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Abstract 

Economists usually inform policymakers with conclusions that come from studying the conditional 

expectation, i.e. arithmetic mean, of some potential outcome. But there are other means to study, 

from the same ‘quasilinear’ family. And they can support very different conclusions. In trade 

research, for instance, studying other means can transform the perceived roles of colonial history, 

geography, and trade wars. In wages research, studying other means can reverse perceived 

earnings differentials between groups. Similar scenarios will be common in other tasks of policy 

evaluation and forecasting. To choose means well I propose selection criteria, which also consider 

options that are outside of the quasilinear family, such as quantiles. Optimal choices are application-

specific and ideally accommodate the preferences of the relevant policymaker. In the wages case, 

policymaker aversion to inequality makes it sensible to reject the arithmetic mean for another 

quasilinear one. 

JEL Classification Numbers: C10, F10, J30 

Keywords: policy evaluation, forecasting, quasilinear mean, expected utility, loss function, power 
transformation, gravity model, inverse hyperbolic sine 
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1. Introduction 

The statistical expectation, i.e. arithmetic mean, is one of the foundations of economics: policy 

evaluations usually focus on learning about how a change in some policy affects the arithmetic mean 

of an outcome variable; forecasts usually target the conditional arithmetic mean of an outcome 

variable; and the arithmetic mean is used to define statistical concepts like bias, dispersion, and 

skew. 

But for none of these applications is it the only option. Policy evaluations sometimes target quantiles 

(following Koenker and Bassett (1978)), while the forecasting literature ventures further still 

(Varian (1975) is a classic example). In a similar spirit, this paper makes a case for targeting options 

from the so-called quasilinear family of means. The family is infinitely large and contains the 

arithmetic and geometric means as special cases. I show that all of the options can offer important 

advantages for policymakers and are feasible targets for researchers. Indeed, some approaches to 

estimation already target different quasilinear means, just not deliberately. 

More deliberate approaches are important because switching between types can change the 

recommendations offered to policymakers. The effects are too large to leave to chance. In models 

of trade, for instance, switching to different quasilinear means can dramatically change the estimated 

effects of physical distance, colonial ties, and free trade agreements (FTAs). The estimates matter 

because distance is a basis for international development assistance (World Bank Group 2018).1 

Recent US trade negotiations have also triggered widespread interest in the effects of trade policies. 

The effects of changing targets are not always large though. I show, for example, the results of a 

study about the determinants of CEO earnings, in which switching makes little difference. Likewise 

for a study about the effect of a hospital intervention on the cost of patient care. But in a study 

about the wage premium for self-employment over contract employment, switching matters again; 

the key result changes sign and remains statistically and economically significant. Wage comparisons 

like these are important if we wish to have informed community dialogues about, say, industrial 

relations and gender or racial equity. 

Similar observations have been made elsewhere in the literature. In particular, others point out that 

some existing estimation methods target geometric means and that switching to geometric targets 

from arithmetic ones can matter a lot. Some of my examples are theirs. However: the views 

expressed in those papers about the merits of geometric mean targeting are mixed; the papers with 

conflicting views do not discuss each other; the infinite number of other possible targets in the 

quasilinear mean family are not recognised; and decision criteria that I argue are important are not 

considered. So far the discussion has not done justice to the importance of the decision. 

To judge the appeal of the different candidates and provide a coherent basis for choosing among 

them, I propose several decision criteria, one of which uses the expected utility framework of 

von Neumann and Morgenstern (1944). The idea is that each quasilinear mean is the certainty 

equivalent of an outcome distribution under a particular specification of policymaker preferences 

over potential outcomes. Equivalently, each quasilinear mean is the certainty equivalent of an 

                                                      

1 Currently 20 countries receive special assistance from the International Development Association of the World Bank, 

in recognition of development challenges that include remoteness. Small island states in the Pacific are extreme cases, 

as documented in Becker (2012). 
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outcome distribution under a particular specification of policymaker risk aversion. So a good choice 

of mean is one that reflects the preferences of the relevant policymaker. For example, governments 

in western democracies use their tax and social security systems to reduce income inequality, which 

reveals a form of risk aversion in income. Hence it is natural to focus most wages research on 

quasilinear means that reflect this risk aversion. In that case the arithmetic mean is a misleading 

standalone summary of potential policy outcomes. So are quantiles. 

An alternative way to motivate choices is to use a loss function criteria, i.e. to consider the relative 

costs for the policymaker of different over- and under-predictions. If the policy objective relates to 

long-term growth rates, and the economist is modelling short-term outcomes, the geometric mean 

is better than the arithmetic one; the short-term outcomes are compounding and this feature is 

accommodated by the loss function of the geometric mean. Prime examples are models of inflation, 

for central bankers, and models of financial returns, for pension fund managers. When model fit is 

high, like it is for the inflation case, the decision tends to matter less. 

A third set of criteria relates to useful mathematical behaviours of different means. For instance, 

many means produce conclusions that are invariant to arbitrary changes in the units of 

measurement. Some do not though. 

Unfortunately, it is sometimes hard to choose means on the basis of any of these three sets of 

criteria, not least because there will often be many similarly attractive options. In these 

circumstances it is sensible to focus on the simplicity of statistical inference as the relevant decision 

criterion. A literature on power transformations, stemming from Box and Cox (1964), shows that 

variable transformation can simplify the task of statistical inference, partly by making residuals more 

normally distributed. I show that the same transformations implement switches between different 

quasilinear mean targets, hence some quasilinear means are easier targets than others. The easiest 

targets are application-specific. 

When we do choose to depart from learning about arithmetic means, logical consistency will dictate 

changes to several aspects of our analysis. A surprising example is a change to the convention of 

choosing estimators partly on the basis of their unbiasedness. This result challenges a literature on 

bias corrections, most notably papers by Goldberger (1968), Kennedy (1981), and van Garderen and 

Shah (2002). That literature has influenced several areas of economics, including the measurement 

of key macroeconomic variables like inflation (International Labour Office et al 2004, p 118). 

To sum up, it is a classic task of the economist to judge whether some model is a valid (or sufficiently 

close to valid) description of the data-generating process being studied. The conclusions in this paper 

rest on the premise that, even if the model is valid, there will be other descriptions that are equally 

so. The different options are distinguished by the characteristics of the data-generating process they 

describe. A characteristic described by most models is the conditional arithmetic mean, which is a 

decision that can have important implications for policymakers and is often poorly justified. I propose 

several ways to think more carefully about the decision and show that alternatives are easy to 

implement with existing tools. 
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2. Quasilinear Means Generalise Arithmetic Ones 

The concept of arithmetic mean is central to this work and will be familiar to readers already. To 

clarify notation, it is the ‘functional’ defined by 

  .probi i

i

Y y Y y     X X  (1) 

where: Y  X  denotes the arithmetic mean of a discrete random variable Y ; X is a random vector 

of conditions; yi denotes a possible outcome of Y; and prob(Y = yi|X) is a conditional outcome 

probability function. 

When Y is a continuous random variable, 

  .Y y p y dy



    X X  (2) 

where p (y|X) is a conditional probability density function for Y. 

So the arithmetic mean described here is a population concept, not a sample one. And strictly 

speaking it is a conditional arithmetic mean, which includes the unconditional type as a special case. 

Usually I will omit these distinctions. Other names are average, first moment, and expectation. In 

theory, the arithmetic mean is undefined for some distributions, like the Cauchy case. In practical 

economic applications these distributions are uncommon, so wherever    appears in this paper I 

assume it to be defined. 

