scaled) as the independent variable
  2. cashrate_change: using the cash rate change (cashrate_change) as the independent variable
  3. pc1_scaled_move: interacting the monetary policy surprise with whether a cash rate change occurred (used later in the analysis).
output_asx200 <- spec %>%
  mutate(data = list(mp_equities)) %>%  # add complete data
  rowwise() %>%
  mutate(reg_data = list(if(remove_gfc){
                            data  %>% filter(decision_date < ymd("2008-09-01")|decision_date >= ymd("2009-05-01") )}
                          else {data}  ), # create regression data based on `remove_gfc`
        reg_output = 
          list(info_regressions(reg_data,  y_var = "asx_shock", asymmetry = asymmetry) )) %>% # perform regression
  as_tibble() %>%
  mutate(reg_coeftest = map(reg_output , 
                              ~ map(. , ~ lmtest::coeftest(., vcov = NeweyWest) ) ) , # perform hypothesis tests
          reg_tidy =  map(reg_coeftest, ~ map_dfr(., broom::tidy, .id = "model"))) # tidy data


output_asx200
## # A tibble: 3 x 7
##   remove_gfc asymmetry data      reg_data     reg_output  reg_coeftest reg_tidy 
##   <lgl>      <lgl>     <list>    <list>       <list>      <list>       <list>   
## 1 TRUE       FALSE     <spec_tb~ <spec_tbl_d~ <named lis~ <named list~ <tibble[~
## 2 FALSE      TRUE      <spec_tb~ <spec_tbl_d~ <named lis~ <named list~ <tibble[~
## 3 FALSE      FALSE     <spec_tb~ <spec_tbl_d~ <named lis~ <named list~ <tibble[~

The output for all specifications now lives inside output_asx200.

3.1.1 Baseline results

Figure 3 can be reconstructed by accessing the reg_tidy column which contains the coefficient outputs for each specification.

output_asx200 %>% 
  filter(remove_gfc == F, asymmetry == F) %>% # baseline specification
  unnest(reg_tidy) %>% 
  relocate(remove_gfc, asymmetry, model, term, estimate, std.error, p.value) # rearrange for nice printing
## # A tibble: 7 x 12
##   remove_gfc asymmetry model  term    estimate std.error  p.value data  reg_data
##   <lgl>      <lgl>     <chr>  <chr>      <dbl>     <dbl>    <dbl> <lis> <list>  
## 1 FALSE      FALSE     pc1_s~ (Inter~  0.00681    0.0346 8.44e- 1 <spe~ <spec_t~
## 2 FALSE      FALSE     pc1_s~ pc1_sc~ -2.99       0.434  7.75e-11 <spe~ <spec_t~
## 3 FALSE      FALSE     cashr~ (Inter~  0.0176     0.0183 3.37e- 1 <spe~ <spec_t~
## 4 FALSE      FALSE     cashr~ cashra~  0.0430     0.0856 6.16e- 1 <spe~ <spec_t~
## 5 FALSE      FALSE     pc1_s~ (Inter~  0.00353    0.0368 9.24e- 1 <spe~ <spec_t~
## 6 FALSE      FALSE     pc1_s~ pc1_sc~ -2.19       1.16   5.98e- 2 <spe~ <spec_t~
## 7 FALSE      FALSE     pc1_s~ pc1_sc~ -3.43       0.576  1.21e- 8 <spe~ <spec_t~
## # ... with 3 more variables: reg_output <list>, reg_coeftest <list>,
## #   statistic <dbl>

Also note that in addition to the usual tidy output from a regression, within each reg_tidy object you will also find an additional column model which is the allocated model name for each regression.

Figure 3 can now be replicated with the following code:

output_asx200 %>% 
  filter(remove_gfc == F, asymmetry == F) %>% 
  unnest(reg_tidy) %>% 
  filter(term != "(Intercept)", model %in% c("pc1_scaled", "cashrate_change")) %>% 
  mutate(term = case_when(term == "pc1_scaled" ~ "Monetary policy surprise",
                                T ~ "Cash rate change")) %>% 
  ggplot(aes(x = term)) +
  geom_col(aes(y = estimate, fill = term), position = position_dodge()) +
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width = 0.2, position = position_dodge())  +
  ylab("%") + 
  xlab("") +
  rba_theme() +
  rba_syc() +
  rba_ylim(-5, 2.5) +
  scale_fill_manual(values = c(rba[["orange1"]], rba[["aqua3"]]) ) +
  labs(title = "Figure 3: Response of ASX 200\nto Monetary Policy",  
       subtitle = "100 basis point monetary policy tightening",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2) +
  rba_axis_text_size(size = 14)

3.1.2 Remove GFC

To compare the coefficients when including or excluding the GFC period, I can manipulate the output_asx200 object as follows to create Figure 12:

output_asx200 %>% 
  filter(asymmetry == F) %>% # remove asymmetry specification
  unnest(reg_tidy) %>% 
  mutate(type = case_when(remove_gfc ~ "Excluding GFC",
                          T ~ "Full sample")) %>% 
  filter(term == "pc1_scaled") %>% 
  ggplot(aes(x = type)) +
  geom_col(aes(y = estimate, fill = type), position = position_dodge()) +
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width = 0.2, position = position_dodge())  +
  ylab("%") + 
  xlab("") +
  rba_theme() +
  rba_syc() +
  rba_ylim(-5, 2.5) +
  rba_ylab_position(-7)+
  scale_fill_manual(values = c(rba[["orange9"]], rba[["green6"]])) +
  labs(title = "Figure 12: Response of\nASX 200 to Monetary Policy",  
       subtitle = "100 basis point monetary policy tightening, by sample",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

