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Abstract

Analysts typically use a variety of techniques to forecast inflation. These include
both ‘bottom-up’ approaches, for near-term forecasting, as well as econometric
methods (such as mark-up models of inflation, which have been found to perform
quite well for Australia – see de Brouwer and Ericsson (1998)).

One of the econometric approaches to inflation forecasting which is sometimes
considered is the use of Phillips curves based on estimates of the output gap. This
paper suggests, however, that the real-time capacity of such Phillips curves to
forecast inflation is limited, relative even to such simple benchmark forecasting
approaches as an autoregressive (AR) model of inflation or a random walk
assumption. It appears that the lack of precision with which output-gap-based
Phillips curves can be estimated in real time limits their usefulness as a means
of forecasting inflation in isolation.

Phillips curve-based forecasts may, however, perform a little better than AR
model-based ones in at least predicting whether inflation will increase or decrease
from its current level. Moreover, combining Phillips curve-based forecasts with
those from simple, alternative approaches does seem to offer some scope for
improving the real-time forecast accuracy of the latter. These observations
suggest that, in spite of their generally disappointing performance as a means of
forecasting inflation in isolation, output-gap-based Phillips curves may continue
to be useful in real time – as a tool for conditioning gap estimates within
a multivariate filtering framework, and as a possible complement to other,
alternative inflation forecasting approaches.
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THE REAL-TIME FORECASTING PERFORMANCE OF
PHILLIPS CURVES

Tim Robinson, Andrew Stone and Marileze van Zyl

1. Introduction

Recent years have seen growing interest in the implications of real-time data issues
for the use of output-gap estimates, and of Phillips curves based on these estimates,
in policy analysis and macroeconomic modelling.1 This paper aims to contribute
to that research, focusing on the real-time inflation forecasting performance of
output-gap-based Phillips curves.

Analysts typically use a variety of techniques to forecast inflation, rather than
rely upon a single method. One approach frequently used, especially over short
horizons, is to adopt a ‘bottom-up’ perspective, using a combination of partial
indicators, liaison with businesses and government, and judgment. Additionally,
analysts may use a variety of econometric models of inflation, reflecting
alternative methodologies or views about the structure of the economy.2,3

One of these econometric approaches to inflation forecasting sometimes
considered, particularly by academics and macroeconomic modellers, is the use
of Phillips curves based on estimates of the output gap. These posit a relationship
between the inflation rate and the level of capacity utilisation in the economy, as
measured by the deviation of actual output (GDP) from the economy’s potential

1 For example, a number of overseas central banks have been conducting research into these
issues, including the US Federal Reserve (Orphanideset al 1999) and the Bank of England
(Nelson and Nikolov 2001), amongst others.

2 For example, mark-up models of inflation have been found to perform quite well for Australia
– see de Brouwer and Ericsson (1998).

3 Stevens (2001) provides a description of the policy formulation process employed by the
Reserve Bank of Australia (RBA), and the roles of ‘bottom-up’ analysis, econometric models
and judgment in this process. For a corresponding description for the US, see Reifschneider,
Stockton and Wilcox (1997).
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level of output.4 However, a problem with this approach is that it requires
estimation of an unobservable quantity, the level of potential output, and this must
be done inreal time, rather than with the benefit of hindsight.

There are several different aspects to the problem of reliably estimating the
output gap in real time, and these are discussed in detail in Gruen, Robinson and
Stone (2002). One is simply that GDP is revised over time as more information
becomes available to the statistician.5 Recent work, however, has suggested that
data revisions are not the primary source of problems in the real-time estimation
of the gap (Orphanides and van Norden 2002). Rather, for Australia, the results of
Gruenet al (2002) suggest that revisions to the output gap instead arise primarily
from end-point problems associated with econometric methods used to estimate
potential output. In this regard, Gruenet al find that the use of a Phillips curve
relationship, to condition such estimates on observed inflation, can help to mitigate
these end-point problems – allowing them to obtain real-time output-gap estimates
which bear a fair resemblance to those obtained with the benefit of hindsight.

While the reliability of output-gap estimates is of interest to analysts in its own
right, our focus in this paper is, however, on the accuracy of inflation forecasts
from Phillips curves and output gaps estimated in real time. The accuracy of these
forecasts provides an alternative metric by which the usefulness of output gaps
and Phillips curves for policy analysis and forecasting can be assessed.

From this perspective, it is not enough to have a method for estimating potential
output under which theex postrelationship between the output gap and inflation
is strong. Rather, it must be possible to obtainreal-time output-gap estimates
and Phillips curves which provide a reliable guide to future inflation. Potential
sources of error in such forecasts include the difficulties of determining both the
correct specification of the Phillips curve in real time, and the correct coefficient
estimates in this specification. They also include the direct impact of real-time
errors which inevitably arise in estimating the output gap – notwithstanding the

4 Phillips curves based on other measures of aggregate activity, such as an unemployment gap,
are also commonly used to model inflation. However, we do not consider these further here.

5 Analysis for Australia by Stone and Wardrop (2002) suggests that, while the typical size of
revisions to quarterly GDP growth has decreased over recent decades, sizeable changes do still
occur, sometimes well after the initial data release for the period in question.
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strong correlation which Gruenet al (2002) were able to obtain between their
final and real-time gap estimates.

In this companion piece to Gruenet al (2002), we use the more than 120
vintages of Phillips curves and output gaps from that paper to investigate whether
these obstacles are sufficient to undermine the usefulness of Phillips curves for
forecasting inflation. We find that they result in inflation forecasts which, while
unbiased, are excessively volatile. This makes their performance disappointing,
relative even to simple alternatives such as univariate time-series models of
inflation, or a ‘no change’ (random walk) assumption. Our results also suggest
that it is the imprecision with which Phillips curve relationships can be estimated,
in real time, which primarily undermines their usefulness for forecasting inflation.

In spite of their disappointing performance in isolation, however, it appears that
Phillips curve-based forecasts do still contain some useful information about
inflation, distinct from that available from other simple forecasting approaches.
This appears to be especially so at the one-year-ahead forecasting horizon.
Moreover, this added information can be used to improve the inflation predictions
from these other forecasting approaches in real time – although the extent of the
resulting improvement is only modest.

2. Recent Literature

The ability of Phillips curves to forecast inflation has been the focus of much
recent research. In this section, we briefly review the relevant literature.

Stock and Watson (1999) consider year-ahead forecasts for US inflation obtained
from Phillips curves based on an unemployment gap – the difference between
the unemployment rate and the estimated Non-Accelerating Inflation Rate of
Unemployment (NAIRU). They then assess the accuracy of these, relative to
predictions from both univariate autoregressive models and from a ‘no change’
assumption.6 They interpret their results as being generally positive regarding the

6 This comparison is made on a real-time basis: for each period, Stock and Watson estimate their
various models based on data up until that period, then calculate forecasts for the year ahead,
and then repeat this process for the next period. Since the US unemployment rate only gets
revised though seasonal re-analysis, the effect of which is small, the real-time data for this
series in each period is essentially equivalent to the final data up until that period.
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ability of such Phillips curves to forecast inflation. However, the outperformance
by their Phillips curve-based forecasts is sometimes only marginal, with the
mean squared errors (MSEs) of these forecasts little different from those of their
alternative forecasting methods, for certain periods or measures of inflation.

There are two characteristics of the Phillips curve specifications estimated
by Stock and Watson (1999) which mean that their results may not be
directly applicable to Australia. First, they assume that the NAIRU is constant
through time, over their sample period from 1959 to 1997. While this may
be an appropriate assumption for the US, the work of Gruen, Pagan and
Thompson (1999) suggests that, for Australia, there are likely to have been
sizeable movements in the NAIRU over recent decades.7 Secondly, they omit
supply-side variables, such as import and oil prices, from their Phillips curve
specifications. Such variables were found by Gruenet al (2002) to be important
for modelling inflation in Australia – a result which is unsurprising given that
Australia is a small, open economy.

In contrast to Stock and Watson’s broadly positive endorsement, several recent
papers have questioned the usefulness of Phillips curves for forecasting inflation.
For example, Atkeson and Ohanian (2001) estimate alternative versions of the
Phillips curves in Stock and Watson (1999) and find their performance to be no
better than a naive alternative.8 However, Sims (2002) argues that Atkeson and

7 Gruenet al (2002) find that it is important that the possibility of corresponding large shifts in
the growth rate of potential output over time be allowed for, in any output-gap-based Phillips
curve specifications for Australia.