The concept has been used since the mid 1600s, with intellectual origins that are outlined in 

Ore (1960). By no later than Whitworth (1870) it was a textbook idea and today much of the 

standard economics toolkit builds around it. At the same time, the field has made practically no 

deliberate use of options from the broader quasilinear family of means, which are functionals of the 

form 

   1f Y f f Y       X X  (3) 

Here Y is a discrete or continuous random variable and  f   is a function that is continuous and 

strictly monotone over the domain of Y.2 This concept has a shorter intellectual history, with origins 

in the 1920s (Muliere and Parmigiani 1993). It will be unfamiliar to most readers. 

To illustrate the mechanics, a simple setting to consider is a random variable Y that takes only two 

possible values, y1 and y2, with equal probability. To calculate the quasilinear mean of Y, the two 

values are first mapped onto another space using a choice of  f  , like one of the four choices in 

Figure 1. An arithmetic mean of the two new values is then calculated using the respective outcome 

                                                      

2 Computer scientists already use a range of quasilinear means for machine learning, but not as features of an outcome 

distribution to learn about. Instead they use the means to summarise explanatory variables. See James (2016, Ch 5) 

for an illustration. 
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probabilities. Mapping this arithmetic mean back onto the original space produces the quasilinear 

mean of Y. 

Figure 1: Simple Examples of Quasilinear Means 

Outcomes y1 and y2 each have 50 per cent probabilities 

 

Different choices for the curvature of  f   generate the specific cases. Emphasis is on curvature 

because each  f   is unique only up to an affine transformation  f   , where  and  are 

both constants and 0  . A notable specific case uses  f Y Y , which defines the arithmetic 

mean. Hence one of several alternate names for quasilinear mean is quasi-arithmetic mean.3 Some 

other notable specific cases use:    lnf Y Y , which defines the geometric mean;   1f Y Y  , 

which defines the harmonic mean; and   2f Y Y , which defines the quadratic mean. 

Two other types of  f   come up in this paper but not in the literature on quasilinear means. The 

first is the inverse hyperbolic sine (IHS) transformation,     
1/2

2log 1f Y Y Y   , or sometimes 

just    1sinhf Y Y . The second is    lnf Y Y   , where  is a small and strictly positive 

                                                      

3 Other names are generalised f-mean and Nagumo-Kolmogorov mean, after contributions in Nagumo (1930) and 

Kolmogorov (1930). 
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constant. I will call this a gamma-shifted-log (GSL) transformation, and denote it with  gsl Y . Both 

types define quasilinear means that I will show relate to common econometric approaches. 

Quasilinear means have properties that are excellent for the policymaker. Section 5 will discuss them 

in some detail. 

3. Switching Can Transform Conclusions 

3.1 Examples in Trade 

Anderson (2011) writes that the so-called gravity model has ‘long been one of the most successful 

empirical models in economics’ (p 133). Starting with Tinbergen (1962), it has been the subject of 

a large empirical literature on the determinants of trade flows in particular. A stylised form of the 

set-up most commonly used today is 

 31 2
0ij i j ij ijT S S D

    (4) 

where: Tij is trade from country i to country j; Si is output size of country i; Dij denotes ‘distance’, 

covering sources of trade resistance like trade policies and physical distance; the various k are 

parameters of interest to the researcher (mostly elasticities); and ij is a random error term, which 

has properties that I deliberately leave undefined (for now). 

The literature contains many methods for estimating the elasticities and, in the latest Handbook of 

International Economics, Head and Mayer (2014) write that choosing among them is a ‘frontier’ 

issue. But it turns out that in many cases the choice just amounts to deciding which quasilinear 

mean to target. Although not deliberately, the different estimation methods target at least four 

different types of quasilinear mean: 

1. Tinbergen (1962) log-transformed both sides of Equation (4) and applied OLS. Two recent 

papers, Petersen (2017) and Mitnik and Grusky (2017), show that the method effectively targets 

elasticities for the geometric mean of trade. Postponing a more complete econometric discussion 

for Section 5.4, the idea is that the method is consistent and unbiased for the elasticity 

parameters that are defined by the error condition 

  ln , , 0ij i j ijS S D  
 

 (5) 

in which case 

    31 2
0exp ln , ,ij i j ij i j ijT S S D S S D

   
 

 (6) 

The left-hand side of Equation (6) defines a geometric mean. 

2. Another estimation method takes the same route, except that it swaps the log transformation 

of the dependent trade variable with a GSL transformation. Researchers have used this approach 

when working with datasets containing zero values for some trade flows, which then have 
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undefined logarithms.4 A contribution of this paper is to show that the effective targets are 

elasticities for GSL means of trade. The logic will be similar to the geometric case, with an added 

complication. 

3. Another method takes the same route again, except for IHS-transforming the dependent trade 

variable. It too is a solution for zero values. It was popularised by Burbidge, Magee and Robb 

(1988) and is more common outside of trade.5 A contribution of this paper is to show that the 

effective targets are elasticities for IHS means. 

4. A final group of methods includes Poisson pseudo-maximum likelihood (PPML), gamma pseudo-

maximum likelihood (GPML) and nonlinear least squares (NLS). An influential paper by 

Santos Silva and Tenreyro (2006) introduced these methods to the trade literature. Starting 

with an explicit assumption that researchers are aiming to learn about a conditional arithmetic 

mean – earlier papers are unclear on this – they argue that the other methods are inconsistent 

for the target elasticities regardless of whether there are zeros. 

It stands to reason, then, that we can view the inconsistencies raised in Santos Silva and 

Tenreyro (2006) as actually being the footprint of targeting different quasilinear means. Hence their 

paper is informative for the importance of choosing means carefully. 

To argue their case, Santos Silva and Tenreyro draw partly on a set of simulations, which use log 

normal distributions so there are no zeros to worry about. Inspecting their preferred data-generating 

process, it is clear that the arithmetic and geometric means trace out two distinct functions (Figure 2; 

I focus on these two means because they are far apart). As is the case for all non-degenerate 

distributions, Jensen’s inequality implies that the geometric mean is smaller than the arithmetic mean 

for every value of the independent variable. 

Since the data-generating process is orderly, without unruly changes in variance and higher 

moments, the slopes of the arithmetic and geometric means look similar. Still, the elasticity of trade 

with respect to x is everywhere larger for the geometric mean, owing to base effects. Unsurprisingly 

then, Santos Silva and Tenreyro find that the Tinbergen method overstates their target elasticity in 

the simulation. Their other data-generating processes produce wider differences. 

                                                      

4 A sophisticated version is Eaton and Tamura (1994). They treat  as a threshold value under which trade is censored 

as a zero, and use maximum likelihood estimation. 

5 Johnson (1949) introduced the IHS transformation to the statistics literature. Recent econometric applications include 

research on household finances (Clemens and Tiongson 2017), deforestation (Jayachandran et al 2017), 

entrepreneurship (McKenzie 2017), knowledge spillovers (Bahar and Rapoport 2018), and employment support 

programs (Bellemare and Wichman forthcoming). 
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Figure 2: Two Quasilinear Means 

Uses ‘Case 2’ data-generating process from Santos Silva and Tenreyro (2006), 
fixing their dummy variable at 0 

 

Santos Silva and Tenreyro (2006) also conduct an empirical comparison of methods, on a cross-

section of 136 countries in 1990. They use a ‘traditional’ set of explanatory variables and a set from 

Anderson and van Wincoop (2003, AVW), which includes controls for so-called multilateral 

resistance. To abstract from the issue of zeros, they use a trunwcated version of the sample to 

compare the Tinbergen and PPML estimation methods on both sets of explanatory variables. Table 1 

displays the effect sizes that differ most. It shows that the PPML estimates imply much smaller 

effects (in magnitude) of physical distance and colonial ties than the Tinbergen estimates. The 

estimated impacts of FTAs are different too, particularly in the traditional model.6 The sheer size of 

the differences suggests that the true data-generating process is far less orderly than the one in 

Figure 2. 