3.1.3 Surprise easing or tightening

To extract the results comparing when the monetary policy surprise is positive or negative (Figure 14), simply filter for asymmetry = T.

output_asx200 %>% 
  filter(asymmetry == T) %>% # filter for desired specification
  unnest(reg_tidy) %>% # unnest regression results
  filter(str_detect(term, "pc1_scaled") ) %>% # extract desired coefficient
  mutate(term = str_remove(term, paste0("pc1_scaled:"))) %>%  # clean term 
  ggplot(aes(x = term)) +
  geom_col(aes(y = estimate, fill = term), position = position_dodge()) +
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width = 0.2, position = position_dodge())  +
  ylab("%") + 
  xlab("") +
  rba_theme() +
  rba_syc() +
  rba_ylim(-5, 2.5) +
  scale_fill_manual(values = c(rba[["red2"]], rba[["blue7"]]))+
  labs(title = "Figure 14: Response of ASX 200\nto Monetary Policy",
       subtitle = "100 basis point monetary policy tightening,\nby monetary policy surprise direction",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

3.1.4 Change vs. no change

To compare the coefficients for when the cash rate was changed or not (Figure 16), simply access the model pc1_scaled_move while setting the other specifications to be FALSE (i.e. baseline).

output_asx200 %>% 
  filter(remove_gfc == F, asymmetry == F) %>% # baseline specification options
  unnest(reg_tidy) %>% 
  filter(term != "(Intercept)", model  == "pc1_scaled_move" ) %>%  # filter for the change vs. no change model
  mutate(term = case_when(stringr::str_detect(term, "FALSE") ~ "No change",
                          TRUE ~ "Change")) %>% 
  ggplot(aes(x = term)) +
  geom_col(aes(y = estimate, fill = term), position = position_dodge()) +
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error),
                width = 0.2, position = position_dodge())  +
  ylab("%") + 
  xlab("") +
  rba_theme() +
  rba_syc() +
  rba_ylim(-5, 2.5) +
  scale_fill_manual(values = c(rba[["olive1"]], rba[["purple1"]] )) + 
  labs(title = "Figure 16: Response of ASX 200\nto Monetary Policy",
       subtitle = "100 basis point monetary policy tightening,\nby if cash rate changed",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

3.2 All RBA communications

To extend the ASX 200 results I use the augmented monetary policy surprise series (mp_surprises_all). Performing similar steps to above, I import the relevant ASX 200 price changes around RBA communication times, then join the data to the augmented monetary policy surprise series.

equities_surprise_all <- read_csv(here::here("data", "equities", "asx-shock-all.csv"))

mp_equities_all <- left_join(mp_surprises_all , equities_surprise_all, 
                             by = c("decision_date_time" = "date_time"))

mp_equities_all
## # A tibble: 614 x 6
##    decision_date decision_date_time  pc1_scaled cashrate_change type   asx_shock
##    <date>        <dttm>                   <dbl>           <dbl> <chr>      <dbl>
##  1 2001-04-04    2001-04-04 09:30:00   -0.104             -0.5  board~   -0.506 
##  2 2001-05-02    2001-05-02 09:30:00    0.0361             0    board~    0.533 
##  3 2001-06-06    2001-06-06 09:30:00    0.0511             0    board~    0.391 
##  4 2001-06-14    2001-06-14 12:30:00   -0.00153           NA    speec~    0.313 
##  5 2001-07-04    2001-07-04 09:30:00   -0.00561            0    board~   -0.716 
##  6 2001-07-10    2001-07-10 18:30:00   -0.0216            NA    speec~   -0.0745
##  7 2001-08-08    2001-08-08 09:30:00    0.0126             0    board~    0.120 
##  8 2001-08-13    2001-08-13 11:30:00    0.00606           NA    smp      -0.262 
##  9 2001-09-05    2001-09-05 09:30:00   -0.0444            -0.25 board~   -0.296 
## 10 2001-10-03    2001-10-03 09:30:00    0.0870            -0.25 board~    0.105 
## # ... with 604 more rows

Notice the column type contains the specific RBA communication type of each event.

I now perform the regressions in a similar way (rowwise within a dataframe) but in this case only one regression is run (Equation 5 in RDP).

output_asx200_all <- mp_equities_all %>%
  nest_by() %>% 
  as_tibble() %>% 
 mutate(reg_output = map(data, ~ lm(asx_shock ~ pc1_scaled:factor(type), data = .)), # run regression
         reg_coeftest = map(reg_output , ~ lmtest::coeftest(., vcov = NeweyWest)  ), # perform hypothesis tests for coefficients
         reg_tidy = map(reg_coeftest, broom::tidy)) # tidy output

Now, Figure 7 can be replicated with the following code:

output_asx200_all %>% 
    unnest(reg_tidy) %>% 
    filter(term != "(Intercept)") %>% 
    mutate(term = str_remove_all(term, "pc1_scaled:factor\\(type\\)") %>% str_replace_all(., "_", " ") ) %>% 
  ggplot(aes(x = term, y = estimate)) +
  geom_col(position = position_dodge(), fill = rba[["pink4"]]) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width = 0.2, position = position_dodge()) +
  rba_theme() +
  rba_rotate_x_text() +
  rba_syc() +
  ylab("%") +
  rba_ylab_position(-6) +
  xlab("") +
  rba_ylim(-20, 30 ) +
  labs(title = "Figure 7: Response of ASX 200\nto Monetary Policy", 
       subtitle = "100 basis point monetary policy tightening, by communication type", 
       caption = "* Confidence intervals shown are 95 per cent and calculated using Newey-West standard errors.
       \nSources: Author's calculations; Bloomberg; RBA; Refinitiv")+
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

4 Earnings forecasts

All results using the equity earnings growth forecasts changes from I/B/E/S from Refinitiv as the dependent variable are replicated below (Figure 4, 10, 11, 15, 17 and 8) . The code is set-up in a very similar manner to the ASX 200 results, with the main exception being that there are now different types of equity earnings growth forecasts (by GICS sectors and horizon).

