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Abstract 

The market for unsecured overnight interbank loans in Australia is a pivotal financial market; it is 

the first step in the transmission of monetary policy to the rest of the financial system and broader 

economy. Understanding the network of relationships between borrowers and lenders in this 

market, and how it changes during periods of stress, is crucial for understanding the resilience of 

the market. However, a difficulty with analysing this market is that existing methods of 

determining which banks are in the core of the network can be highly inaccurate when the 

network is either highly connected relative to the true proportion of banks in the core, or relatively 

sparsely connected (a novel finding). 

We derive a ‘density-based’ estimator of core/periphery network structures that is designed to 

overcome these inaccuracies. And we show that our estimator outperforms the commonly used 

estimators in numerical simulations. These results have broad applicability to the network analysis 

literature. 

We then use our density-based estimator to analyse the Australian overnight interbank market, 

focusing on the 2007–08 financial crisis. Our results suggest that the crisis had a large and long-

lasting effect on this market. In particular, we find that the typical core size fell from eight to five 

banks during the crisis, because of large reductions in the number of lending relationships 

between some banks. Compared with the pre-crisis period, the remaining core lent much less to 

the periphery, while the periphery lent more to the core; these changes are consistent with models 

of precautionary liquidity demand. 

JEL Classification Numbers: C13, D85, G01, G10, G21, L14 

Keywords: network, core/periphery, interbank 
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‘Seizures in the electricity grid, degradation of eco-systems, the spread of epidemics and the 

disintegration of the financial system – each is essentially a different branch of the same network 

family tree.’ Haldane (2009) 

1. Introduction 

The market for unsecured overnight interbank loans in Australia, known as the interbank overnight 

cash (IBOC) market, is a pivotal financial market. The average interest rate on these loans is the 

Reserve Bank of Australia’s (RBA) operational target for monetary policy; so the IBOC market is 

the first step in the transmission of monetary policy to the rest of the financial system and broader 

economy. As such, its smooth operation is critical, and it is important for the RBA to have detailed 

knowledge about how it functions, especially in times of stress. 

In this paper, we explore the IBOC market through the lens of network theory.1 Network theory 

allows us to identify the lending relationships formed by banks, determine whether these 

relationships make any of the banks central to the proper functioning of the market, and analyse 

how these relationships may change during periods of stress. The answers to these questions 

provide a guide to which interbank relationships are resilient, whether crises can have long-lasting 

effects on the IBOC market, and how to efficiently manage emergency liquidity provision 

(e.g. liquidity provision could be more targeted if we know the relationships between the banks). 

This paper also has a theoretical contribution. First, we find that several of the IBOC market’s 

network properties are consistent with the core/periphery model (first introduced by Borgatti and 

Everett (2000) and adjusted to capture the features specific to interbank markets by Craig and 

von Peter (2014)). The premise of the core/periphery model is that there are two types of banks. 

‘Core’ banks are central to the system; they lend to/borrow from all other banks in the core and to 

some banks outside of the core. ‘Periphery’ banks, instead, lend to/borrow from some core banks, 

but do not transact directly among themselves. Thus, the removal of a core bank can inhibit the 

flow of funds and drastically change the structure of the network. 

There have recently been several studies that analyse interbank markets with the core/periphery 

model.2 And with real-world networks being unlikely to satisfy the idealised core/periphery 

structure outlined above, various methods have been developed to estimate the underlying 

core/periphery structure of these networks.3 However, as far as we are aware, no-one has 

evaluated the various estimators’ relative accuracies. This paper fills this gap. 

                                                      

1 The interconnectedness of the Australian financial system has previously been studied using different data sources. 

Tellez (2013) analyses Australian banks’ large exposures, while Anufriev and Panchenko (2015) estimate 

interconnectedness from partial correlations between entities’ equity returns. Network analyses have been 

conducted for international interbank markets (see Bech and Atalay (2010) and Wetherilt, Zimmerman and 

Soramäki (2010), for example), but not for the IBOC market. 

2 Examples include Craig and von Peter (2014) for Germany, Wetherilt et al (2010) and Langfield, Liu and Ota (2014) 

for the United Kingdom, in ’t Veld and van Lelyveld (2014) for the Netherlands, Martinez-Jaramillo et al (2014) for 

Mexico, and Fricke and Lux (2015) for Italy. 

3 In any real-world analysis, the model used does not capture everything that influences the data (with the external 

influences treated as ‘noise’). For example, two banks that would otherwise only interact with the core may also 

have a direct relationship that developed from their other operations (i.e. outside the IBOC market). Such an 

idiosyncratic relationship would be noise when trying to identify any core/periphery structure. 
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We find that existing estimators can provide wildly varying and inaccurate estimates in networks 

that have either a relatively large or relatively small core (relative to the density of the network, a 

concept explained in Section 3). We analytically derive the source of this problem, and then derive 

a new estimator that is immune to this source of inaccuracy. In numerical simulations, our 

estimator produces lower estimation errors than any of the commonly used estimators when either 

the true size of the core is known to be relatively small, or when no prior information about the 

true size of the core is available. 

Our new estimator can be used on any network that may have a core/periphery structure. 

Therefore, given the increasing use of the core/periphery model when analysing networks, our 

theoretical contribution has broad applicability. 

Returning to our empirical contribution, we show that the core/periphery model provides a better 

explanation of the IBOC market’s features than other canonical network models. So we use this 

model (with our estimator) to analyse the evolution of the market during the 2007–08 financial 

crisis. Prior to the crisis, the IBOC market had a core of around eight banks – the core typically 

included the four major Australian banks, three foreign-owned banks, and one other Australian-

owned bank. The financial crisis caused the core to shrink to around five banks – the four major 

banks and one foreign-owned bank – with the core remaining around this size in the years since 

the crisis. This finding suggests that not all relationships are reliable during times of stress. It also 

indicates that temporary shocks can have long-lasting effects on the IBOC market, which is 

important not only for determining the effect of exogenous shocks but also for evaluating the 

potential effect of any operational changes made by the RBA. 

We also look at changes in the relationships between the core and periphery. We find that the 

number of ‘core lending to periphery’ relationships fell 40 per cent during 2008 (the largest year-

on-year fall in our sample) and continued to trend down following the crisis. Conversely, the 

number of ‘periphery lending to core’ relationships remained broadly unchanged. 

Additionally, we uncover a large shift in the direction of lending volumes. The major banks were 

net lenders to the non-major banks before the crisis. During the crisis, this relationship switched – 

in 2008 the volume of major banks’ loans to non-major banks decreased by 58 per cent, while the 

volume of loans in the reverse direction increased by 84 per cent. The non-major banks have 

remained net lenders to the major banks since the crisis, albeit at a lower level than during 

2008–09. 

Irrespective of whether it was the core actively reducing their exposure to the periphery, or the 

periphery reducing their reliance on the core (due to fears about the reliability of their funding), 

these trends are consistent with the predictions of theoretical models of precautionary liquidity 

demand during periods of heightened risk (Ashcraft, McAndrews and Skeie 2011). 
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2. The Interbank Overnight Cash Market 

Banks use the market for unsecured overnight interbank loans (IBOC market) to manage their 

liquidity.4 Specifically, banks’ deposit accounts with the RBA, which are used to settle the financial 

obligations arising from interbank payments, must remain in credit at all times. Banks borrow in 

the IBOC market to ensure they satisfy this requirement (as the cost of overnight borrowing from 

the RBA is higher than the typical IBOC market rate). The RBA also remunerates surplus balances 

in banks’ deposit accounts at a rate below the typical IBOC market rate; banks, therefore, have an 

incentive to lend their surplus balances in the IBOC market. 

The IBOC market also plays a role in disseminating private information. Loans in the IBOC market 

are transacted bilaterally and over-the-counter. Failure to raise sufficient liquidity through banks’ 

usual relationships – due to liquidity hoarding, for example – could lead to increased counterparty 

searching, potentially signalling to the RBA and other banks an increase in idiosyncratic or market 

risk. 

The RBA, and many other central banks, have historically relied on surveys to collect information 

about overnight interbank markets. But these survey data are typically highly aggregated. For 

example, until May 2016, the RBA’s IBOC Survey only provided the aggregate gross value of each 

survey participant’s IBOC lending and borrowing during each trading session of the day, and the 

average interest rate at which these loans occurred (importantly, no information on counterparties 

was collected).5 

To overcome this deficiency, Brassil, Hughson and McManus (2016) developed an algorithm to 

extract loan-level information from Australia’s real-time gross settlement system (all IBOC loans, 

and many other interbank payments, are settled through this system). This algorithm is based on 

the seminal work of Furfine (1999), but incorporates novel features to identify IBOC loans that are 

rolled over multiple days, including those that exhibit features similar to a credit facility 

(e.g. drawdowns and partial repayments). 

The algorithm output provides us with a loan-level database of IBOC loans between 2005 and 

2016 (the algorithm identifies close to 90 per cent of all loans during this period, see Brassil 

et al (2016)). This database consists of 62 banks and 147 380 IBOC loans. Banks are split into 

three categories: the four major Australian banks, other Australian-owned banks, and foreign-

owned banks.6 We use this database to construct the networks analysed in this paper. 

Using a loan-level database to conduct a network analysis has several advantages. Unlike 

networks constructed from regulatory databases of banks’ large exposures, a loan-level database 

allows us to consider the role played by small banks. This is particularly relevant when estimating 

core/periphery structures, as the omission of exposures to smaller banks could prevent some 

highly connected banks from being identified as such. A loan-level database also allows us to 

                                                      

4 Although some non-banks are able to participate in the IBOC market, the majority of participants are banks. For 

simplicity, this paper refers to all participants as ‘banks’. 

5 From May 2016, the RBA has required banks to identify every IBOC loan when it is entered into the RBA’s 

settlement system. 