Then on the full sample of 18,360 observations, Santos Silva and Tenreyro (2006) estimate the 

gravity parameters with NLS, PPML, and the method based around a GSL transformation. Again, 

several of the differences are stark, particularly between the methods that target different 

quasilinear means (Table 2). Methods that target arithmetic means (NLS and PPML) still estimate 

noticeably lower (in magnitude) effects of distance and colonial ties. The differences might reflect a 

degree of sampling error, but Fally (2015) makes similar comparisons on more recent data, obtaining 

comparable results. 

                                                      

6 As per Halvorsen and Palmquist (1980), adjustments to the point estimates are required to support interpretations 

that adhere strictly to the table’s row descriptions. Except for scaling coefficients by factors of 10, I have presented 

the parameters in their raw form to facilitate a simpler crosscheck against the Santos Silva and Tenreyro paper. 
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Table 1: Percentage Change in Fitted Bilateral Trade, without Zeros 

Selected model coefficients only 

 Traditional  AVW version 

OLS 

ln(Tij) 

PPML 

Tij 

OLS 

ln(Tij) 

PPML 

Tij 

10% more physical distance –11.7** 

(0.3) 

–7.8** 

(0.6) 

 –13.5** 

(0.3) 

–7.7** 

(0.4) 

Having colonial ties 39.7** 

(7.0) 

1.9 

(15.0) 

 66.6** 

(7.0) 

3.8 

(13.4) 

Exporter is landlocked –6.2 

(6.2) 

–87.3** 

(15.7) 

   

10% more importer remoteness(a) –2.1* 

(0.9) 

5.5** 

(1.2) 

   

Having an FTA together 49.1** 

(9.7) 

17.9* 

(9.0) 

 31.0** 

(9.8) 

37.4** 

(7.6) 

Sharing a border 31.4* 

(12.7) 

20.2 

(10.5) 

 17.4 

(13.0) 

35.2** 

(9.0) 

Effective observations 9,613 9,613  9,613 9,613 

Notes: ** and * denote statistical significance at the 5 and 10 per cent levels, respectively; figures in parentheses are standard errors 

 (a) Remoteness is a measure of distance to all other countries 

Source: Santos Silva and Tenreyro (2006) 

 

Table 2: Percentage Change in Fitted Bilateral Trade, with Zeros 

Selected model coefficients only 

 Traditional  AVW version 

OLS 

ln(Tij + 1) 

PPML 

Tij 

OLS 

ln(Tij + 1) 

PPML 

Tij 

10% more physical distance –11.5** 

(0.3) 

–7.8** 

(0.6) 

 –13.3** 

(0.4) 

–7.5** 

(0.4) 

Having colonial ties 39.2** 

(7.0) 

2.4 

(15.0) 

 69.3** 

(6.7) 

7.9 

(13.4) 

Exporter is landlocked 10.6 

(5.4) 

–86.4** 

(15.7) 

   

10% more importer remoteness(a) –1.1 

(0.9) 

5.6** 

(1.2) 

   

Having an FTA together 128.9** 

(12.4) 

18.1* 

(8.8) 

 17.4 

(13.8) 

37.6** 

(7.7) 

Sharing a border –24.1 

(20.1) 

19.3 

(10.4) 

 –39.9* 

(18.9) 

37.0** 

(9.1) 

Effective observations 18,360 18,360  18,360 18,360 

Notes: ** and * denote statistical significance at the 5 and 10 per cent levels, respectively; figures in parentheses are standard errors 

 (a) Remoteness is a measure of distance to all other countries 

Source: Santos Silva and Tenreyro (2006) 
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3.2 Examples in Wages 

Others have made similar comparisons in applications outside of trade, partly reflecting the 

widespread influence of the Santos Silva and Tenreyro (2006) paper. Petersen (2017), for example, 

studies the relationship between employment status (self-employed versus contract employed) and 

annual earnings, using a sample of 12,800 native-born black men in California. With a simple 

multivariate set-up, he shows that GPML, PPML, and NLS estimate a positive premium for the self-

employed that is between 7 and 15 per cent and statistically significant. These are all estimated 

differences in arithmetic means. Using the Tinbergen method, he estimates a premium for the self-

employed that is minus 16 per cent and statistically significant. This is an estimated difference in 

geometric means, which he emphasises. The contrasting narratives are consistent with self-

employed people having much wider variation in incomes than contract-employed people, because 

the geometric mean penalises dispersion.7 

Gabaix and Landier (2008) study the determinants of CEO earnings, using samples of between 3,000 

and 8,000 compensation packages for CEOs in the United States. Though they do not show the 

comparison, they report that PPML and the Tinbergen approach both produce ‘extremely close 

results’ (p 70). So here the choice between targeting arithmetic and geometric means looks 

inconsequential. 

Bellemare and Wichman (forthcoming) estimate the effect on annual earnings of a worker support 

program. Using data from LaLonde (1986), their sample consists of 445 disadvantaged US workers, 

to which the program was randomly assigned. Using the method that targets the IHS mean, the 

program is estimated to increase annual earnings by 148 per cent.8 Using the method that targets 

the GSL mean, the estimate is 164 per cent. The contrast is material but not stark. 

3.3 An Example in Hospital Costs 

Manning, Basu and Mullahy (2005) study the effect of introducing ‘hospitalists’ on the cost of patient 

care, with a sample that covers 6,500 patient cases at the University of Chicago Medical Center.9 

Using both the GPML and Tinbergen methods, the hospitalists had an estimated impact that was 

statistically and economically insignificant. Here the choice between targeting geometric and 

arithmetic means looks inconsequential again. 

4. Existing Preferences for Targets Conflict 

How did Santos Silva and Tenreyro (2006) justify their assumption that the arithmetic mean is the 

appropriate focus in the trade application? 

The problem, of course, is that economic relations do not hold with the accuracy of physical laws. All 

that can be expected is that they hold on average. Indeed, here we interpret economic models like the 

                                                      

7 Petersen writes down the exact conditions under which arithmetic and geometric mean functions have different slope 

coefficients, and they are complicated. 

8 They also provide methods that are necessary to back out precise elasticities using these approaches. 

9 Using the authors’ words, ‘Hospitalists are attending physicians who spend 3 months a year attending on the inpatient 

words [sic], rather than the 1 month a year typical of most academic medical centers’ (p 482). I report the estimates 

without ‘smearing factors’. 
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gravity equation as yielding the expected value of the variable of interest, y ≥ 0, for a given value of the 

explanatory variables … (Santos Silva and Tenreyro 2006, p 643) 

They then reference material from a textbook by Arthur Goldberger: 

When the theorist speaks of Y being a function of X, let us say that she means that the average value 

of Y is a function of X. If so, when she says that g(X) increases with X, she means that on average, the 

value of Y increases with X. (Goldberger 1991, p 5) 

Santos Silva and Tenreyro later dismiss medians as an option, on account of the high incidence of 

zeros in comprehensive trade samples. No consideration is given to other quasilinear means, which 

I establish in this paper as being feasible targets. 

There have, however, been several papers that have already identified the feasibility of 

econometrically targeting the special case of the geometric mean (when there are no zeros), 

particularly since the Santos Silva and Tenreyro paper was published. Two are in health applications 

(Basu, Manning and Mullahy 2004; Manning et al 2005). Another two are in intergenerational 

mobility applications (Jäntti and Jenkins 2015; Mitnik and Grusky 2017). And another two again are 

in labour applications (Petersen (2017); Hansen (2019), the latter is a draft manuscript). Judging by 

sentiment in Olivier, Johnson and Marshall (2008), geometric mean targeting seems more common 

in the medical sciences.10 

So what are the views of these different authors on the merits of targeting geometric means? 

