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Abstract

This paper studies two types of interest rate rules that involve long-term nominal
interest rates in the context of a New Keynesian model. The first type considers
the possibility of adding longer-term rates to the list of variables the central bank
reacts to in setting its short-term rate. The second type considers Taylor-type
rules that are expressed in terms of interest rates of different maturities, which
are operationally equivalent to more complex rules expressed in terms of the
short-term rate. It is shown that both types of rules can give rise to a unique
rational expectations equilibrium in large regions of the policy-parameter space.
The normative evaluation shows that under certain preferences of the monetary
authority, policy rules of the second type produce better results than the standard
Taylor-type rule.
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TERM STRUCTURE RULES FOR MONETARY POLICY

Mariano Kulish

1. Introduction

The transmission mechanism of monetary policy is traditionally perceived as
going from a short-term nominal interest rate to a long-term real interest rate
that influences aggregate demand. Recently, there have been proposals involving
the use of nominal long-term interest rates for the conduct of monetary policy.
On the one hand, as Goodfriend (1993) notes, long-term nominal interest rates
may contain information about long-term inflationary expectations, thus making
them useful indicators for the central bank. On the other hand, the potential of
long-term rates to directly influence economic activity motivates the study of
policy rules which incorporate longer-term rates.1 The goal of this paper is to
study monetary policy rules that involve long-term nominal interest rates in these
two distinct roles.

1.1 Inflationary Expectations: Type-1 Rules

The Fisher decomposition reveals that two terms are crucial for the equilibrium
determination of nominal interest rates: an expected real rate and an expected
inflation term. Thus, policy-makers might want to use long-term nominal interest
rates to help measure the private sector’s long-term inflationary expectations. To
the extent that the predominant force moving long-term yields is the expected
inflation component, a monetary authority interested in keeping inflation under
control might be interested in the use of reaction functions that incorporate
long-term yields as arguments. Interestingly, McCallum (1994) has shown that a
monetary policy rule that responds to the prevailing level of the spread between a
long-term rate and a short-term rate can rationalise an important empirical failure

1 See Bernanke (2002) and Clouseet al (2003).
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of the expectations hypothesis.2 However, such behaviour by the central bank
raises two important considerations.

First, one can show that the theory of the term structure that emerges from
optimising behaviour in a New Keynesian model is the expectations hypothesis.
Thus, the market determines nominal long-term interest rates as the average
expected level of nominal short-term interest rates over the maturity horizon under
consideration. A monetary policy reaction function that includes a long-term rate
immediately raises the question of whether or not a unique rational expectations
equilibrium (REE) exists in this case. The question is important since the
combined power of the expectations hypothesis and the proposed monetary policy
rule might give rise to self-fulfilling prophecies in the equilibrium determination
of the yield curve.3 What are the conditions that guarantee uniqueness of the REE
when the central bank’s actions depend on the level of a long-term interest rate in
addition to inflation and the output gap?

Second, assuming that the conditions that ensure a unique REE exist, is it desirable
to have the central bank responding to long-term rates in this way? And if so,
which is the best maturity length for the monetary authority to react to?

To study these questions I propose a modification of a standard Taylor rule that
adds a long-term rate as an additional variable to which the central bank adjusts
its short-term rate; hereafter, these are referred to as type-1 rules. In the context
of a standard New Keynesian model, I show that there are large and empirically
plausible regions of the policy-parameter space where a unique REE exists when
the central bank conducts policy in this manner. In addition, I find that reacting to
movements in long-term rates does not improve the performance of the central

2 This failure is related to the magnitude of the slope coefficients in regressions of the
short rate on long-short spreads. A partial equilibrium interpretation of the expectations
hypothesis implies that the slope coefficient,b, in a regression of the form,12(R1,t −R1,t−1) =
a+ b(Ri,t −R1,t−1) + shock, should have a probability limit of 1. Many empirical findings
in the literature yield a value forb considerably below 1. As shown by McCallum (1994)
the expectations hypothesis is consistent with these findings if it is recognised that the term
premium follows an exogenous random process and monetary policy involves smoothing of the
instrument as well as a response to the level of the spread.

3 In fact, Bernanke and Woodford (1997) show that a policy rule, in which the short-term rate
reacts only to a long-term rate, is unable to yield a unique REE. However, in this paper I
consider more general rules that nest Bernanke and Woodford’s case as a special one.
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bank relative to the standard Taylor rule, regardless of the maturity length in
question.

1.2 Long-term Interest Rates: Type-2 Rules

It has been suggested that long-term rates might be used as instruments of
monetary policy in Taylor rules (that is, where the long rate replaces the short rate
as the argument of the rule; hereafter referred to as type-2 rules). Various aspects of
this proposal have been studied by Kulish (2005) and McGough, Rudebusch and
Williams (2005). This does not imply, however, that type-2 rules require monetary
authorities to alter their current operating procedures – that is, by switching to
a longer-term nominal interest rate as their instrument. Indeed, interest rates of
various maturities are linked by the expectations hypothesis in the New Keynesian
model so that long-term interest rate rules could alternatively be written as more
complicated short-term rate rules.4

In this paper I study the determinacy properties of the REE as well as the
performance of long-term interest rate rules. This study is interesting in its own
right, but it is also of general theoretical importance to monetary economics for
the following reason.

One might initially suspect that a unique REE will not arise if the monetary
authority decides to use a two-period interest rate rule. The reason is that,
in a context in which the expectations hypothesis holds true, there will exist
infinite paths for the one-period rate that satisfy the central bank’s setting of the
two-period rate. Notice that abstracting from a term premium and default risk,
the two-period rate is an average of the current one-period rate and the current
expectation of the one-period rate in the next period. In other words, if the
central bank wishes to set the two-period interest rate at, say, 5 per cent, then
in equilibrium the one-period rate could follow any number of paths provided that
the average for the one-period rate’s path is 5 per cent.

