The Economics of Low Interest Rates

Atif Mian (Princeton University)

Reserve Bank of Australia Conference, 2022

- What are the causes, consequences, and policy implications of the very low real interest rate environment we have seen for a long time?
- I'll discuss this research agenda based on six recent papers
- The question is fundamentally one of slow-moving but persistent structural forces
- Hence the conceptual framing and empirical analysis has to focus on the longrun, beyond business cycles

- I'll start with theory
- First, I'll introduce the idea of indebted demand that explains how rising inequality through the demand-side causes a fall in r*
- Second, I'll focus on the supply-side consequences of falling r* and highlight how falling r* can be contractionary as it promotes industry concentration at low rates

- I'll then move to empirics
- First, I illustrate how preferences are indeed non-homothetic in data from a variety of sources, thus validating the basic premise of indebted demand. I'll quantify how non-homotheticity generates savings glut of the rich
- Second, I present evidence across states within the U.S., and over long span of history across countries, that rising inequality is closely associates with a rise in wealth-to-income ratio – in-line with indebted demand
- Third, I present empirical evidence on how falling rates near ZLB are differentially advantageous to industry leaders

- I'll last turn to policy implications
- First, monetary policy has limited ammunition as it works partly through debt creation
- Second, revenue-neutral redistributive taxation, e.g. appropriately calibrated wealth tax, is important to bring the macroeconomy back into balance and avoid liquidity trap style problems
- Third, anti-trust policy becomes even more important
- Fourth, fiscal policy must straddle the "Goldilocks dilemma" in an indebted demand world as $R^G < G$ for government borrowing, but $R^P > G$ for private sector borrowing

Indebted Demand

• When rich save more out of lifetime income, and extreme inequality rises

... need to stimulate demand today through debt creation: rich save/lend, nonrich borrow [Why is higher saving not equal to higher investment?]

... but that reduces demand in the future when borrowers have to repay the debt

... only solution is for interest rate to fall, so non-rich could borrow even more!

... this **indebted demand** cycle continues, until interest rate hits zero lower bound (ZLB)

... if extreme inequality persists, remain stuck in perpetual **debt trap**

Indebted Demand model

- Non-homothetic preferences
 - ... people derive greater utility from accumulating wealth (a) as they get richer

$$\int_{0}^{\infty} e^{-(\rho+\delta)t} \left\{ \log c_t^i + \frac{\delta}{\rho} \cdot \frac{\nu(a_t^i)}{\rho} \right\} dt$$

• Euler equation in steady-state for the rich ... determines the long-run saving supply schedule

$$r = \rho \cdot \frac{1 + \rho/\delta}{1 + \frac{\rho}{\delta} \cdot a\nu'(a)}$$

See Mian, Sufi and Straub (QJE 2021) for formal details

Supply-side consequences of low r*

interest rate r

FIGURE 3.—Steady-state growth and the interest rate: inverted-U.

See Liu, Mian and Sufi (Ectma 2022) for formal details

Are preferences non-homothetic at the top of the income / wealth distribution?

Dynan et al (JPE 2004) The rich save more out of *lifetime* income (SCF)

Straub (2019): Consumption has elasticity < 1 w.r.t. income (PSID)

Mian, Sufi and Straub (2022): "Savings glut of the rich"

Saving Rates out of income

United States

Important saving rate measurement issues

- Aggregation across households must be consistent with national accounts $S_t = \Delta W_t \pi_t * W_{t-1}$
- A large and increasingly larger share of saving from the very rich is through corporations, e.g. buy backs (tax efficiency reason etc)
- These and other savings in housing must be properly accounted for. See "saving glut of the rich" for more details
- Recent work by Bauluz, Novokmet and Schularick (2022) shows saving glut of the rich in other major economies as well

Is the Indebted Demand force relevant globally and historically?

Mian, Sufi and Straub (2022b) US State-level experiment

Rise in inequality leads to greater wealth accumulation, driven entirely by the top 6%

How do we measure r* over long period of time, across countries?

• In standard models, the steady state real interest rate (r) is given by

$$r = \frac{g}{\sigma} + \rho$$

(where g is the growth rate, ρ is the discount rate and σ is the IES.)