Petersen (2017) is most dismissive: 

In terms of best practice, the coefficients for the conditional geometric mean of the dependent variable 

are rarely of substantive interest, whereas those for the conditional arithmetic mean are. (p 150) 

Another group is less dismissive but still favours arithmetic means. Inertia seems to play a role: 

We cannot rule out that this elasticity, were it estimated robustly and without bias (a point to which we 

will return), might be of interest under some circumstances. But a case for estimating it has not, to our 

knowledge, been made. (Mitnik and Grusky (2017, p 8); the point to which they return is about zeros.) 

In what follows, we adopt the perspective that the purpose of the analysis is to say something about 

how the expected outcome, E(y|x), responds to shifts in a set of covariates x. Whether E(y|x) will always 

be the most interesting feature of the joint distribution (y,x) to analyze is, of course, a situation-specific 

issue. However, the prominence of conditional-mean modelling in health econometrics renders what we 

suggest below of central practical importance. (Basu et al 2004, p 751) 

In contrast, Olivier et al (2008), Jäntti and Jenkins (2015) and Hansen (2019) seem to approve of 

targeting geometric means. Hansen writes that the arithmetic mean ‘arises naturally in many 

economic models’ (p 13), but later notes that in labour research it helps to model the log wage 

because its conditional distributions are less skewed. Estimated relationships become more robust, 

i.e. less sensitive to small changes to tails of the conditional wage distribution. In a subsequent 

                                                      

10 Gorajek (2018) also shows that index functions can be understood as coming from econometric estimators of different 

quasilinear means. 
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footnote he makes a connection to the geometric mean, so the approval is implicit. The Jäntti and 

Jenkins (2015) approval is also implicit. The Olivier et al paper recommends targeting the geometric 

mean when a log transformation helps to normalise the conditional distribution of the outcome 

variable, facilitating inference in small samples. They also cite several other medical science papers 

that already take this approach. 

What to make of these implicit disagreements? A resolution is important for policymakers, but the 

papers with conflicting views do not discuss each other. Moreover, they do not consider other 

quasilinear mean options, or other relevant decision criteria. This is an odd state of affairs. In the 

gravity case, Baldwin and Taglioni (2007) write that omitting controls for multilateral resistance is a 

‘gold medal mistake’. Yet Tables 1 and 2 show that the choice of mean is at least as influential. 

5. Good Justification Comes from the Application 

5.1 Certainty Equivalence 

Muliere and Parmigiani (1993) explain how quasilinear means relate to the literature on expected 

utility theory. The link turns out to be one of the most helpful tools for judging which quasilinear 

mean, if any, is the best target for a forecast or policy evaluation. To my knowledge I am the first 

to use the link for econometric applications. 

The idea is that the functions  f   that distinguish between quasilinear means can be understood 

as Bernoulli utility functions  u   from the celebrated expected utility framework of von Neumann 

and Morgenstern (1944, VNM).11 Hence each quasilinear mean can be viewed as a certainty 

equivalent of a probability distribution under a particular specification of policymaker preferences 

over the possible outcomes of Y. Equivalently, each quasilinear mean can be viewed as a certainty 

equivalent under a particular specification of policy maker risk aversion over the possible outcomes 

of Y. 

To make the point more precisely, VNM prove that if and only if a policymaker has rational 

preferences over distributions of Y that satisfy the two classic axioms of ‘continuity’ and 

‘independence’ (see Mas-Colell et al (1995)), the policymaker effectively ranks each distribution 

according to the corresponding arithmetic mean of u(Y). And if u(Y) is itself continuous and strictly 

monotone – assumptions that are common in economic applications – then the policymaker 

effectively ranks distributions according to the quasilinear mean for which    f u   . For informed 

decision-making, the relevant quasilinear mean becomes the best standalone summary of uncertain 

outcomes. 

The infinite number of possible options can make an objective selection of  u   difficult. However, 

to justify our empirical methods we economists routinely specify Bernoulli utility functions for, say, 

households (often using the log transformation). It should be at least as achievable to specify utility 

functions for the policymakers that are the intended consumers of our research. Moreover, it is often 

possible to argue for policymaker attitudes towards risk in general ways: 

                                                      

11 Since there is no consensus on naming conventions here, I follow the textbook by Mas-Colell, Whinston and 

Green (1995). 
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 In western democracies, governments have revealed in their tax and social security systems an 

aversion to income inequality. So when modelling individual incomes, like in Petersen (2017) and 

Mitnik and Grusky (2017), it is appropriate to target quasilinear means that are certainty 

equivalents under risk aversion, if those governments are the intended audience. The utility 

function should then be concave, i.e. have diminishing marginal utilities. The geometric, IHS, and 

GSL means are all examples of such certainty equivalents, although it is unclear whether the 

degree of risk aversion they embody will be too high or low.12 In any case, it is sensible to 

characterise Petersen’s earnings data as revealing a premium for contract employment. 

 Governments that fund healthcare systems seek to economise on total taxpayer expense. They 

are indifferent between, say, having two flu patients costing $5,000 each, and two flu patients 

costing $3,000 and $7,000, all receiving equally effective care. So when modelling the costs of 

caring for individual patients, as in Manning et al (2005), it is appropriate to adopt a risk-neutral 

position. The arithmetic mean makes sense. 

5.2 Loss Function Minimisation 

It is a classic result in statistics that the arithmetic mean equals the optimal (‘best’) predictor, if we 

define the optimal predictor as function  *g X in: 

  
 

  
2

* arg min
g

g Y g  
  X

X X  (7) 

Here,  is any real constant and g(X) can be any real-valued function of X. The expression 

  
2

Y g  X  is what the literature calls a quadratic cost/loss function. It is one of many potential 

specifications for the costs of prediction errors as incurred by the relevant policymaker. 

By the same logic, a policymaker with a different loss function will find a different predictor optimal. 

So another way to choose targets is to specify the appropriate policymaker loss function. This is a 

common approach in forecasting already (see Granger (1999)) and advocated in a more general 

setting by Manski (1991). Targets that have been justified in this way include quantiles (Koenker 

and Bassett 1978), expectiles (Newey and Powell 1987), and many others. 

A recent statistics note by de Carvalho (2016) shows that sample versions of quasilinear means can 

be justified with the general loss function      
2

f Y f g  X , and I extend the result to 

population versions (Proposition 1, Appendix A.1). Figure 3 plots the different types using a 

hypothetical trade example and, for context, includes some loss functions that are outside the 

quasilinear family. Those are indicated in the figure by ‘f(Y) = na’. The vertical axes share a common 

linear scale that is otherwise arbitrary, since the functions are unique only up to . 

                                                      

12 If one believed income redistribution to be costless, a case for the arithmetic mean could be made even in this case. 
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Figure 3: Loss Function Examples 

For a hypothetical fitted value of US$2 billion in trade 
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Two points deserve highlighting: 

1. The geometric mean is optimal when the costs of misses are quadratic in roughly the percentage 

difference between outcomes and predictions, which is an attractive feature for modelling 

growth (in index form, so there are no zero or negative values). For instance, to meet their 

inflation objectives over long horizons, central banks need to meet the equivalent short-horizon 

objectives in the geometric mean, because the short-horizon outcomes compound on each 

other. Pension fund managers face an analogous task. That said, the difference between mean 

types for inflation will be small because inflation has low variability in developed countries. 

2. The loss functions clarify the role of ‘linearisation’ in machine learning. There the idea is that, if 

predictor g(X) is nonlinear in parameters, converting an intended loss function of   
2

Y g  X  

to      
2

f Y f g  X  can simplify parameter estimation without materially changing the 

target (see Bartoszuk et al (2016)). Proposition 1 shows that the simplification actually entails 

a change in the type of quasilinear mean target. The difference is immaterial only if the 

difference between the quasilinear means are. 

