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ABSTRACT 

The assumption of forward-looking agents in theoretical macroeconomic models 

has become increasingly popular in recent years. Despite this, the 

implementation of forward-looking expectations in large econometric models has 

been slower to emerge. The purpose of this paper is to survey, in a 

non-technical manner, recent algorithms that have been developed to solve 

medium-size models when some agents in the models are assumed to have rational 

expectations. With an intuitive understanding of the algorithms, it is hoped 

that the technical source literature will be more readily accessible to model 

builders. 

The use of game theory in macroeconomics has also seen a resurgence. The 

second part of this paper develops an algorithm which is useful for solving 

rational expectations models and can also be used to solve dynamic games 

between agents with forward-looking expectations. Although derived for a 

specific application, the algorithm is sufficiently general to be useful for 

solving a range of non-cooperative games. 
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NUMBERICAL SOLUTION OF RATIONAL EXPECTATIONS MODELS 

WITH AND WITHOUT STRATEGIC BEHAVIOUR 

Warwick J. McKibbin 

l. Introduction 

The assumption of "model-consistent" or "rational"' expectations, first 

implemented by John Muth (1961), has important implications for the solution 

of macroeconomic models. In models containing rational agents
1

, current 

variables depend on the expected path of future variables
2 

Until recently, 

this assumption was only used in small analytical models because of the 

difficulty in solving models under rational expectations. Advances in 

computing power and technique have now allowed economy-wide and multi-country 
3 

models to be solved . There still appears to be an aversion to applying the 

available numerical techniques perhaps due to the inaccessibility of the 

source literature to many economists. With the goal of making the literature 

more accessible, this paper surveys the major numerical techniques which have 

been developed to solve large models, where expectations of some agents in the 

model are assumed to be formed rationally. 

Section 2 of this paper examines the key implications of assuming model 

consistent expectations using a very simple model of exchange rate dynamics. 

This simple model introduces the concepts used extensively in section 3 and 

provides a useful introduction to the problem to be solved numerically. In 

section 3, alternative numerical techniques are discussed, focussing on the 

intuition behind the formal derivations presented in the literature. These 

techniques are the general analytical solution of Blanchard and Kahn (1980), 

the Multiple Shooting algorithm of Lipton et al (1983), the Fair-Taylor 

algorithm (Fair and Taylor (1983)) and a fourth algorithm developed by the 

author in joint work with Jeffrey Sachs on the MSG model. 

1. That is, agents who use all information available in deciding on actions 
and do not make any systematic errors. 

2. See Begg (1982), Sheffrin (1983) and Taylor (1985) for surveys of the use 
and relevance of the rational expectations assumptions. 

3. See for example the MSG model (McKibbin and Sachs (1986)), the Liverpool 
Model (Minford (1985)), the Taylor Model (Taylor (1986)) and Minimod 
(Haas and Masson (1986)). 
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The goal of section 3 is to present the techniques in a way that makes the 

algorithms more transparent than the original articles. Section 4 introduces 

a technique developed with Jeffrey Sachs that extends the algorithm in Oudiz 

and Sachs (1985) and moves the discussion of solving rational expectations 

models to the case where agents interact in a strategic manner. 

2. A Simple Illustration of the Problem of Solving Rational Expectations 

Models 

Consider a small open economy which is described by the following equations: 