4.1 Monetary policy announcements

First, import the weekly changes in equity earnings growth forecasts.

earnings_surprise <- read_csv(here::here("data", "earnings", "earnings-shock.csv"))

earnings_surprise # column `lead_d_1w` is the one week change relative to forecast that occurs next week. 
## # A tibble: 3,583 x 7
##    date       horizon industry group next_forecast_d~ last_forecast_d~ lead_d_1w
##    <date>     <chr>   <chr>    <chr> <date>           <date>               <dbl>
##  1 2006-02-02 long t~ asx200   asx2~ 2006-02-09       2006-01-26         -1.69  
##  2 2006-03-02 long t~ asx200   asx2~ 2006-03-09       2006-02-23         -0.0150
##  3 2006-03-30 long t~ asx200   asx2~ 2006-04-06       2006-03-23          0.183 
##  4 2006-04-27 long t~ asx200   asx2~ 2006-05-04       2006-04-20          0.281 
##  5 2006-06-01 long t~ asx200   asx2~ 2006-06-08       2006-05-25         -0.187 
##  6 2006-06-29 long t~ asx200   asx2~ 2006-07-06       2006-06-22         -0.205 
##  7 2006-07-27 long t~ asx200   asx2~ 2006-08-03       2006-07-20          0.583 
##  8 2006-08-31 long t~ asx200   asx2~ 2006-09-07       2006-08-24          0.138 
##  9 2006-09-28 long t~ asx200   asx2~ 2006-10-05       2006-09-21          0.062 
## 10 2006-11-02 long t~ asx200   asx2~ 2006-11-09       2006-10-26         -0.162 
## # ... with 3,573 more rows

For each industry and horizon, I match forecast changes to a monetary policy date. To do this I only keep forecast changes where a monetary policy announcement occurred between two forecast dates.

earnings_data_mp <- earnings_surprise %>%
  mutate(forecast_date = date) %>%
  group_by(group, industry,  horizon) %>%
  nest() %>%
  mutate(earnings_data = data,
    # Make monetary policy surprises to a forecast date
    mp = map(data, ~ rolling_join(mp_surprises %>% mutate(date = decision_date),
                                          {.} %>% transmute(date = forecast_date, forecast_date, next_forecast_date, last_forecast_date),
                                          roll_type = T ) %>%
                            as_tibble() %>%
                            filter(decision_date > forecast_date ,  decision_date < next_forecast_date) %>%  # decision between the two forecast dates
                            group_by(forecast_date) %>%
                            summarise_if(is.numeric, sum, na.rm = T) %>%
                            ungroup ) ,
      data = map2(data, mp, ~ left_join(.x %>% filter(forecast_date %in% .y$forecast_date), .y, by = "forecast_date"))) # only keep relevant forecasts

Using the same specification table (spec), I can perform the same regressions as before.

output_earnings <- expand_grid(earnings_data_mp, spec) %>%
 rowwise() %>%
   mutate(reg_data = list(if(remove_gfc){ data  %>% filter(date < ymd("2008-09-01")|date >= ymd("2009-05-01") )}
                          else {data}  ),
          reg_output = list(info_regressions( reg_data,  y_var = "lead_d_1w", asymmetry =asymmetry) )) %>%
    as_tibble() %>%
    mutate(reg_coeftest = map(reg_output , ~ map(. , ~ tryCatch(lmtest::coeftest(., vcov = NeweyWest) ,
                                                         error = function(c) lmtest::coeftest(., vcov = vcovHAC)))),
    reg_tidy = map(reg_coeftest, ~ map_dfr(., broom::tidy, .id = "model")))

4.1.1 Baseline results

Figure 4, can now be replicated with the following code:

output_earnings %>%  
  filter(industry == "asx200", asymmetry == F, remove_gfc == F) %>% 
  unnest(reg_tidy) %>% 
  filter(model %in% c("pc1_scaled", "cashrate_change"), term != "(Intercept)") %>% 
  mutate(horizon =  forcats::fct_relevel(horizon, "one year ahead"),
         term =  case_when(term == "pc1_scaled" ~ "monetary policy surprise",
                                T ~ "cash rate change"))  %>% 
  ggplot(aes( x = horizon, y = estimate, fill = term)) + 
  geom_col(position = position_dodge()) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), width =0.2, position = position_dodge(width = 0.9)) +
  rba_theme(legend = T) +
  scale_fill_manual(values = c(rba[["orange1"]], rba[["aqua3"]]) ) +
  rba_syc() +
  ylab("ppt") +
  xlab("") +
  rba_ylim(-5, 2 )+
  labs(title = "Figure 4: Response of ASX 200 Earnings\nGrowth Forecasts to Monetary Policy",  
       subtitle = "100 basis point monetary policy tightening",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv; Thomson Reuters") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2) 

4.1.2 By industry

The object output_earnings also contains the responses of industry level earnings growth forecasts to monetary policy (Figure 10 and 11).