The literature has also used the classic quadratic loss function to define predictors that are optimal 

only among the g(X) that take some common functional form g(X; ), where  is a vector of 

parameters. For instance, predictor g(X; *) can be defined as optimal (‘best’) within the class of 

predictors g(X; ) on account of 

   
2

* arg min ;Y g  
  π

π X π  (8) 

Since this definition shares a loss function with the arithmetic mean, these predictors are considered 

approximations to arithmetic means. They are often the effective targets of research when it has to 

work with specific functional forms (Angrist and Pischke 2008, p 38).13 

By extension, we can call h(X; *) an approximation to quasilinear mean f Y  X  when 

      
2

* arg min ;f Y f h  
  π

π X π  (9) 

Conveniently, just as a quasilinear mean of Y can be obtained by f –1 transforming an arithmetic 

mean of f(Y), a quasilinear approximation can be obtained by f –1 transforming an arithmetic 

approximation of f(Y) (Proposition 2, Appendix A.1). Note the approximations here are still 

population concepts. 

                                                      

13 Working with a specific functional form is usually necessary to retain degrees of freedom when work moves to an 

estimation phase. The exception is when explanatory variables are all discrete and there are few of them, in which 

case researchers can work with models that are ‘saturated’ with dummies. The parameter values in approximations 

(i.e. *) are sometimes called pseudo-true values. 
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5.3 Predictable Mathematical Behaviours 

An existing mathematics literature has produced characterisations of quasilinear means. In other 

words, it has identified combinations of useful properties in a functional that are satisfied if and only 

if it takes the quasilinear form. Like utility and loss functions, the characterisations provide useful 

criteria for judging the suitability of quasilinear means. To reproduce all of the characterisations here 

would be tedious, because means can apply to different variable types (continuous, discrete, 

bounded, unbounded), with different technical characterisations that convey the same rough ideas. 

A subset, and even then treated informally, can convey the key parts. A more rigorous treatment is 

available in Muliere and Parmigiani (1993). 

One of the most relevant characterisations applies to random variables that are continuous and 

bounded (with ‘compact support’). A functional    that takes these random variables as inputs 

has the quasilinear form of  f   if and only if the functional is: 

1. reflexive, meaning that if Y takes only one possible value  when X equals some vector , then 

 Y  X χ . This is a fundamental property of any measure of central tendency. 

2. strictly monotonic, meaning that if the conditional cumulative densities for possible realisations 

of Y are all weakly larger than for the same realisations of Y  , and somewhere strictly larger, 

then    Y Y X X . This rules out functionals that produce quantiles and the mode, and 

can be seen as both an advantage or disadvantage. The celebrated robustness quality of 

quantiles comes from an absence of strict monotonicity, for example. 

3. associative, which is less intuitive, guaranteeing that if    Y Y X X , then for fractions 

1 and 2 summing to 1,    1 2 1 2Y Y Y Y      X X . This completes the 

characterisation. 

Adding other binding properties to any characterisation of quasilinear means (not just the one above) 

can then usefully characterise sub-classes. In particular, we might call for the quasilinear mean to 

be: 

4. linearly homogeneous, meaning that f fY Y        X X  for any constant real . Hence 

arbitrary changes to the units of measuring Y equally affect the mean. This is a necessary but 

not sufficient condition for a quasilinear mean to be a linear operator. 

Adding linear homogeneity produces a characterisation of all quasilinear means for which 

  rf Y Y ,  0r   or for which    lnf Y Y . Together these are called ‘generalised’ or ‘power’ 

means. Common central tendency measures from outside the quasilinear family generally satisfy 

linear homogeneity as well. 

Parts of the econometric literature reveal a strong preference for linear homogeneity. Providing a 

typical example, Head and Mayer (2014) warn that gravity estimates from the GSL-based method 

move a lot under arbitrary changes to the units in which trade is measured, and so in their 

assessment of estimators, this one ‘does not deserve Monte Carlo treatment’ (p 178). The perceived 

problem arises because the GSL transformation does not produce a power mean. Viewed through 

certainty equivalence though, the Head and Mayer appraisal looks too harsh. For non-power means, 
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to arbitrarily change units of measurement is to arbitrarily change the effective representation of 

preferences. None of the representations are necessarily bad; it is changing them arbitrarily that 

is.14 

Another requirement could be: 

5. additivity, meaning that f fY Y          X X . With linear homogeneity already in 

place, introducing additivity is necessary and sufficient for a quasilinear mean to be a linear 

operator. 

Adding linear homogeneity and additivity to any characterisation of quasilinear means produces an 

exclusive characterisation of the arithmetic mean. Hence it is the only quasilinear mean to be a linear 

operator. The literature favours linear operation for its convenience, but in multiplicative models like 

the gravity case, it is not useful. 

5.4 Feasible Implementation 

Targets that accommodate simpler and more transparent analysis are, all else equal, more attractive 

choices. Indeed, perceived practical advantages of the arithmetic mean have mattered a lot for its 

popularity in policy evaluation and forecasting. For example: 

Even though other definitions of typical are interesting, they lead to more complications when discussing 

properties of estimates under randomization. Hence we assume the average causal effect is the desired 

typical causal effect ... (Rubin 1974, p 690) 

The overwhelming majority of forecast work uses the cost function [   
2

Y g  X ], largely for 

mathematical convenience. (Granger (1999, p 166); my notation.) 

Granger did not specify what mathematical conveniences he had in mind. Presumably he would have 

echoed the sentiment of Rubin, that there already exists a large and familiar toolkit for learning 

about the arithmetic mean. Notable examples are OLS, the law of large numbers, and the central 

limit theorem. Each goes back over 200 years. 

But these conveniences are easily overstated. This section shows that empirical estimates of 

quasilinear means of Y (or their approximations) can be obtained by  1f    transforming empirical 

estimates of an arithmetic mean of f (Y) (or its approximations). Properties describing the accuracy 

of the estimates always survive the  1f    transformation with high fidelity: 

 An estimate that is consistent for  f Y   X χ  is, by  
1

f


  transformation, also consistent 

for f Y   X χ . This is a trivial application of the continuous mapping theorem, and extends 

to quasilinear approximations. 

                                                      

14 In fact, the Head and Mayer illustration is just another example that quasilinear mean choices matter; unless the units 

of  change when the units of measuring Y do, changing the measurement units of Y implements different types of 

GSL mean targets. 
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 An estimator that is unbiased for  f Y   X χ  is, by  
1

f


  transformation, what I call ‘quasi-

unbiased’ for f Y   X χ  (Proposition 3, Appendix A.1). Usefully, quasi-unbiasedness for 

f Y   X χ  constitutes optimal centering under the same loss function conditions that justify 

learning about f Y   X χ  in the first place (Proposition 4, Appendix A.1). Section 6 will 

pick this up again, challenging a literature on bias corrections. 

 Any confidence interval for  f Y   X χ  is, by  
1

f


  transformation, an equivalent 

confidence interval for f Y   X χ  (Proposition 5, Appendix A.1). The proof extends trivially 

to confidence intervals for approximations. Confidence intervals for specific parameters, or 

functions of those parameters, are obtained from the first stage in the usual ways. 

The bottom line: to estimate quasilinear means we need only to know how to estimate arithmetic 

means of  f   transformed variables. Since the conceptual demands of that task are the same as 

for untransformed variables, we can draw on a large and familiar toolkit. In particular: the law of 

large numbers and the central limit theorem are still useful and relevant; the frequentist approaches 

of maximum likelihood, method of moments, and least squares are still all on the table; and Bayesian 

approaches are still useful. To provide some concrete examples, Appendix A.2 explains in more detail 

how the various gravity estimators target the different quasilinear mean types. 