m - pt = cx.qt - fii. ( 2. 1) 
t 1 

* qt = y(et + pt - pt) - 6i ( 2. 2) 
t 

* i =i + tet+l - e ( 2. 3) 
t t t 

All variables are in logs. Starred variables are foreign variables. Equation 

(2.1) is the LM curve for the economy. Money demand (m-p) is a function of 

output (q) and the nominal interest rate (i). Prices are assumed to be 

sticky. This implies that the price level is not expected to change so that 

real and nominal interest rates are equal. Equation (2.2) is the IS curve for 

the economy. Aggregate demand is a positive function of the real exchange 

rate and a negative function of the interest rate. The nominal exchange rate 

is defined as the home price of foreign exchange so a rise in e is a 

depreciation of the exchange rate. Equation (2.3) gives the relation between 

domestic and foreign interest rates. It assumes that capital is perfectly 

mobile internationally and foreign and domestic bonds are perfect substitutes 

and therefore uncovered interest parity holds; domestic and foreign interest 

rates are equalised, adjusted for any expected exchange rate changes. The 

notation e is used here to indicate the expectation formed in period t 
t t+l 

of e 
1

. We assume that agents form these expectations rationally, meaning 
t+ 

that in a statistical sense, agents use the best linear unbiased predictor of 

the exchange rate. This is given as: 
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where the expectation operator E is conditional on the information set I 
t 

which contains realizations on all endogenous and exogenous variables as of 

period t. In this case there is no uncertainty in the model so the assumption 

here is that of perfect foresight: 

Prices are assumed to be sticky and the money supply (m) and foreign variables 

are assumed to be exogenous. The model therefore has three equations and 

three unknowns: q, i and e. Notice that to solve the model in period t we 

need to know et+l" This is the problem to be examined in the rest of this 

section. 

A solution for period t can be found by substituting (2.2) into (2.1) to solve 

for i. 

where f g 

We can rewrite (2.3) as 

.,. 
et = et+l + it it 

__ 1_ 

a.o+B 

.,. 
substituting for i and stacking all exogenous variables mt, pt' pt, .,. 
it in a matrix Zt we find: 

where 

h e + j zt t+l 
( 2. 4) 

and j is a vector of coefficients on the exogenous variables contained in the 

vector Z. 

The problem now is that the solution for e depends on the expectation of 

et+l" To find this expectation which is based on the known structure of the 
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model, we can now lead the model by one period and take the expectation of 

Substituting this into (2.4) gives et as a function of the exogenous 

variables in periods t and t+l as well as a function of the expectation formed 

in period t of e 
2

. For convenience, assuming that the path of future 
t+ 

exogenous variables is constant, we can repeat this procedure to find: 

( 2. 5) 

One problem with this solution is that, without any other restrictions, we can 

pick any value of the expected exchange rate in period t+k, to give a solution 

for the current exchange rate. Expectations can be self-fulfilling! 

Generally the problem is solved in one of two ways. In the case where the 

model has been derived by solving a dynamic optimisation problem, terminal 

conditions will be available as part of the solution to the problem. Where 

this is not the case, the usual procedure is to take the stable solution as 

the solution to the model. 

Several points can be made about the solution given in (2.5). In the one 

dimensional case which we are examining, 1/h corresponds to the eigenvalue of 

the model. It can be seen that h<l which implies that the eigenvalue is 

greater than unity. The model is therefore fundamentally unstable. In the 

linear case there is one unique initial value of et which prevents the model 

from exploding over time. In this case it is where et=j/(1-h)Z. The 

non-exploding path for e is called the stable manifold of the model. The 

object of the numerical algorithms is to find this unique stable path or, 

equivalently, to find a unique initial value for the vector e in a 

multidimensional context. In the case of non-linear models the initial value 

and the path are not necessarily unique. The conditions for uniqueness in the 

linear case are derived rigorously in Blanchard and Kahn (1980). There is a 

unique solution if the number of jumping variables (i.e. variables such as e 

which jump in response to news) equals the number of eigenvalues outside the 

unit circle. 
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Another important point to note about equation (2.5) is that the effect on 

et of future values of the expected variable diminishes over time. The rate 

of decay of the influence of the future values depends again on the eigenvalue 

of the model. This point is very important in practice because in all 

solution techniques some assumption must be made about terminal values of 

variables. It implies that errors in initial guesses of terminal conditions 

will have negligible effects on final results, if the terminal period is 

sufficiently far in the future. Whether or not the terminal period is 

"sufficiently far in the future", is a function of the eigenvalues of the 

system. 

This section has given an introduction into the nature of the problem we wish 

to solve. The next section will develop the themes raised here, for larger 

systems of equations. 