# filter for appropriate graph data
graph_data <-  output_earnings  %>% 
  filter(industry != "asx200", horizon == "one year ahead", asymmetry == F, remove_gfc == F) %>% 
  unnest(reg_tidy ) %>% 
  dplyr::select(-contains("reg"), -data) %>% 
  dplyr::filter(model == "pc1_scaled", term != "(Intercept)") 

# Business services plot
one_year_business_services <- graph_data %>% filter(group == "business_services") %>% 
  ggplot( aes( x = industry, y = estimate)) +
  geom_col(position = position_dodge(), fill = rba[["green1"]]) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width =0.2, position=position_dodge(width = 0.9)) +
  labs(subtitle = "Business Services") +
  rba_theme() +
  ylab("ppt") +
  xlab("") +
  rba_ylim(-20, 10) +
  rba_syc(dup = F)+
  theme( plot.subtitle = element_text(size = rel(1.3))) +
  rba_rotate_x_text(angle = 90)

# Production sector
one_year_production <- graph_data %>% filter(group == "production") %>% 
  ggplot( aes( x = industry, y = estimate)) + 
  geom_col(position=position_dodge(), fill = rba[["brown2"]] ) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width =0.2, position=position_dodge(width = 0.9)) +
  rba_theme() +
  ylab("") +
  labs(subtitle = "Production") +
  xlab("") +
  rba_ylim(-20, 10) +
  rba_syc(dup = F)+
  theme( plot.subtitle = element_text(size = rel(1.3))) +
   rba_rotate_x_text(angle = 90)
  
# Consumer sector
one_year_consumer <- graph_data %>% filter(group == "consumer") %>% 
  ggplot(aes( x = industry, y = estimate)) + 
  geom_col(position=position_dodge(), fill = rba[["blue3"]]) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width =0.2, position=position_dodge(width = 0.9)) +
  labs(subtitle= "Consumer") +
  rba_theme() +
  ylab("") +
  xlab("") +
  rba_ylim(-20, 10) +
  rba_syc(dup = F)+
    theme( plot.subtitle = element_text(size = rel(1.3))) +
  rba_rotate_x_text(angle = 90)


patchwork <- one_year_business_services + one_year_production + one_year_consumer
patchwork + plot_annotation( 
  title = "Figure 10: Response of One-year-ahead ASX 200\nEarnings Growth Forecasts to Monetary Policy", 
  subtitle = "100 basis point monetary policy tightening, GICS sectors",
  caption = "* Confidence intervals shown are 95 per cent and calculated using Newey-West standard errors.
  \nSources: Author's calculations; RBA; Refinitiv; Thomson Reuters",
  theme = rba_theme() + rba_panel_text_size(title = 1.8, subtitle = 1.2))

graph_data <-  output_earnings  %>% 
  filter(industry != "asx200", horizon != "one year ahead", asymmetry == F, remove_gfc == F) %>% 
  unnest(reg_tidy ) %>% 
  dplyr::select(-contains("reg"), -data) %>% 
  dplyr::filter(model == "pc1_scaled", term != "(Intercept)") 

long_term_business_services <- ggplot(graph_data %>% filter(group == "business_services"), aes( x = industry, y = estimate)) + 
  geom_col(position = position_dodge(), fill = rba[["green1"]]) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width =0.2, position=position_dodge(width = 0.9)) +
  labs(subtitle = "Business Services") +
  rba_theme() +
  ylab("ppt") +
  xlab("") +
  rba_ylim(-5, 15) +
  rba_syc(dup = F)+
  theme( plot.subtitle = element_text(size = rel(1.3))) +
  rba_rotate_x_text(angle = 90)


long_term_production <- ggplot(graph_data %>% filter(group == "production"), aes( x = industry, y = estimate)) + 
  geom_col(position=position_dodge(), fill = rba[["brown2"]]) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width =0.2, position=position_dodge(width = 0.9)) +
  rba_theme() +
  ylab("")+
  labs(subtitle = "Production") +
  xlab("") +
  rba_ylim(-5, 15) +
  rba_syc(dup = F)+
  theme( plot.subtitle = element_text(size = rel(1.3))) +
   rba_rotate_x_text(angle = 90)
  


long_term_consumer <- ggplot(graph_data %>% filter(group == "consumer"), aes( x = industry, y = estimate)) + 
  geom_col(position=position_dodge(), fill = rba[["blue3"]]) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width =0.2, position=position_dodge(width = 0.9)) +
  labs(subtitle= "Consumer") +
  rba_theme() +
  ylab("") +
  xlab("") +
  rba_ylim(-5, 15) +
  rba_syc(dup = F)+
    theme( plot.subtitle = element_text(size = rel(1.3))) +
  rba_rotate_x_text(angle = 90)


patchwork <- long_term_business_services + long_term_production + long_term_consumer
patchwork + plot_annotation( 
  title = "Figure 11: Response of Long-term ASX 200\nEarnings Growth Forecasts to Monetary Policy", 
  subtitle = "100 basis point monetary policy tightening, GICS setors",
  caption = "* Confidence intervals shown are 95 per cent and calculated using Newey-West standard errors.
  \nSources: Author's calculations; RBA; Refinitiv; Thomson Reuters",
  theme = rba_theme() + rba_panel_text_size(title = 1.8, subtitle = 1.2))

4.1.3 Remove GFC

Figure 13 can be replicated by comparing the remove_gfc == T specification to the baseline specification.