This still invites questions about which quasilinear means are easier to target. Here again, different 

quasilinear means shine in different circumstances. In fact, this is an implicit conclusion of Box and 

Cox (1964) and the large follow-up literature on power transformations (surveyed in Sakia (1992)). 

The literature argues that, with standard tools, it will sometimes be easier to conduct statistical 

inference on the conditional arithmetic mean of f (Y) than on the conditional arithmetic mean of Y. 

The basis for the argument is that the transformations can make residuals more normally distributed, 

which simplifies inference. (The transformations can also bring residuals closer to homoskedasticity, 

but nowadays this poses fewer problems for inference.) Since I have shown that the same 

transformations implement different quasilinear mean targets, it stands to reason that some 

quasilinear means can be easier targets than others. The position of Olivier et al (2008) is a special 

case of this argument, applied to the geometric mean. 

If there are several easy options available, and the other selection criteria do not provide clear 

direction – this is my perception of the gravity case – estimating with each of the easiest and most 

transparent options can be a useful form of sensitivity analysis. 

5.5 Useful Miscellanea 

A common objection to these arguments for using alternative quasilinear mean types is that they 

are ‘impure’; the geometric mean of a normal distribution shifts with a change in the variance 

parameter and therefore mixes information about the location and dispersion of the distribution. But 

variance is a measure of dispersion that centres on the arithmetic mean by definition. Changing to 

the geometric variance (    exp lnVar Y X ) makes the arithmetic mean impure by the same 

argument. The different quasilinear approaches can all describe distributions coherently, when their 

use is internally consistent. 
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Some of the quotes in Section 4 also seem to imply that economic theories have a natural affinity 

with the arithmetic mean. Impossible. Any specific theory that exactly describes an arithmetic mean 

has an equivalent representation in another quasilinear form. In particular, if and only if a theoretical 

prediction g(X) gives the conditional arithmetic mean of Y, we can transform the prediction by any 

 1f   , and obtain a conditional quasilinear mean of  1f Y
 (Proposition 6, Appendix A.1).15 

More intuitively, a theory must hold in multiple quasilinear mean types or none at all. The same logic 

in a different setting, and without reference to quasilinear means, appears in Ferguson (1967, 

p 148). 

So how to decide which quasilinear mean, if any, will be described by some representation of a 

predictive theory? In other words, how do we decide which representation, if any, describes an 

arithmetic mean? Tinbergen (1962) and Santos Silva and Tenreyro (2006) do not settle on different 

answers by appealing to economics; they just add mean-zero (arithmetic) errors to different 

transformations of a deterministic gravity equation. This approach has been common in other fields 

too. Barten (1977, p 37), for instance, laments that ‘Disturbances are usually tacked onto demand 

equations as a kind of afterthought’. Eaton and Tamura (1994) introduce mean-zero errors deeper 

into their gravity microfoundations but, even then, convenience looks like it dictates the choice. 

I do not offer answers to these challenging questions. In any case, to echo sentiment in 

Hansen (2005) and Solon, Haider and Wooldridge (2015), we economists already acknowledge that 

our models are nearly always misspecified at least somewhat. We are comfortable using good 

approximations. Prioritising the needs of the policymaker, over those of the models we write down, 

is uncontroversial. 

6. Common Bias Corrections are Unnecessary 

If we do choose to work with other quasilinear mean types, logical consistency will dictate changes 

to several aspects of our analysis. For instance, the discussion in Section 5.4 established that, under 

the same loss function conditions that justify learning about a quasilinear mean, quasi-unbiasedness 

constitutes optimal centering for estimators. Straight unbiasedness is standard, but not necessarily 

the right criterion. In this section, the same logic shows that a well-established bias correction for 

parameter estimates, currently argued to be appropriate for log-linear models, is actually a 

counterproductive complication to research. 

The seminal work in this literature is Goldberger (1968) but a useful place to start is Halvorsen and 

Palmquist (1980). The Halvorsen and Palmquist paper is about the interpretation of parameters in 

models of the general form 

   , ,ln i m m i n n i i

m n

Y a b Cont c Dummy       (10) 

where the Contm are continuous variables, the Dummyn are dummy variables, and the a, bm, cn are 

parameters of interest. Halvorsen and Palmquist do not explicitly assign a property to the error term 

                                                      

15 Granger (1999) makes an open-ended remark that it would be strange to use the same loss function for Y as for some 

nonlinear function of Y. This proposition provides a class of examples. Using the quadratic loss function of the 

arithmetic mean on Y is equivalent to, say, using the geometric loss function on exp(Y). 
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but their primary example – Hanushek and Quigley (1978) – uses OLS. So it is safe to suppose they 

intend either 

  0 and/or 0i i i i     X X  (11) 

By the same reasoning as the gravity case, the parameters then describe the conditional geometric 

mean of Y (or a geometric approximation if only the second of the error specifications holds). Since 

the literature is about bias, I will work only with the first of the error specifications, which implies 

the second.16 

At the time it was widely understood that the correct interpretation of 100bm is the percentage 

change in fitted Y associated with a small change in Contm. That is, it was understood that 1 + bm is 

the factor change in fitted Y associated with a small change in Contm. But it was also common for 

researchers to apply the same respective interpretations to 100cn and 1 + cn. Halvorsen and 

Palmquist show this is incorrect because the dummy variable is dichotomous. Small changes are 

undefined. So 1 + cn is actually equal to 1 + ln(1 + gn) from17 

   ,

,1 expn iDummy

i n m m i i

mn

Y g a b Cont 
   

      
  

  (12) 

Hence the true factor change in fitted Y associated with the change in Dummyn is 

  1 expn ng c   (13) 

which is the object of interest. Using ˆ1 OLS
nc , Hanushek and Quigley (1978) estimate that black US 

college graduates earn 1.64 times more than black college dropouts that are otherwise similar. Using 

 ˆexp OLS
nc , Halvorsen and Palmquist (1980) write that the figure should be 1.9 times. 

A response by Kennedy (1981), drawing on Goldberger (1968), then argues that the estimator 

 ˆexp OLS
nc is biased for exp(cn), because 

  ˆ ˆexpOLS OLS
n nc c c c        

 (14) 

Kennedy (1981) then suggests a bias-corrected estimate for exp(cn), which is lower. Subsequent 

papers by Giles (1982) and van Garderen and Shah (2002) tried to refine Kennedy’s method, but 

ultimately endorsed his solution. It is now common and found in, for instance, the international 

consumer and producer price index manuals (International Labour Office et al 2004, p 118; 

International Labour Organization et al 2004, p 184). Some research ignores the correction because 

                                                      

16 When only the second is met, OLS produces consistent estimates of the model parameters, but not unbiased ones. 

17 Halvorsen and Palmquist worked with the form 100cn. For my purposes it will be more helpful to set up the problem 

with the equivalent 1 + cn. 
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it is considered small. The paper by van Garderen and Shah does show examples in which it is 

meaningful though. 