3. Numerical Solutions of Rational Expectations Models 

This section considers four numerical techniques that solve the 

multidimensional problem. These are the Blanchard-Kahn solution, Multiple 

Shooting, Fair-Taylor and the MSG techniques. The multiple shooting and 

Fair-Taylor techniques are specifically designed to solve the general 

non-linear problem. For clarity we will concentrate the discussion in the 

framework of a linear model. 

At this point it is worth introducing some terminology. 

A model written in minimal state-space representation is in the form: 

where X is a mxl vector of evolving variables. 

E is a sxl vector of exogenous variables. 

( 3. 1) 

We can partition the X matrix in a convenient way. Let the first n variables 

be state or predetermined variables whose values are inherited from the past 

and the remaining m-n variables be "jumping variables". Jumping variables are 
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variables over which agents form expectations and which can change in response 

to new information in period t. The model (3.1) can be rewritten as: 

where 

( 3. 2) 

( 3. 3) 

X is a vector of state variables whose value is inherited from the 

past evolution of the system. 

e is a vector of jumping variables, determined within the current 

period by the structure of the model and information about current 

and all future variables. 

Eisa vector of exogenous variables (including policy instruments). 

This model could easily be solved forward as in the case of standard 

difference equations given x
0

, e
0 

and a path for E. That is, given the 

initial values for the state and jumping variables we can solve forward for 

x
1 

and e
1 

and so forth. The problem faced in attempting to numerically 

solve a rational expectations model is that there are only initial values for 

the set of state variables x
0 

and terminal values for the set of jumping 

variables eT or e
00 

(either assumed or from some optimisation solution). 

To solve the model in period 0, and for every period until T, requires 

knowledge of e
0 

which requires knowledge of the solution in period l and so 

forth. This is called a two-point boundary value problem. Two points on the 

equilibrium path of the economy are known and these are both needed to define 

the path between them. Analytical solutions to models containing rational 

expectations can be found in simple cases by using techniques which solve 

these types of two-point boundary value problems such as illustrated in 

section 2. That is, to solve the model requires use of restrictions provided 

by initial values of state variables and some terminal conditions on jumping 

variables. The terminal values can be given as a fixed value in some finite 

terminal period or, in an infinite horizon problem, by a tranversality 

condition which imposes that in the infinite limit a variable is bounded. 

Numerical solutions to more complex systems have been slower to emerge 

although there are now several techniques commonly used. The solutions 
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provided by these techniques to be discussed can be better understood with the 

aid of Figure l. Suppose that the multidimensional system of state and 

jumping variables can be compressed into points in a two-dimensional space. 

Each point such as A consists of a set of values for each of the state and 

jumping variables in the model {x
0

,e
0

}. Suppose point B summarises 

the terminal value for the problem which gives {xT,eT}. The problem 

is to find the unique path between A and B. We have initial values for x
0 

and terminal values for eT. 

a. Blanchard-Kahn Solution 

For a linear system, a general analytical solution is provided by Blanchard 

and Kahn (1980). This technique is a generalisation of the solution to a 

difference equation system as derived in section 2 above. It is based on 

transforming the transition matrix z
1 

in (3.1) into its eigenvalue and 

eigenvector matrices. A solution is obtainable using the Blanchard-Kahn 

technique if the number of eigenvalues outside the unit circle is equal to the 

number of jumping variables. A more general analytical solution is provided 

by Chow and Reny (1984) but will not be discussed here. 

b. Multiple Shooting Algorithm 

In the case of non-linear systems, the technique of multiple shooting has been 

applied to the economics literature by Lipton, Poterba, Sachs and Summers 

(1983). The shooting technique can be described intuitively as follows. 