output_earnings %>%  
  filter(industry == "asx200", asymmetry == F) %>% # remove asymmetry results
  mutate(type = case_when(remove_gfc ~ "Excluding GFC",
                          T ~ "Full sample"),
         horizon = forcats::fct_relevel(horizon, "one year ahead")) %>% 
  unnest(reg_tidy) %>% 
  filter(term == "pc1_scaled") %>%  # only keep relevant coefficient
  ggplot(aes(x = horizon, fill = type)) +
  geom_col(aes(y = estimate), position = position_dodge()) +
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), width = 0.2, position = position_dodge(width = 0.9))  +
  ylab("ppt") + 
  xlab("") +
  rba_theme(legend = T) +
  rba_syc() +
  rba_ylim(-6, 4) +
  scale_fill_manual(values = c(rba[["orange9"]], rba[["green6"]])) +
  labs(title = "Figure 13: Response of ASX 200 Earnings\nGrowth Forecasts to Monetary Policy",  
       subtitle = "100 basis point monetary policy tightening, by sample",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv; Thomson Reuters") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

4.1.4 Surprise easing or tightening

Figure 15 can be replicated by extracting the asymmetry == T results from the output_earnings dataframe.

output_earnings %>% 
  filter(asymmetry == T, industry == "asx200") %>% 
  unnest(reg_tidy) %>% 
  filter(str_detect(term, "pc1_scaled") ) %>% 
  mutate(term = str_remove(term, paste0("pc1_scaled:")),
         horizon = forcats::fct_relevel(horizon, "one year ahead")) %>% 
  ggplot(aes(x = horizon, fill = term)) +
  geom_col(aes(y = estimate), position = position_dodge()) +
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width = 0.2, position = position_dodge(width = 0.9))  +
  ylab("ppt") + 
  xlab("") +
  rba_theme(legend = T) +
  rba_syc() +
  rba_ylim(-6, 4) +
  scale_fill_manual(values = c(rba[["red2"]], rba[["blue7"]])) +
  labs(title = "Figure 15: Response of ASX 200 Earnings\nGrowth Forecasts to Monetary Policy",  
       subtitle = "100 basis point monetary policy tightening,\nby montary policy surprise direction",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv; Thomson Reuters") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

4.1.5 Cash rate change or no change

Figure 17 can be replicated by extracting the pc1_scaled_move model from the baseline specification options.

output_earnings %>% 
  filter(industry == "asx200", remove_gfc == F, asymmetry == F) %>% 
  unnest(reg_tidy) %>% 
  filter(term != "(Intercept)", model  == "pc1_scaled_move" ) %>% 
  mutate(term = case_when(stringr::str_detect(term, "FALSE") ~ "No change",
                          TRUE ~ "Change"),
         horizon = forcats::fct_relevel(horizon, "one year ahead")) %>% 
  ggplot(aes(x = horizon, fill = term)) +
  geom_col(aes(y = estimate), position = position_dodge()) +
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width = 0.2, position = position_dodge(width = 0.9))  +
  ylab("ppt") + 
  xlab("") +
  rba_theme(legend = T) +
  rba_syc() +
  rba_ylim(-5, 2.5) +
  scale_fill_manual(values = c(rba[["olive1"]], rba[["purple1"]] )) + 
  labs(title = "Figure 17: Response of ASX 200 Earnings\nGrowth Forecasts to Monetary Policy",  
       subtitle = "100 basis point monetary policy tightening,\nby if cash rate changed",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations, RBA, Refinitiv, Thomson Reuters") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

4.2 All RBA communications

Following similar steps to section 4.1, we can perform the analysis on earnings forecasts changes for the augmented monetary policy surprises series (mp_surprises_all).

First make the regression data.

earnings_surprise_all <- read_csv(here::here("data", "earnings", "earnings-shock-all.csv"))
# Make regression data 
reg_data_all <- earnings_surprise_all %>%
  mutate(forecast_date = date) %>%
  group_by(group, industry,  horizon) %>%
  nest() %>%
  mutate(earnings_data = data,
         mp = map(earnings_data, 
                         ~ rolling_join(mp_surprises_all %>% mutate(date = decision_date),
                                        {.} %>% transmute(date = forecast_date, forecast_date, next_forecast_date, last_forecast_date),
                                        roll_type = T ) %>%
                           as_tibble() %>%
                           filter(decision_date > forecast_date ,  decision_date < next_forecast_date) %>%  # decision between the two forecast dates
                           group_by(forecast_date, type) %>%
                           summarise_if(is.numeric, sum, na.rm = T) %>% # sum mp surprises if they match to the same forecast date e.g two speeches in a week.
                           ungroup ) ,
         data = map2(earnings_data, mp, ~ left_join(.x %>% filter(forecast_date %in% .y$forecast_date), .y, by = "forecast_date"))) 

Similar to section 3.2, we can estimate Equation 5 with the following:

output_earnings_all <- reg_data_all %>%
  filter(industry == "asx200") %>% 
  mutate(reg_output = map(data, ~ lm(lead_d_1w ~ pc1_scaled:factor(type), data = .)),
         reg_coeftest = map(reg_output , ~ lmtest::coeftest(., vcov = NeweyWest)  ),
         reg_tidy = map(reg_coeftest, broom::tidy))