But why, if we have chosen to learn about the conditional geometric mean of Y, would we subject 

 ˆexp OLS
nc  to a test of unbiasedness, which is a criterion of central tendency that is based on the 

arithmetic mean? By extension of Proposition 4, logical consistency dictates the use of a geometric 

criteria, i.e. a different type of quasi-unbiasedness.18 

To illustrate, let Ŷχ  be a prediction for Y, given some , representing any possible combination of 

the right-hand side variables in Equation (10). Using Proposition 4, under the same loss function 

that warrants targeting the conditional geometric mean of Y, it is optimal that the predictions for Y 

be geometrically unbiased, i.e. that 

     ˆexp ln 1 expnDummy

n m m

mn

Y g a b Cont
   

        
  

χ  (15) 

      ˆˆ ˆ ln 1m m n n m m n n

m n m n

a b Cont c Dummy a b Cont g Dummy       
      (16) 

This already holds for the naïve OLS method under the stated assumptions (plus some standard 

regularity conditions). So it is an attractive feature that 

  ˆ ln 1OLS
n nc g      (17) 

Hence it is an attractive feature of OLS that 

 
     

 

ˆexp ln exp 1

exp

OLS
n n

n

c g

c

   
 



 (18) 

In other words, if we take the loss function seriously, we must desire  ˆexp OLS
nc  to be geometrically 

unbiased for exp(cn), which is already met by the naïve OLS method. Arithmetic unbiasedness is not 

met, nor is it desired. This finding is similar in spirit to the concept of ‘optimal bias’ in the forecasting 

literature (see, for instance, Christoffersen and Diebold (1997)). 

 

 

                                                      

18 Some primitive versions of these ideas appear in another of my working papers: Gorajek (2018). Updates of that paper 

will reduce the overlap. 
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7. Conclusion 

The arithmetic mean is a well-established measure of central tendency and economists now use it 

for many purposes. I show that an alternative option is to target other means in the quasilinear 

family. The family is infinitely large, containing the arithmetic and geometric means as special cases, 

and to target them we can use standard tools. The researcher monotonically transforms the outcome 

variable of interest, uses standard tools to estimate the conditional arithmetic mean function, and 

transforms the estimated function back again. The same applies to confidence intervals. 

The choice to depart from the arithmetic mean can matter a lot for the conclusions that researchers 

offer to policymakers. For instance, across different models and samples of trade, targeting 

alternatives to the arithmetic mean increases the estimated effects of physical distance and colonial 

ties a lot. The estimated effects of FTAs move a lot too, in directions that are more model-dependent. 

In a study about the relationship between self-employment status and wages, key parameter 

estimates remain statistically and economically significant, but change sign. These differences invite 

an important question: how can we researchers worry so much about the confounding effects of 

omitted variables and not choose our means carefully? While sometimes we do target alternative 

types of quasilinear means, we tend to do so unconsciously. 

An ideal way to choose targets is on the basis of policymaker utility. Each quasilinear mean can be 

justified as a certainty equivalent of an outcome distribution under a particular specification of 

policymaker preferences, or risk aversion, over outcomes. For example, in western democracies, 

governments have revealed in their tax and social security systems an aversion to income inequality 

(income ‘risk’). It is hence ideal to focus most income research on quasilinear means that are 

certainty equivalents under risk aversion. Examples are the geometric and IHS means. 

We can also choose targets using the perspective of loss functions, i.e. considering the relative costs 

for the policymaker of different over- and under-predictions. If the costs of over- and under-

predictions are symmetric, the arithmetic mean is usually sensible. The median is also an option. 

Costs will not always be symmetric though. Indeed, ‘an assumption of symmetry is probably a poor 

one’ (Granger 1999, p 166). If the policy objective relates to long-term growth rates, and the 

economist is modelling shorter-term outcomes, the asymmetric loss function of the geometric mean 

will be optimal. Prime examples are models of inflation, for central bankers, and models of financial 

returns, for pension fund managers. 

But it is not always practical to choose targets solely on the basis of policymaker utility, loss 

functions, or other mathematical criteria that I introduce. And with so many options to choose from, 

it is often hard to do objectively. A pragmatic approach will also consider the simplicity of statistical 

inference. What comes of these considerations will be application-specific, just as optimal 

transformations in the work of Box and Cox (1964) are application-specific. Whatever the final 

choice, it helps to state it clearly. If there are several options on the table, as with the gravity model, 

targeting each can be a useful form of sensitivity analysis. 

Readers might still be sceptical about the value of targeting alternative quasilinear means. Quantile 

regression provides a lot of flexibility already and my proposed selection criteria often do not point 

forcefully to a particular type of quasilinear mean. However, to outright reject alternative quasilinear 

means for all applications is to take some other uncomfortable positions. One is to dismiss the 
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ubiquitous estimation method of OLS after log transformation, or in fact any power transformation. 

Another is to dismiss a growing literature that uses IHS transformations. Both sets of techniques 

already do effectively target different quasilinear means. 

If we do choose to work with other quasilinear mean types, logical consistency will dictate changes 

to several aspects of our analysis. For instance, instead of choosing estimators partly on the basis 

of their unbiasedness, the appropriate criteria will be quasi-unbiasedness. The same logic concludes 

that an existing bias correction, argued as appropriate for log-linear models, is a counterproductive 

complication to research. 
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Appendix A: Technical Material 

A.1 Propositions 

Proposition 1. If  
2

E f Y   
 

then for any predictor g(X) and for any strictly positive and fixed 

, 

           
22

ff Y f g f Y f Y 
            

X X  (A1) 

Proof. Define random variable e as equal to    ff Y f Y   X  or, equivalently, to 

   f Y f Y   X . Then 

            
22

ff Y f g e f Y f g 
             

X X X  (A2) 

            
2

2 2 f fe e f Y f g f Y f g  
                    

X X X X  (A3) 

      
2

2 fe f Y f g 
           

X X  (A4) 

 2e      (A5) 

     
2

ff Y f Y
 

      
X  (A6) 

The step from Equation (A3) to (A4) uses the definition for e, which implies that e is uncorrelated 

with any function of X and has an arithmetic mean of 0. The proof just generalises a version for the 

arithmetic mean in Hansen (2019, p 24). 

Proposition 2. Let  be a vector of parameters, and define g(X; ) as a predictor for f (Y) that is 

constrained to take some pre-specified form  ;g X . Likewise, define     1; ;h f gX π X π  as a 

predictor for Y that is constrained to take the pre-specified form  ;h X . Then for any strictly positive 

, 

     
2

* arg min ;f Y g  
  π

π X π  (A7) 

      
2

* arg min ;f Y f h   
  π

π X π  (A8) 
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Proof. Trivially, 

 ( ) ( )( )2* arg min ;f Y gλ = −  π
π X π  (A9) 

 ( ) ( )( )( )( )21* arg min ;f Y f f gλ − ⇔ = −  π
π X π  (A10) 

Proposition 3. Let ( )( )f g χ  be some estimator for ( )f Y =  X χ . 

 ( )( ) ( )f g f Y  =  =    
χ X χ   (A11) 

 ( )
f fg Y ⇔ =  =   χ X χ   (A12) 

where Equation (A12) defines quasi-unbiasedness of ( )g χ  for  f Y =  X χ . 

Proof. The result is a direct application of the definition in Equation (3). 

Proposition 4. Let ( )g χ  be an adjusted version of some fitted value ( )g χ , such that 

( )( ) ( )( ) ( )f g f g= −Ψχ χ χ , where ( ) ( )( ) ( )f g f Y Ψ = −  =    
χ χ X χ  . Hence 

( )( )( )1 ff f g Y−   =  =   
χ X χ  . If ( )2f Y  < ∞  , then for all ( )( )f g χ , for all strictly 

positive λ, and for all χ, 

 ( ) ( )( ) ( ) ( )( )( ) 22
f Y f g f Y f gλ λ

−    − = ≥ − =        
X X χ X X χ   (A13) 

So a fitted value that is quasi-unbiased for a quasilinear mean minimises the same loss function that 
justifies learning about the quasilinear mean in the first place. 

Proof. Define e as equal to ( ) ( )f Y f Y−   X . 