6 The four major Australian banks are Australia and New Zealand Banking Group Limited, Commonwealth Bank of 

Australia, National Australia Bank Limited and Westpac Banking Corporation. Confidentiality requirements prevent us 

from identifying individual banks. 
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conduct our network analysis using all loans during a particular period (not just those at the end of 

each quarter), and at different frequencies (quarterly, monthly, weekly, etc). That said, loan-level 

databases do not typically cover as wide an array of markets as regulatory databases. 

3. The Network Structure of the IBOC Market 

Studying the IBOC market as a ‘network’ allows us to better understand how the banks are related 

and the importance of each bank to the proper functioning of the market. It is well known that 

certain network structures are more prone to disruption than others. For example, shocks are 

more likely to propagate through highly connected networks, but the effect on each part of the 

network may be small (Allen and Gale 2000). Conversely, in weakly connected networks, the effect 

of most shocks will be localised, but a small number of highly connected banks could make the 

system fragile to shocks hitting one of these banks (Albert and Barabási 2002). In the IBOC 

market, a shock hitting a highly connected bank may force other banks to form a large number of 

new relationships and/or rely more heavily on other existing ones; either of which could cause 

interest rates in the IBOC market to deviate from the RBA’s target and may require the RBA to 

supply emergency liquidity. 

A network is defined as a set of ‘nodes’ (the banks) and a set of ‘links’ defining the relationships 

between these nodes. Links may exist between every pair of nodes, and be either ‘directed’ or 

‘undirected’. Directed links contain information on the direction of the flow (e.g. a loan going from 

Bank A to Bank B), while undirected links only show that a flow exists (e.g. a loan between 

Banks A and B). Links may also be either ‘weighted’ or ‘unweighted’. Weighted links contain 

information on the size of the flow (e.g. a $10 million loan), while unweighted links contain no size 

information. 

In this paper, we construct unweighted–directed networks. This is because unweighted networks 

are more likely to capture the relationships in which we are interested. For example, a small bank 

that intermediates the funding of a group of other small banks, and therefore has only small-

valued links, may still be vital for ensuring an efficient distribution of liquidity. However, due to the 

relatively small weight of its links, a weighted network may overlook the importance of this bank.7 

Unweighted–directed networks can be conveniently represented by an ‘adjacency matrix’. If N is 

the number of banks in the system, the adjacency matrix will be of dimension N × N. A link going 

from node i to node j (i.e. Bank i lends to Bank j) is represented by a one in the ith row and jth 

column of this matrix. If no link exists in this direction between these nodes, the ijth element of 

this matrix equals zero. Since banks do not lend to themselves in the IBOC market, the diagonal 

elements of our adjacency matrices will be zero. Therefore, we ignore the diagonal in all analyses 

in this paper. 

For our baseline analysis, we aggregate our loan-level data to construct a network for each quarter 

in our sample, for an ensemble of 44 quarterly networks (2005:Q2–2016:Q1). We choose a 

quarterly frequency because even the most important IBOC relationships between banks are 

unlikely to be utilised on a daily basis (this is consistent with Fricke and Lux (2015)). While this 

frequency ensures we will capture all the important relationships (i.e. it maximises the signal from 

                                                      

7 For the same reason, much of the literature applying core/periphery models to interbank markets focuses on 

unweighted networks (e.g. Wetherilt et al 2010; Craig and von Peter 2014). 
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the underlying structure of the network), we will likely also capture some seldom-used links that 

are treated the same due to the network being unweighted (i.e. there will also be noise). 

Sections 5 and 6 show that our new estimator is able to filter through this noise to obtain an 

accurate estimate of the time-varying core/periphery structure of the market. As a robustness 

check, however, we estimate the core/periphery structure at a monthly and weekly frequency. As 

expected, there is less signal (so the estimated core/periphery structure is more volatile), but our 

qualitative results remain unchanged (see Appendix E). 

The remainder of this section outlines the basic network properties of the IBOC market, shows 

how they change over time, and demonstrates why a core/periphery model may suit the IBOC 

market better than other commonly used models. 

3.1 Size and Density 

The most basic property of a network is its ‘size’. For our networks, measures of size include the 

number of active banks (nodes), the number of lending/borrowing relationships (links), and the 

size of these relationships (i.e. the loan volumes). In each quarter, a bank is classified as ‘active’ if 

it has at least one link with another bank. Inactive banks are not relevant for our analysis and are 

therefore excluded from the network during the quarters in which they do not participate in the 

IBOC market. 

The ‘density’ of a network, also known as the degree of completeness or connectivity, measures 

the proportion of links relative to the total possible number of links. It represents how well 

connected (directly) the nodes are in the network. For interbank markets, the higher the density, 

the greater the ability of banks to find alternative sources of funds when a bank withdraws from 

the market. Using the adjacency matrix (with the value in the ith row and jth column denoted ai,j), 

the density of an unweighted–directed network is calculated as: 

 
 

,1

1

N N

i ji j i
a

d
N N

 




 
 

Figure 1 shows the size and density properties of the quarterly networks in our sample. On 

average, 41 banks participate in the IBOC market each quarter. These banks are directly linked by, 

on average, around 420 directed loan relationships. The average density is 0.25, indicating that 

the network of IBOC loan relationships is sparse (i.e. 75 per cent of the potential links in any 

quarter are not used). 

Although sparse, our networks have higher densities than interbank networks constructed from 

end-of-quarter regulatory filings. Tellez (2013), for example, maps the network of large bilateral 

exposures between Australian financial institutions and finds a density of less than 5 per cent. 

Craig and von Peter (2014) analyse an analogous network of the German banking system and find 

an average density of less than 1 per cent. As these networks are constructed from outstanding 

loans at a given point in time, and focus on large exposures only, the lower densities exhibited in 

these networks are not surprising. 
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Figure 1: Summary Statistics 

 

Relative to interbank networks constructed from loan-level data, our average density is higher than 

the 0.7 per cent computed for the US federal funds market (Bech and Atalay 2010). But it is 

around half the average density of the UK overnight interbank market (Wetherilt et al 2010) and is 

comparable to the Italian overnight interbank market (Fricke and Lux 2015). 

Of particular interest in Figure 1 is the sharp decrease in the number of links at the height of the 

2007–08 financial crisis (grey shaded area), with no recovery afterwards (upper-right panel); 

between 2008:Q3 and 2009:Q1, the number of loan relationships fell by more than 30 per cent. 

While only a quarter of this drop can be attributed to banks that exited the market or merged 

during this period, this proportion increases to 47 per cent after accounting for banks that 

exited/merged soon after this period (upper-left panel). It is possible that these banks curtailed 

their market activity before they became fully inactive; the recovery of the network density soon 

after the height of the crisis provides some evidence for this conjecture (lower-right panel). 

Notably, the links removed between 2008:Q3 and 2009:Q1 accounted for 17 per cent of total 

lending/borrowing (by value) during 2008:Q3, but there was no correspondingly large change in 

the volumes of interbank lending during this period (lower-left panel of Figure 1). Therefore, banks 

must have reduced the number of their lending relationships but increased the value of lending 

that occurred through their remaining relationships. 

Overall, this evidence suggests that the crisis has had a long-lasting impact on the structure and 

functioning of the IBOC market. 

3.2 Degree Centrality 

Another feature of networks that is relevant to our analysis is the centrality of the nodes. 

Centrality is a measure of the importance of each node to the network. While there are various 

ways to measure centrality, papers that analyse interbank market networks generally use the 
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‘degree centrality’ indicator. A given bank’s degree centrality (henceforth, degree) is defined as the 

number of links that are directly attached to that bank. Its ‘in-degree’ is the number of borrowing 

links, while its ‘out-degree’ is the number of lending links. 

Different theoretical models of networks produce different degree distributions (i.e. the distribution 

of degrees among the banks in the network). Comparing real-world degree distributions to 

theoretical ones helps researchers determine a suitable model for how a given network was 

formed and how the network may change with the addition/subtraction of a node/link. 

3.3 Canonical Network Models 

One of the most basic, but commonly used, unweighted network models is the Erdős-Rényi model. 

In this model, each of the N(N – 1) possible links has the same probability of existing (p), with the 

existence of each link being independent of the existence of any other links. With this model, the 

in- and out-degree distributions of the network follow the same binomial distribution; as shown in 

Albert and Barabási (2002), the probability of a randomly chosen node having an in-degree of k is: 

    
11

P 1
N kk

N
X k p p

k

  
   

 
 

Moreover, the probability of two randomly chosen nodes in this model being connected (in at least 

one direction) is p
2
 + 2p(1 – p). Therefore, the Erdős-Rényi model is not designed to produce 

either highly connected nodes or nodes with only a small number of links. 

A commonly used model that produces both highly connected and weakly connected nodes by 

design is the Barabási-Albert model (see Albert and Barabási (2002) for details). In this model, 

networks are formed by progressively adding nodes to some small initial network (of size m0). 

Denoting the addition of new nodes on a time scale (t = 1, 2,…), after each t there are Nt = t + m0 

nodes (as one node is added at each point in time). Each new node forms undirected links with 

m ≤ m0 of the existing Nt – 1 nodes.8 The probability of a link forming with each existing node is 

based on the number of links already connected to each node. If the degree of node 

 11,2, , ti N   before time t is 
1, ti Nk


, then the unconditional probability of a link forming 

between the new node and node i is: 

 1

1

1

,

,1

t

t

t

i N

N

j Nj

k

k






 

This method of adding nodes is a special case of a mechanism known as ‘preferential attachment’ 

– some nodes are ‘preferred’ to others. Therefore, as the network grows, the model produces a 

large number of weakly connected nodes and a small number of highly connected nodes. 