• In steady state, present value of aggregate wealth (W) equals $\alpha * I$

$$W = \frac{u * T}{r - g}$$

(where I is national income and α is the capital share.)

• Defining yield as $y = \frac{\alpha * I}{W}$ (average return on wealth), we can express yield as

$$r^* = \rho + g \frac{1 - \sigma}{\sigma}$$

Testing indebted demand using aggregate yields

- Indebted demand predicts inequality will reduce the effective discount rate and thus yields.
- We test this in cross country data, using an unbalanced panel of 22 developed countries between 1870 and 2019.
- $y_{j,t} = \alpha_j + \beta_1 * \theta_{j,t} + \beta_2 * g_{j,t} + \gamma * Z_{j,t} + \varepsilon_{j,t}$ (where θ : top 1% share of income & *Z* is a vector of controls)
- or in differences of *l* years

$$\Delta_l y_{j,t} = \alpha_j + \beta_{1,l} * \Delta_l \theta_{j,t} + \beta_{2,l} * \Delta_l g_{j,t} + \gamma_l * \Delta_l Z_{j,t} + \varepsilon_{j,t}$$
(where $\Delta_l x_{i,t} = x_{i,t} - x_{i,t-l}$)

		y_j		$\Delta_{40}y_j$			
	(1)	(2)	(3)	(4)	(5)	(6)	
$\theta_{i}^{top1\%}$	-0.19***	-0.13***	-0.092**				
5	(0.031)	(0.022)	(0.044)				
$\mathbb{E}[g^Y]$	0.19***	0.15***	0.13***				
	(0.056)	(0.040)	(0.039)				
$I/W_{i\neq i}$		0.49**					
· · · · · · ·		(0.19)					
$\Delta_{40} \theta_i^{top1\%}$				-0.20***	-0.13**	-0.23**	
10 J				(0.048)	(0.052)	(0.100)	
$\Delta_{40}\mathbb{E}[q^Y]$				0.21***	0.15***	0.10***	
10[3]				(0.038)	(0.039)	(0.032)	
$\Delta_{40}I/W$					0.48***		
—40-7 · · i≠j					(0.11)		
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	
Year FE	No	No	Yes	No	No	No	
No. Countries	22	22	22	10	10	10	
Ν	1,296	1,296	1,296	565	565	565	
R-sq	0.434	0.571	0.710	0.139	0.382	0.086	

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Standard errors are dually clustered by country and date for columns 1-3. For column 4, standard errors are Newey-West with maximum lag length of 40 years prior. $y_j = cI/W_j$ denotes capital income to wealth ratio, while $\Delta_{40}x_t$ denotes forty year changes in variable x, such that $\Delta_{40}x_t = x_t - x_{t-40}$

Decomposing wealth into saving and capital gains

• Wealth in any period follows the accounting identity

$$W_{t+1} = S_t + (1 + \pi_t)W_t + \delta_t$$

(where *S* is savings, π is the capital gains rate and δ is destruction due to war etc.)

• We can construct the hypothetical series with no capital gains

$$W_{t+1}^{\pi=0} = S_t + W_{t-1} + \delta_t$$

• We can also construct the cumulative aggregate capital gain as

$$\Pi_t = \prod_{s=0}^t (1+\pi_s)$$

	Π_j				$y_j - y_j^{\pi=0}$			$y_j^{\pi=0}$		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
$ heta_j^{top1\%}$	8.64***	4.54***	4.58***	-0.47***	-0.48***	-0.35***	0.27***	0.29***	0.39***	
-	(0.92)	(0.74)	(1.07)	(0.093)	(0.063)	(0.096)	(0.071)	(0.048)	(0.12)	
$\mathbb{E}[g^Y]$	0.75	0.70**	1.01	-0.13***	-0.10*	-0.15	0.25***	0.22***	0.30**	
	(0.68)	(0.27)	(1.00)	(0.029)	(0.054)	(0.10)	(0.0044)	(0.015)	(0.12)	
α	-0.62	-1.26*	-1.15*							
	(0.88)	(0.65)	(0.62)							
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Year FE	No	No	Yes	No	No	Yes	No	No	Yes	
Global Factor	No	Yes	No	No	Yes	No	No	Yes	No	
No. Countries	23	23	23	23	23	23	23	23	23	
Ν	930	930	930	950	950	950	951	951	951	
R-sq	0.634	0.794	0.825	0.573	0.705	0.679	0.595	0.656	0.619	