 ( ) ( )( )( ) ( ) ( )( ) ( )( )2 2
f Y f g f Y f gλ λ   − = = − +Ψ =     

X X χ χ X X χ   (A14) 

 ( ) ( ) ( )( ) ( ) ( )( )2
f Y f Y f g f Yλ  = −   − +   +Ψ =     

X X X X X χ    (A15) 

 ( )( ) ( ) ( )( )( )2
e f g f Yλ

 
= − −   −Ψ =  

 
X X X X χ   (A16) 
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( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2
2 2e e f g f Y f g f Yλ  = − −   +Ψ + −   +Ψ =     

X X X X X X X χ    (A17) 

 ( )( ) ( ) ( )( )2
2e f g f Yλ  = + −   +Ψ =   

X X X X χ   (A18) 

 ( )( ) ( ) 22e f g f Yλ λ   ≥ = + −   =     
X χ X X X χ    (A19) 

 ( ) ( )( )( )2
f Y f gλ = − =  

X X χ  (A20) 

The step from Equation (A17) to (A18) relies on the definition for e, which implies that e must be 
uncorrelated with any function of X and has an arithmetic mean of 0. The step from Equation (A18) 
to (A19) is a repeated application of Proposition 1. 

Proposition 5. Let ˆˆ,a b 
   be some confidence interval for ( )f Y =  X χ . 

 ( )( ) ( )( )1ˆ ˆ andfprob a f Y prob f a Y−>  =  = >  =    X χ X χ   (A21) 

 ( )( ) ( )( )1ˆ ˆ fprob b f Y prob f b Y−<  =  = <  =    X χ X χ   (A22) 

Proof. Since ( )f ⋅  is continuous and strictly monotone over the domain of Y, 

 ( )( ) ( ) ( )( )( )1 1ˆ ˆ andprob a f Y prob f a f f Y− −>  =  = >  =    X χ X χ   (A23) 

 ( )( ) ( ) ( )( )( )1 1ˆ ˆprob b f Y prob f b f f Y− −<  =  = <  =    X χ X χ   (A24) 

Note that de Carvalho (2016) also provides a central limit theorem for quasilinear means, using the 
delta method. 

Proposition 6. Let ( )f ⋅  be continuous and strictly monotone over all possible values of random 
variable Y. Then 

 ( )g Y=   X X  (A25) 

 ( )( ) ( )1 1ff g f Y− − ⇔ =  X X  (A26) 

Proof. 

 ( )g Y=   X X  (A27) 
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   1f f Y 
 

X  (A28) 

       1 1 1f g f f f Y    
 

X X  (A29) 

  1f f Y   X  (A30) 

A.2 Gravity Estimators Target Different Means 

A.2.1 The Tinbergen (1962) method 

Tinbergen (1962) and many subsequent papers take logs of the gravity equation and estimate the 

parameters with OLS. Econometrically the method is designed to target   ln ;h X Δ  as defined in 

            0 1 2 3ln ln ln ln ln lnij i j ij ijT S S D          (A31) 

     ln ; ln ijh  X Δ  (A32) 

for which 

      ln 0 and/or ln ln 0ij ij     
   

X X  (A33) 

X is vector shorthand for the independent variables in the gravity equation and  is vector shorthand 

for the k parameters. 

The two error conditions in Equation (A33) distinguish whether   ln ;h X Δ  is exact for 

 ln ijT 
 

X  or just an arithmetic approximation. If the first error condition holds, the second does 

too, and   ln ;h X Δ  is exact. The OLS estimates   ˆln ;h χ Δ  are then consistent and unbiased for 

  ln ;h χ Δ , for all . If only the second error condition holds,   ln ;h X Δ  is an arithmetic 

approximation because  still minimises the standard quadratic loss function. The OLS estimates are 

then only consistent. So far these are standard results from the literature. 

The first error specification implies 

          0 1 2 3ln ln ln ln lnij i j ijT S S D        
 

 (A34) 

    31 2
0exp ln ij i j ijT S S D

   
 

 (A35) 

  ,h X Δ  (A36) 
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So   31 2
0, i j ijh S S D

 X Δ  is defined to describe the conditional geometric mean of trade. 

Alternatively, under only the second error specification,  ;h X Δ  is defined to describe a conditional 

geometric approximation of trade (by Proposition 2). 

Regarding estimation, the  exp   transformations of the fitted values from OLS have the form 

 ˆ;h χ Δ  and, by the continuous mapping theorem and Proposition 4, are attractive estimators of the 

geometric mean (or approximation) of trade. The vector Δ̂  is thus effective in estimating theΔ . 

When Tinbergen used OLS on a logged gravity equation he focused his analysis on a small set of 

countries. A challenge when working with a large or full set of countries is that half of the sample 

can record zero trade values (see, for instance, Santos Silva and Tenreyro (2006) and Helpman, 

Melitz and Rubinstein (2008)). Logs are undefined for those observations and OLS estimation is 

impossible. One option is to truncate the sample. However, the truncated sample over-represents 

observations with positive errors, creating an endogeneity problem. 

Some recent approaches have been able to retain the Tinbergen approach in a full-country analysis 

by explicitly modelling the zeros. Estimation in these cases has been conducted with, say, a two-

stage Heckman-type procedure (Helpman et al 2008), or maximum likelihood (Eaton and 

Kortum 2001).19 The target is still a geometric mean. 

A.2.2 The inverse hyperbolic sine method 

The IHS method uses OLS after log transforming the right side of the gravity equation and IHS 

transforming the dependent variable. Since the IHS transformation is close to the log transformation, 

the idea is to solve the zeros problem without materially compromising the original functional 

relationship. Econometrically, this method targets   ln ;h X Δ  as defined in 

            1
0 1 2 3sinh ln ln ln ln lnij i j ij ijT S S D           (A37) 

     ln ; ln ijh  X Δ  (A38) 

for which 

      ln 0 and/or ln ln 0ij ij     
   

X X  (A39) 

The error conditions in Equation (A39) look the same as in Equation (A33). But they imply a different 

interpretation for Δ , because the IHS transformation has been applied to the left-hand side of the 

gravity equation. For instance, under the first error specification in Equation (A39) it is implied that 

          1
0 1 2 3sinh ln ln ln lnij i j ijT S S D        

 
 (A40) 

                                                      

19 Helpman et al (2008) investigate the intensive margin of trade only. 
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        1
0 3sinh sinh sinh ln lnij ijT D     

 
 (A41) 

    sinh ln ,h X Δ  (A42) 

which also implies that 

     exp ln , andijT h  
 

X Δ  (A43) 

  ,ijT h    X Δ  (A44) 

In other words,  ;h X Δ  here is not defined to describe a geometric or arithmetic mean of trade, as 

it was before. But the method does target an IHS mean of trade, with    sinh ln ;h X Δ . 

Alternatively, under only the second error specification,    sinh ln ;h X Δ  is defined to describe a 

conditional IHS approximation of trade (by Proposition 2). Strictly speaking, Δ  no longer contains 

elasticities, which now depend on X. The elasticities can be read off of the function 

   sinh ln ;h X Δ  though. They will generally be very close to a straight read of Δ , because of the 

similarity between the IHS and log transformations. 

Regarding estimation,  sinh   transformations of the fitted values from OLS produce estimates of 

the form    ˆsinh ln ;h χ Δ . By the continuous mapping theorem and Proposition 4, these are 

attractive estimators of the conditional IHS mean (or approximation) of trade. Bellemare and 

Wichman (forthcoming) show how to infer elasticities from this messy, estimated function. Otherwise 

it is common to crudely base elasticity estimates on a straight read of Δ̂ . 

A.2.3 The Gamma-shifted log method 

This method is identical except for GSL-transforming the dependent variable.20 Repeating the same 

logic, the method targets parameters that define the conditional GSL mean of trade. 

                                                      

20 A sophisticated version of this method is Eaton and Tamura (1994). They treat  as a threshold value under which 

trade is censored as a zero, and use maximum likelihood estimation. 
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