                                                      

8 While this model is designed to work with undirected networks, it can be applied to directed networks by using the 

model to construct either the in-degrees or the out-degrees (with the other degrees forming mechanically as a result 

of this process, but not necessarily with the same degree distribution). 
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With this model, the asymptotic degree distribution of the network follows a power law with  = 3 

(Albert and Barabási 2002):9 

  P X k Ck    

Figure 2 compares the normalised in- and out-degree distributions for every quarter in our sample 

to the theoretical distributions implied by the Erdős-Rényi and Barabási-Albert models. The 

disparity between the theoretical and data-based distributions indicates that our networks are 

unlikely to have been constructed from either of these theoretical models. 

Figure 2: Degree Distributions 

All quarters, normalised 

 

Notes: For each observation, P(X ≥ k) is calculated as the share of nodes with degree ≥ k; each network is normalised to a 

network with the average number of nodes 

 (a) Calibrated to the average number of nodes and average density of the data 

Additionally, the way our data deviate from these distributions is noteworthy. Not only do the 

degree distributions of our networks not follow the power law implied by the Barabási-Albert 

model (i.e. with  = 3), they do not follow any power law (power laws would be a straight line in 

Figure 2). Therefore, our networks are not ‘scale-free’ (scale-free is the term used for a network 

whose degree distribution follows a power law).10,11 

                                                      

9 Where C is a constant ensuring the probabilities sum to one. 

10 Power law degree distributions are scale free because the probability of any degree is equal to the scaled probability 

of any other degree. That is, P(X = ak) = a
–

 P(X = k) where a is a positive constant. 

11 Our networks differ from many other real-world networks that appear to be scale-free (Albert and Barabási 2002), 

including the large-exposures networks of the Australian banking system (Tellez 2013) and the Austrian interbank 

market (Boss et al 2004). 
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Scale-free networks produce a large number of small-degree nodes and a small number of high-

degree nodes. In our networks, the most common nodes are those with small degrees, consistent 

with a scale-free network (Figure 3). However, high-degree nodes are more common in our 

networks than in a scale-free network. This is consistent with previous work on overnight 

interbank markets, including the US federal funds market (Bech and Atalay 2010) and the Italian 

market (Fricke and Lux 2015), and suggests that a ‘tiering’ model may be appropriate for our 

networks. 

Figure 3: Probability Mass Functions 

All quarters, normalised, by degree 

 

Notes: Each network is normalised to a network with the average number of nodes 

 (a) Calibrated to the average number of nodes and average density of the data 

 (b) The value at k = 1 is 0.83 

Craig and von Peter (2014, p 325) define a banking network as exhibiting tiering when: 

Some banks (the top tier) lend to each other and intermediate between other banks, which participate 

in the interbank market only via these top-tier banks. 

Because the top-tier banks lend to/borrow from each other and intermediate between the low-tier 

banks, top-tier banks have higher degrees than the low-tier ones.12 Therefore, tiering models 

permit a larger proportion of high-degree nodes than scale-free networks. 

Importantly, tiering models do not require banks within each tier to have the same degree. For 

example, one top-tier bank may intermediate the lending/borrowing of many low-tier banks, while 

                                                      

12 Quarterly networks aggregated from high-frequency data can exhibit features that are observationally equivalent to 

the features produced by intermediation, but are actually caused by the aggregation process. In Appendix F we use 

the high-frequency data to provide evidence that the tiering structure exhibited in our quarterly networks actually 

reflects intermediation. 
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another top-tier bank may only intermediate the operations of a few low-tier banks. This is a 

useful feature because the relatively flat probability mass functions of our networks (for mid-range 

degrees) suggest that banks within each tier of our networks may have varying degrees 

(Figure 3). 

Another possibility is that our networks consist of both a tiering structure and some noise. So any 

method we use to identify the existence of a tiering structure must be able to distinguish between 

the tiering component and any noise. This is the focus of Sections 4–6 of this paper. 

3.4 The Core/Periphery Model 

A canonical model that exhibits tiering is the core/periphery model introduced by Borgatti and 

Everett (2000). When applied to interbank markets (pioneered by Craig and von Peter (2014)), the 

model seeks to split banks into two subsets. One subset, the ‘core’, consists of banks that are 

central to the system. They lend to/borrow from all other banks in the core and some banks 

outside of the core. Members of the other subset, the ‘periphery’, instead lend to/borrow from 

some core banks, but do not transact directly among themselves. 

In essence, the core banks are intermediaries. But the core/periphery structure is stronger than 

this since funds are only able to flow between periphery banks via the core. Moreover, the core 

banks, through their links with each other, must be able to intermediate funding between any two 

banks within the system, implying that no group of banks may exist as a silo. 

There are various theoretical models of financial markets that produce a core/periphery structure 

endogenously. In some models, some banks possess a comparative advantage in overcoming 

information asymmetries, searching for counterparties, or bargaining (e.g. Fricke and Lux 2015; 

Chiu and Monnet 2016). In other models, building relationships is costly for all banks, but large 

banks are more likely to require a larger number of counterparties to satisfy their desired 

lending/borrowing and therefore benefit from building relationships with a larger number of banks. 

These large banks become intermediaries because intermediaries are able to extract some of the 

surplus from trade; a non-trivial core size develops when competition among intermediaries is 

imperfect (van der Leij, in ’t Veld and Hommes 2016). 

Adjacency matrices provide a convenient way to represent a core/periphery (henceforth, CP) 

structure. If the banks are sorted so that the lending (borrowing) of the c core banks is 

represented by the first c rows (columns) in the adjacency matrix, then an adjacency matrix of a 

CP network can be represented as four blocks: 

 
 
 
 

1 CL

CB 0
 (1) 

The core block (upper-left) is a block of ones (except for the diagonal), since a CP network has all 

core banks lending to, and borrowing from, every other core bank. The periphery block (lower-

right) is a block of zeros, since periphery banks in a CP network only lend to/borrow from core 

banks. The density of each block (excluding the diagonal elements of the matrix) equals the 

proportion of ones within that block. 
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The ideal CP structure of Craig and von Peter (2014) requires a core bank to lend to and borrow 

from at least one periphery bank (borrower and lender counterparties need not be the same). This 

translates into the CL (core lending) and CB (core borrowing) blocks being row- and column-

regular, respectively.13 As we discuss below, not every CP model estimator utilises the structure of 

these off-diagonal blocks.14 

Real-world networks are unlikely to exactly match a theoretical CP structure. Consequently, 

different methods have been developed to evaluate how well a given network reflects an ideal 

CP structure and, assuming a core exists, estimate which banks are in the core. It is to these 

methods that we now turn. 

4. Existing Core/Periphery Estimators 

For any given assignment of banks into core and periphery subsets (henceforth, CP split), the 

differences between the real-world network and the idealised CP structure create ‘errors’. For 

example, a link between two periphery banks is an error, as is a missing link between two core 

banks. Therefore, changing the CP split (e.g. changing a bank’s designation from core to 

periphery) may change the total number of errors. 

All estimation methods presented in this section are (either explicitly or implicitly) based on 

minimising these errors. If the real-world network coincided exactly with the ideal CP structure, 

the differences between these estimators would not matter (i.e. they would all identify the ideal 

CP structure as being the CP structure of the network). But since such a scenario is unlikely, each 

method can lead to a different conclusion. 

After describing the key methods available in the literature, we show how their relative 

performance may depend on the features of the network, such as the density.15 In Section 4.4, we 

analytically show how one of the commonly used estimators can be an inaccurate estimator of the 

size of the core. We then derive a density-based estimator that is immune to the source of this 

inaccuracy (Section 5). Section 6 numerically evaluates the relative performance of the various 

estimators (including our new estimator) when applied to simulated networks with the same 

features as our data. Our estimator is the best-performing estimator when applied to these 

simulated networks. 

4.1 The Correlation Estimator 

For any given CP split of a network we can produce both an ideal CP adjacency matrix 

(Equation (1)) and an adjacency matrix where each of the nodes is in the same position as in the 

ideal matrix, but the links are based on the links in the data. 
                                                      

13 Row (column) regularity means that each row (column) in the block must contain at least one non-zero element. 

14 The CP model can be adjusted to consider each node as having some amount of ‘coreness’. This is done for 

weighted networks in Borgatti and Everett (2000) and Fricke and Lux (2015), and for both weighted and unweighted 

networks in the random-walker model of Della Rossa, Dercole and Piccardi (2013), for example. We do not consider 

these alternatives because these models do not allow any structure to be placed on the off-diagonal blocks, and 

would require the imposition of an arbitrary coreness cut-off to determine which banks are in the core and how the 

size of the core has changed over time. 

15 While our paper is the first to assess the relative performance of these estimators, in ’t Veld and van Lelyveld (2014, 

p 33) mention that with the estimator they use the ‘relative core size is closely related to the density of the network’ 

and that ‘one should therefore be careful not to take the core size too literally’. 
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Looking only at the core (upper-left) and periphery (lower-right) blocks of the two adjacency 

matrices, suppose we computed the Pearson correlation coefficient (henceforth, correlation) 

between the elements of the ideal adjacency matrix and the elements of the real-world matrix. 

One way to estimate the CP structure of the network is to find the CP split that maximises this 

correlation.16 This is the method used by Borgatti and Everett (2000) and Boyd, Fitzgerald and 

Beck (2006), for example. Specifically, the correlation estimator finds the CP split that maximises 

the following function: 

 
  

   

, ,

2 2

, ,

i j i ji j i

i j i ji j i i j i

R R I I

R R I I



 

 

 

 

   
 (2) 

where the sums only occur over elements in the core and periphery blocks, Ri,j is the ijth element 

in the real-world adjacency matrix, R  is the average of these elements, and Ii,j and I  are the 

equivalent variables from the ideal set. 

Each element of the sum in the numerator will be positive if Ri,j = Ii,j (i.e. if there is no error), and 

will be negative otherwise. It is in this sense that the correlation estimator is an error-minimisation 

method. With this property, it is tempting to think that the correlation-maximising CP split is also 

the split that minimises the number of errors. However, any change in the CP split will change the 

values of R , I , and the denominator. So the CP split that maximises Equation (2) may not 

minimise the number of errors. 