8 Atkeson and Ohanian’s Phillips curves are more restricted than those of Stock and Watson, in
the sense that they allow only one lag at a time of the monthly change in inflation, and of the
level of the unemployment gap, in their specifications (although they do examine the effect of
varying the lengths of these lags, up to one year, on the forecasts). They also do not allow a
contemporaneous unemployment gap in their Phillips curve specifications, which the results in
Gruenet al (2002) suggest would be an undesirable restriction for Australia.
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Ohanian’s results are sensitive to the sample they use (1984:Q1 to 1999:Q3), so
that the poor Phillips curve performance they report may not be instructive.9

The paper with the most direct relevance to our own study is the recent work
by Orphanides and van Norden (2003), who examine inflation forecasts derived
from output-gap-based Phillips curves. They consider the wide array of different
output-gap series estimated, using real-time US GDP data and both univariate
and multivariate techniques, in Orphanides and van Norden (2002). To forecast
inflation, they place each of these alternative output-gap series – a dozen in all
– in a separate ‘forecasting relationship’, namely a simple Phillips curve with a
constant, lags of inflation and lags of the output gap. In a procedure similar to
Stock and Watson (1999), they re-estimate each forecasting relationship (including
choice of lag lengths) for each forecast period, using only data available up to that
date. They then compare the forecasts generated by these relationships with those
from an alternative, autoregressive model of inflation.

Orphanides and van Norden (2003) find that, while several of their Phillips
curves yield more accurate forecasts over their full sample, the improvement is
typically not statistically significant, and is frequently reversed when the analysis
is restricted to one or other half of their evaluation period. Moreover, this finding
of little or no consistent improvement in forecast accuracy is found to be robust to
a wide array of variations to their general framework for assessing the forecast
performance of their Phillips curves and alternative output-gap estimates.10 In
all, they conclude that while ‘a historical Phillips curve is suggested by the data,
and ex postestimates of the output gap are useful for understanding historical
movements in inflation ... our simulated real-time forecasting experiment suggests,
instead, that [their] predictive ability is mostly illusory’ (p 24).

One possible explanation for these disappointing results is that Orphanides and
van Norden’s use of such a simple Phillips curve framework, with no role for

9 When this sample is extended back only slightly, to 1979, so as to incorporate a period when
US inflation was more volatile, Sims finds that Phillips curve-based forecasts do outperform
the naive model over this longer sample.

10 Orphanides and van Norden’s long evaluation period for forecasts is 1969:Q1 to 1998:Q4.
Splitting this sample into two, their latter sub-sample is 1984:Q1 to 1998:Q4, comparable to
that used in Atkeson and Ohanian (2001).
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supply side influences, may be limiting the performance of their Phillips curve-
based inflation forecasts.11 Moreover, for their multivariate filter-based output-
gap estimates, their use of separate ‘forecasting relationship’ Phillips curves to
generate their inflation forecasts is somewhat counterintuitive, given that the
derivation of these gap estimates useddifferentPhillips curves, embedded in the
multivariate filtering.12

Orphanides and van Norden’s approach, however, simply reflects their somewhat
different overall goal from our own. They use their framework to assess the value,
for Phillips curve-based inflation forecasting, of a wide range of alternative output-
gap estimates. Their use of a common, simple framework to do this allows them
to readily test the sensitivity of their results to various plausible variations to this
framework, such as to the method for selecting lag lengths in their forecasting
Phillips curves in real time.

By contrast, our aim is to focus on only one suite of Phillips curves and associated
output-gap data vintages – those assessed by Gruenet al (2002) to be the best
performed from a range of alternatives considered there. We then assess the
real-time forecasting performance of these Phillips curves when coupled with
corresponding optimally-specified equations for forecasting the output gap. We
thus aim to assess the real-time inflation forecasting performance of Phillips
curves for Australia, when care has been taken to try to make these Phillips curves
and output-gap equations as well and richly specified as possible.

11 Orphanides and van Norden note, in this regard, that ‘the forecasting problem faced by policy-
makers in practice is more complex than the one we consider. One obvious and important
difference is that the information set available to policy-makers is much richer’. They argue,
however, that ‘it is therefore possible that output gaps might improve on simple univariate
forecasts of inflation but not on forecasts using a broader range of inputs. For this reason, we
feel that the experiment we perform may actually overstate the utility of empirical output gap
models’. Certainly, the comparison exercise they conduct preventsboth their Phillips curves
and competing univariate models from using additional information which might naturally be
incorporated into inflation forecasts – such as data on oil and import prices. In this sense, their
comparison is designed to isolate what, if any, real-time benefit is gained solely through the
addition of estimates of the output gap to a univariate inflation-forecasting framework.

12 The Phillips curves incorporated in these multivariate filters were, however, relatively simple –
for example, they also did not include any supply-side variables. Orphanides and van Norden’s
‘forecasting relationship’ Phillips curves may therefore not be a bad approximation to them.
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3. Methodology

The starting point for our analysis is the paper by Gruenet al (2002), which
provides a suite of 125 real-time Phillips curves and output-gap estimates,
covering the data vintages from 1971:Q4 to 2002:Q4.13 We wish to study
the forecasting performance of these Phillips curves – focusing on the one-
and four-quarter-ahead forecast horizons. However, we encounter an immediate
methodological obstacle, namely: how should we handle the various explanators
in our Phillips curves over the forecast period?

An important finding in Gruenet al (2002) was that, to generate reasonably
reliable real-time output gaps using the filtering procedure adopted there, it is
‘important that the Phillips curve[s] be information-rich and as well specified as
possible’ (p 32). Reflecting this, their preferred Phillips curves employ not just
the output gap, but also a variety of other possible explanators of consumer price
inflation. Often, these explanators enter their Phillips curves with a lag of less
than four quarters, so that some assumption needs to be made about their future
behaviour to enable out-of-sample inflation forecasts for the coming year to be
generated in each period.14 We now describe how we overcome this difficulty (by
expanding our set of Phillips curves into a more general suite oftwo-equation
forecasting models– consisting of a Phillips curve and an output-gap equation
– one model for each data vintage). In Sections 3.2 and 3.3 we then describe a
number of simple, alternative benchmark models for forecasting inflation.

13 The way in which these Phillips curves were selected, and corresponding vintages of output-
gap data generated, was described in detail in Gruenet al (2002). It is summarised briefly in
Appendix A, which also contains a complete listing of these specifications. Note that Gruen
et al actually provides only 121 Phillips curves. We have increased this number to 125 by
also applying the final Phillips curve from Gruenet al to the four data vintages from 2002.
In arriving at this specification for these additional vintages we applied the same specification
search procedure as that used to obtain the original 121 Phillips curves in Gruenet al.

14 This difficulty does not arise in Orphanides and van Norden (2003) because their forecasting
Phillips curves do not include explanators other than the output gap and lags of inflation itself.
Moreover, the output gap is not allowed to enter their Phillips curves with a lag less than the
length of their inflation forecast horizon, so that they even avoid the need to extrapolate the
output gap into the forecast period. While this simplifies the construction of their real-time
inflation forecasts, it raises the question: do these constraints on the specifications of their
Phillips curves bias their results against finding a role for these curves in forecasting inflation?
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3.1 A Suite of Phillips Curve-based Models for Forecasting Inflation

The Phillips curves from Gruenet al (2002) typically contain a contemporaneous
output-gap term, as well as terms involving import price inflation, oil price
inflation and bond market inflation expectations. We now specify how each of
these explanators is to be extrapolated over the forecast period.

Forecasting the output gap

The explanator in our Phillips curves which is most likely to be the source of any
real-time problems with forecasting inflation is the output gap. For this variable,
our approach is therefore to assemble separate, estimated gap equations for each
data vintage, using an approach similar to that used in Gruenet al (2002) to select
our real-time Phillips curves. We now describe this approach in greater detail.

To obtain simple, estimated gap equations, we start with a general specification
which includes, as explanatory variables: the real cash rate (rcash); changes in the
terms of trade (∆tot); changes in the real trade-weighted exchange rate (∆rtwi);
and a measure of the disequilibrium between the levels of the real exchange
rate and the terms of trade (all with lags of up to 8 quarters).15 Following
Beecheyet al (2000), we also include a de-trended real share accumulation index
(rshare), to capture the share market’s influence on real activity (for example,
through wealth and confidence effects). The Southern Oscillation Index (soi) is
also included as a possible explanator, as a proxy for the effects of the weather on
the agricultural sector.