This argument suggests that a unique equilibrium would not exist when the
central bank uses a rule for the two-period rate, or its equivalent in terms of the

4 In other words, the choice of operating instrument when constrained to a functional form of the
policy rule is equivalent to some choice of functional form when constrained to one particular
instrument.
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one-period rate. Imagine for a moment that this is indeed the case and recall that
almost all of the modern dynamic discrete time models of monetary economics are
based on a quarterly frequency. So in theory the operating instrument is usually
a 3-month interest rate, whereas the actual operating instrument of monetary
policy in most developed economies is an overnight rate. The inability to map
the theoretical operating instrument with the actual one would be a damning
result. Fortunately, this suspicion turns out to be incorrect. In fact, as shown
below, large and empirically plausible regions of the policy-parameter space for
long-term interest rate rules yield a unique REE for the economy.5 Thus, the results
of this paper provide a theoretical foundation for the study of monetary models at
different frequencies.

These alternative monetary policy rules are studied in the context of a New
Keynesian model for the following reasons. First, a standard version of the New
Keynesian model embodies the traditional view of the monetary transmission
mechanism, in which the central bank controls the short-term nominal interest
rate, while the long-term real interest rate determines aggregate demand. Second,
as emphasised by Goodfriend and King (1997), the New Keynesian model has
achieved a certain consensus in the macroeconomic literature, to the point that the
authors refer to it as the New Neoclassical Synthesis. Third, the New Keynesian
model is now extensively used for theoretical analysis of monetary policy.6

The rest of the paper is organised as follows. Section 2 describes the model.
Section 3 discusses determinacy of the REE under term structure rules and their
implications for the dynamic behaviour of the economy.7 Section 4 studies the
performance of these alternative term structure rules against two benchmarks: the
robust optimal policy rule and the standard Taylor-type rule. Section 5 summarises
the main results.

5 This result may also be of practical importance in light of the zero-bound/liquidity trap problem.
See Bernanke (2002), Kulish (2005), and McGoughet al (2005) for more details on this issue.

6 See Clarida, Galı́ and Gertler (1999), Goodfriend and King (1997), Walsh (1998),
Woodford (2003) and the references therein.

7 Elsewhere in the literature, Gallmeyer, Hollifield and Zin (2005) have proposed the term
‘McCallum rules’ to refer to a monetary policy rule in which the instrument is sensitive to
the slope of the yield curve. Here, ‘term structure rules’ refer to monetary policy rules that
involve long-term rates in a more general way. In my terminology, a McCallum rule is a special
case of a term structure rule.
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2. The New Keynesian Model

The model presented here is a standard New Keynesian model with an extended
set of equilibrium conditions in order to allow for an explicit consideration of
the term structure of interest rates. Instead of working through the details of the
derivation, I present the key aggregate log-linear relationships.8

The aggregate demand schedule implies that the current level of the output gap,
xt , depends on the expected future level of the output gap and the one-period real
interest rate:

xt =−(R1,t −Etπt+1)+Etxt+1+ µg(1−φ)gt − (1−ρ)at (1)

whereR1,t is the one-period nominal interest rate;πt is the inflation rate during
period t; at is a technology shock with persistence governed byρ; and gt is a
preference shock with persistence governed byφ and sizeµg.

It can be shown that the theory of the term structure of interest rates that
emerges from optimising behaviour in the context of this model is the expectations
hypothesis. The nominal interest rate att associated with a zero-coupon bond that
promises to pay one dollar at the end of periodt + i−1 is given by

Ri,t =
1
i
Et

i∑
k=1

R1,t+k−1 ,∀i ≥ 2 (2)

Firms are assumed to operate in an environment characterised by monopolistic
competition in the goods market and by price stickiness. Factor markets are
assumed to be competitive and goods are produced with a constant returns-to-
scale technology. Following Calvo (1983), it can then be shown that the above
assumptions produce the log-linear New Phillips curve given by

πt = λxt +βEtπt+1+ µvvt (3)

wherevt is a cost-push shock with sizeµv. The parameterλ > 0 governs how
inflation reacts to movements of output from its natural level. A larger value of
λ implies that there is a greater effect of output on inflation. In this sense, prices

8 See Claridaet al (1999), Ireland (2004), and Woodford (2003) for a more detailed discussion
of the New Keynesian model.
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may be viewed as adjusting faster. The household’s discount factorβ is restricted
to lie between 0 and 1.

Finally, to close the model we need assumptions about the behaviour of
the monetary authority. The standard case characterises monetary policy as a
commitment to the following Taylor-type rule:

R1,t = τR1,t−1+απt +δxt + µb bt (4)

wherebt is a monetary policy shock whose size is governed byµb.

In the case in which the monetary authority adds a long-term rate as an additional
variable to which it reacts, the policy rule can be characterised by

R1,t = τR1,t−1+απt +δxt + γRi,t + µb bt (5)

Throughout the paper, policy rules that allow a reaction to long-term rates are
labeled type-1 rules. I study these rules of type-1 for maturities 2, 4, 12, 20 and
40 which, for a quarterly frequency, correspond to a term structure composed
of bonds with maturities of 6 months, 1 year, 3 years, 5 years and 10 years,
respectively.

When the central bank replaces the short-term rate in the standard Taylor rule with
a long-term rate, monetary policy follows a rule of the form

Ri,t = τRi,t−1+απt +δxt + µb bt (6)

Policy rules like this are labeled type-2 rules. As before, the selected term structure
for type-2 rules is 2, 4, 12, 20 and 40.

Notice that as interest rates of various maturities are linked by the expectations
hypothesis, whatever outcome a type-1 or type-2 rule produces, it could
alternatively be obtained using some given rule for the short-term rate. For
example, the central bank could achieve the same equilibrium allocation either
by using a type-2 rule forR2,t , or by using a rule for the short-term of the form

R1,t = τR1,t−1+ τEt−1R1,t −EtR1,t+1+2απt +2δxt +2µb bt (7)

Hence, one could view the exercise either as an analysis of different policy rules
for the short rate, or as a comparison of Taylor-type rules involving various longer-
term rates.
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Finally, the stochastic block of the model is assumed to behave as given by

at = ρat−1+ ε
a
t

bt = ε
b
t (8)

gt = φgt−1+ ε
g
t

vt = θvt−1+ ε
v
t

where the parameters are restricted as follows:|ρ| < 1, |φ | < 1, |θ | < 1, and the
independently and identically distributed shocksε

a
t , ε

b
t , ε

g
t and ε

v
t have normal

distributions, zero mean, and standard deviations given by,σε
a, σ

ε
b, σε

g, andσε
v,

respectively.