Replicating Figure 8 with the above output can be done as follows:

output_earnings_all %>%  
  ungroup %>% 
  unnest(reg_tidy) %>% 
  filter(term != "(Intercept)") %>% 
  mutate(term = str_remove_all(term, "pc1_scaled:factor\\(type\\)") %>% str_replace_all(., "_", " "),
         horizon = forcats::fct_relevel(horizon, "one year ahead")) %>% 
  ggplot(aes(x = term, y = estimate)) +
  facet_wrap(~ horizon, ncol = 1) +
  geom_col(position = position_dodge(),  fill = rba[["pink4"]]) + 
  geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                width =0.2, position = position_dodge(width = 0.9)) +
  rba_rotate_x_text()+
  rba_theme(legend = T, facet = T) +
  rba_syc() +
  ylab("ppt") +
  xlab("") +
  rba_ylim(-30, 30 )+
  labs(title = "Figure 8: Response of ASX 200 Earnings\nGrowth Forecasts to Monetary Policy", 
       subtitle = "100 basis point monetary policy tightening, by communication type",
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv; Thomson Reuters") +
  rba_panel_text_size(title = 1.9, subtitle = 1.5)

5 Policy rule changes or deviations?

Section 6 of the paper investigates if the monetary policy surprises can be predicted by economic news released before the monetary policy announcement. In this section, I regress the monetary policy surprises against economic news surprises (defined as the difference between the actual ABS first release of GDP, the unemployment rate and CPI and the Bloomberg market economist survey average expectation of these releases. )

To perform this analysis, first import the Bloomberg survey data and calculate the surprise between the first ABS release and the survey average (for each metric: GDP, CPI and the unemployment rate).

# Import Bloomberg survey surprises
economic_releases <- read_csv(here::here("data", "economic-news", "bloomberg-surprises.csv")) %>% 
    pivot_wider( names_from = metric, values_from = value) %>%
    mutate(surprise_average = actual - survey_average)

economic_releases
## # A tibble: 461 x 11
##    date_time           date       time  country event ticker period units actual
##    <dttm>              <date>     <tim> <chr>   <chr> <chr>  <chr>  <chr>  <dbl>
##  1 1997-01-29 11:30:00 1997-01-29 11:30 Austra~ CPI ~ AUCPI~ 4Q     other  0.002
##  2 1997-04-23 11:30:00 1997-04-23 11:30 Austra~ CPI ~ AUCPI~ 1Q     other  0.002
##  3 1997-07-23 11:30:00 1997-07-23 11:30 Austra~ CPI ~ AUCPI~ 2Q     other -0.002
##  4 1997-10-22 11:30:00 1997-10-22 11:30 Austra~ CPI ~ AUCPI~ 3Q     other -0.004
##  5 1998-01-28 11:30:00 1998-01-28 11:30 Austra~ CPI ~ AUCPI~ 4Q     other  0.003
##  6 1998-04-29 11:30:00 1998-04-29 11:30 Austra~ CPI ~ AUCPI~ 1Q     other  0.003
##  7 1998-07-22 11:30:00 1998-07-22 11:30 Austra~ CPI ~ AUCPI~ 2Q     other  0.006
##  8 1998-10-28 11:30:00 1998-10-28 11:30 Austra~ CPI ~ AUCPI~ 3Q     other  0.002
##  9 1999-01-28 11:30:00 1999-01-28 11:30 Austra~ CPI ~ AUCPI~ 4Q     other  0.005
## 10 1999-04-28 11:30:00 1999-04-28 11:30 Austra~ CPI ~ AUCPI~ 1Q     other -0.001
## # ... with 451 more rows, and 2 more variables: survey_average <dbl>,
## #   surprise_average <dbl>

Next, to ensure the the economic releases occur between two monetary policy announcements, modify the monetary policy surprise object to add relevant other dates in other columns, then perform a rolling join with economic releases such that the economic news is appropriately allocated to a monetary policy surprise.

# Modify monetary policy surprises then perform a rolling join between the economic releases and monetary policy surprises
mp_surprises_modified <- mp_surprises %>%
  mutate(meeting_date = case_when(year(decision_date) < 2008 ~ decision_date - 1,
                                  T ~ decision_date),
         last_meeting = dplyr::lag(meeting_date),
         date = meeting_date) %>% 
  select(date, decision_date, last_meeting, pc1_scaled )

economic_releases_mp <- rolling_join(economic_releases,
                              mp_surprises_modified,
                              roll = -Inf) %>%
                  filter(!is.na(pc1_scaled)) %>%
                  mutate(diff = as.numeric(decision_date - date)) %>%
                  group_by(event, decision_date) %>%
                  filter(diff == min(diff), diff > 0, date >  last_meeting )

Similar to before, run the necessary regression row-by-row within the dataframe.

# Run Regressions
output_news_mp <- economic_releases_mp %>%
  group_by(event) %>%
  nest() %>%
  mutate(reg_output = map(data, ~ lm(pc1_scaled ~ surprise_average, data = . )),
         reg_coeftest = map(reg_output ,  ~ lmtest::coeftest(., vcov. = NeweyWest) ) ,
         reg_tidy = map(reg_coeftest, ~ broom::tidy(.)))