If the real-world network exhibits an ideal CP structure, then there exists a CP split where the 

correlation function equals one (the maximum possible value). Therefore, if the real-world network 

has an ideal CP structure, this structure will be identified by this estimator. 

4.2 The Maximum Likelihood Estimator 

Wetherilt et al (2010) use a maximum likelihood approach similar to Copic, Jackson and 

Kirman (2009) to estimate the set of core banks in the UK unsecured overnight interbank market.17 

Unlike the other estimators outlined in this section, this method makes a parametric assumption 

about the probability distribution of links within the network; the parametric assumption is a 

special case of the stochastic block model (Zhang et al 2015). Specifically, for a given CP split, this 

method assumes that the links in each of the blocks of the real-world adjacency matrix have been 

generated from an Erdős-Rényi random network, with the parameter that defines the Erdős-Rényi 

network allowed to differ between blocks. This leads to a likelihood function that is the product of 

N(N – 1) Bernoulli distributions, as shown in Appendix A. 

In Appendix A, we also show that the likelihood of each block is maximised if the elements of the 

block are either all ones or all zeros. So, if we ignore the off-diagonal blocks, the true CP split of 

                                                      

16 Since these sets do not incorporate the off-diagonal blocks of the adjacency matrices, this method does not require 

an ideal core bank to be an intermediary. 

17 Variations of the maximum likelihood estimator are also used in the literature, see Chapman and Zhang (2010) and 

Zhang, Martin and Newman (2015), for example. 
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an ideal CP network produces the largest possible value of the likelihood function.18 Therefore, the 

likelihood estimator will find the true CP structure if it satisfies the features of an ideal 

CP structure. 

However, while correctly specified maximum likelihood estimators are known to have good 

asymptotic properties, it is not clear how this estimator will perform against other estimators with 

real-world networks (especially with N + 4 parameters to estimate, see Appendix A). Even with 

large unweighted networks, Copic et al (2009, p16) state that ‘there will often be a nontrivial 

probability that the estimated community structure will not be the true one’. Smaller networks, and 

CP structures that do not satisfy the estimator’s parametric assumption, will likely make this 

problem worse. 

4.3 The Craig and von Peter (2014) Estimator 

The Craig and von Peter (2014) estimator (henceforth, CvP estimator) is an explicit error-

minimisation method that has been used in multiple subsequent studies (e.g. in ’t Veld and 

van Lelyveld 2014; Fricke and Lux 2015). This estimator chooses the CP split that minimises the 

number of errors from comparing the corresponding ideal adjacency matrix to the real-world 

adjacency matrix:19 

 CvP CC PP CP PCe e e e e     (3) 

where, for a given CP split, eCC is the number of errors within the core block (caused by missing 

links) and ePP is the number of errors within the periphery block (caused by the existence of links). 

As noted earlier, an ideal CP structure requires each core bank to lend to and borrow from at least 

one periphery bank. In the CvP estimator, if a core bank fails the lending requirement, this causes 

an error equal to N – c (i.e. the number of periphery banks to which the core bank could have 

lent); borrowing errors are computed in an analogous way. These lending and borrowing errors 

are captured in eCP and ePC, respectively. 

4.4 Theoretical Analysis of the Craig and von Peter (2014) Estimator 

An accurate estimator of the true CP structure should not be influenced by the addition of noise. 

In other words, the existence of some random links between periphery banks, or the absence of 

some random links within the core, should not systematically bias an accurate estimator. In this 

section, we evaluate how the addition of noise influences the CvP estimator. 

A feature of the CvP estimator is that a link between two periphery banks has the same effect on 

the error function (Equation (3)) as a missing link between two core banks. At face value, this is 

reasonable; the ‘distance’ from the idealised CP structure is the same in both cases. But this equal 

                                                      

18 We follow Wetherilt et al (2010) and include the off-diagonal blocks in the likelihood function. This improves the 

performance of the maximum likelihood estimator in the numerical analyses conducted in Section 6. We note, 

however, that in small samples the theoretical implications of including the off-diagonal blocks in the likelihood 

function are not clear. 

19 Craig and von Peter (2014) actually minimise a normalisation of this error sum. However, this normalisation is 

invariant to the CP split, so it can be ignored for our purposes. 
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weighting does not account for the expected number of errors within each block, and has 

important implications for the performance of the CvP estimator. 

For example, take a true-core block of size 4 and a true-periphery block of size 36, and start with 

the correct partition. Moving a true-periphery bank into the core causes a maximum of eight 

additional errors within the core block (i.e. potential missing lending and borrowing links with the 

four other core banks). Even if this moved bank had no links with the true-core banks, if it had 

more than eight links with other true-periphery banks due to idiosyncratic noise (out of 2 × 35 

possible links), and these links included at least one lending and at least one borrowing link, 

moving it into the core would reduce the total number of errors. Therefore, the CvP estimator 

would overestimate the size of the core in this scenario. 

While this is just a stylised example, something like this is actually a high probability event; with 

even a small amount of noise (e.g. a periphery-block error density of just 0.06), the probability of 

there being a true-periphery bank with more than eight within-periphery links is over 50 per cent. 

So, with this CP structure, there is a high probability that the CvP estimator would overestimate 

the size of the core. 

The problem is, that with this CP structure (i.e. when the periphery block is much larger than the 

core block) even a small amount of noise is expected to produce a sufficiently large number of 

periphery-block errors that an overestimate becomes the optimal response of the CvP estimator. 

If, on the other hand, an estimator depended not on the number of errors within each block but 

the proportion of block elements that are errors, it would implicitly account for the fact that larger 

blocks can produce a larger number of errors, and would therefore not be subject to the same 

problem. It is this idea that guides the derivation of our ‘density-based’ estimator in Section 5. 

But before deriving our estimator, we must evaluate this problem more generally. To simplify the 

analysis, we focus only on the performance of the CvP estimator in determining the true size of 

the core (as opposed to determining which banks are in the core). We focus on the CvP estimator 

because the simple form of this estimator’s error function allows us to analytically evaluate the 

sources of inaccuracy. 

4.4.1 Simplifying assumptions 

Our analysis uses three simplifying assumptions: 

Assumption 1: Continuum of banks 

We assume the network consists of a continuum of banks normalised to the unit interval [0,1]; so 

each individual bank has an infinitesimal effect on the CvP error function. Therefore, N = 1, and c 

can be interpreted as the share of banks in the core. 

Assumption 2: Banks are representative 

We are able to focus on core-size estimation by assuming that any subset of true-periphery banks 

has the same effect on the CvP error function as any other equal-sized subset of true-periphery 
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banks. In other words, with respect to the error function, each equal-sized subset of true-

periphery banks is identical. 

We make the same assumption for the true-core banks (i.e. with respect to the error function, 

each equal-sized subset of true-core banks is identical). Another way to think about Assumptions 1 

and 2 is that we have a continuum of representative true-core banks and a continuum of 

representative true-periphery banks. 

Assumption 3: The core/periphery model is appropriate 

If a network consists of a true core/periphery structure and ‘noise’, we do not expect the noise to 

be the dominant feature of the network; if it were to dominate, it would be more appropriate to 

model what is causing the noise rather than using a core/periphery model. So we assume that the 

noise does not cause too large a deviation of the network from a true core/periphery structure. 

Specifically, we assume: 

 C O Pd d d   

where dC is the density of links within the true-core block, dO is the density of links within the true 

off-diagonal blocks, and dP is the density of links within the true-periphery block. 

With this set-up, noise is added to the ideal CP structure by removing links from the core 

(i.e. setting dC < 1) and/or adding links to the periphery (i.e. setting dP > 0). 

4.4.2 Impact of the simplifying assumptions 

Without these simplifying assumptions, the sorted adjacency matrix of a hypothetical network with 

a core/periphery structure and some noise would look something like the left panel of Figure 4. As 

detailed in Section 3.4, each row/column in this matrix represents a bank’s lending/borrowing. 

Banks are sorted so that the banks placed in the core are first; the red lines partition the matrix 

into the core, periphery, and off-diagonal blocks described in Equation (1). Black cells represent 

the existence of a link, white cells indicate non-existence. 

With our simplifying assumptions, a hypothetical sorted adjacency matrix (with the true CP split 

identified) would look more like the right panel of Figure 4. This is because: 

 Having a continuum of banks (Assumption 1) means each individual bank has measure zero. As 

a result, individual elements of the adjacency matrix have measure zero; hence the right panel 

is shaded instead of having individual elements like the left panel. This also means the diagonal 

elements of the adjacency matrix (i.e. the elements excluded because banks do not lend to 

themselves) have measure zero. This implies, for example, that there are c
2
 potential errors in a 

core block of size c, rather than the c(c – 1) in the integer version. 
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 Having representative banks (Assumption 2) means the density of links within any subset of 

true-periphery banks is the same as for any other subset of true-periphery banks; this is also 

true for the density of links between this subset and the true core. If this were not the case, 

some subsets would have a different effect on the CvP error function, violating Assumption 2. 

Analogous reasoning applies to the true-core banks. As a result, the entirety of each true 

CP block has the same shade. 

Figure 4: Sorted Adjacency Matrices 

Without assumptions(a)
  With assumptions(b) 

                             

                             

                             

                             

                             

                             

                             

                             

                             

                             

                             

                             

                             

                             

 

Notes: The red lines partition the matrix as described in Equation (1) 

 (a) Black cells indicate a one in the adjacency matrix, white cells indicate a zero 

 (b) Darker shading indicates a higher density of links within the block (black represents a density of one, white represents a 

density of zero) 

Without the simplifying assumptions, the CP split is defined by N binary variables (each bank must 

be defined as either core or periphery). The advantage of having the adjacency matrix look like 

the right panel of Figure 4 is that the CP split becomes defined by just two variables, the share of 

banks that are in the true core but are placed in the periphery (x) and the share of banks that are 

in the true periphery but are placed in the core (y). Denoting the true share of banks that are in 

the core as cT, then    0, , 0,1T Tx c y c   , and the share of banks placed in the core (i.e. the 

CP split) is c ≡ cT – x + y. An accurate estimator of the core will set x = y = 0. 