The model is calibrated to roughly match key features of the Australian and the
US economies. The parametersβ and λ are fixed throughout the study. These
parameters are set to 0.99 and 0.14, respectively, as usually done in the literature.
The value forλ implies an expected price-contract length of one year. The shocks
associated with the parametersρ, φ and θ are thought to be highly persistent
innovations.9 For this reason they are set to 0.95. Finally, the parameters that
control the size or standard deviation of the remaining shocks are calibrated
as follows. The standard deviation of the technology shock,σε

a, is set to 0.7
following Cooley and Prescott (1995). Then, in the case of a Taylor rule with
τ = 0.5, α = 0.6 andδ = 0.0009, the values ofµb, µg andµv are chosen so as to
approximate the volatility of the output gap, the interest rate and inflation in the
data.10

For Australia, the output gap is constructed as the log difference between the
quarterly real non-farm output and real potential quarterly output as calculated
by the model of Stone, Wheatley and Wilkinson (2005). Inflation is measured as
the quarterly change of the weighted-median CPI, and the interest rate is taken to
be the nominal 90-day bank bill rate. For the US, the output gap is constructed
as the log difference between the seasonally adjusted quarterly real GDP and real
potential quarterly GDP taken from the Congressional Budget Office. Inflation

9 See Ireland (2004) and Cooley and Prescott (1995).

10 σ
ε

b, σ
ε

g, andσ
ε

v are set to 1.
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is measured as the quarterly change of the GDP implicit price deflator and the
interest rate is the 3-month Fama and Bliss zero-coupon bond yield data from the
Center for Research in Security Prices.

3. Equilibrium Determinacy

Under appropriate identifications, the model can be written in matrix form as

Etst+1 = Kst +Lv t (9)

where:st = ( z′t p′t )′; zt is a(m×1) vector of pre-determined variables att; p is
a (n×1) vector of non-pre-determined variables att; andvt is a(k×1) vector of
exogenous variables.11

Let n̄ be the number of eigenvalues ofK outside the unit circle. There are three
cases to consider. If ¯n= n then there is a unique equilibrium solution. If ¯n> n then
an equilibrium solution does not exist, and if ¯n< n then there is an infinite number
of equilibrium solutions.12

As the reader might appreciate, the study of uniqueness becomes analytically
intractable, especially as we move towards larger maturities. For this reason,
I resort to a numerical study of the problem. Nevertheless, as shown below,
interesting numerical patterns emerge from this study.

3.1 Type-1 Rules: Reacting to Long-term Interest Rates

In this sub-section I study the conditions that support a unique REE for the class
of type-1 rules given byR1,t = τR1,t−1 + απt + δxt + γRi,t . Figure 1 shows the
regions of uniqueness for given values ofτ andδ in the space ofα andγ.13 A
number of interesting features of this type of policy rule are worth highlighting.

11 When monetary policy uses a Taylor rule that involves interest rate smoothing, then the
interest rate is a pre-determined variable, inflation and output are jump (or non-pre-determined)
variables, and shocks are the exogenous variables.

12 See Blanchard and Kahn (1980) for a detailed presentation.

13 Figure 1 shows regions of uniqueness forR4, R12, R20, andR40. Kulish (2005) contains figures
for R2 as well.
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Notice that the critical contour, for which the crucial eigenvalue of theK matrix
is 1, has a downward- and an upward-sloping part in each case. The downward-
sloping portion of the contour reveals that there is a trade-off, in terms of assuring
a unique equilibrium, between the reaction to current inflation,α, and the reaction
to the long-term nominal interest rate,γ.

Figure 1: Regions of Uniqueness for Type-1 Rules
δ = τ = 0.5

Uniqueness

Reacting to R4

Uniqueness

UniquenessUniqueness

Reacting to R12

Reacting to R20 Reacting to R40

-3

-2

-1

0

1

2

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

0 1 2 3 4 5 6

γ γ

γ γ

α α

α α

-3

-2

-1

0

1

2

-1 0 1 2 3 4 5 6
-3

-2

-1

0

1

2

0 1 2 3 4 5 6

Further numerical exploration shows that in the downward-sloping part of the
contour, a condition of the form (τ + α + γ > 1) is necessary for determinacy,
regardless of the maturity length in question. Note that the Taylor principle
(α + τ > 1), that the short-term rate must rise sufficiently in the long run in
response to movements in inflation so as to increase real rates, no longer holds
in this case. The upward-sloping section of the contour shows that for a givenα,
asγ becomes ‘too large’, the policy rule is unable to produce a unique outcome.
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The intuition behind this result is the following. For simplicity, take the two-period
interest rate and use Equations (1) and (2) to write

R2,t =
1
2

Et(xt+2−xt +
2∑

k=1

πt+k)

The above expression shows that by reacting to the two-period interest rate, the
monetary authority is implicitly reacting to the average expected path of inflation
in the following two periods. This explains why the Taylor principle is modified to
a more general condition of the form (α +τ +γ > 1) in the downward-sloping part
of the contour. In this sense there is a trade-off for assuring a unique equilibrium
between the reaction to the long-term rate and current inflation.

To gain intuition about the upward-sloping portion of the contour, recall that,
according to the expectations hypothesis, we may alternatively expressR2,t as

R2,t =
1
2

(
R1,t +EtR1,t+1

)
The problem is that a ‘too large’ value ofγ allows self-fulfilling expectations
to take place. To see why, observe that expectations that interest rates will be
high become self-fulfilling, because the expectations of high short-term rates in
the future causes long-term rates to rise, leading the monetary authority to raise
short-term rates. Thus, in this case the monetary authority validates the initial
expectation that short-term rates will be high. The upward-sloping part of the
contour shows that there is a complementarity betweenα andγ. In this region,
a higher value ofγ requires a stronger response of the short-term rate to inflation
in order to avoid the possibility of self-fulfilling expectations. It is in this respect
that the Taylor principle breaks down for type-1 rules.