Prior to the mid 1980s, the Australian financial system was heavily regulated. As
a result, the overnight cash rate is a less reliable indicator of the overall tightness

15 Note that, for each period, to generate our short-term real interest rate data we use the inflation
expectations measure implicit in the Phillips curve specification for that vintage. This is done
to ensure consistency in the measure of inflation expectations used within our model. This
measure computes inflation expectations as a linear combination of lagged inflation and bond
market inflation expectations, with the weights for each vintage being the coefficients estimated
in the Phillips curve – see Gruenet al (2002) for further details. This adds a real-time aspect to
our measure of inflation expectations, since these weights evolve slowly over time.
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or looseness of credit conditions for this period than for the post-deregulation
era (Bullock, Morris and Stevens 1989). We therefore also experimented with
adding to the general specification various alternative measures of the state of
credit conditions. However, none of these variables were found to be consistently
significant in any of our regressions.16

To arrive at our final specifications for each data vintage, both recursive
regressions (in which the start date was held fixed at 1961:Q2) and 14-year
rolling regressions were estimated. These regressions were used to sequentially
eliminate variables on the basis of botht- and F-tests. Also, rather than
conduct a new specification search for each new data vintage, we adopted
the approach of revisiting our output-gap equation specifications: whenever
significant deterioration was observed in the performance either of the overall
equation or of its components; or, in any event, roughly every 10–12 years.
Overall, this procedure was very similar to that used in Gruenet al (2002) to
select our real-time Phillips curve specifications for each data vintage.

Ultimately, the specifications of our output-gap equations change only slowly
over time. Table 1 shows the estimation results for our final vintage output-gap
equation, estimated on 2002:Q4 data. All terms appear with the expected signs,
and the regression standard error suggests that the equation does a fair job of
explaining movements in the output gap over the past four decades.

The real-time output-gap equation specifications for our complete set of 125 data
vintages are summarised in Table 2, and are set out in full in Appendix B. Several
characteristics of the specifications in Table 2 stand out. First of all, the first lag of
the gap itself appears in every equation vintage (with the fifth lag also appearing in
specifications for the late 1970s and most of the 1980s). Fairly consistent roles are

16 The variables we experimented with included: the quarterly change in the Statutory Reserve
Deposit (SRD) ratio, the proportion of their deposits which trading banks were, until
August 1988, required to hold at the Reserve Bank as cash reserves; the 90-day bank bill
rate; and a ‘weighted interest rate’ (constructed as an average of the prevailing interest rates
for different debt maturities, weighted by the proportion of total credit outstanding at these
maturities). Real-time data issues ruled out consideration of a number of other, otherwise
plausible candidates, such as various monetary aggregates.
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also found for: the de-trended real share accumulation index lagged one period;
one or more lags of the quarterly change in the real trade-weighted exchange
rate (except in early and late equation vintages); and the first lag of the Southern
Oscillation Index (except in early vintages). Finally, an explicit role for lags of
the real cash rate is only identified for equation vintages in the post-financial
deregulation era, specifically from December quarter 1985 onwards.17

Table 1: Estimation Results for the Final-vintage Output-gap Equation
gapt = α +β1gapt−1 + γ1rsharet−1 +φ1soit−1 +ψ2(rcasht−2 + rcasht−3 + ...+ rcasht−7)+ εt

Coefficient Value t-statistic

α 0.0016 1.1514

β1 0.8705 27.1327

γ1 0.0255 3.5064

φ1 0.0002 2.1276

ψ2 −0.0138 −2.1278

Summary statistics Value

R2 0.8947

AdjustedR2 0.8921

Standard error of the regression 0.0117

Breusch-Godfrey LM test for autocorrelation (p-value):

First order 0.2590

First to fourth order 0.1845

Note: The sample is 1961:Q2 to 2002:Q4 (n = 167).

17 Our failure to find an explicit role for some measure of conditions in credit markets, in the pre-
deregulation era, may reflect our inability, discussed earlier, to identify a good, single summary
indicator for this variable for this period.
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Table 2: Summary of Real-time Output-gap Equation Specifications
Date of vintage Broad equation specification

1971:Q4 to 1978:Q1 gapt = α +β1gapt−1 + γ1rsharet−1 + εt

1978:Q2 to 1985:Q3 gapt = α +β1gapt−1 +β5gapt−5 + γ1rsharet−1+
δ3∆tott−3 +λ2∆rtwit−2 +λ5∆rtwit−5 +φ1soit−1 + εt

1985:Q4 to 1989:Q1 gapt = α +β1gapt−1 +β5gapt−5 + γ1rsharet−1+
δ3∆tott−3 +λ1∆rtwit−1 +φ1soit−1+
ψ2(rcasht−2 + rcasht−3)+ εt

1989:Q2 to 1995:Q2 gapt = α +β1gapt−1 + γ1rsharet−1+
λ1∆rtwit−1 +φ1soit−1+
ψ2(rcasht−2 + rcasht−3)+ εt

1995:Q3 to 2002:Q4 gapt = α +β1gapt−1 + γ1rsharet−1 +φ1soit−1+
ψ2(rcasht−2 + rcasht−3 + · · ·+ rcasht−7)+ εt

Note: Start of sample for all regressions is 1961:Q2.

Extrapolating explanators other than the output gap

For all variables other than the output gap, our approach is simply to assume
perfect foresight on the part of our forecasters, in each period. In other words,
we assume that in each period our forecasters, although uncertain about the future
trajectories of consumer price inflation and the output gap, know precisely how
such variables as oil and import price inflation, bond market inflation expectations,
and the Southern Oscillation Index, will develop over the coming year.

The obvious alternative to this approach would have been to construct real-time
models in each quarter for the evolution of all these variables (as well as any other
explanators which, in turn, arose in the equations for these variables). However,
with 125 vintages of data, such an approach was beyond the scope of this project.
Moreover, none of these variables is subject to serious real-time measurement
problems, the implications of which are the focus of this paper.
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Nevertheless, our assumption of perfect foresight, in relation to these variables,
should be borne in mind in the discussion of our results in Section 4. It certainly
imputes to our Phillips curve-based forecasters, in each period, unrealistic
prescience about these inputs to their forecasts – and so presumably biases our
results somewhat in favour of our Phillips curve-based forecasting approach.

Summary

In summary, we now have a small, estimated suite of models, one for each
data vintage from 1971:Q4 to 2002:Q4, consisting of: a Phillips curve from
Gruen et al (2002); an output-gap equation; and the assumption of perfect
foresight on the part of forecasters with regard to oil and import price inflation,
bond market inflation expectations, and the various explanators arising in that
vintage’s gap equation (such as the nominal cash rate, the Southern Oscillation
Index, and so forth). For each period we use this model to generate real-time
inflation forecasts at one- and four-quarter-ahead horizons. This constitutes our
Phillips curve-based approach to forecasting Australian consumer price inflation.

3.2 Alternative Benchmark Models for Forecasting Inflation

To judge the real-time performance of our Phillips curve-based approach to
forecasting inflation, we need some benchmarks against which we can compare its
performance. We consider two alternative, univariate benchmarks: a ‘no-change’
assumption for inflation; and an autoregressive (AR) model of inflation.

The former treats inflation as a random walk.18 The latter models inflation
in terms of the first two lags of itself (together with a constant), with the
equation re-estimated for each data vintage. In selecting this general specification
we allowed, in principle, for longer lags of inflation. However, we found that
the autocorrelation and partial autocorrelation functions for inflation regularly
suggested focusing on the first three lags, and that the performance of an AR(2)

18 Strictly speaking, we actually use two distinct random walk models, one for quarterly and one
for year-ended inflation. In other words, in each period we assume: that quarterly inflation in
the coming quarter will be the same as in the current quarter; and that year-ended inflation over
the coming year will be the same as over the year to the current quarter.
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model was typically closely comparable to that of an AR(3). Hence we preferred
the slightly more parsimonious AR(2) specification.19

3.3 Two Further Benchmarks for Comparison

As a further reference point for assessing the performance of our suite of Phillips
curve-based models, we also consider the forecasting performance of our final
vintage (2002:Q4) Phillips curve, estimated on final data. By this we mean the
results which would have been achieved by a forecaster who, in each quarter of
the evaluation period, happened to know in advance: the final, 2002:Q4 vintage
Phillips curve specification, including its ‘true’ coefficient values (as estimated on
final data); the ‘true’ (final vintage) profile of the output gap up to that period; and,
finally, the correct future paths of oil prices, import prices, bond market inflation
expectations, and the output gap, over the year ahead. In Sections 4 and 5, we refer
to these simply as the ‘final vintage Phillips curve’ forecasting results. Likewise,
we also consider the corresponding forecasting performance of our ‘final vintage
(2002:Q4) AR model’.