The simplifying assumptions also simplify the CvP error function. With the network parameters 

{dC, dO, dP, cT}, and the variables {x, y}, the CvP error function becomes: 

 
       

   

2 2 2

CvP

2

1 2 1 1

2 1 1

C T O T P C

O T P T

e d c x d c x y d y d x

d c y x d c y

        

     
 (4) 
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The components of this simplified CvP error function are best explained using a hypothetical 

adjacency matrix with an incorrect CP split (Figure 5): 

A. (1 – dC) (cT – x)
2
: Errors arising from missing links between the true-core banks placed in the 

core (in an ideal CP structure, the density of links within the core is equal to one). 

B. (1 – dO) (cT – x)y: Errors arising from missing links between the true-periphery banks 

incorrectly placed in the core and the true-core banks placed in the core. 

C. (1 – dP)y
2
: Errors arising from missing links between the true-periphery banks incorrectly 

placed in the core. 

D. dCx
2
: Errors arising from links between the true-core banks incorrectly placed in the periphery 

(in an ideal CP structure, the density of links within the periphery is zero). 

E. dO(1 – cT – y)x: Errors arising from links between the true-core banks incorrectly placed in the 

periphery and the true-periphery banks placed in the periphery. 

F. dP(1 – cT – y)
2
: Errors arising from links between the true-periphery banks placed in the 

periphery. 

Figure 5: Sorted Adjacency Matrix 

With assumptions 

A B 

  

B C   

  D E 

  

E F 

 

Note: The red lines indicate one possible incorrect CP split 
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As long as dP > 0, the density of links within any subset of the off-diagonal blocks will be non-zero 

(as there will be no white shading in Figure 5). As a result, there will be no off-diagonal block 

errors with any CP split. Allowing for dP = 0 increases the complexity of the error function, so we 

exclude this unlikely boundary scenario in this section of the paper. Appendix B shows that neither 

the CvP estimator nor our new estimator permit a core/periphery structure with off-diagonal block 

errors.  

4.4.3 The error-minimising core size 

In Appendix B, we prove that for a given c ≥ cT, the value of x that minimises eCvP is x = 0. This 

means that when the estimated core is at least as large as the true size of the core, no true-core 

banks will be placed in the periphery. Intuitively, for any c ≥ cT, if a subset of true-core banks is 

placed in the periphery (i.e. if x > 0), then a subset of true-periphery banks (that is at least as 

large) must be in the estimated core (recall that c ≡ cT – x + y). But with dC > dO > dP (Assumption 

3), the number of errors could be reduced by switching the true-core banks currently in the 

estimated periphery with some of the true-periphery banks currently in the estimated core (i.e. by 

setting x = 0 and y = c – cT). Using Figure 5 as an example, this would occur by switching the 

banks causing errors D and E with the banks causing errors B and C. 

Using the same intuition (with proof in Appendix B), for a given c < cT, all the banks that make up 

the estimated core must be true-core banks (i.e. y = 0). But since c < cT, some true-core banks 

must also be in the periphery; so x = cT – c > 0 in this scenario. 

With the optimal values of x and y determined for any value of c, the error-minimisation problem 

reduces to one with a single variable (c). Graphically, the CvP estimator sorts the banks so that the 

shading of the adjacency matrix will look like the right panel of Figure 4 (as opposed to Figure 5), 

all that is left to determine is where to place the red lines. From this point, the result depends on 

the values of the parameters {dC, dO, dP, cT} (the results below are proved in Appendix B): 

 When the densities of links in the true-core (dC) and true off-diagonal blocks (dO) are 

sufficiently small relative to the true size of the core (cT), the CvP estimator underestimates the 

true size of the core. 

o With dC > dO > dP, moving true-core banks into the periphery (i.e. setting c < cT) 

increases both the density of links within the periphery block and the size of the block; so 

the number of errors from this block increases. But it also reduces the size of the core 

block, thereby reducing the number of errors from within the core block (the density of 

errors within the core block does not change). When dC and dO are sufficiently small 

relative to cT, the reduction in errors from the core block more than offsets the increase 

from the periphery block, causing the CvP estimator to underestimate the size of the core. 

 When the densities of links in the true-periphery (dP) and true off-diagonal blocks (dO) are 

sufficiently high relative to the true size of the core, the CvP estimator overestimates the true 

size of the core. 

o The intuition is analogous to the previous scenario. When dP and dO are sufficiently high 

and some true-periphery banks are placed in the core, the fall in the number of errors 
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coming from the periphery block more than offsets the increase in the number of errors 

coming from the core block, causing the CvP estimator to overestimate the size of the 

core. 

 In between these two scenarios, the CvP estimator accurately estimates the size of the core. 

To be precise, the CvP error-minimising core size is: 
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What this means, practically, is that if the density of the network is large (small) relative to the 

true proportion of banks in the core, the CvP estimator will tend to overestimate (underestimate) 

the size of the core. Moreover, this inaccuracy will worsen the further the density of the network 

deviates from the true proportion of banks in the core. This occurs because networks with these 

properties are expected to generate a large number of errors in one of the blocks, but the CvP 

estimator does not account for this and instead offsets these errors by changing the size of the 

core. 

5. The Density-based Estimator 

The inaccuracy of the CvP estimator results from a focus on the number of errors rather than the 

density of errors. In Section 4.4, incorrectly classifying banks increases the density of errors in one 

of the diagonal blocks (i.e. the core or periphery block) and leaves the density of errors in the 

other diagonal block unchanged. But with some parameterisations this move reduces the total 

number of errors, so the move is optimal for the CvP estimator. 

To overcome this problem, we construct a new estimator that focuses on the density of errors 

within each block (henceforth, the density-based, or DB, estimator). We do this by dividing each 

error block in the CvP error function (Equation (3)) by the number of possible errors within that 

block.20 Therefore, the DB estimator is the CP split that minimises the following error function: 

 
        
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 (5) 

With the simplifying assumptions from Section 4.4, the global optimum of the density-based 

estimator is c = cT (see Appendix B for the proof). 

The intuition behind this result is as follows. Setting y > 0 causes the density of the core block to 

fall, and either has no effect on the density of the periphery block (if x = 0) or causes it to increase 

                                                      

20 Cucuringu et al (2016) recently derived a similar estimator independently of Craig and von Peter (2014). There are, 

however, some important differences between our DB estimator and the estimator proposed by Cucuringu et al, 

with the theoretical performance of their two-step estimator being no better than our one-step estimator. This is 

discussed in Appendix C. 
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(if x > 0).21 Therefore, y > 0 cannot be optimal. Similarly, setting x > 0 causes the density of the 

periphery block to increase, while either reducing the density of the core block (if y > 0) or leaving 

it unchanged (if y = 0). Therefore, x > 0 cannot be optimal. 

This result does not depend on the values of the network parameters {dC, dO, dP, cT}. Therefore, 

with the simplifying assumptions, increasing the expected number of errors (i.e. increasing dP or 

decreasing dC) has no effect on the DB estimator. To determine the accuracy of the DB estimator 

when the simplifying assumptions are removed, we turn to numerical simulations. 

6. Numerical Analysis of Core/Periphery Estimators 

Sections 4.4 and 5 assess inaccuracy when the network consists of a continuum of representative 

true-core banks and a continuum of representative true-periphery banks. Moreover, these sections 

only evaluate the CvP and DB estimators. To evaluate the performance of all four of the previously 

discussed estimators, and to assess inaccuracy when networks have a finite number of non-

representative banks, we conduct a numerical analysis. 

To perform our numerical analysis, we construct 10 000 random draws from a distribution of 

‘feasible’ networks. From Section 3, the average number of active banks in our quarterly data is 

around 40, and the average network density is 0.25. So we restrict feasibility to be networks with 

N = 40 banks and a density of d = 0.25. We then evaluate the performance of the estimators for 

various possible true-core sizes (i.e. we construct 10 000 draws for each true-core size). 

We incorporate noise by allowing the densities of links within the true-core and true-periphery 

blocks to randomly deviate from their ideal densities. However, we do not want these densities to 

deviate so far from an ideal CP structure that the CP model becomes inappropriate; so we impose 

dC > dO > dP (consistent with Section 4.4). With quarterly networks aggregated from high-

frequency data, noise is more likely to come in the form of additional links rather than missing 

links; so we restrict the noise in the true-core block to be less than the noise in the true-periphery 

block (i.e. 1 – dC < dP).22 Once the densities of each block are determined, links are assigned 

based on an Erdős-Rényi model.23 Appendix D details the process for constructing simulation 

draws. 

  

                                                      

21 Recall that x is the share of banks that are true-core banks but are placed in the periphery, and y is the share of 

banks that are true-periphery banks but are placed in the core. 

22 For a pair of banks, a link occurs if there is at least one loan during a quarter, a missing link only occurs if there is 

never a loan during the quarter. 

23 This advantages the maximum likelihood estimator that has this as a parametric assumption. Using another network 

model to introduce noise is akin to imposing a probability distribution on the residual in a linear regression model. 
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With 40 banks, the number of potential CP splits is 240 = 1 099 511 627 776 (each of the 40 banks 

is either a core bank or a periphery bank). So it is not feasible to search through all possible 

partitions to find the global optimum of each estimator. Instead, for each estimator and for each 

draw from the distribution of feasible networks, we construct 20 random starting points and run a 

‘greedy algorithm’ to find the local optimum associated with each starting point.24 As a result, each 

estimator’s performance will depend on both its theoretical properties and on how easy it is for the 

greedy algorithm to find a global optimum. 