Further numerical exploration shows that in the upward-sloping part of the
contour, higher values ofτ andδ permit, for a given value ofα, a higher value
of γ. Notice that the Fisher decomposition implies, without loss of generality, that
reacting positively toR2 is equivalent to an implicit negative reaction to the current
output gap. To see this, consider Equation (5), the type-1 policy rule withi equal
to 2, and rewrite it with the help of the Fisher decomposition as

R1,t = τR1,t−1+απt +
γ

2

2∑
k=1

Etπt+k +(δ − γ

2
)xt +

γ

2
Etxt+2
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For this reason, higher values ofδ allow for higher values ofγ without implying
a negative reaction to the current output gap.14

Figure 1 reveals that as we move towards policy rules that involve larger maturity
rates, the upward-sloping region of the critical contour increases its slope. So,
for a given value ofα it is possible to ensure unique solutions with even higher
values ofγ as the maturity lengthens. The fact that the interest rates in the policy
rule are further apart in terms of maturity explains this result. When monetary
policy reacts to very long-term rates, expectations can become self-fulfilling if the
reaction of the short-term rate to this movement is sufficiently strong so as to feed
through the term structure with enough strength to move the very long-term rate in
a self-validating manner. So, as a stylised numerical observation, if the condition
τ + α + γ > 1 is satisfied (for given values of the other parameters) the larger
the maturity of the long-term rate in a type-1 rule, the larger the value ofγ that
supports a unique solution of the system.

Up to this point I have shown that there are large and empirically plausible
regions of the parameter space for which type-1 rules yield a unique REE. This is
important because rules that support multiple solutions are problematic. The mere
fact that such a rule may be consistent with a potentially desirable equilibrium is
of little importance if it is also equally consistent with other, much less desirable
equilibria. A rule that implies indeterminacy is consistent with a large set of
equilibria, including ones in which the fluctuations of endogenous variables are
arbitrarily large relative to the size of fluctuations in the exogenous shocks.15 In
general, variables for which there may be arbitrarily large fluctuations due to self-
fulfilling expectations include those that enter the loss function of the monetary
authority. Hence, at least some of the equilibria consistent with the rule are likely
to be less desirable, in terms of the loss function, than the unique equilibrium
associated with a rule that guarantees a unique solution.

14 It can be shown in the context of the standard case (that is, with a policy rule of the form
R1,t = τR1,t−1 + απt + δxt) that under the proposed calibration of the model (in particular,
λ = 0.14 andα > 1), there are multiple equilibria so long asδ < 0.

15 See Bernanke and Woodford (1997) for a formal description of a ‘sunspot’ equilibrium. See
also Woodford (2003, chapter 4).
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For these reasons, the normative analysis restricts its attention to rules that imply a
unique equilibrium. The question of the benefits of type-1 rules that yield a unique
solution is taken up in Section 4.

3.2 Type-2 Rules: Long-term Interest Rate Rules

Here I study the conditions under which a unique REE exists for the class of
type-2 rules given byRi,t = τRi,t−1+απt +δxt . In this case, a longer-term interest
rate enters in the left-hand side of the reaction function used by the monetary
authority. Recall that this does not imply that the monetary authority needs to
change its operating procedures in any respect. The central bank can still use
the short-term rate as its operating instrument to achieve the same equilibrium
allocation. Rather, this is merely a more straightforward way to consider a rule
which, when expressed in terms of the response of the short rate, can be quite
complex.

Figure 2 shows the regions in the space ofα andδ in which a unique REE exists
for τ = 1/2. As can be observed, significantly large regions of the parameter space
exist that produce a unique REE.16 Notice that the regions of determinacy in the
positive quadrants remain unchanged whatever the term of the interest rate chosen
for the rule. Interestingly, Figure 2 also shows that, in the positive quadrants,
the Taylor principle holds for the selected value ofτ. Notice thatα + τ > 1 is
required for determinacy in these cases. In other words, for all rules andτ = 1/2,
determinacy of the REE requiresα > 1/2. Although the numerical exercise so far
suggests that the Taylor principle generalises to longer maturities, this is true only
in some regions of the policy-parameter space.

Further exploration in the space ofα and τ shows that the Taylor principle
eventually breaks down for longer-term interest rates rules by displaying an
upward-sloping section of the critical contour. This complementarity betweenα

andτ shows up for sufficiently positive values ofδ . Interestingly, in the standard
Taylor rule case, the critical contour’s slope is always –1 with its equation given
by τ = 1−α.17

16 McGoughet al (2005) also found regions of uniqueness for similar rules in an environment of
the same kind.

17 An earlier version of Kulish (2005) contains figures inα − τ space that illustrate this result.
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Figure 2: Regions of Uniqueness for Type-2 Rules
τ = 0.5
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The general result, that a unique REE exists when the monetary authority uses a
rule expressed in terms of an interest rate of maturity other than one period, is
surprising in light of the intuition previously mentioned. Consider, for example,
the case in which the central bank uses a type-2 rule based on the two-period
interest rate. One might initially believe that a unique equilibrium would not arise
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in this case since the expectations hypothesis of the term structure suggests that
infinite combinations of the short-term rate would satisfy the central bank’s setting
of R2. In fact, recall that the expectations hypothesis says that the two-period rate
is determined byR2,t = 1

2

(
R1,t +EtR1,t+1

)
. At first sight, one chosen value forR2,t

could be achieved by infinitely many paths forR1, so that uniqueness could not be
achieved.

Clearly, the results show that this is not the case in large and plausible regions
of the parameter space. To understand this result, recall that the expectations
hypothesis of the term structure says that long-term rates are determined by the
expected future path of the short-term rate during the maturity horizon in question.
Thus, it makes sense to think that short-term rates determine the level of long-term
rates. However, it is important to realise that the expectations hypothesis works in
the opposite direction as well. To see this formally, rewrite the equation forR2 as
a first-order stochastic difference equation inR1:

R1,t = 2R2,t −EtR1,t+1

Advance the equation one period and substitute it back to obtain

R1,t = 2R2,t −2EtR2,t+1+EtR1,t+2

Repeating this operation many times and using the fact that limj→∞ EtR1,t+ j = 0
yields18,

R1,t = 2
∞∑

j=0

(−1) jEtR2,t+ j (10)

Equation (10) uncovers why the previous intuition is incorrect. A uniquely
expected path for the two-period rate, as given by Equation (10), determines
a unique current level of the one-period rate. It can be shown that the general
expression of the relevant path to be followed for an interest rate of maturityi in
order to determine the current level of the one-period nominal rate is given by

R1,t = i

 ∞∑
j=0

EtRi,t+i j −
∞∑

j=0

EtRi,t+i j+1

 (11)

18 Variables are expressed in percentage deviations from the steady state. So, in a stationary
equilibrium the current expectation of a variable that is far into the future would be zero.
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Equation (11) generalises the argument for interest rates of any term. Thus,
whatever the maturity of the interest rate chosen for the type-2 rule, if the rule
implies a unique equilibrium, then the expected path of the interest rate in the rule
uniquely determines the current level of interest rates of longer as well as shorter
maturities.