Initial values are assumed for the jumping variables e
0

. The model is then 

solved forward until the terminal period (or some finite period that is 

considered a good approximation to the infinite horizon) is reached. The 

terminal conditions on the jumping variables eT, are then compared to the 

solution values for the jumping variables eT. If these are not equal, the 

initial guesses of the jumping variables are updated using some error 

correction procedure (i.e. Newton's Method). In the case of multiple 

shooting, the solution interval is divided into sub-intervals, such as shown 

in figure l. The object is to solve the model to pass through intermediate 

points C and D. With the aid of auxiliary variables, the model is then 



{x,e} 

Figure 1: Illustration of Multiple Shooting Algorithm 

A {x ,e } 
0 0 
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solved, shooting within each sub-interval until convergence of the model 

solution to the terminal conditions is reached. A problem with this algorithm 

is that each sub-interval increases the dimensionality of the system to be 

solved. 

c. Fair-Taylor Algorithm 

Fair and Taylor (1983) have also developed a technique which has become 

popular because it tends to find a solution to models at a much lower cost 

than the multiple shooting algorithm. In the Fair-Taylor technique, an 

arbitrary terminal period, T, is chosen. Equation (3.3) is rewritten 

( 3. 4) 

where tet+l is taken as an exogenous guess for the expectation of e. 

The paths of expected variables {te
1

, ... ,teT} are guessed and the 

model is solved assuming these expectations. The solution paths for the 

expected variables are then compared to the guesses and the guesses are 

updated using an error correction method. This iterative procedure is 

repeated until the expected path equals the actual path. The terminal period 

is then extended and the procedure repeated until the terminal period choice 

has no effect on the solution path. In our experience, the iteration on 

terminal period (called type III iteration in Fair and Taylor) is only 

required at the initial stage of simulating the model. Once a period length 
. . . 4 
1s establ1shed 1t rarely needs to be updated. 

d. MSG Algorithm 

A fourth solution procedure is used by McKibbin and Sachs in solving the MSG 

model. It is developed in the next section in more detail. The first step is 

4. A copy of this algorithm which solves up to 90 simultaneous equations on a 
PC is available from Aptech System, P.O. Box 6487 KENT WA 98064, USA. 
The algorithm is written in GAUSS. 
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to linearize the model around an assumed steady state. Assume that in any 

period, the jumping varables (e) can be written as a function of the inherited 

state variables (X) current exogenous variables (E), and the future path of 

exogenous variables, in the following form: 

To find the matries H
1

, H
2 

and eSt an iterative technique is used which 

essentially solves the model backwards. First the model is solved in an 

arbitrary terminal period T. By assuming period T is the last period, the 

future expectations of variables beyond period T are irrelevant. 

can then be rewritten in period T as: 

where the H
1 

and H
2 

matricies are time subscripted. 

The model 

Moving back to period T-1, the future jumping variables (eT) are solved as 

functions of state variables (which are determined in period T-1) and 

exogenous variables. The model can now be rewritten in period T-1 given the 

This procedure is repeated, solving backwards until the 

matricies H
1 

and H
2 

become independent of the terminal period chosen. 

This process also generates a cumulation rule for all future exogenous 

variables which is summarized in the matrix est' 

Once the rules linking e to X and current and future exogenous variables 
t t 

are found, the model can be solved in any period t using the additional 

condition: 

e =H X +H E +eS . 
t 1 t 2 t t 

This enables the model to be solved forward as a standard difference equation 

system. This technique is numerically equivalent to the Blanchard-Kahn 

solution although it is very convenient for implementing dynamic game theory 

which is discussed below. 
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4. A Numerical Algorithm that Allows for Strategic Behaviour 

There is now a large literature on the question of time consistent policy 

optimisation in both closed and open economies when agents are forward 

looking. In this section the MSG algorithm is developed further to allow for 

explicit optimisation of an objective function in a rational expectations 

model. 

The algorithm can be used for many different applications: an economy of 

rational atomistic agents in which a government optimises an objective 

function; an economy in which a government and union strategically optimise 

separate objective functions; two or more open economies in which governments 

optimise objective functions strategically in a cooperative or non-cooperative 

manner, with and without strategic interactions with private agents. 

The algorithm is developed in terms of strategic interactions between 

governments in a two-country world. It is based on the dynamic programming 

algorithm for dynamic games developed in Sachs and Oudiz (1985). 