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Standard errors are dually clustered by country and year. $y_j^{\pi=0} = \frac{y}{W^{\pi=0}}$ denotes income to wealth with no capital gains since 1946, $y_j - y_j^{\pi=0}$ denotes the change in income to wealth shares since 1946 due to capital gains, while Π_j denotes the log of cumulative percentage capital gains since 1946. $\mathbb{E}[g^Y]$ denotes predicted real gdp growth from an AR(5) model of realised growth, while α denotes capital's share of income.

Rising inequality is associated with rising debt

.... and falling rates

Are low rates more advantageous to industry leaders?

Liu, Mian, Kroen and Sufi (2022)

Borrowing cost IRF to interest rate shock

(a) r-news shock (ω)

Overall IRFs to interest rate shock

	Dependent Variable							
1	borrowing cost	log debt	log assets	leverage	log PPE	capital exp	acquisitions	stock return
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\hat{\beta}_{ZL}$	<i>B</i> 3.66***	-0.81***	-0.16***	-0.38***	-0.60***	-0.16***	-0.19***	-0.45***
	(1.01)	(0.26)	(0.037)	(0.12)	(0.13)	(0.047)	(0.052)	(0.058)
\hat{eta}_{Δ}	-0.96***	0.13**	0.037***	0.056*	0.094***	0.023	0.042***	0.091***
	(0.24)	(0.062)	(0.0084)	(0.029)	(0.033)	(0.016)	(0.012)	(0.015)
N	137,960	177,760	234,067	249,312	247,343	228,906	212,148	303,155
R-	0.31	0.14	0.16	0.25	0.25	0.10	0.08	0.41
sq								

Estimating competition-neutral FF rate

Panel B: Combining estimates of neutral rate

	(1)	(2)	(3)		
	Baseline	Common sample	Vector Regression		
$ar{\hat{\eta}}$	4.37***	3.84***	3.84***		
	(0.47)	(0.41)	(0.39)		
N	306,213	113,591	113,591		

What are policy implications for a world with Indebted Demand?

Implications for monetary policy

- Rising inequality forces the hand of monetary policy by lowering r*
 - ... reduces space for monetary policy to operate
- Easy monetary policy often raises demand through debt creation

... but that creates indebted demand, putting downward pressure on future rates: monetary policy has limited ammunition.

"the sustainability of debt burdens depends on interest rates remaining low" – Mark Carney

• Persistent extreme inequality pushes monetary policy against ZLB, and economy stagnates inside a debt trap

Monetary Policy and Indebted Demand

Debt Limits the Ammunition of Monetary Policy

Implications for fiscal policy

Mian, Sufi and Straub (2022c) "A Goldilocks theory of fiscal deficits"

- Historically $R^G < G < R^P$ for the U.S., where nominal growth in between return on government and private borrowing
- This creates a goldilocks role for fiscal policy in a low R* environment. Persistent demand shortfalls cannot be met by higher private debts due to the indebted demand force.
- But government debt is different as $R^G < G$, due to "convenience yield" of government bonds. Government can use this advantage to boost demand out of ZLB, but ``free lunch'' ends at $R^G = G \phi$, where ϕ is semi-elasticity of R^G w.t.t. government debt
- We calibrate that the U.S. was around that boundary pre-Covid, with a structural primary deficit of ~ 2% of GDP

Other policy implications

- Revise macroeconomic models to incorporate the key role that inequality plays in determining macroeconomic dynamics and fundamentals
 - ... possibly explains persistent over-forecasting of interest rates
- Monetary policy is ill-equipped to deal with weak aggregate demand resulting from extreme inequality. Emphasis should be on,
 - ... policies that deliver equitable and inclusive growth
 - ... progressive taxation, including wealth taxes

... Increase public investment, especially in areas that promote equality of opportunity

... promote competitive markets