The result that uniqueness arises even when the central bank decides to use
a Taylor-type policy rule based on an interest rate other than the short-term
rate is important for several reasons. On a somewhat subtle level, it provides
support for the theoretical study of macro-monetary models at various frequencies
without implying any kind of hidden inconsistency. Without taking a stand on
whether time is continuous or discrete, it should almost go without saying that
real-world economics occurs at (at least) a daily frequency. As I have already
mentioned, discrete models in monetary economics are generally studied at a
quarterly frequency without an explicit concern for whether or not the theoretical
short-term rate (a 3-month rate) implies a unique level of the current overnight
rate. Although models are usually studied at a quarterly frequency, sometimes
calibration is done at a monthly or annual frequency. The result presented here
provides a theoretical foundation for such frequency choices.

Perhaps more importantly, the result opens up a new dimension of analysis for
monetary policy rules that is interesting in its own right. Namely, which interest
rate, among a given class of rules, performs best? Which rule gets closer to the
optimal monetary policy rule in the sense of Giannoni and Woodford (2002)?
Section 4 of the paper addresses these questions.

3.3 Dynamics

I have previously shown that large regions of uniqueness exist for type-1 and
type-2 rules. It seems interesting to study the dynamic response of the economy to
shocks under representative type-1 and type-2 rules versus a standard Taylor rule.

Figures 3 illustrates the impulse responses of inflation and the output gap to a
monetary shock and a cost-push shock for a standard Taylor rule, and for type-1
and type-2 rules involvingR12 andR40 respectively. The parameters remain fixed
across rules in order to capture the effects implied by the maturity dimension of
the problem.
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Figure 3: Impulse Responses for Inflation and the Output Gap
τ = 0.6,α = 0.6,δ = 0.1 andγ = 0.5
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A number of interesting features arise from this comparison. First, the signs of
the responses do not change across policies. The qualitative responses of inflation
and the output gap are the same as those generated by a standard Taylor rule. A
contractionary monetary policy shock reduces both inflation and the output gap
for all rules considered, while an adverse cost-push shock increases inflation and
decreases output for all rules as well. These results suggest that type-1 and type-2
rules do not imply ‘strange’ responses to the disturbances that hit the economy.
Secondly, observe that the size of the responses is significantly affected by the
type of policy rule. In the case of type-1 rules, in response to a cost-push shock,
inflation deviates less than in the Taylor rule case while output suffers a bigger
contraction. A similar result shows up in the case of type-2 rules in response to
an adverse cost-push shock. In this case, the maturity length of the interest rate in
the type-2 rule matters for the determination of the trade-off between output and
inflation deviations from the steady state.

Finally, Figure 3 shows that a contractionary monetary shock implies a bigger
contraction for inflation and output the longer the maturity of the interest rate in
the rule. This arises because the size of the monetary shock changes across policy
rules. That is, a one-standard deviation ofbt attached to a type-2 rule forR40 raises
the one-period nominal interest rate by more than a one-standard deviation ofbt
in a standard Taylor rule. Hence, the size of the monetary policy shock,µb, is set
to zero in all policy rules for the normative analysis of Section 4.19

As shown, the impulse responses suggest that the dynamic behaviour of the
economy is significantly affected by the choice of policy rule. In fact, different
rules imply a distinct trade-off between inflation and output deviations in response
to a cost-push shock. This shock plays a key role in the conduct of monetary policy.
It presents the monetary authority with a trade-off between output and inflation
stabilisation. The fact that quantitatively different responses are observed under
different rules motivates the question of what is the preferred monetary policy
rule. The next section addresses this question.

19 This guarantees that the comparison between policy rules is fair in the sense of capturing only
the impact of the deterministic component of the rules.
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4. Optimal Monetary Policy Rules

I start by constructing an optimal policy rule following Giannoni and Woodford
(2002). I consider a rule that would bring about the optimal response to shocks
as well as yield a unique stationary equilibrium for the economy. I assume that
the objective of the monetary authority is to minimise the expected value of a loss
criterium given by

J =
1
2

E0

( ∞∑
t=0

β
tLt

)
(12)

where the bank’s discount rateβ is the same as in Equation (3) and the period loss
function is of the form

Lt = π
2
t +ωxx

2
t +ωRR2

1,t (13)

Here, the parametersωx and ωR (assumed to be positive) govern the relative
concern for output and short-term nominal interest rate variability. The
monetary authority faces the problem of minimising the loss function given by
Equation (12) subject to the New IS and Phillips curves given by
Equations (1) and (3), respectively. Notice that minimisation is achieved by
choosing a time path for{R1,t}

∞
t=0 that minimises the monetary authority’s

objective and simultaneously satisfies the model’s structural equations at each
point in time. The first-order conditions of the problem are given by

πt −β
−1Λ1,t−1+Λ2,t −Λ2,t−1 = 0

ωxxt +Λ1,t −β
−1Λ1,t−1−λΛ2,t = 0

ωRR1,t +Λ1,t = 0

R1,t −Etxt+1+xt −Etπt+1−µg(1−φ)gt +(1−ρ)at = 0

πt −λxt −βEtπt+1−µvvt = 0

whereΛ1,t andΛ2,t stand for the Lagrange multipliers associated with the IS and
New Phillips curve equations respectively. One can use the equations above to
substitute out the Lagrange multipliers in order to obtain a monetary policy rule
consistent with the optimal solution of the form

R1,t = (1+
λ

β
)R1,t−1+

1
β

∆R1,t−1+
λ

ωR
πt +

ωx

ωR
∆xt (14)
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As shown by Giannoni and Woodford (2002), commitment to this rule implies a
unique equilibrium as well as an optimal pattern of responses to the economy’s
disturbances. In this case, the optimisation is not performed over some parametric
set of policy rules (for example, a Taylor-type rule). Instead, the approach
underlying Equation (14) characterises the optimal response to shocks by taking
the structural equations as constraints, and then finds the policy rule that generates
such an equilibrium.