4. Results

Table 3 summarises the performance of our three main alternative approaches
to forecasting inflation in real time (Phillips curve-based; AR model-based; and
random walk), as well as the performance of our final vintage Phillips curve and
final vintage AR model. The sample used for the forecast comparison is 1976:Q1
to 2002:Q4. Here and henceforth, dates for forecasts refer to the periodfor which
the forecast was being made, rather thanin whichthe forecast was being made.

Note that, since we have data vintages (with corresponding real-time Phillips
curves and output-gap equations) from 1971:Q4 onwards, we could in principle
compare our various forecasting approaches over the longer sample 1972:Q4 to
2002:Q4 (or even 1972:Q1 to 2002:Q4, for one-quarter-ahead inflation forecasts).

19 We also considered using a more general ARMA model, to allow for a possible indeterministic
(moving average) component which might be useful in better capturing the persistence in
inflation. However, while an ARMA(1,1) model also generally works well, it does not
outperform our chosen AR(2) specification, which we therefore preferred as marginally simpler
and more intuitive.
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Table 3: Root Mean Squared Error and Bias of Alternative Inflation
Forecasting Methods

Method Final vintage PC Final vintage AR Real-time PC Real-time AR Random walk

Forecasts for quarterly inflation (one quarter ahead)

RMSE 0.31 0.32 0.44 0.33 0.38

Bias 0.01 0.03 −0.01 0.05 0.03

Forecasts for year-ended inflation (one year ahead)

RMSE 0.87 1.16 1.55 1.23 1.57

Bias 0.08 0.16 0.03 0.33∗ 0.46∗

Notes: Results are calculated over the forecast sample period 1976:Q1 to 2002:Q4. ‘RMSE’ is the root mean
squared error between actual inflation and the series of real-time inflation forecasts generated by the method
shown, in percentage points; ‘Bias’ is the average percentage point error in the forecast series over the
evaluation period.∗ indicates that the bias is significant at the 5 per cent level.

One reason we do not do this is that the early to mid 1970s were a period of
atypically extreme inflation volatility in Australia, partly driven by the first OPEC
oil price shock in March quarter 1974. Comparisons of forecast performance
which include this period thus tend to be unduly dominated by it.

A second reason is that inflation outcomes for this period were strongly influenced
by decisions of Australia’s then heavily centralised wage-setting system.20 Since
none of our forecasting methods are directly able to take account of these wage
developments, which Gruenet al (2002) characterise as being ‘at least to some
extent ... unrelated to the state of the economy and the size of the output gap’
(p 16), we focus our forecast evaluation on the period from 1976:Q1 onwards.

20 During this period Australia had an official body with legislated powers, theConciliation and
Arbitration Commission, which set wages for much of the workforce. In early 1973, following
a change of government, the Commission awarded a 17.5 per cent increase in minimum wages,
at a time when consumer price inflation, although rising, was running at an annual rate of less
than 6 per cent. Further large award/minimum wage rises were mandated in May and December
1974. While wages in Australia in subsequent years were also affected by frequent Commission
decisions – see Appendix A of Gruenet al (1999) – increases in average weekly earnings over
these years did not again approach the extremes which occurred during 1973 and 1974.
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4.1 Final Vintage Forecasting Performance

The first column of Table 3 shows that generally good inflation forecasting
performance would have been achieved, over the past 27 years, by a forecaster
with access, in each period, to the final vintage Phillips curve specification
and historical output-gap profile, together with perfect foresight as to the future
paths of the output gap, oil prices, import prices and bond market inflation
expectations.21 The root mean squared error (RMSE) achieved by such a
forecaster, over the sample 1976:Q1 to 2002:Q4, would have been 0.31 percentage
points for quarterly inflation one quarter ahead, and 0.87 percentage points for
year-ended inflation over the coming year. This compares favourably with both
our real-time AR model-based approach to forecasting inflation (RMSEs of 0.33
and 1.23 percentage points), and our random walk model (RMSEs of 0.38 and
1.57 percentage points). It also compares favourably with the performance which
would have been achieved, at both the one- and four-quarter-ahead horizons, by
our final vintage AR model (RMSEs of 0.32 and 1.16 percentage points).

These results for the predictive performance of our final vintage Phillips curve
seem promising. The key question, however, is: does this good Phillips curve-
based performance carry over from the unrealistic setting of forecasting based on
our final vintage Phillips curve, to the situation we are actually interested in, out-
of-sample forecasting in real time?

4.2 Real-time Forecasting Performance

Unfortunately, here the results for our Phillips curves are much less impressive.
From the third column of Table 3 we see that, over the sample 1976:Q1 to
2002:Q4, our real-time Phillips curve-based inflation forecasts are unbiased, at

21 There is, of course, some circularity in this finding since, as described in Gruenet al (2002),
the final vintage output-gap profile is conditioned on information about inflation over the full
sample from 1961:Q2 to 2002:Q4. Hence, ‘forecasts’ generated using this gap have some
information about future inflation already built into them. This circularity, however, does
not apply to our real-time Phillips curve-based forecasts, since the gap estimates used in
generating these forecasts in each period are conditioned only on historical inflation data, not
on information about future inflation.
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both the one- and four-quarter-ahead horizons.22 This accords with the findings of
Orphanides and van Norden (2003) for the US, and contrasts with the bias apparent
in the corresponding real-time AR model-based and random walk forecasts for
inflation at the one-year-ahead horizon. Despite this bias, however, comparison
of columns 3 to 5 of Table 3 shows that, in RMSE terms, both these simple,
benchmark inflation forecasts perform essentially as well as, or better than, our
Phillips curve-based forecasts in real time – despite the perfect foresight built into
the latter in relation to variables such as oil and import prices. This is true both for
one-quarter-ahead inflation forecasts, and for forecasts for inflation over the year
ahead.

This disappointing forecasting performance in real time by our Phillips curve-
based models is illustrated by Figures 1 and 2, which compare the real-time
forecasts for year-ended inflation from our Phillips curve-based approach with
those from our alternative benchmarks (and with actual inflation), over the sample
1976:Q1 to 2002:Q4.

These figures confirm that the large RMSEs for our Phillips curve-based inflation
forecasts are mainly attributable to excessive volatility in these forecasts, rather
than to forecast bias – although there are periods where our real-time Phillips
curve-based forecasts for inflation persistently over- or under-shoot actual year-
ended inflation, such as in the early 1990s. Interestingly, during this period of
disinflation in Australia, while both of our real-time benchmark models repeatedly
over-estimate inflation over the year ahead (as one would expect), our real-time
Phillips curve-based forecasts are instead consistently too low for several years,
starting in 1991. In part this reflects that the early 1990s is a period for which
our generally reliable real-time output-gap estimates perform particularly poorly,
underestimating the ‘true’ gap (as estimated on final vintage data) by around
3 percentage points for several years – see Figure 4 in Gruenet al (2002).

Figures 1 and 2 also highlight that therelativeperformance of our alternative, real-
time approaches to forecasting inflation varies over the evaluation period. This

22 To formally test that the one-quarter-ahead forecasts are, on average, correct, we simply regress
the forecast error series against a constant (Holden and Peel 1990); while for the four-quarter-
ahead forecasts, we also allow up to a third-order moving-average process in the corresponding
regression (Diebold and Lopez 1996), to capture that the four-quarter-ahead forecasts actually
reflect a path of forecasts for each quarter from the beginning of the forecast horizon.
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point is further illustrated by Table 4, which breaks the RMSE results reported in
Table 3 into results for five-year sub-periods – except the last, which covers only
the two years from 2001:Q1 to 2002:Q4. For quarterly inflation one quarter ahead,
our real-time Phillips curve-based approach outperforms our AR model-based and
random walk approaches, in RMSE terms, only over the last few years (although
it also achieves broadly comparable performance to our random walk forecasts in
the late 1970s and early 1980s). It performs markedly worse than either real-time
benchmark from the mid 1980s to the mid 1990s.