You can now replicate Figure 5 as follows:

output_news_mp %>% 
  unnest(reg_tidy) %>% 
  filter(term == "surprise_average") %>% 
  mutate(event = str_remove(event, "QoQ|SA") %>% str_trim(.)) %>% 
  ggplot(aes(x = event, y = estimate))+
    geom_col(position = position_dodge(), fill = rba["default6"]) + 
    geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                  width =0.2, position = position_dodge(width = 0.9)) +
     rba_theme(legend = T) +
    rba_syc() +
    ylab("%") +
    xlab("") +
    rba_ylim(-10, 15 )+
    rba_rotate_x_text(angle = 40)+
    labs(title = "Figure 5: Monetary Policy Surprises\nand Economic News", 
         subtitle = "Response by economic news",
         caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
         \nSources: ABS; Author's calculations; Bloomberg; RBA; Refinitiv") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

5.1 Governor speeches – Information or reaction function?

Section 7.1.1 looks at if economic news has any explanatory power over monetary policy surprises from speeches delivered by the Governor. This procedure follows a very similar one as above. The main difference being the analysis is only done on monetary policy surprises from speeches delivered by the Governor, and I now impose that the economic news must be within a 2 week window before the speech. This is necessary as speeches may occur less regularly meaning that the last economic release may have occurred long before the speech, by which point the news may be outdated.

# Take MP surprises from governor speeches
mp_surprises_all_modified <- mp_surprises_all %>%
  filter(type == "speech_governor") %>% 
  mutate(meeting_date = case_when(year(decision_date) < 2008 ~ decision_date - 1,
                                  T ~ decision_date),
         last_meeting = dplyr::lag(meeting_date),
         date = meeting_date) %>% 
  select(date, decision_date, decision_date_time,  last_meeting, pc1_scaled )
  
# Rolling join to combine with economic releases
combined_data <- rolling_join(economic_releases,
                              mp_surprises_all_modified,
                              roll = -Inf) %>%
                  filter(!is.na(pc1_scaled)) %>%
                  mutate(diff = as.numeric(decision_date - date)) %>%
                  group_by(event, decision_date) %>%
                  filter(diff == min(diff) , decision_date_time > date_time, diff <= 14 ) 
                
# Run Regressions 
output_news_mp_gov <- combined_data %>%
  group_by(event) %>%
  nest() %>%
  mutate(reg_output = map(data, ~ lm(pc1_scaled ~ surprise_average, data = . )),
         reg_coeftest = map(reg_output ,  ~ lmtest::coeftest(., vcov. = NeweyWest) ) ,
         reg_tidy = map(reg_coeftest, ~ broom::tidy(.)))

Figure 9 can replicated as follows:

output_news_mp_gov %>% 
  unnest(reg_tidy) %>% 
  filter(term == "surprise_average") %>% 
  mutate(event = str_remove(event, "QoQ|SA") %>% str_trim(.)) %>% 
  ggplot(aes(x = event, y = estimate))+
    geom_col(position = position_dodge(), fill = rba["default6"]) + 
    geom_errorbar(aes(ymin = estimate - 1.96 * std.error, ymax = estimate + 1.96 * std.error), 
                  width =0.2, position = position_dodge(width = 0.9)) +
    rba_theme(legend = T) +
    rba_syc() +
    ylab("%") +
    xlab("") +
    rba_rotate_x_text(angle = 40)+
    rba_ylim(-7.5, 5 )+
    labs(title = "Figure 9: Monetary Policy Surprises\nand Economic News", 
         subtitle = "Speech by Govenor, response by economic news",
         caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
         \nSources: ABS; Author's calculations; Bloomberg; RBA; Refinitiv") +
  rba_panel_text_size(title = 1.8, subtitle = 1.2)

6 Parameter stability

Section 8.5 in the RDP investigates the parameter stability of the estimates from the baseline output. This analysis can be conducted using the output generated earlier in objects output_asx200 and output_earnings. I use the strucchange package to test for breakpoints.

For the ASX 200 response to monetary policy the breakpoint tests are conducted as follows:

# Breakpoint test on ASX 200 ~ MP surprises
output_asx200_bp <- output_asx200 %>% 
   filter( asymmetry == F, remove_gfc == F) %>% 
     mutate(new_reg_data = map(reg_data, ~ {.} %>% 
                                 filter(!is.na(asx_shock), !is.na(pc1_scaled) ) %>%
                                 mutate(n = 1:n()) ),
            breakpoints = map(new_reg_data, ~  breakpoints(asx_shock ~ pc1_scaled, data = ., h = 0.1) ), # breakpoint test
            breakdates = map2(new_reg_data, breakpoints,  ~ {out <- .x$decision_date[.y$breakpoints] 
                                                            if (anyNA(out)) out <- NA
                                                            return(out) } ), # extract breakpoints
              breakdates_ci = map2(breakpoints, breakdates,  ~ if (!anyNA(.y)) { 
                                                          confint(.)$confint %>% as_vector()
                                                          } else {NA} )) # extract confidence interval of breakpoints

# Tabulate any breakpoints

output_asx200_bp  %>% 
  select( breakdates) %>% 
  mutate(breakdates = map_chr(breakdates, ~ paste(., collapse = ", ") )) %>% 
  kableExtra::kable(caption = "ASX 200 - breakdates", align = 'c', position = "center")
ASX 200 - breakdates
breakdates
NA


A similar procedure can be followed for the earnings forecast output. Notice the dates are toward the month end, this is the initial forecast window with the board meeting occurring early in the next month (which is the datequoted in the main text.)