Any rule constrained to belong to a given set of rules cannot perform better than
this optimal rule. Hence, type-1 or type-2 rules could not possibly yield a better
outcome than Equation (14). However, studying how close these rules come to
the optimal response remains important for many reasons. McCallum’s (1988)
critique, namely that the main problem that policy-makers face is uncertainty
about the exact structure of the economy, implies uncertainty about the exact
specification of the optimal monetary policy rule. For this reason it remains
important to understand how a given rule works across different plausible
environments. Simple policy rules have also been proposed on the basis of being
operational and simple to communicate to the public. Operational considerations
suggest that rules should be expressed in terms of instrument variables that can
be controlled by central banks and require only information available to central
banks.20 Recall that the outcome of any type-2 rule can be reproduced by some
rule for the short-term rate. So implementation of type-2 rules need not require
modifications of operating procedures.

I therefore consider the optimal rule, Equation (14), as a benchmark to evaluate
the performance of type-1 and type-2 rules (restricting attention to those that result
in a unique REE). For reference, I also examine outcomes based on the standard
Taylor rule.

20 If the central bank collects data with a lag, then depending on the frequency of the model,
the rules described here might not be operational in practice. Notably, McGoughet al (2005)
address this problem and find regions of uniqueness for policies that set a longer-term rate in
response to lagged inflation.
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4.1 Type-1 Rules

Table 1 shows, for different calibrations ofωx and a value of 0.1 forωR, the
value of the loss function and each of its components for the optimal rule
(Equation (14)), the standard Taylor rule (Equation (4)), and type-1 rules of the
selected term structure.21

Table 1: Optimal Type-1 Rules
ωR = 0.1

Optimal Taylor R2 R4 R12 R20 R40

rule rule

ωx = 0.1

Loss 0.9926 1.0032 1.0032 1.0032 1.0032 1.0032 1.0032

Var(π) 0.1015 0.1147 0.1147 0.1147 0.1147 0.1147 0.1147

Var(x) 8.8961 8.8824 8.8824 8.8824 8.8824 8.8824 8.8824

Var(R1) 0.0150 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031

ωx = 0.33

Loss 2.8191 2.8744 2.8744 2.8744 2.8744 2.8744 2.8744

Var(π) 0.4574 0.3616 0.3614 0.3614 0.3614 0.3614 0.3614

Var(x) 7.0625 7.5377 7.5383 7.5383 7.5382 7.5383 7.5383

Var(R1) 0.0757 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

ωx = 1

Loss 6.7243 7.5900 7.5900 7.5900 7.5900 7.5900 7.5900

Var(π) 1.6088 0.8299 0.8299 0.8301 0.8299 0.8299 0.8299

Var(x) 5.0405 6.7488 6.7488 6.7486 6.7488 6.7488 6.7488

Var(R1) 0.7504 0.1130 0.1130 0.1130 0.1130 0.1130 0.1130

ωx = 3

Loss 14.2980 19.5110 19.5110 19.5110 19.5110 19.5110 19.5110

Var(π) 4.8407 3.7726 3.7726 3.7725 3.7726 3.7726 3.7726

Var(x) 3.0422 5.1710 5.1710 5.1711 5.1710 5.1710 5.1710

Var(R1) 3.3090 2.2525 2.2525 2.2524 2.2525 2.2525 2.2525

21 Notice that1
2E0

∑∞
t=0β

t(π2
t + ωxx

2
t + ωRR2

1,t) = 1
2(1−β )(σ

2
π + ωxσ

2
x + ωRσ

2
R1

). So minimising

J is equivalent to minimising a weighted average of the variances as given by1
2(1−β )

(σ2
π + ωxσ

2
x + ωRσ

2
R1

). Since 1
2(1−β ) is only a scaling constant, one can focus on the value

of Ĵ = σ
2
π +ωxσ

2
x +ωRσ

2
R1

instead. This is the value of the loss function reported in all tables.
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Reacting to movements in nominal longer-term rates does not present significant
gains. As expected, type-1 rules are no worse than the standard Taylor rule, since
this rule is a particular case of a type-1 rule for whichγ is set to zero. Inspection of
Table 1 shows not only that type-1 rules achieve a value of the loss function which
is identical to that of the Taylor rule, but also that the variances of the relevant
variables remain unchanged.22

In general, for all calibrations and maturities considered, the optimal value ofγ

turns out to be negative. This is a surprising result in light of Goodfriend’s (1993)
account of monetary policy and Mehra’s (1999) econometric results. Recall that
the rationale for allowing the monetary authority to react to movements in long-
term bond yields is that long-term nominal interest rates could measure the private
sector’s long-term inflationary expectations. The central bank might, therefore, be
interested in using reaction functions that incorporate longer-term rates, so that if
they rise the bank raises the short-term rate in its attempts to keep inflation under
control. In other words, this behaviour would imply a positive value ofγ.23

Since there appear to be no significant gains in reacting to movements in longer-
term rates, I do not investigate any further the behaviour of type-1 rules under
alternative calibrations forωx andωR.

4.2 Type-2 Rules

For different calibrations ofωx and a value of 0.1 forωR, Table 2 shows the value
of the loss function and the value of each of its components for the optimal rule
(Equation (14)), the Taylor rule (Equation (4)), and type-2 rule (Equation (6)) for
interest rates at selected maturities.

22 This is, in general, true up to the 9th decimal digit. A higher numerical precision shows that
type-1 rules are better than the standard rule as one would expect. However, this difference is
obviously trivial.