Put simply, the idea is to find a set of feedback rules for government policy 

(or control variables) from the optimisation of an objective function, where 

the rules link policy to the current state variables. Associated with the 

solution, we need to find the current jumping variable also as a function of 

current state variables. Once we find the rules, then given initial state 

variable (X
0
), we can determine initial jumping variables (e

0
) and 

therefore we can find a solution to the model. This is discussed more 

rigorously below. 

Consider a general system of equations summarised by: 

X 
t+l 

z 
t 

E , 
t 

z ) 
t 

( 4. 1) 

( 4. 2) 

( 4. 3) 
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( 4. 4) 

where is a vector of state variables 

is a vector of jumping variables (such as forward looking asset 

prices) 

Ut is a vector of control variables (such as monetary and fiscal 

policies) 

Lt is a vector of target variables which can include state, 

jumping or control variables 

Et is a vector of exogenous variables 

is a vector of endogenous variables that do not effect the 

dynamics of the system 

18e initial step of the solution technique is to linearise this system around 

some point, usually either the steady state or a point on the transition path, 

using a first order Taylor approximation. The impact of the linearisation on 

the results will depend on several factors. Firstly, if steady state 

consequences of policies are to be examined then linearising may cause 

problems. Also, if the model is highly non-linear then the effect of the 

future path of the economy on the current period may be distorted. 

In practice, we have found very little difference between the linear and 

non-linear versions of the MSG model when examining short-run properties. 

Finding numerical derivatives and solving for the endogenous variables (Z) as 

a function of the other variables in the system, the model can be written: 

( 4. 5) 

( 4. 6) 

( 4. 7) 

where each of the coefficient matrices (a
1

, b
2

, y
3

, etc.) are 

numerical derivatives evaluated at the point of linearisation
5 

and a bar 

5. 
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over a variable is the deviation of a variable from the point of 

linearisation. To avoid excessive notation, the bars over variables will be 

dropped with the understanding that all future references will be to variables 

as deviations from some level. 

The final assumption added to the above system is that agents take into 

account all available information in forming expectations about future 

variables. Agents have rational or model consistent expectations which 

implies that their expectations of future variables are correct on average. 

In the current paper we assume perfect foresight so the assumption is: 

E{e 1 lr } = 
t+ t 

( 4. 8) 

where a subscript t before a variable indicates the expectation of that 

variable taken in period t based on the information available in that period. 

Now introduce optimising policy-makers. Assume that policy-makers choose the 

control variables (U) to maximise an intertemporal utility function: 

( 4. 9) 

subject to the structure of the economy given in (4.5) to (4.8). When the 

social welfare function is not explicitly a quadratic loss function, it is 

made quadratic by linearising using the first two terms of a Taylor's series 

expansion. The problem for country i becomes to choose a vector of control 

variables U. , to maximise: 
1t 

w. 
1t 

subject to: 

(4.10) 

(4.11) 

(4.12) 
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'[it (4 .13) 

where matrices related to control variables are stacked in the following way: 

for j countries 

In the case where the system summarises more than one country (or more than 

one strategic player), several different assumptions can be made. For 

example, each policy-maker can be assumed to undertake the optimisation taking 

as given the policies of other governments. This is the Nash-Cournot 

equilibrium of the dynamic game and is the equilibrium used here to represent 

non-cooperative behaviour between governments. An alternative is to assume 

that a central planner undertakes the optimisation of some weighted 

combination of the two countries' welfare function. This can then be 

considered the case of cooperation. Other assumptions are possible such as 

one country or group of countries acting as Stackelberg leaders in formulating 

policy. These other equilibrium concepts are not explored further here. 

Within the class of equilibria considered here, there are various solutions 

possible depending on the constraints placed on policy-makers by such issues 

as time consistency and credibility. One solution is to undertake the 

maximisation of (4.10) in period t and find a path for policy taking as given 

the expectations of private agents. This is the optimal control solution. 