output_earnings_bp <-  output_earnings %>% 
   filter( asymmetry == F,  remove_gfc == F, industry == "asx200") %>% 
     mutate(new_reg_data = map(reg_data, ~ {.} %>% 
                                 filter(!is.na(lead_d_1w), !is.na(pc1_scaled) ) %>%
                                 select(date, lead_d_1w , pc1_scaled) %>% 
                                 mutate(n = 1:n()) ),
            breakpoints = map(new_reg_data, ~  breakpoints(lead_d_1w ~ pc1_scaled, data = ., h = 0.1) ),
            breakdates = map2(new_reg_data, breakpoints,  ~ {out <- .x$date[.y$breakpoints] 
                                                            if (anyNA(out)) out <- NA
                                                            return(out) } ),
              breakdates_ci = map2(breakpoints, breakdates,  ~ if (!anyNA(.y)) { 
                                                          confint(.)$confint %>% as_vector()
                                                          } else {NA} ))


output_earnings_bp %>% 
  filter(industry == "asx200") %>% 
  select(industry, horizon, breakdates) %>% 
  mutate(breakdates = map_chr(breakdates, ~ paste(., collapse = ", ") )) %>% 
  pivot_wider(id_cols = c("industry", "horizon"), names_from = industry, values_from = breakdates) %>%
  kableExtra::kable(caption = "Earnings - breakdates", align = 'c', position = "center")
Earnings - breakdates
horizon asx200
long term NA
one year ahead 2009-01-29, 2010-05-27


Given the breakpoints found for the one year ahead forecasts, I perform break-adjustments in the baseline regression. The procedure and plot can be replicated as follows:

output_earnings_bp_adjustment <- output_earnings_bp %>% 
  filter(industry == "asx200", horizon == "one year ahead") %>% 
  {.$new_reg_data[[1]]} %>% 
  mutate(dummy_one = (date >= "2009-01-29" &  date < "2010-05-27"), # add in dummies
         dummy_two = (date >= "2010-05-27")) %>% 
  lm( lead_d_1w ~ pc1_scaled +  pc1_scaled:factor(dummy_one) + pc1_scaled:factor(dummy_two), data = .) %>%  # run regression
  lmtest::coeftest(., vcov = vcovHAC) %>% 
  broom::tidy()

output_earnings_bp_adjustment %>% 
  filter(term != "(Intercept)") %>% 
  mutate(term = case_when(str_detect(term, "dummy_one") ~ "Break 1" , 
                          str_detect(term, "dummy_two") ~ "Break 2",
                           TRUE ~ "Baseline") ,
         ci_upper = estimate + 1.96 * std.error,
         ci_lower = estimate - 1.96 * std.error) %>% 
  ggplot(., aes(x = term, y = estimate))+
  geom_col(position = position_dodge(), fill = rba[["maroon1"]]) + 
   geom_errorbar(aes(ymin = ci_lower, ymax = ci_upper), 
                 width =0.2, position = position_dodge(width = 0.9)) +
  rba_theme(legend = T) +
  rba_syc() +
  ylab("ppt") +
  xlab("") +
   rba_ylim(-12, 3 )+
   labs(title = "Figure 18: Response of One-year-ahead ASX 200\nEarnings Growth Forecasts to Monetary Policy", 
        subtitle = "Break adjusted", 
       caption = "* Confidence intervals shown are 95 per cent and calculated\n using Newey-West standard errors.
       \nSources: Author's calculations; RBA; Refinitiv; Thomson Reuters") +
   rba_panel_text_size(title = 1.5, subtitle = 1.3) +
  rba_ylab_position(-7)

7 Session Information

sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_Australia.1252  LC_CTYPE=English_Australia.1252   
## [3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C                      
## [5] LC_TIME=English_Australia.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] forcats_0.5.1     stringr_1.4.0     dplyr_1.0.5       purrr_0.3.4      
##  [5] tidyr_1.1.3       tibble_3.1.0      ggplot2_3.3.3     tidyverse_1.3.0  
##  [9] patchwork_1.1.1   kableExtra_1.3.4  strucchange_1.5-2 here_1.0.1       
## [13] readr_1.4.0       broom_0.7.5       lubridate_1.7.10  sandwich_3.0-0   
## [17] lmtest_0.9-38     zoo_1.8-9         data.table_1.14.0
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.6        svglite_2.0.0     lattice_0.20-41   assertthat_0.2.1 
##  [5] rprojroot_2.0.2   digest_0.6.27     utf8_1.2.1        cellranger_1.1.0 
##  [9] R6_2.5.0          backports_1.2.1   reprex_1.0.0      evaluate_0.14    
## [13] highr_0.8         httr_1.4.2        pillar_1.5.1      rlang_0.4.10     
## [17] readxl_1.3.1      rstudioapi_0.13   jquerylib_0.1.3   rmarkdown_2.7    
## [21] labeling_0.4.2    webshot_0.5.2     munsell_0.5.0     compiler_4.0.3   
## [25] modelr_0.1.8      xfun_0.20         pkgconfig_2.0.3   systemfonts_1.0.1
## [29] htmltools_0.5.1.1 tidyselect_1.1.0  fansi_0.4.2       viridisLite_0.3.0
## [33] withr_2.4.1       crayon_1.4.1      dbplyr_2.1.0      grid_4.0.3       
## [37] jsonlite_1.7.2    gtable_0.3.0      lifecycle_1.0.0   DBI_1.1.1        
## [41] magrittr_2.0.1    scales_1.1.1      cli_2.4.0         stringi_1.5.3    
## [45] farver_2.1.0      fs_1.5.0          xml2_1.3.2        bslib_0.2.4      
## [49] ellipsis_0.3.1    generics_0.1.0    vctrs_0.3.7       tools_4.0.3      
## [53] glue_1.4.2        hms_1.0.0         yaml_2.2.1        colorspace_2.0-0 
## [57] rvest_1.0.0       knitr_1.31        haven_2.3.1       sass_0.3.1