Figure 1: Real-time Forecasts for Year-ended Inflation
Phillips curve forecasts versus AR model forecasts
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For year-ended inflation a similar story holds. Our real-time Phillips curve-based
forecasts do better in RMSE terms than either real-time benchmark in the first half
of the 1980s; and also do better than our random walk forecasts in the 1976 to 1980
sub-period. However, in all other sub-periods they do worse than either benchmark
– sometimes dramatically so. For example, from 1996 onwards, a period of low
and stable inflation, they perform around twice as badly in RMSE terms as our
random walk forecasts (which in fact outperform all the other models considered
in Table 4 over this period).
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Figure 2: Real-time Forecasts for Year-ended Inflation
Phillips curve forecasts versus random walk forecasts
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Given this generally poor performance of our Phillips curve-based forecasts
in real time, it is interesting to ask: do they containany useful additional
information about future inflation, distinct from that provided by our simple
alternative benchmarks? An indication that they may do comes from considering
an alternative, weaker metric for measuring forecast performance, namely: how
frequently does the forecast method at least predict correctly thedirection of
changeof inflation, relative to its last value in history? In part, our interest in
this metric is prompted by Fisher, Liu and Zhou (2002), who find that, for the
US, Phillips curves do add some value, relative to autoregressive forecasts, by
forecasting this direction of change in inflation more accurately. Table 5 shows the
results for our alternative inflation forecasting models with respect to this metric.23

23 We exclude our random walk model from this analysis, since by definition it never forecasts
inflation to change direction over the forecast horizon.
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Table 4: Root Mean Squared Error of Alternative Inflation Forecasts
Over Five-Year Sub-samples

Method Final vintage PC Final vintage AR Real-time PC Real-time AR Random walk

RMSE of forecasts for quarterly inflation (one quarter ahead)

1976–1980 0.36 0.43 0.53 0.44 0.54

1981–1985 0.34 0.40 0.42 0.39 0.43

1986–1990 0.30 0.25 0.50 0.26 0.32

1991–1995 0.35 0.29 0.47 0.30 0.32

1996–2000 0.27 0.24 0.31 0.24 0.27

2001–2002 0.13 0.20 0.14 0.20 0.21

RMSE of forecasts for year-ended inflation (one year ahead)

1976–1980 0.81 1.34 1.95 1.46 2.57

1981–1985 0.70 1.60 1.18 1.56 1.79

1986–1990 0.90 0.86 1.75 0.84 1.17

1991–1995 1.18 1.12 1.76 1.34 1.31

1996–2000 0.77 0.86 1.06 0.94 0.58

2001–2002 0.68 0.73 1.13 0.74 0.54

Note: ‘RMSE’ is the root mean squared error between actual inflation and the series of real-time inflation
forecasts generated by the method shown, in percentage points.

We see from Table 5 that, at least for annual inflation over the year ahead, our real-
time Phillips curve-based forecasts predict the direction of the change in inflation
correctly more often than do our real-time AR model-based forecasts (assessed
over the full evaluation period). Indeed, they even outperform the final vintage
AR model forecasts under this metric – by around 7 percentage points.

Table 5: Accuracy of Direction of Change Predictions for Alternative
Inflation Forecasting Methods

Method Final vintage PC Final vintage AR Real-time PC Real-time AR

Forecasts for quarterly inflation (one quarter ahead)

Direction correctly predicted 67.6 65.7 62.0 63.9

Forecasts for year-ended inflation (one year ahead)

Direction correctly predicted 76.9 63.0 70.4 62.0

Notes: Results are calculated over the sample 1976:Q1 to 2002:Q4. Results are reported in percentage terms – that
is, the number of forecasts for which each method correctly predicts the direction of the change in inflation
over the quarter or year ahead, as a percentage of the total number of forecasts made.
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4.3 Combining Forecasts

These latter results suggest that, despite their poor performance in RMSE
terms, the real-time forecasts from our Phillips curves may contain some useful
information, additional to that from our benchmark models. If so, it might be
possible to combine these forecasts with those from these benchmark models, to
produce projections which are superior to either set in isolation. The intuition here
is that, even where one set of forecasts performs much better than another, some
value may be able to be gained by combining the two, if the errors in each are not
perfectly correlated. We now test this possibility formally by estimating several
sets of suitable ‘forecast combination’ equations.

Ex post forecast combination tests

We begin with anex post forecast combination analysis of relative forecast
performance. This involves regressing actual quarterly or year-ended inflation
against two alternative forecasts for the same quantity, over our full evaluation
period 1976:Q1 to 2002:Q4, and observing how much weight the regression
chooses to place on each of the two competing forecasts. Specifically, for the case
of quarterly inflation, letf pc denote our real-time Phillips curve-based forecasts,
and let f alt represent an alternative set of forecasts, either those from our real-
time AR models or from our random walk benchmark (denotedf ar and f rw

respectively). Then we are interested in the weight,λ , which the regression
chooses to place onf pc, relative to that placed onf alt , in the regression:24

πt = λ f pc
t +(1−λ ) f alt

t + εt , εt ∼ N(0,σ2) . (1)

24 Chong and Hendry (1986) refer to such a regression as an ‘encompassing test’. Ifλ = 1 then
the first set of forecasts are said to encompass the second, which add no additional information;
if λ = 0 then the opposite conclusion holds. If 0< λ < 1 then neither model encompasses the
other, and Chong and Hendry argue that this indicates that one shouldadaptone of the models,
building into it elements from the other, until it does fully encompass the latter. However, there
are obstacles to our proceeding in this way in the current setting, partly stemming from real-time
considerations. See Appendix C for further details.
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For year-ended inflation the corresponding regression is

∆4pt = λ f pc
t +(1−λ ) f alt

t + εt , εt ∼ N(0,σ2) (2)

where f pc and f alt now denote forecasts for year-ended inflation.25

In all, we therefore conduct four separateex postforecast combination tests:
two for our one-quarter-ahead forecasts (real-time Phillips curve-based forecasts
versus our real-time AR model-based and random walk benchmark forecasts,
in turn); and another two for our one-year-ahead forecasts. The results of these
regressions, estimated by OLS, are as follows:

πt = 0.22f pc
t +0.78f ar

t + εt (3)

∆4pt = 0.36f pc
t +0.64f ar

t + εt (4)

πt = 0.36f pc
t +0.64f rw

t + εt (5)

∆4pt = 0.51f pc
t +0.49f rw

t + εt . (6)

Theseex postforecast combination tests suggest that our real-time AR model-
based and random walk forecasts already contain much of the information
incorporated in our real-time Phillips curve-based forecasts – although not all of it.
For the year-ahead forecasts especially, the Phillips curves appear to contain some
information on inflation distinct from that from our AR model-based and random
walk forecasts, with weights ofλ = 0.36 andλ = 0.51 assigned to the Phillips
curve-based forecasts in these cases.26

25 Regressions (1) and (2) incorporate a number of implicit restrictions, such as that the weights
on the competing sets of forecasts in each case sum to one. See Footnote 27 for a discussion, in
the setting of real-time forecast combination, of the impact of relaxing these restrictions.

26 If we were to treat the forecastsf pc, f ar and f rw in Regressions (3) to (6) as exogenous, then
in each case the weight on the Phillips curve-based forecasts would, in fact, be significantly
different from 0 at the 5 per cent level. However, these series represent constructed data which
are subject to uncertainty – stemming, for example, from errors in coefficient estimation in the
models used to produce them. Hence, OLS standard errors are not valid here: see West (2000).
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Real-time forecast combination

In the same way, however, that final vintage RMSE results do not accurately reflect
thereal-time, operationalusefulness of a given forecasting technique, so the above
forecast combination tests do not properly capture the real-time usefulness or
otherwise of our Phillips curve-based forecasts, as a supplement to those from
our alternative benchmark models. This is because the weights in Equations (3)
to (6) are those fromex postregressions, using our various alternative real-time
forecasts over the full evaluation period, 1976:Q1 to 2002:Q4. A policy-maker in
the middle of this period, trying to construct optimal combined inflation forecasts
in real time, would not know these optimal full-sample weights.

To more accurately represent the policy-maker’s problem in real time, we
repeat the estimation of the forecast combination equations described above (see
Regressions (1) and (2)), but now on a rolling basis.27 Specifically, we use a
10-year lagged window to determine, in each period, the weights which a policy-
maker would, in real time, choose to place on each of the competing forecasts
for inflation. For year-ended inflation, Figure 3 shows the profile over time of the
estimated real-time weights placed on our Phillips curve-based forecasts, and on
our AR model-based forecasts, under this real-time approach to combining these
forecasts. Figure 4 does the same for the combination of our Phillips curve-based
forecasts with those from our random walk benchmark.28

27 We also considered a wide range of variations to Equations (1) and (2), for the general form
of our combining equations. Alternatives considered included: relaxing the constraint that
the weights on the two sets of competing forecasts sum to one; allowing a constant in the
regressions; and allowing for the possibility in Regression (2) that the errorsεt follow a moving
average process (Diebold and Lopez 1996). These alternatives were considered both separately
and jointly. None of these variations, however, yielded any significant improvement in out-of-
sample combined forecast accuracy (judged in RMSE terms), either for the combination of our
Phillips curve and AR model-based forecasts, or our Phillips curve and random walk forecasts.