Figure 6 shows the number of banks incorrectly classified by each estimator.25 The top panel 

shows the results when there are no missing links in the true-core block (dC = 1), the bottom panel 

shows the results when missing links are allowed within the true-core block (dC < 1). Even if an 

estimator accurately determines the size of the core, if it puts the wrong banks in the core then it 

will register a positive error in this figure. 

When the true size of the core is small, the DB estimator is the most accurate; especially given 

that the noise is added in a way that advantages the maximum likelihood estimator. The relative 

accuracy of the DB estimator at small core sizes is even higher when looking at the 

95th percentiles. At larger core sizes, the DB estimator is slightly less accurate than the other 

estimators, with the accuracy differential becoming more acute when noise is added to the true 

core. So no estimator is unambiguously the best, which is problematic given that the true-core size 

and the volume of noise in real-world networks are unknown. 

That said, the accuracy differential when the true core is large is never as high as the differential 

when the true core is small. And the areas under the DB estimator’s error curves in Figure 6 are 

much lower than the areas under the other estimators’ error curves (for both the averages and 

95th percentiles).26 Therefore, the DB estimator is the superior estimator when no prior 

information about the true size of the core is available. 

                                                      

24 From a given starting point, a greedy algorithm searches through all possible single changes (i.e. changing a single 

bank from core to periphery, or vice versa) and determines the change that optimises the function (i.e. it does not 

account for future changes). It then makes this change and repeats the process until there is no single change that 

can improve the function (i.e. it finds a local optimum). 

 When our algorithm finds multiple CP splits that minimise the relevant error function (different starting points may 

lead to different local optima that produce the same error function value), it randomly chooses the estimated 

CP split from among these options. 

 We ran the same analysis using 200 random starting points on 1 000 random draws. The results were unchanged. 

25 A periphery bank being classified as a core bank is an incorrect classification, as is a core bank being classified as a 

periphery bank. 

26 The exception is the 95th percentile curves when dC < 1, where the smallest area is 46 (CvP estimator) while the 

area under the density-based curve is 47. 
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Figure 6: Number of Incorrectly Classified Banks 

Solid line denotes average, dashed line denotes 95th percentile 

 

Figure 7 shows how the estimated core sizes relate to the true-core sizes (on average). Adding 

noise to the true-core block (bottom panel) magnifies the average underestimate exhibited by the 

DB estimator at larger true-core sizes. An underestimate occurs when some true-core banks have 

a sufficiently small number of links (relative to the other true-core banks) that moving them into 

the periphery reduces the core error-density by more than it increases the periphery error-density. 

This is more likely to occur when there are fewer links within the true core (i.e. when the amount 

of noise in the true-core block increases). 
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Figure 7: Estimated Core Sizes 

Average across draws 

 

Importantly, the bias exhibited by the DB estimator is relatively stable across true-core sizes. So 

our DB estimator is likely the best method for evaluating changes in the size of the core over time. 

With respect to the CvP estimator, these numerical results are consistent with the theoretical 

results of Section 4.4. First, the CvP estimator is theoretically inaccurate when the density of the 

network is high relative to the true size of the core; in the simulations the network density is fixed, 

so this occurs at small true-core sizes. Second, the inaccuracy is theoretically worse the further the 

density of the network deviates from the true proportion of banks in the core; in the simulations 

this translates into the inaccuracy worsening as the true-core size decreases, which is what we 

observe. 

Given the superior performance of our estimator in both these numerical simulations and the 

earlier theoretical analysis, we use the DB estimator for our analysis of the Australian overnight 

interbank market. 
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7. The Core/Periphery Structure of the IBOC Market 

7.1 Estimated Core 

Figure 8 shows IBOC market core size estimates for every quarter in our sample using three of the 

estimators evaluated above.27 As expected, the DB estimator finds a smaller core than the other 

estimators. Notably, with respect to the CvP estimator, the core found by the DB estimator is much 

smaller, while that found by the correlation estimator is generally larger. Based on our numerical 

analysis in Section 6, this suggests that the true-core size is in a region where the DB estimator is 

likely the most accurate. 

Figure 8: Core Size 

 

Note: Shaded ranges indicate that our optimisation algorithm found multiple core sizes that optimise the relevant function 

The most notable feature of Figure 8 is the fall in the estimated core size that occurred during the 

2007–08 financial crisis. Although the size of the fall differs between estimators, all estimators 

suggest that the typical core size fell during this period. 

Based on the DB estimator, the average core size was around eight banks prior to the peak of the 

crisis (i.e. the average until 2008:Q3) and around five banks afterwards. As expected, the four 

major banks were almost always estimated to be in the core, both before and after the crisis 

(Figure 9). 

                                                      

27 We do not document the results based on the maximum likelihood estimator as it produced core size estimates that 

were more volatile and larger (on average) than the estimates produced by any of the other three estimators. The 

maximum likelihood estimator results are available upon request. 
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Figure 9: Core Composition 

Density-based estimator, sorted by frequency in the core 

 

Notes: Each row is a different bank, for which a dot is placed in every quarter that the bank is in the core; the rows are sorted by 

the frequency each bank is in the core; banks are not identified to preserve confidentiality 

Four of the non-major banks that were often in the core prior to the crisis (i.e. those in rows 6, 7, 

9, and 10 in Figure 9) were almost never estimated to be in the core after the crisis. Only one of 

these banks became inactive (an Australian-owned bank), while the other three (one Australian-

owned and two foreign-owned banks) moved from the core to the periphery. 

Of these banks that moved to the periphery, their average in-degrees (borrowing links) and out-

degrees (lending links) all decreased after the crisis. For two of these three banks (one foreign-

owned and one Australian-owned), their average number of borrowing links fell more than 80 per 

cent between pre- and post-crisis, including a reduction in their borrowing links with the remaining 

core. This reduction in borrowing links was the major cause of them dropping out of the core. For 

the other bank, the fall in lending links was the major cause of it dropping out of the core; the 

average number of this bank’s lending links fell more than 80 per cent between pre- and post-

crisis. 

These falls in the number of in- and out-degrees could be due to either/both supply or demand. 

Using the foreign-owned banks as an example: 

 the increased perceived risk of foreign-owned banks during the crisis may have reduced the 

willingness of some banks to lend to these foreign-owned banks (supply) – consistent with the 

theoretical models of Freixas and Jorge (2008) and Acharya, Gromb and Yorulmazer (2012); 

and/or 

 the increased stress in the foreign-owned banks’ home markets may have prompted their 

pullback from intermediating in the Australian market (demand). 
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Unfortunately, the nature of our data does not allow us to determine whether the reductions in 

degree, and therefore the fall in the core size, are demand or supply driven. What we can 

conclude, however, is that crises can have long-lasting effects on the IBOC market, and that not 

all relationships remain reliable during times of stress. Identifying the causes of these banks’ 

reductions in degrees is left for future research. 

International studies find both reductions and increases in core size during the crisis. For the 

Italian overnight market (excluding foreign banks), and using the CvP estimator, Fricke and 

Lux (2015) find a reduction in the size of the core – from 28 per cent of active banks to 23 per 

cent. Conversely, Wetherilt et al (2010) find that the core size in the UK overnight market 

increased during the crisis. They suggest that the UK experience could be due to banks wanting to 

diversify their borrowing relationships to ensure they could source liquidity even during periods of 

high stress, or that changes to the UK’s reserves management regime may have allowed banks to 

increase their activity in this market. 

7.2 The Changing Relationship between Core and Periphery 

In addition to looking at changes in the make-up of the core, we also want to see whether the 

relationships between the core and periphery changed during the crisis.  

Since the ideal CP structure only requires the off-diagonal blocks to be row and column regular, 

changes in the densities of these blocks (beyond some minimum density) have no effect on the 

DB estimator. Therefore, looking at changes in the densities of the off-diagonal blocks may provide 

useful information about changes in the relationships between the core and the periphery. 

However, the typical density measure of each off-diagonal block (i.e. the number of links within 

the block as a proportion of the number of possible links) may be misleading. This is because 

changes in the composition of the core and periphery may change the density of the off-diagonal 

blocks, even if none of the banks actually changed their behaviour.28 As a result, it is difficult to 

interpret raw changes in the density of the off-diagonal blocks. 

To overcome this problem, we construct a ‘density index’. In particular, we consider only banks 

that are in the same position in consecutive periods; that is, they are either in the core for two 

consecutive periods or in the periphery for the same two periods. We then compute the growth in 

the densities of the relationships between these banks and between the two periods, and use 

these growth rates to construct our index (Figure 10). 

                                                      

28 For example, suppose all banks remaining in the core had fewer relationships with the periphery after the crisis than 

they had before the crisis. If the banks that dropped out of the core had a lower-than-average number of links with 

the periphery (before the crisis), the densities of the off-diagonal blocks may actually increase during the crisis. 
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Figure 10: Density Index 

Density-based estimator, mean = 100 

 

During 2008, the density of the ‘core lends to periphery’ links fell by 40 per cent – the largest year-

on-year fall in our sample – and continued to trend down following the crisis (Figure 10). 

Conversely, the density of ‘periphery lends to core’ links fell slightly during the crisis, but remained 

around its long-run average in subsequent years.29 

These trends are consistent with the increased perceived risk that occurred during the crisis. That 

is, while it is likely that the core banks were perceived as safe, the periphery banks may not have 

been. So it is plausible that, in such an environment, the core might reduce their exposure to the 

periphery, with each periphery bank potentially only able to borrow from the core banks with 

which they have the strongest relationships, if at all. 

However, to fully understand the changing relationships between the core and periphery, we must 

look at lending volumes, not just the number of lending relationships. Although aggregate lending 

remained elevated during the crisis (Figure 1), there was a large shift in the direction of lending 

volumes between the core and periphery (Figure 11).30 

                                                      

29 In 2008:Q3, our optimisation algorithm for the DB estimator found two CP splits with the minimum error. The core 

size is the same with both splits, but the alternate split attenuates the 2008 fall in the ‘core lends to periphery’ index 

(to 32 per cent) while amplifying the fall in the ‘periphery lends to core’ index. The only other quarter where multiple 

error-minimising splits were found was 2015:Q4. 