Kydland and Prescott (1975) point out that in a model with forward looking 

agents, the government finding an optimal control solution to a problem in 

period t will generally find it optimal in period t+l to deviate from the 

pre-announced path. The optimal control solution does not satisfy Bellman's 

criterion for optimality. Once private agents have made decisions based on 

the announced policy, the problem changes. In a repeated game the 

pre-announced rule is no longer credible unless the present government can 

make some form of binding commitment to follow the chosen path of time. 



15. 

In addition to the issue of time consistency of policies, there is the issue 

of the form of the rule being followed. The government can choose the entire 

path of policy settings (open loop policy) or it can choose a rule for the 

control variables which depend on the realisations of state and exogenous 

variables (closed loop). Here the focus is on closed loop policies. We also 

focus on the time consistent policies since they are more likely to be 

observed in a deterministic world where credibility is difficult to establish. 

As mentioned above, the case of optimising governments playing dynamic games 

and exogenous policy shifts in forward looking models, can both be handled by 

the same solution technique. The problem is solved in this paper by a 

technique of dynamic progamming.
6 

The technique proposed here is to first 

solve a finite period optimisation problem where the terminal period is 

arbitrarily chosen to be some period, T. Solving the problem in period T, 

gives a solution for the jumping and control variables in period T. The 

problem is then solved in period T-1, taking as given the policy rules being 

followed in the next period and the state variables inherited. The forward 

looking variables are then conditioned on the known future rules. The rules 

which are found for the finite period problem will be time dimensioned. The 

second step of the procedure is to find the limit of the finite period problem 

as T~00 • The limit is found by repeating the backward recursion procedure 

until rules are found for the control variables and the jumping variables 

which do not change as the terminal period is moved further away. The case 

where policy-makers are not optimising is found by setting the rule linking 

the control variables to the state and exogenous variables to an arbitrary 

rule or to zero (for no policy action) during the backward recursion. The 

rule for the jumping variables is therefore the unique stable manifold of the 

system. The uniqueness derives from the linearity of the system. 

This is formally derived as follows. 

Define the value function for any country i as: 

vit Max niLit - Litn2Lit + &vit+l(Xt+l' C3t+l) 
Uit 

6. See Oudiz and Sachs (1985) and Currie and Levine (1985) for similar 
solution techniques. 
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subject to (4.11) to (4.13) where c
3
t+l is a constant containing the 

accumulated values of future exogenous variables. 

In solving this problem we are trying to find matrices f
1 

and f
2

, of a 

linear policy rule: 

and matrices sl, s2, s3, s4 and s5 such that: 

where V. 
1t 

. 
Max Oi~it- ~it02~it + OVit+l(Xt+l'C3t+l) 

uit 

subject to (4.11) to (4.13). We also need to find matrices H
1 

and H
2 

that 

ensure that the jumping variables adjust to keep the model on the stable 

manifold where: 

We know that the stable manifold can be expressed in this way due to the 

solution in Blanchard and Kahn (1980). The iterative technique which solves 

this problem begins by converting the infinite period problem into a finite 

period problem where the terminal period is some arbitrary period T. Assume 

that in period T+l, the jumping variables have stabilised and 

VT+l(XT+l'C 3T+l)=O. This implies: 

(4.14) 

Substituting (4.14) into (4.12) gives: 

(4.15) 
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The target variables can now be written as a function of state, control, and 

exogenous variables by substituting (4.15) into (4.13) to find: 

( 4. 16) 

This can be substituted into the welfare function (4.10) for period T and the 

problem written: 

Max Ol(ulixT + u2iuiT + u3iET) 
uiT 

Solving this single period problem, the first order condition for country 1 is: . . . 
u210luliXT + u210lu2iUlT + u210lu3iET + Cl = O 

This can be stacked for each country and rewritten: 

or: 

-NN X 
T T 

(4.17) 

Equation (4.17) gives a rule for the control variables as a function of the 

state and exogenous variables in period T conditional on the known future. 

This can be substituted into (4.15) to give a rule for the jumping variables 

conditional on the known government policy rule. 