23 Interestingly, there is recent macro-finance literature that includes the long-run expected
inflation component of the long-term rate in the policy rule and can justify negative values
for γ. For example, in response to a perceived decrease in the inflation target (a decrease in the
expected inflation component of the long rate), the monetary authority must increase rates in
order to push inflation down to this lower target. This behaviour would justify a negative value
of γ. See Rudebusch and Wu (2004).
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Table 2: Optimal Type-2 Rules
ωR = 0.1

Optimal Taylor R2 R4 R12 R20 R40

rule rule

ωx = 0.01

Loss 0.1167 0.1180 0.1179 0.1177 0.1182 0.1189 0.1195

Var(π) 0.0039 0.0032 0.0032 0.0032 0.0033 0.0024 0.0012

Var(x) 11.0347 11.2289 11.2218 11.2058 11.1868 11.2659 11.4064

Var(R1) 0.0252 0.0248 0.0245 0.0244 0.0307 0.0386 0.0423

ωx = 0.05

Loss 0.5287 0.5376 0.5374 0.5370 0.5359 0.5362 0.5377

Var(π) 0.0396 0.0443 0.0440 0.0435 0.0426 0.0433 0.0453

Var(x) 9.7381 9.8486 9.8494 9.8505 9.8377 9.8192 9.7952

Var(R1) 0.0216 0.0094 0.0095 0.0098 0.0138 0.0194 0.0262

ωx = 0.1

Loss 0.9926 1.0032 1.0032 1.0029 1.0028 1.0027 1.0035

Var(π) 0.1015 0.1147 0.1143 0.1134 0.1116 0.1097 0.1110

Var(x) 8.8961 8.8824 8.8853 8.8917 8.9075 8.9230 8.9173

Var(R1) 0.0150 0.0031 0.0031 0.0033 0.0040 0.0063 0.0069

ωx = 0.33

Loss 2.8191 2.8744 2.8752 2.8766 2.8773 2.8775 2.8778

Var(π) 0.4574 0.3616 0.3593 0.3562 0.3556 0.3554 0.3515

Var(x) 7.0625 7.5377 7.5472 7.5612 7.5651 7.5662 7.5789

Var(R1) 0.0757 0.0027 0.0019 0.0006 0.0000 0.0000 0.0000

ωx = 1

Loss 6.7243 7.5900 7.6189 7.6732 7.7088 7.7089 7.7105

Var(π) 1.6088 0.8299 0.7823 0.6832 0.5987 0.6066 0.6135

Var(x) 5.0405 6.7488 6.8280 6.9865 7.1101 7.1023 7.0970

Var(R1) 0.7504 0.1130 0.0872 0.0347 0.0000 0.0000 0.0000

ωx = 3

Loss 14.2980 19.5110 19.8466 20.6461 21.8445 21.9581 22.0236

Var(π) 4.8407 3.7726 3.5856 3.1417 5.8654 6.0786 6.1891

Var(x) 3.0422 5.1710 5.3491 5.7716 5.1613 5.1196 5.1001

Var(R1) 3.3090 2.2525 2.1369 1.8943 4.9512 5.2074 5.3430
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When the concern for the output variance is relatively low, type-2 rules based
on rates of longer maturities generally perform better than the Taylor rule. For
example, whenωx equals 0.05, all type-2 rules except the one based onR40 do
better than the Taylor rule, with theR12 rule being the best among these. Also,
note that a type-2 rule based onR12 generates a lower variance forR1 and higher
variances for inflation and output relative to the optimal rule, but lower variances
of inflation and output relative to the Taylor rule.

When the concern for output volatility increases to 0.1, the best among the type-2
rules shown is that which is based on the 5-year rate. Inspection of Table 2 reveals
that in this case the relevant gain comes from the ability of thisR20 rule to generate
a lower variance of inflation. Observe that whenωx equals 0.01, 0.05 and 0.1 (that
is, when the concern for output deviations is relatively low) the variance of the
short-term rate increases with the maturity of the interest rate in the rule. For these
parameter values, type-2 rules yield a higher variance of the short-term rate than
that of the Taylor rule. However, this property is not preserved when the concern
for output deviations increases to1

3 or to 1.

Table 3 reproduces the results of Table 2 but this time withωR set to 1. With this
greater aversion to the variance of the short-term interest rate, the variance ofR1
is reduced in all cases and for all rules. In Table 3, for all values ofωx considered,
the variance of the short-term rate achieved by type-2 rules is lower than it is for
the optimal rule case and for the Taylor rule.24

A comparison of Tables 2 and 3 shows that when the concern for output variance is
relatively low the optimal type-2 rule (in terms of the maturity of the interest rate)
is sensitive to the value ofωR. For example, whenωx equals 0.1 andωR equals 0.1,
the best rule is that based onR20. However, whenωx equals 0.1 andωR equals 1,
the best rule is that based onR12. Despite these differences in the maturity length,
Tables 2 and 3 show an interesting pattern. When the relative concern for output
volatility is low, medium/long-term rate rules perform better than the Taylor rule,
and when the concern for the output variance is high, the Taylor rule turns out
to be better. In short, the best rule depends upon the parameters determining the
preferences of the monetary authority.

24 This is, in principle, an interesting result in light of the liquidity trap problem. If, instead, one
found that for all type-2 rules, the variance of the short-term rate increases, then the chance of
hitting the zero lower bound would increase under type-2 rules.
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Table 3: Optimal Type-2 Rules
ωR = 1