30 Figure 11 splits the system into the major banks and non-major banks because the major banks are estimated to be 

in the core throughout the sample period. It would also be possible to construct a ‘lending volumes index’ for the 

core and periphery in the same way as the density indices in Figure 10, but this would remove information about 

relative volumes. 
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Figure 11: Lending Volumes 

Quarterly aggregates 

 

To the extent that, prior to the crisis, periphery banks relied on the core banks for their liquidity, if 

the core stopped providing this liquidity (or the periphery banks feared that they would), the 

periphery banks would need to source this liquidity from elsewhere (e.g. the RBA’s open market 

operations, the secured lending market, or term funding markets).31 The resulting changes in the 

flows between the core and periphery are consistent with the model of Ashcraft et al (2011). In 

their model, banks that fear a liquidity shortage desire large precautionary deposit balances. Being 

precautionary, these banks do not expect to need all of the extra liquidity and therefore expect to 

have a surplus of funds. As their daily liquidity needs unfold (i.e. as the trading day draws to a 

close and the need for precautionary balances fades), they seek to lend any excess balances in the 

market. Knowing this, the core banks reduce their demand for liquidity from other sources, 

expecting to be able to fund any deficit by borrowing from the periphery. 

Our findings are consistent with those of other overnight interbank markets. In the Italian market, 

the financial crisis led to a reduction in the density of ‘core lending to periphery’ links, no clear 

difference in the density of ‘periphery lending to core’ links, a reduction in core-to-periphery 

lending volumes, and an increase in periphery-to-core lending volumes (Fricke and Lux 2015). In 

the UK market, the densities of both off-diagonal blocks fell during the crisis (Wetherilt et al 2010). 

As the acute phase of the crisis passed, demand for precautionary balances by the periphery likely 

waned (Figure 11). However, the data suggests periphery banks never returned to their pre-crisis 

reliance on the core for their liquidity. Therefore, in addition to having a long-lasting effect on the 

core/periphery structure of the IBOC market, the crisis has also had a long-lasting effect on the 

relationships between the core and periphery. 

                                                      

31 Garvin, Hughes and Peydró (forthcoming) show that as perceived risk increased during the crisis, banks with weak 

fundamentals and plentiful collateral increased their secured borrowing more than other banks. 
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8. Conclusion 

This paper has both a theoretical and an empirical contribution. For our theoretical contribution, 

we evaluated the accuracy of several commonly used estimators of core/periphery network 

structures and found them to be highly inaccurate in networks that have either a relatively large or 

relatively small core. This is particularly problematic because the core is what we are trying to 

determine, so the extent of the inaccuracies is typically not known a priori. 

We analytically derive the source of this inaccuracy, and derive a new estimator – the density-

based estimator – that is designed to overcome this problem. In numerical simulations, our 

estimator outperformed the commonly used estimators. 

For our empirical contribution, we applied our density-based estimator to the IBOC market. We 

found that the 2007–08 financial crisis had a large and long-lasting effect on the market: the core 

shrank; the remaining core reduced their exposure to the periphery; and the periphery switched 

from being net borrowers to net lenders (consistent with models of precautionary liquidity 

demand). 

One possible explanation for these long-lasting effects is that it may be less costly for the 

periphery to preserve their current lending relationships than to let these relationships lapse and 

try to renew them in a future crisis. Moreover, to the extent that there are fixed costs associated 

with large changes in market dynamics, it is possible that another large shock would be required 

for the market to revert to its previous state. Determining why temporary changes can have long-

lasting consequences for the structure and functioning of interbank markets is left for future 

research. 

From an operational perspective, there are two important conclusions. First, that we should not be 

complacent if the IBOC market’s structure seems robust to shocks, because some of these 

relationships may quickly evaporate during periods of stress. And second, that temporary shocks 

can have long-lasting implications for the market. This is important not only for predicting the 

effect of future crises, but also for determining the effect of any operational changes (i.e. even 

temporary changes in the RBA’s operations may have a long-lasting effect on this market). 
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Appendix A: The Maximum Likelihood Estimator 

Partition the N × N adjacency matrix (A) into four blocks: the core lends to core block, the core 

lends to periphery block, the periphery lends to core block, and the periphery lends to periphery 

block. Assuming the links in each block come from an Erdős-Rényi random network, the probability 

mass function for a link in block i is a Bernoulli distribution (with support  0,1k  and probability 

pi): 

    
1

1
kk

i if k p p


   

Since each link in an Erdős-Rényi network is independent, the joint probability function of all the 

links in the adjacency matrix is the product of N(N – 1) Bernoulli distributions: 
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s
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i
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 

 A  

where si is the number of possible links in block i and i is the number of actual links in block i. 

With each bank’s designation as core or periphery determining the composition of the four blocks, 

the joint probability distribution is defined by N + 4 parameters (the designations of the N banks, 

and the four pi parameters). 

Both si and i depend on the matrix A and on the core/periphery partition, but not on the 

probability pi. Therefore, we can determine the maximum likelihood estimator of pi conditional on 

the data and the core/periphery partition in order to produce a concentrated log-likelihood function 

where the only unknown parameters are whether each node is in the core or the periphery. 

The conditional maximum likelihood estimator of pi is i/si. However, for our analysis it is handy to 

concentrate-out the i parameter so that the concentrated log-likelihood function becomes: 

       ln partition | ln 1 ln 1i i i i i

i

s p p p p   A  (A1) 

where pi is now a function of the data and the core/periphery partition via the relationship 

i = sipi. 

For a given core/periphery partition, the log-likelihood has the same value if the designation of 

every bank is switched (i.e. every core bank becomes a periphery bank and every periphery bank 

becomes a core bank). Therefore, the maximum likelihood estimator requires the identifying 

restriction pCC ≥ pPP (where i = CC is the block of core lends to core links and i = PP is the block of 

periphery lends to periphery links). 

Since  0,1ip  , each component of the sum in Equation (A1) is bounded above by zero.32 This 

upper bound occurs when either pi = 0 or pi = 1. Since pi = i/si, the upper bound for each 

component is reached when either no links exist in the corresponding block or all the links in the 

block exist. Therefore, if we ignore the components of Equation (A1) that correspond to the off-

                                                      

32 Evaluating xlnx when x = 0 as its limit value as x → 0 (to prevent the log-likelihood from being undefined at the 

bounds of pi). 
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diagonal blocks, the true CP split of an ideal CP network produces the largest possible value of the 

likelihood function. 



32 

  

Appendix B: Estimator Accuracy 

B.1 Accuracy of the Craig and von Peter (2014) Estimator 

Reproducing Equation (4): 
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If we fix c, and then substitute out y through the identity Ty c c x   , then for a given core size 

the derivative of the error sum with respect to x is: 
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Since dC > dO > dP (Assumption 3), the above derivative is greater than zero. Therefore, for any 

given core size, the error-minimising value of x is its smallest possible value. Given the identity

Ty c c x   , this means x = 0 if c ≥ cT and x = cT – c if c < cT (since y ≥ 0). Using these values 

for x, the error sum can be written such that the only variable is c. Differentiating eCvP with respect 

to c then gives: 
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With Assumption 3, dCcT + dO(1 – cT) > dOcT + dP(1 – cT). Therefore, the above derivative at any 

point in the c < cT region is lower than at any point in the c ≥ cT region. Combined with the fact 

that 
d

0
d

CvPe

c
  when c = 0 and 

d
0

d
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c
  when c = 1, there is a unique global minimum for eCvP. 

This unique global minimum depends on the parameter values in the following way: 
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B.1.1 Error-minimising core size when dP = 0 

When dP = 0, off-diagonal block errors are possible. However, it requires both true-periphery 

banks to be incorrectly placed in the core (i.e. y > 0) and all true-core banks to be in the core 

(i.e. x = 0); if x > 0 then every row/column subset of the off-diagonal blocks will have a non-zero 

density (see Figure 5). In this boundary scenario, the CvP error function becomes: 
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Differentiating with respect to y gives: 

    CvPd
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Therefore, the error function with off-diagonal block errors is bounded below by   21 c Td c . But 

this is the value of the CvP error function when x = 0 and y = 0. So the CvP estimator will never set 

x = 0 and y > 0 when dP = 0, and there will never be any off-diagonal block errors with the CvP 

estimator. 

B.2 Accuracy of the Density-based Estimator 

With the simplifying assumptions in Section 4.4, the error function of the DB estimator becomes 

(i.e. dividing each block in Equation (4) by the number of possible errors within that block): 
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Differentiating the error function with respect to x and y gives: 
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Since dC > dO > dP (Assumption 3), the above derivatives are positive for all feasible x and y 

(i.e. values that ensure  0,1c ). Therefore, the error function is minimised when x = y = 0. This 

means that c = cT is the core size that minimises the DB error function. 

B.2.1 Error-minimising core size when dP = 0 

Dividing each block in Equation (B1) by the number of possible errors within that block gives: 
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Differentiating with respect to y gives: 
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Therefore, the error function with off-diagonal block errors is bounded below by 1 – dC. But this is 

the value of the DB error function when x = 0 and y = 0. So the DB estimator will never set x = 0 

and y > 0 when dP = 0, and there will never be any off-diagonal block errors with the 

DB estimator. 
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Appendix C: The Two-step Cucuringu et al (2016) Estimator 

Cucuringu et al (2016) propose a two-step process for estimating the core/periphery split of a 

network. The first step uses some criteria to rank the nodes by ‘coreness’. Cucuringu et al propose 

several ranking criteria, including ranking nodes by their degree. Given this ranking, the second 

step then chooses where to draw the line between core and periphery. 