(4.18) 

where: 

and s
2 

is a stacked matrix [s
2
ils

2
j] for each country i,j. 

The rules for control variables and jumping variables given in (4.17) and 

(4.18) can be substituted into the equation for the target variables given in 

(4.13). This can then be substituted into the welfare function to find the 

value function in period T as a function of the state and exogenous variables 

in T as well as the constants. 
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(4.19) 

Given the value function in each period and accumulating all future exogenous 

variables and constants into a constant c
3

, we can solve the problem in any 

period t where the policy-maker is to select the vector of control variables, 

U. , to maximise: 
1t 

I 

01~it - ~it02~it + &vit+l{xt+l'c3t+l} 

subject to (4.11) to (4.13). 

To solve this problem, note that we have V. 
1 

as a function of X 
1 1t+ t+ 

(4.20) 

Using the equation of motion of the state variables given in (4.11), we can 

therefore write V. as a function of period t variables. The entire 
1t+l 

problem faced in period t can now be written in terms of period t variables. 

Consider the specific steps in solving this problem. We have from the 

solution of the problem in period t+l: 

H X + C 
lt+l t+l 3t+l 

where 

C = C + H E 
3t+l 5t+l 2t+l t+l 

(4.21) 

We can substitute the equation for the jumping variables (e 
1

) from (4.12) 
t+ 

and the equation of motion for the state variables (X 
1

) given in (4.11) 
t+ 

into (4.21). Simplifying gives: 

(4.22) 

Equation (4.22) can again be substituted into the equation for the targets 

given in (4.13) to find: 

(4.23) 
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The optimization problem can now be written with the current target variables 

as a function of the state, control and exogenous variables and the value 

function V 
1 

as a function of the current state, control and future 
t+ 

exogenous variables. 

subject to: 

and 

X 
t+l = a

1
x + a

2
(s 1x + s

2
.u. + s

3
E ) + a

3
.u. + a 4 Et t t 1 1t t 1 1t 

The rewritten problem can now be solved in period t to find: 

and 

(4.24) 

(4.25) 

The method described above solves the finite period problem, for an arbitrary 

terminal period (T). Note that the rule matrices are time subscripted 

because, in general, the rule in any period will be influenced by the terminal 

period. To find the solution to the infinite period problem we search for the 

limit to the backward recursion procedure where the rule matrices become 

independent of period T. The backward recursion procedure is repeated until 

the rule matrices converge to a stable value. The convergence is governed by 

the same conditions required to solve a rational expectation model using the 

Blanchard-Kahn technique. A necessary condition is that the number of 

eigenvalues outside the unit circle must be equal to the number of jumping 

variables. 

In any period we can then find the solution to the model by knowing the state 

variables inherited and the constants which are derived using rules to 
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accumulate all future exogenous variables, as well as future constant policy 

responses. In this procedure, it is a simple matter to set the policy rules 

to zero at each step of the iteration. The jumping variable rules summarised 

in the H matrices ensure that the solution is on the unique stable manifold of 

the model, given the cumulated future values of the constants derived from the 

future path of all exogenous variables. 

The procedure developed in this section is substantially faster than the other 

algorithms discussed at the beginning of this chapter, except Blanchard-Kahn, 

because it is based on a linearized system. It has the added advantage of 

allowing various simulation exercises to be performed without requiring the 

recalculation of the rule matrices. Once these are calculated they can be 

used to simulate any shocks to exogenous variables or initial conditions. 

5. Conclusion 

This paper has summarised the techniques frequently used for solving rational 

expectations models. It has also developed, in detail, an algorithm for 

solving rational expectations models when governments are assumed to act 

strategically in a multicountry setting. In the case of solving non-linear 

models, the Fair-Taylor technique is preferred over the Multiple-Shooting 

technique on the basis of computational cost and speed. It is also our 

experience that when non-linearities are of little importance, it is worth 

using a linear approximation to the non-linear model which can be solved very 

quickly using either the Blanchard-Kahn solution or the MSG algorithm. 
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