Optimal Taylor R2 R4 R12 R20 R40

rule rule

ωx = 0.01

Loss 0.1280 0.1289 0.1288 0.1287 0.1306 0.1335 0.1366

Var(π) 0.0128 0.0129 0.0128 0.0127 0.0156 0.0199 0.0254

Var(x) 10.9092 10.9984 10.9958 10.9874 10.9132 10.8553 10.7963

Var(R1) 0.0062 0.0061 0.0061 0.0061 0.0058 0.0050 0.0032

ωx = 0.05

Loss 0.5375 0.5419 0.5418 0.5415 0.5415 0.5426 0.5440

Var(π) 0.0479 0.0522 0.0520 0.0515 0.0522 0.0549 0.0584

Var(x) 9.7043 9.7458 9.7472 9.7488 9.7300 9.7017 9.6733

Var(R1) 0.0044 0.0024 0.0024 0.0026 0.0028 0.0026 0.0018

ωx = 0.1

Loss 0.9993 1.0047 1.0046 1.0045 1.0044 1.0048 1.0053

Var(π) 0.1090 0.1183 0.1181 0.1175 0.1166 0.1175 0.1193

Var(x) 8.8679 8.8555 8.8571 8.8607 8.8685 8.8638 8.8538

Var(R1) 0.0035 0.0008 0.0008 0.0009 0.0010 0.0009 0.0006

ωx = 0.33

Loss 2.8492 2.8757 2.8762 2.8769 2.8773 2.8778 2.8780

Var(π) 0.3916 0.3581 0.3572 0.3558 0.3555 0.3509 0.3553

Var(x) 7.3225 7.5506 7.5554 7.5629 7.5656 7.5806 7.5684

Var(R1) 0.0167 0.0008 0.0005 0.0002 0.0000 0.0000 0.0000

ωx = 1

Loss 7.1171 7.6441 7.6601 7.6891 7.7070 7.7098 7.7104

Var(π) 1.1005 0.6977 0.6772 0.6367 0.6058 0.6064 0.6055

Var(x) 5.7595 6.9144 6.9589 7.0434 7.1011 7.1034 7.1049

Var(R1) 0.2570 0.0320 0.0240 0.0090 0.0000 0.0000 0.0000

ωx = 3

Loss 16.3987 20.5962 20.8247 21.3184 21.7777 21.7844 21.7845

Var(π) 3.0671 1.8028 1.6506 1.2557 0.7568 0.7618 0.7485

Var(x) 3.9136 6.0524 6.2104 6.5889 7.0070 7.0075 7.0120

Var(R1) 1.5907 0.6364 0.5428 0.2960 0.0000 0.0000 0.0000
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Tables 2 and 3 reveal the presence of two different kinds of trade-offs between the
variance of inflation and the variance of output. The first is the well-known Taylor
curve trade-off that arises when the parameter that governs the relative degree of
concern for the output gap variance,ωx, varies. For all rules considered, asωx
rises from 0.01 to 3, the central bank generates a lower variance for output at the
expense of a higher one for inflation.

The second trade-off between the variance of output and the variance of inflation,
which to the best of my knowledge is new in the literature, shows up in terms
of maturities. Notice that a trade-off between the output and inflation variance
appears for given values ofωx andωR as we move along the maturity dimension
of the class of type-2 rules. However, this trade-off is not working in the same
direction in all cases. For example, it is not always the case that when the maturity
length of the type-2 rule increases, one observes a lower variance of inflation at
the expense of a higher one for output. Figure 4 illustrates this by plotting the loss
function and its components against the maturity of the interest rate in the rule.
Panel A plots the case whenωx equals 0.1 andωR equals 0.1. As the maturity
of the interest rate rule increases up to 20, the variance of inflation decreases and
the variance of output increases, but as we move further along the term structure
the trade-off changes direction. Panel B shows the case when the preferences of
the central bank areωx equals 3 andωR equals 0.1. In this case the variance of
inflation decreases and that of output increases but only up to a maturity of four
quarters. The direction of the trade-off changes above this maturity. It is important
to emphasise that this is a trade-off that emerges for given values of the parameters
that govern the preferences of the monetary authority,ωx andωR. Also, the precise
nature of this trade-off changes when the preferences of the central bank change.

One further feature of type-2 rules is worth highlighting. Compared to the standard
Taylor rule, they appear to be more forgiving of deviations from their optimal
setting. An example of this is provided in Figure 5, which shows the behaviour
of the loss function as we depart from the optimal value of one of the parameters
in the policy rule (holding the other parameters at their optimal values). For this
particular set of preferences the Taylor rule happens to outperform type-2 rules.
Even so, the loss function appears to be flatter for type-2 rules (across a wide range
of parameter values). What Figure 5 shows is that it seems relatively less costly for
the central bank to deviate from the optimal values ofτ, α, andδ using the type-2
rule for R12, as opposed to deviations from the best form of the Taylor rule (or
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even the type-2 rule forR40). This flatness of type-2 rules is potentially beneficial
for policy-makers with some uncertainty about the optimal parameters of a rule.

Figure 4: Optimal Policy for Type-2 Rules – Maturity Trade-off
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Figure 5: Comparing Type-2 Rules
ωx = 3 andωR = 0.1
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5. Conclusion

In this paper I have studied the implications of using long-term nominal interest
rates in two types of monetary policy rules. Under the first, type-1 rules, the
monetary authority adjusts the short rate in response to movements in some
long-term yields as well as output and inflation. There are plausible regions of
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the policy-parameter space for which a unique stationary REE arises under such
policy rules. However, normative analysis reveals that in the context of a simple
New Keynesian model there are no significant gains from using type-1 rules
in terms of reducing the value of the loss function. Surprisingly, the optimal
parameter value of the reaction to long-term rates turns out to be negative for a
range of plausible preferences, contradicting the initial intuition that recommends
such use.

Under the second use, the monetary authority conducts policy according to a
type-2 rule, which is like a Taylor rule but with the short rate replaced by a
longer-term rate. Mathematically this is equivalent to a more complicated rule
for the short-term rate constructed such that the long-term rate would move in
accordance with a Taylor rule. There are a number of surprising aspects of this
proposal. First, significant regions of the policy-parameter space exist where a
unique stationary REE obtains. Those policy parameters that yield a unique REE
can be characterised as satisfying a generalised version of the Taylor principle
– namely, that the long-run reaction of the instrument to movements in inflation
should exceed one.

Second, type-2 rules can be shown to be better under certain central bank
preferences than the standard Taylor rule. In particular, when the relative concern
for output variability is relatively low, medium or long-term interest rate rules turn
out to yield a better outcome. That is, the choice of maturity length for the rule is
sensitive to the preferences of the central bank.

Third, even when preferences are such that optimal use of a Taylor rule
outperforms type-2 rules, the latter seem to be more forgiving of ‘mistakes’ in
setting the parameter values of the rule.

It is worth noting that these results hold under the pure expectations hypothesis
(PEH) of the yield curve. This is not to say, however, that type-2 rules would
not be preferable to Taylor rules when the PEH does not hold. Indeed, it may be
that both type-1 and type-2 rules provide a useful way to respond to important
additional information in the yield curve in a way that is not achieved by standard
Taylor rules when the PEH fails. Such a possibility is left for future research.
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