28 Note that Figures 3 and 4 cover the truncated evaluation period 1986:Q1 to 2002:Q4, reflecting
that our use of rolling regressions to determine the combining weights in each period means
that we lose 10 years from the sample for which our real-time combined forecasts are available.
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Figure 3: Real-time Forecast Combination Weights
Based on 10-year rolling encompassing tests
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As is evident from Figure 3, the weight placed on our Phillips curve-based
forecasts for year-ended inflation, when combined in real time with our AR model-
based projections, is broadly stable over time at between 29 and 43 per cent
(except in the first few years of the sample). By contrast, Figure 4 shows that,
when combined in real time with our random walk projections for year-ended
inflation, the weight placed on our Phillips curve-based forecasts exhibits two
distinct phases (again leaving aside the period of extreme volatility from 1986:Q1
to 1988:Q1). Between 1988:Q2 and 1993:Q4 this weight fluctuates narrowly
between 45 and 54 per cent, before undergoing a downward shift during 1994.
Thereafter, it is again fairly stable, ranging now between 28 and 38 per cent.29

29 The chief reason for the decline over 1994 is that 1983 was a year for which our real-time
Phillips curve-based forecasts perform extremely well, whereas our random walk forecasts
perform rather poorly (see Figure 2). Hence, as 1983 gradually drops out of the 10-year rolling
window used to estimate this weight, which occurs over the course of 1994 in Figure 4, our
Phillips curve-based forecasts are assessed to lose a good deal of their value as a guide to future
inflation, relative to our random walk benchmark.
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Figure 4: Real-time Forecast Combination Weights
Based on 10-year rolling encompassing tests
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Using the weights shown in Figures 3 and 4 also yields new series of real-time,
combined, out-of-sample forecasts for inflation, over the truncated evaluation
period 1986:Q1 to 2002:Q4. The relative performance of these forecasts is
summarised in Table 6, from which several interesting results emerge.

First, before even turning to the combined forecasts, it is notable that our real-
time AR model-based forecasts for year-ended inflation are considerably more
biased (58 basis points) over the sample considered in Table 6, than they are over
the longer evaluation period considered in Table 3 (33 basis points). The reverse,
however, is true for our random walk forecasts, whose bias declines from 46 to
26 basis points over the shorter sub-sample. Both methods display lower forecast
RMSE over the shorter sub-sample, consistent with the period from 1976 to 1985
having been a more difficult period for which to forecast inflation than the post-
1985 period.
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Table 6: Root Mean Squared Error and Bias of Alternative Real-time
Inflation Forecasting Methods

Method Real-time
PC

Real-time
AR

Random
walk

Combined
PC and AR

Combined
PC and RW

Forecasts for quarterly inflation (one quarter ahead)

RMSE 0.41 0.26 0.30 0.26 0.29

Bias −0.04 0.09∗ 0.02 0.04 0.07∗

Forecasts for year-ended inflation (one year ahead)

RMSE 1.51 1.03 1.02 0.90 0.97

Bias −0.20 0.58∗ 0.26∗ 0.32∗ −0.04

Notes: Results are calculated over the forecast sample period 1986:Q1 to 2002:Q4. ‘RMSE’ is the root mean
squared error between actual inflation and the series of real-time inflation forecasts generated by the method
shown, in percentage points; ‘Bias’ is the average percentage point error in the forecast series over the
evaluation period.∗ indicates that the bias is significant at the 5 per cent level.

Secondly, combining our real-time Phillips curve-based forecasts with those from
our real-time AR models does generate improved forecasts, measured relative to
our real-time Phillips curve-based ones alone. This improvement is evident at both
the one-quarter and one-year-ahead horizons. However, relative to our real-time
AR model-based forecasts, the improvement in performance of these combined
forecasts is less striking. No reduction in forecast RMSE is achieved at the one-
quarter-ahead horizon; and, although there is some improvement for the year-
ahead forecasts, it is still fairly small (around 13 basis points). The combining
process does, however, reduce the forecast bias problem present in the AR model-
based forecasts since the mid 1980s – from 58 to 32 basis points.

A similar picture emerges for the forecasts obtained by combining our real-time
Phillips curve-based projections with those from our random walk benchmark.
Overall, these results confirm our earlier intuition that, while our Phillips curves
do seem to add some power to our capacity to forecast inflation, relative to simple
alternative models, the extra information they provide is only modest.

5. Why Do Our Phillips Curves Forecast Poorly?

In Section 4 we saw that the capacity of our real-time Phillips curve-based models
to forecast inflation is disappointing, relative to some simple alternatives. We now
try to identify what factors are responsible for this poor performance.
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Recall that our Phillips curve-based forecasts have perfect foresight built into them
with regard to variables such as oil and import prices, and bond market inflation
expectations. This leaves two main candidates for the source of errors in these
forecasts.

One is that our real-time estimates of the output gap are subject to error, which
may bedirectly contributing to problems with our Phillips curve-based forecasts
of inflation. Errors in historical estimates of the gap in any given quarter feed
through to corresponding errors over the forecast period. These, in turn, affect our
Phillips curve-based inflation forecasts – even in the absence of any specification
or coefficient estimation problems in the Phillips curve or gap equation for that
quarter. The other possibility is that, in part because of real-time problems with
estimating the gap, our Phillips curves and gap equations themselves may be
flawed, either through mis-specification or mis-estimation of parameters.30

To assess which of these two factors may be the more important, we introduce
two alternative suites of ‘intermediate models’, both of which lie between our
real-time Phillips curve-based models and our final vintage Phillips curve. For the
first of these sets of intermediate models, in each period we use the same Phillips
curves and output-gap equations, estimated on that period’s data, as in our real-
time Phillips curve-based models. However, we use the final vintage data for the
gap (and for inflation expectations) up to that period, in generating forecasts for
inflation over the year ahead. In terms of bridging the gap between our real-time
Phillips curve-based models (real-time equations and real-time data) and our final
vintage Phillips curve (final equations and final data), this first set of intermediate

30 It is also possible that a number of other factors may be contributing to the disappointing
performance of our real-time Phillips curve-based forecasts. Such factors include our
imposition of a long-run verticality condition on our Phillips curve specifications, and our
choice of output-gap measure. However, for the US, Orphanides and van Norden (2003) find
that the relative forecasting performance of output-gap-based Phillips curves with and without
a long-run verticality condition imposed is about the same. Likewise, their results for the US
suggest that our choice of output-gap measure is unlikely to be responsible for the unimpressive
forecasting performance of our real-time Phillips curves: they examine a dozen alternative gap
measures, and find all of them to be of generally low value in helping to predict inflation in real
time. Moreover, it would be problematic, on other grounds, for us to switch to an alternative
approach to estimating the gap, so as to try to improve our capacity to forecast inflation using
Phillips curves, since the results of Gruenet al (2002) suggest that any gain on this front would
be likely to come only at the cost of worse real-time reliability of the estimates of the gap itself.
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models may therefore be thought of as representing ‘real-time equations but final
data’.

Our second set of intermediate models simply reverses the order in which the
gap between our real-time Phillips curve-based models and final vintage Phillips
curve is bridged, using instead ‘final equations but real-time data’. Specifically, for
this second set of intermediate models we therefore use, in each period, the final
vintage Phillips curve and output-gap equation, as estimated on final vintage data.
However, we use real-time data for the gap (and for inflation expectations) up to
that period, in generating forecasts for inflation over the year ahead. A comparison
of the forecasting performance of these two sets of intermediate models with that
of our real-time and final vintage Phillips curves is provided in Table 7.

Table 7: Root Mean Squared Error and Bias of Alternative Inflation
Forecasting Methods

Method Final vintage PC Intermediate models (I) Intermediate models (II) Real-time PC

Real-time eqns, final data Final eqns, real-time data

Forecasts for quarterly inflation (one quarter ahead)

RMSE 0.31 0.44 0.32 0.44

Bias 0.01 −0.02 0.03 −0.01

Forecasts for year-ended inflation (one year ahead)

RMSE 0.87 1.59 1.03 1.55

Bias 0.08 −0.05 0.22∗ 0.03

Notes: Results are calculated over the forecast sample period 1976:Q1 to 2002:Q4. ‘RMSE’ is the root mean
squared error between actual inflation and the series of real-time inflation forecasts generated by the method
shown, in percentage points; ‘Bias’ is the average percentage point error in the forecast series over the
evaluation period.∗ indicates that the bias is significant at the 5 per cent level.