The second step uses an error function similar to our DB estimator. The main differences are that 

missing links in the off-diagonal blocks are all treated as errors (rather than just requiring row or 

column regularity), and that they put bounds on the possible core sizes. While these bounds can 

be set to the bounds of the network (i.e. [0, N]), Cucuringu et al find that their two-step estimator 

performs poorly without more restrictive bounds.33 

The upside of their process is that it is potentially more efficient. For any given ranking, 

determining the CP split requires evaluating at most N + 1 possible splits (i.e. possible core sizes 

from zero to N). If the first step also requires only a small number of calculations (e.g. ranking 

based on degree), then an optimisation algorithm for the Cucuringu et al (2016) estimator will be 

much faster than our DB estimator (with either a global search (2
N
 possible CP splits) or a greedy 

algorithm with multiple starting points). 

However, if the global optimum is not one of the CP splits over which the second step searches, 

the Cucuringu et al (2016) estimator cannot find the global optimum. So the Cucuringu et al 

estimator is, at best, only as accurate as our DB estimator with a global search. While this result 

may not hold when using a greedy algorithm with the DB estimator, the performance of the 

Cucuringu et al estimator will always be bounded by the quality of the first-step ranking. 

To give an example of the problem, we ran the Cucuringu et al (2016) estimator on simulated data 

constructed using a method similar to the one outlined in Section 6 (Figure C1). In this simulation, 

we set dC = 1 and dO = dP; this is done not for realism but to highlight the potential extent of the 

problem. For simplicity, we rank nodes by their degree as the first step.34 And to highlight the 

issues associated with the two-step procedure (as opposed to differences resulting from the 

different error functions), we adjust the error function used in the second step to match 

Equation (5). 

                                                      

33 Since our DB estimator does not require any bounds, the need for more restrictive bounds could be due to their 

two-step procedure. 

34 While Cucuringu et al (2016) provide ranking criteria that may be more accurate, the point of this exercise is to 

show the potential extent of the problem, not to evaluate the best version of their estimator. 
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Figure C1: Number of Incorrectly Classified Banks 

From 10 000 random draws, solid line denotes average, dashed line denotes 99th percentile 

 

Note: The version of the Cucuringu et al (2016) estimator used here ranks nodes by their degree as the first step, and adjusts the 

second step to be consistent with the Craig and von Peter (2014) definition of a core/periphery structure 

When the true-core size is large, the Cucuringu et al (2016) estimator performs as well as the 

DB estimator. This is expected since it is when the true-core size is large that ranking nodes by 

their degree is more likely to be an accurate measure of their ‘coreness’. When the true-core size 

is small, the Cucuringu et al estimator exhibits a larger average error than the DB estimator. The 

difference between estimators is starker when comparing the tails of their error distributions, with 

the 99th percentile from the Cucuringu et al estimator being comparable to the worst-performing 

estimators in Section 6. 

Interestingly, Cucuringu et al (2016) also find that a second-step error function that focuses on the 

number of errors (i.e. one akin to the CvP estimator) often leads to ‘disproportionately-sized sets 

of core and peripheral vertices [nodes]’ (p 856). But they provide no explanation of the reason. 

Our theoretical analysis fills this gap. 
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Appendix D: Process for Constructing Simulation Draws 

The simulations that allow missing links within the true-core block require the imposition of three 

inequality constraints on the densities of the true-core, true-periphery and true off-diagonal blocks. 

The simulations then draw randomly from all possible networks that satisfy these constraints. As 

discussed in Section 6, the inequality restrictions are: 

1. dC > dO 

2. dO > dP 

3. 1 – dC < dP 

For simulations that do not allow missing links within the true-core block, dC = 1 and the first and 

third inequality restrictions become obsolete. 

Imposing these restrictions is based on the following identity (cT is the true size of the core): 

         1 1 2 1C T T O T T P T TdN N d c c d c N c d N c N c          (D1) 

The left-hand side is the number of links in the simulated network, which is known since we 

parameterise the simulations based on the observable average size and density of the networks 

formed from our data. The right-hand side decomposes this into the links in each block (when the 

banks are split into the true core and true periphery). 

To impose the third restriction, we draw r from unif(0, 1) and set dC = (r – 1)dP + 1 (for 

simulations in which dC = 1, we set r = 1). Substituting this into Equation (D1) then gives us a 

linear relationship between dO and dP (since {d, N, cT, r} are already parameterised), which we 

can then use to impose the other inequality restrictions. 

To ensure dP > 0 (required by definition of a ‘density’): 
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Note that dN(N – 1) – cT(cT – 1) >0 with our parameterisations. 

To ensure dO > dP: 
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To ensure dC > dO, the relevant inequality depends on the values of the other parameters. If the 

following holds: 

           1 1 1 2 1 0T T T T T TN c N c r c c r c N c           (D4) 
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then the relevant inequality is (the numerator is always positive with our parameterisations): 
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 (D5) 

If Equation (D4) does not hold, then Equation (D5) is not necessary. 

Denote the left-hand sides of Equations (D2), (D3) and (D5) as UB1, LB, and UB2, respectively. 

Then if Equation (D4) holds, dO is drawn from unif(LB, min{UB1, UB2}). If Equation (D4) does not 

hold, dO is drawn from unif(LB, UB1). 

Finally, substituting dC = (r – 1)dP + 1 and the draw for dO into Equation (D1) gives the draw for 

dP, which is then substituted into dC = (r – 1)dP + 1 to give the draw for dC. 

With the densities of each block drawn, the locations of the links within each block are determined 

using an Erdős-Rényi model (ensuring the off-diagonal blocks retain the necessary row/column 

regularity). 
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Appendix E: Results with Higher-frequency Networks 

Our baseline results are based on networks constructed at a quarterly frequency. Here we discuss 

the robustness of our findings to changes in the aggregation period. Specifically, we apply our 

density-based estimator to unweighted–directed networks constructed at monthly and weekly 

frequencies. 

As expected, the shorter the horizon of time aggregation, the smaller the network size and its 

density. The average number of active banks on a given week (month) in our sample is 34 (37), as 

opposed to an average of 41 active banks for each quarter. The average weekly (monthly) density 

is 0.11 (0.19), as opposed to 0.25 on average in our quarterly networks. 

Figure E1 shows the time-varying core sizes for the weekly and monthly aggregation periods. At 

the monthly frequency, we estimate the typical pre-crisis core size to be 4–5 banks, falling to 3–4 

banks post-crisis. Therefore, the fall in core size that we find in our baseline analysis is still visible 

in the monthly data, albeit with a smaller core. The weekly networks show no discernible change 

in core size between pre- and post-crisis. 

Figure E1: Core Size 

Density-based estimator, higher-frequency networks 

 

The divergence we find between aggregation periods is not unusual. Finger, Fricke and Lux (2012) 

compare the network properties of the Italian interbank loans market across daily, monthly, 

quarterly, and yearly frequencies and conclude that inference based on high-frequency 

aggregation periods may be misleading. In particular, they ‘show that the networks appear to be 

random at the daily level, but contain significant non-random structure for longer aggregation 

periods’. This is because high-frequency networks ‘provide probably only a very small sample of 

realizations from a richer structure of relationships’ (Finger et al 2012). 
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Appendix F: Evidence of Intermediation 

In the core/periphery model proposed by Craig and von Peter (2014), one of the key features of 

the core is that they intermediate the lending/borrowing of the periphery banks. In the ideal 

core/periphery structure, this intermediation results in the core banks having both lending and 

borrowing links with the periphery. However, while observing such links is a necessary condition 

for this ideal intermediation, it is not sufficient, especially with low-frequency networks. 

For example, suppose we split the network into large and small banks. By virtue of their size, the 

large banks may have relationships with many small banks. On some days, a given large bank may 

have a surplus of funds while some small banks have a deficit; so this large bank may lend to the 

small banks. On other days, the reverse may occur, causing the large bank to borrow from several 

small banks. When aggregated to a quarterly frequency, this behaviour would be observationally 

equivalent to intermediation. Moreover, if the small banks only had relationships with the large 

banks, and the large banks also borrowed from/lent to each other, the quarterly networks would 

resemble a core/periphery structure. 

Even though the large banks are not intermediating in this example – since they are only 

lending/borrowing based on their own requirements – the fact that the small banks only deal with 

the large banks makes the large banks ‘core’ to the system. So one could argue that such a 

network still exhibits a core/periphery structure. That said, we want to present evidence that the 

core banks in our networks are actually intermediating. 

To do this, we look at the share of days in which each bank both lends and borrows in the IBOC 

market (Figure F1). The average share is much higher for the core banks than it is for the 

periphery banks, supporting our claim that the core banks are intermediating in the IBOC market. 

We note, however, that banks may also borrow and lend on the same day due to forecast errors.35 

If the distribution of forecast errors is symmetric, and banks have no tolerance for forecast errors, 

we would expect both core and periphery banks to exhibit a share of 50 per cent in Figure F1. 

Therefore, the difference between the core and periphery banks could just be due to differing 

tolerances for forecast errors.36 

That said, Hing, Kelly and Olivan (2016, p 37) state that ‘most banks wait until they are reasonably 

certain of their liquidity position … before transacting in the cash [IBOC] market’. And, over the 

sample period, the average shares for each of the major banks (as these banks are almost always 

in the core) are statistically higher than 50 per cent (at the 1 per cent level). So they likely 

represent more than just forecast errors. 

                                                      

35 Banks’ need for the IBOC market arises from the tens of thousands of payments that flow between banks on a daily 

basis. Any error in forecasting these flows could result in a bank lending (borrowing) too much, requiring them to 

borrow (lend) to offset their forecast error. 

36 For example, if the typical values of forecast errors for some banks are sufficiently small, it may be more profitable 

for these banks to maintain a small liquidity buffer than to retain sufficient staff for late-day re-entry into the IBOC 

market. 
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Figure F1: Days with both Lending and Borrowing 

As a share of days with some lending or borrowing 

 

Note: Simple average of banks’ quarterly share 
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