Interestingly, we see that, on average over the whole sample from 1976:Q1
onwards, our first set of intermediate models performs no better (in RMSE terms)
in forecasting inflation than our real-time Phillips curve-based models, at either the
one- or four-quarter-ahead horizons. It appears that, if forced to work with Phillips
curves estimated in real time, then one may as well continue to use the same
flawed, real-time output-gap data used in the equation specification and estimation
process, when forecasting inflation. Doing so produces forecasts which perform
as well as predictions based on more accurate gap information, determined using
revised output data and with the benefit of hindsight.
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By contrast, while our second set of intermediate models performs worse in
forecasting inflation than our final vintage Phillips curve, it does markedly better
than our real-time Phillips curve-based models. This is true, in RMSE terms, at
both the one- and four-quarter-ahead horizons – although, at the latter horizon, the
forecasts from our second set of intermediate models do exhibit some bias.

In combination, these results strongly suggest that the principal problem with
the use of Phillips curve-based models to forecast inflation in real time lies
in identifying the correct specification and coefficient estimates for the model
equations. By contrast, thedirect effects of output-gap mis-estimation on the
inflation forecasts seem relatively unimportant – a finding which aligns with
that of Orphanides and van Norden (2003) for the US.31 There have, however,
been particular periods where the direct effects of gap mis-estimation have been
important, such as the early 1990s recession (already discussed in Section 4.2).
The persistent mis-estimation of the output gap during this period, by around
3 percentage points, is a major source of errors in our real-time Phillips curve-
based forecasts for year-ended inflation for this period – as illustrated by Figure 5,
which compares these forecasts (real-time equations, real-time data) with those
from our first set of intermediate models (real-time equations, final data).

31 Orphanides and van Norden observe that their results ‘provide no evidence to suggest that the
relative inaccuracy of [their various] real-time gaps is responsible for their poor forecasting
performance’, but rather suggest ‘quantitatively important instability in the relationship
between output gaps (however measured) and inflation’ (p 16).
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Figure 5: Real-time Forecasts for Year-ended Inflation
Phillips curve forecasts versus intermediate model (I) forecasts
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6. Conclusions

Among the many techniques used to forecast inflation are Phillips curves based
on estimates of the output gap. This paper suggests, however, that their real-time
capacity to do so is limited, relative even to such simple alternative forecasting
approaches as an AR(2) model or a random walk assumption.32 It appears
that, while the Phillips curve relationship is useful in real time as a source of
information upon which to condition estimates of the output gap, the lack of
precision with which the relationship can be estimated in real time limits its
usefulness as a means of forecasting inflation.33 This is so despite our having

32 This conclusion accords with the recent results of Orphanides and van Norden (2003) for the
US, regarding the real-time forecasting power of Phillips curves, notwithstanding the different
frameworks used to examine the issue in the two studies.

33 By comparison, the direct impact of real-time output-gap mis-estimation, on the performance
of Phillips curve-based inflation forecasts, appears to be of secondary importance.
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taken care to try to make our Phillips curve-based models as richly specified and
realistic as possible.

Our Phillips curve-based forecasts may, however, perform a little better than AR
model-based ones in at least predicting whether inflation will increase or decrease
from its current level. Moreover, combining Phillips curve-based forecasts with
those from our alternative, benchmark approaches, does seem to offer at least some
scope for improving the real-time out-of-sample forecast accuracy of the latter.

Finally, an inflation-targeting central bank may, in any case, wish to react to
anticipated spare capacity in the economy, beyond its expected implications for
inflation.34 Whether the output gap can be estimated sufficiently accurately in real
time for such a purpose remains open, but at least the findings of Gruenet al(2002)
on that score were more promising than those of this paper.

These latter observations point to a possible ongoing role for output-gap-based
Phillips curves, beyond their value as anex posttool for understanding historical
movements in inflation. They suggest that, in spite of their generally disappointing
performance as a means of forecasting inflation in isolation, such Phillips curves
may continue to be useful in real time – as a tool for conditioning gap estimates
within a multivariate filtering framework, and as a possible complement to other,
alternative inflation forecasting approaches.

34 It is increasingly accepted that flexible inflation-targeting central banks, including the Reserve
Bank of Australia, focus not only on deviations of forecast inflation from target, but also of
forecast output from potential – see, for example, Bean (2003).
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Appendix A: Construction of Real-time Output Gaps and
Phillips Curves

Gruenet al (2002) examine a range of univariate and multivariate methods for
estimating the output gap in real time for Australia. They conclude that the best
approach is to use an econometric technique based on inverting a Phillips curve,
subject to a smoothness constraint. Since we use both the real-time output gaps
and Phillips curves which they generate via this technique, we give a brief outline
of it here. For a detailed description of the technique, see Gruenet al (2002).

Gruenet alstart with an expectations-augmented Phillips curve of the form

πt = π
e
t + γ(yt −y∗t )+θZt + εt (A1)

whereπt denotes quarterly core consumer price inflation (which has the desirable
property for real-time analysis that it is not revised);π

e
t denotes inflation

expectations;yt andy∗t denote actual and potential output (in logs);Zt represents
a vector of other variables (which may include changes in the output gap); and
εt denotes an error term.35 Then, for each vintage of data, they seek thesmooth
path for potential output that gives the best fit to this Phillips curve. Formulated
mathematically, this entails finding the values for the parameterγ, the parameter
vectorθ , and the potential output series{y∗t } which minimise the loss function

L =
n∑

t=1

ε
2
t +λPC

n−1∑
t=2

(
(y∗t+1−y∗t )− (y∗t −y∗t−1)

)2 (A2)

where, as in the usual H-P filter,λPC is a smoothing parameter to be chosen.36

35 The Zt variables are constructed to be zero in the long run, so that the Phillips curve defined
by Equation (A1) is vertical in the long run, with output at potential when inflation is equal to
expected inflation.

36 Details of the choice ofλPC are set out in Gruenet al (2002). Note also that this loss function
is similar to that underlying the conventional H-P filter, but with the sum of squared residuals
from the Phillips curve in place of the sum of squared deviations of potential output from actual
output. This has the desirable effect of building economic information into the filter: rather than
potential output being penalised for differing from actual output in each period, such deviations
are only penalised in Equation (A2) to the extent that they do not help to explain observed
inflation. Incorporating economic information into the filter in this way also has the benefit
that it reduces the end-point problems associated with H-P filters (since observed inflation then
helps to determine the level of the output gap in each period more tightly).
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For each data vintage, Gruenet al use a general-to-specific approach to choose
an appropriate specification for the Phillips curve – as described in detail in
Gruenet al (2002). Overall, the Phillips curve specifications selected vary only
slowly over time. Table A1 lists these real-time specifications in full.

Table A1: Complete List of Phillips Curve Specifications
Date of vintage Precise equation specification

1971:Q4 to 1972:Q4 πt = 0.5(πt−2 +πt−3)+β2bondt−2 +β3bondt−3 +β4bondt−4+
γ(yt −y∗t )+δ4∆(yt−4−y∗t−4)+
ξ3importt−3 +ξ4(importt−4 + importt−5 + importt−6)+ εt

1973:Q1 to 1973:Q2 πt = 0.5(πt−2 +πt−3)+β2bondt−2 +β3bondt−3 +β4bondt−4+
γ(yt −y∗t )+
ξ3importt−3 +ξ4(importt−4 + importt−5 + importt−6)+ εt

1973:Q3 πt = 0.5(πt−2 +πt−3)+β2bondt−2 +β3bondt−3 +β4bondt−4+
γ(yt −y∗t )+ξ3importt−3 + εt

1973:Q4 to 1974:Q2 πt = 0.5(πt−2 +πt−3)+β2bondt−2 +β3bondt−3

γ(yt −y∗t )+η3oilt−3 + εt

1974:Q3 πt = 0.25(πt−2 +πt−3 +πt−4 +πt−5)+β1bondt−1+
γ(yt −y∗t )+η2oilt−2 + εt

1974:Q4 to 1975:Q3 πt = 0.25(πt−2 +πt−3 +πt−4 +πt−5)+β1bondt−1+
γ(yt −y∗t )+η2oilt−2 +η3oilt−3 + εt

1975:Q4 to 1986:Q2 πt = 0.25(πt−2 +πt−3 +πt−4 +πt−5)+β1bondt−1+
γ(yt −y∗t )+η2oilt−2 +η3oilt−3 +η7oilt−7 + εt

1986:Q3 to 1998:Q2 πt = 0.25(πt−2 +πt−3 +πt−4 +πt−5)+
ζ2(πt−2−πt−6)+ζ3(πt−3−πt−7)+
β1bondt−1 +β2bondt−2+
γ(yt −y∗t )+η2oilt−2 +η3oilt−3 +η7oilt−7 + εt

1998:Q3 to 2002:Q4 πt = 0.25(πt−1 +πt−2 +πt−3 +πt−4)+
ζ2(πt−2−πt−6)+β1bondt−1+
γ(yt −y∗t )+η2oilt−2 +η7oilt−7+
ξ0importt +ξ1importt−1 + εt

Note: Start of sample for all regressions is 1961:Q2.
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Appendix B: Selection of Real-time Output-gap Equations

The five broad specification types for our chosen output-gap equation
specifications are summarised in Table 2 in Section 3. Table B1 provides a
complete listing of the specifications used for each of our 125 data vintages.

Table B1: Complete List of Output-gap Equation Specifications
Date of vintage Precise equation specification

1971:Q4 to 1978:Q1 gapt = α +β1gapt−1 + γ1rsharet−1 + εt

1978:Q2 to 1981:Q3 gapt = α +β1gapt−1 +β5gapt−5 + γ1rsharet−1+
δ1∆tott−1 +δ3∆tott−3 +λ5∆rtwit−5 +φ1soit−1 + εt

1981:Q4 to 1985:Q3 gapt = α +β1gapt−1 +β5gapt−5 + γ1rsharet−1+
δ3∆tott−3 +λ2∆rtwit−2 +λ5∆rtwit−5 +φ1soit−1 + εt

1985:Q4 to 1987:Q2 gapt = α +β1gapt−1 +β5gapt−5 + γ1rsharet−1+
δ3∆tott−3 +λ1∆rtwit−1 +φ1soit−1

ψ2(rcasht−2 + rcasht−3)+ εt

1987:Q3 to 1989:Q1 gapt = α +β1gapt−1 +β5gapt−5 + γ1rsharet−1+
λ1∆rtwit−1 +φ1soit−1

ψ2(rcasht−2 + rcasht−3)+ εt

1989:Q2 to 1993:Q2 gapt = α +β1gapt−1 + γ1rsharet−1+
λ1∆rtwit−1 +φ1soit−1

ψ2(rcasht−2 + rcasht−3)+ εt

1993:Q3 to 1995:Q2 gapt = α +β1gapt−1 + γ1rsharet−1+
φ1soit−1 +ψ2(rcasht−2 + rcasht−3)+ εt

1995:Q3 to 2002:Q4 gapt = α +β1gapt−1 + γ1rsharet−1 +φ1soit−1+
ψ2(rcasht−2 + rcasht−3 + · · ·+ rcasht−7)+ εt

Note: Start of sample for all regressions is 1961:Q2.
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Appendix C: Implications of our Forecast Combination Results
for Model Specification

In Section 4, when real-time combination tests involving two sets of forecasts
showed that neither fully encompassed the other, we used the rolling weights
estimated from these tests to form a new, combined set of forecasts. An alternative
response, however, has been proposed in the literature. This approach, due to
Chong and Hendry (1986), argues that the failure of either model to encompass
the other should be taken to indicate that one shouldadapt one of the models,
building into it elements from the other, until it does fully encompass the latter.
It is therefore interesting to ask: do our real-time forecast combination results in
Section 4 have implications for the optimal specifications of our Phillips curves?37

The main option that forecasters in our setting might investigate would be adding
extra (possibly longer) lags of inflation to their Phillips curves in each period,
given the strong relative real-time performance of our AR models of inflation.
However, the scope for such re-specification is, in practise, limited. To begin with,
the general Phillips curve specification used in Gruenet al (2002) already allowed
for long lags of inflation, as part of an information set strictly richer than that
available to our AR models.38 Moreover, a real-time aspect of the specification
search process for our Phillips curve-based models makes the use of encompassing
tests of forecast performance, for assessing model mis-specification, problematic.

Specifically, for each data vintage our procedure for estimating potential output
creates a variable, the output gap, which (partly by construction) is found to be
a highly significant explanator of inflation, but which is itself influenced by the
specification of that vintage’s Phillips curve. This makes it difficult to amend
our real-time Phillips curve specifications to encompass our AR models – say, by
adding additional lags of inflation – since they involve a variable, the output gap,
whose construction in each period is itself intertwined with their specification.

37 That said, the residuals shown in Figure 7 of Gruenet al (2002) for our final vintage
Phillips curve display few of the traditional signs of misbehaviour relating to equation mis-
specification. For example, they exhibit no significant autocorrelation (at least after excluding
from consideration the period associated with the first OPEC oil price shock in early 1974).

38 Note, however, that we do impose a constraint of long-run verticality on our Phillips curves,
which we do not correspondingly impose in our AR models.
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Appendix D: Data Sources and Definitions

Many of the data series used in this paper were also used in Gruenet al (2002).
Definitions and sources for these series were outlined in Appendix D of that paper.
In this appendix we describe only those series used here which were not used in
Gruenet al, or whose precise definition or source have been altered slightly.

Nominal cash rate and 90-day bank bill rate

The nominal cash rate is the quarter average of monthly data for the interbank
overnight rate, for the period from July 1998 onwards, and for the 11am call rate,
up to June 1998 (both available from Table F.1 of the RBABulletin, ‘Interest Rates
and Yields – Money Market’). For the 90-day bank bill rate we use the average
level of this series over the last week of each quarter, also available from Table F.1
of the RBABulletin [issue 1998:M7].

Weighted average interest rate on overdraft advances

Constructed from RBABulletin Table ‘Advances Classified by Interest Rates’
[1963:M9–1988:M11]. Interest rates are assumed to be the midpoint of each
category (e.g., ‘more than 5% but less than 51

2%’ is taken to be 514%), except for
end categories, where the relevant boundary is used (e.g., ‘5% and less’ is taken to
be 5%). These are then weighted by their share of total advances outstanding.

Bond market inflation expectations

The bond market inflation expectations series is as constructed in Gruen
et al (2002), except that, rather than using the end-quarter value of the nominal 10-
year bond yield, we use the average of the end-month values in each quarter (from
Table F.2 of the RBABulletin, ‘Capital Market Yields – Government Bonds’).

De-trended real share accumulation index

We first construct a nominal share accumulation index for Australia (including
both capital gains and the re-investment of dividends). From 1992:Q3 onwards
this is the quarter average of the daily close of the Standard and Poor’s
(S&P)/Australian Stock Exchange (ASX) 200 accumulation index, available from
Datastream (code: ASX200(RI)). For the period 1990:Q1–1992:Q2, we back-
cast the S&P/ASX 200 index using changes in the quarter average of the daily
closing values of the old ASX All Ordinaries Index (since renamed the ASX Share
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Price Index), again available from Datastream (code: AORDASX(RI)). For the
periods 1980:Q1–1989:Q4, 1970:Q1–1979:Q4, and 1959:Q1–1969:Q4, we repeat
this back-casting procedure, but now using in turn: the quarter average of the
end-month values of the ASX Share Price Index (available from the ‘S&P/ASX
200 accumulation index’ series in Table F.7, ‘Share Market’, of the RBABulletin
– see table notes); data on the MSCI national net index (official) for Australia,
available from<http://www.msci.com>; and finally, linearly interpolated data for
the annual All Ordinaries Accumulation Index from Foster (1997), Table 3.18a,
available at<http://www.rba.gov.au/Statistics/op8index.html>.

To construct a real version of this nominal index, we then deflate the series by
the 2002:Q4 vintage median consumer price index. Finally, to de-trend the series
we use a Hodrick-Prescott (H-P) filter with smoothness parameterλHP = 1 600.
Note that this approach to de-trending ignores real-time considerations (since an
H-P filter applied to vintages of our real share accumulation index would yield
estimates for the trend level of this series different from those obtained by filtering
the full series up to December quarter 2002). However, neglecting this real-time
complication has little effect on our results.

Real trade-weighted exchange rate

We use an index of the Australian dollar against a trade-weighted basket of major-
trading-partner currencies, adjusted for domestic and foreign consumer prices.
Available from<http://www.rba.gov.au/Statistics/>.

Southern Oscillation Index

The Southern Oscillation Index is available from the Commonwealth Bureau of
Meteorology at<http://www.bom.gov.au/climate/current/soihtm1.shtml>.

Statutory Reserve Deposits ratio

The Statutory Reserve Deposits (SRD) ratio is the daily average from the RBA
BulletinTable ‘Ratios of Selected Assets to Total Deposits’ [1965:M9–1984:M7].
These original data were seasonally adjusted using the X12 econometric package.

Terms of trade

Data are from National Income, Expenditure and Product (ABS Cat No 5206.0),
December quarter 2002.
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