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Abstract: Despite current high inflation and a monetary tightening cycle, the market’s
evaluation of long-term real interest rates remains very low in most advanced countries.
This is consistent with the view that neither monetary policy nor inflation shocks — which
are both nominal phenomena — are likely to effect long-run real interest rates. This paper
presents both theory and evidence that put into question this simple dichotomy between real
and nominal phenomena due to asset accumulation behavior that favours the emergence of
more than one steady state value of real interest rates (r ∗) and thereby creates hysteresis.
Our main building block is household saving decisions that incorporate both inter-temporal
substitution and retirement forces. When households trade off these two saving motives,
we show how this can give rise to C-shaped asset demands and the possibility of more than
one steady state equilibrium real interest rate. Since many macroeconomic models predict
that long-run asset demands are increasing in interest rates, as opposed to C-shaped, we
provide evidence from household balance sheets that runs counter to the former and favours
the latter. A central contribution of the paper is to show that when r ∗ is not unique due to
C-shaped asset demands, monetary policy can greatly influence long-run real interest rate
outcomes. In particular, we show that an aggressive inflation targeting regime can make a
high-real-rate outcome fragile to small negative inflation shocks and favour the convergence
to a low (possibly negative) real-rate environment. However, we also show that either a
large positive inflation shock or a large increase in public debt can bring back an equilibrium
with high real rates, which could surprise the market in the current environment.
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1 Introduction

In most advanced economies, real interest rates have trended down over the last few

decades (see Figure 1). The most common explanation for this trend is that advanced

economies have experienced a secular fall in demand and that policy decisions to decrease

interest rates and to increase government debt have been important mitigating factors

that have helped offset this fall in demand. The forces cited for inducing such a fall in

demand include reduced productivity growth, the aging of the population, and increased

inequality.1 While all these factors may be relevant, this one-way narrative from exogenous

reductions in demand to policy response has nonetheless been put into question by many.

In particular, several market commentators argue that monetary policy over the period

possibly contributed to the long-term downward trend in real interest rates by decreasing

interest rates aggressively in every downturn and being hesitant to increase them in upturns.

This has also been highlighted by policymakers such as Borio, Disyatat, Juselius, and

Rungcharoenkitkul (2017), who provide evidence that over a long history persistent changes

in real interest rates coincide with changes in monetary regimes. Recently, Bianchi, Martin,

and Ludvigson (2022) estimate that two-thirds of the fall in the real interest rate since the

early 1980s may be due to shifts in the parameters of the monetary policy rule. All this

points to a possibly underrated role of nominal factor associated with monetary policy in

determining real interest rates over long horizons.2

The goal of this paper is to help advance the discussion around the potential forces that

have weighed down real interest rates over the last few decades and provide new insights

on how this may play out going forward. In particular, we aim to highlight how a multiple

steady state real interest rate environment can provide an explanation to a set of outcomes,

1A vast literature examines the sources of the decreasing trend in real interest rates. Borio, Disyatat,
Juselius, and Rungcharoenkitkul (2017) provide an excellent survey of the literature on these issues. Several
hypotheses about these sources have been proposed: demographics (Summers (2014), Eggertsson and
Mehrotra (2014), and Eichengreen (2015)); a productivity slowdown (Gordon (2017)); a global saving glut
and/or lack of safe assets (Bernanke (2005), Caballero, Farhi, and Gourinchas (2008), Gourinchas and
Rey (2016), Gourinchas, Rey, and Sauzet (2020), and Acharya and Dogra (2021)); a decline in desired
investment (Rachel and Smith (2017)); a rise in inequality (Mian, Straub, and Sufi (2020), Auclert and
Rognlie (2020), Fagereng, Blomhoff Holm, Moll, and Natvik (2019), and Rachel and Smith (2017)).

2Gourinchas and Rey (2016)’s and Gourinchas, Rey, and Sauzet (2020)’s focus on financial cycles,
especially the leveraging cycle that accompanied the boom and bust in the 1930s and 2000s, for explaining
the short-term real interest rate movements is consistent with the role of monetary policy. Their explanation
centres on the relative demand for safe assets in the aftermath of a deleveraging shock. However, the
association between the consumption-to-wealth ratio and subsequent short-term real risk-free interest rates
could also be seen as reflecting the central bank’s reaction function in boom and bust periods. That is,
the abnormally low consumption-to-wealth ratio following financial busts tends to coincide with periods of
aggressive monetary policy easing to support the economy, which in turn gives rise to the association with
low short-term risk-free rates in the subsequent period.
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Figure 1: Long-term interest rates for G7 countries from 1990 to 2019
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including explaining why real interest rates have trended downward since the expansion of

inflation targeting regimes. For example, we will show how an aggressive inflation target

can create an asymmetry whereby a high-real-rate environment becomes fragile to small

negative shocks to inflation and favour movements towards low real rates, while it takes

a large positive shock to inflation to move the economy out of the resulting low-real-rate

trap.

The dismissal of monetary policy and nominal factors in affecting the long-run real

interest rates is most commonly discussed in the confines of models where the real side

of the economy admits only one equilibrium long-run real interest rate (i.e., one r ∗). In

such environments, monetary policy is unlikely to affect long-run real interest rates. In

contrast, when we are in an environment where the real side of the economy permits two

(or more) steady state real interest rates, we show that nominal factors — and especially

monetary policy — have the potential to affect long-run outcomes. This does not work

through changing beliefs but reflects the power of monetary policy to influence the stability,

emergence and basin of attraction of the different steady state real interest rates.

To provide an immediate sense of the argument, we use Figure 2 to depict some of

the elements at play. We are condensing substantial information into the three panels

of Figure 2 to summarize the mechanisms we will flesh out in the paper. In this figure,

we plot two possible combinations of inflation and nominal interest rates in environments
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where the real side of the economy allows for two steady state equilibrium real interest

rates. These two potential real interest rates (r ∗H and r ∗L) are represented in the two

steady state Fisher equation curves that have slopes of one. The reasons for these two

potential steady state real interest rates will be shown to emerge quite naturally when

households’ asset accumulation decisions are influenced by both inter-temporal substitution

and retirement motives. We then superimpose on this figure Taylor rule specifications for

monetary policy, where they all satisfy the Taylor principle with slopes (ψ) greater than one

when not constrained by an effective lower bound (ELB). In Panel A, we have the more

standard configuration where there are only two possible equilibrium outcomes, both with

the same real rate (r ∗H): one outcome where the nominal interest rate is at the ELB and

one where the nominal rate is above the ELB. If we disregard the second real rate locus,

this figure is akin to that in Benhabib, Schmitt-Grohé, and Uribe (2002). This particular

monetary policy stance implies that the low real interest rate (r ∗L) is not possible as part

of a nominal equilibrium. In contrast, in Panel B we have a more aggressive Taylor rule —

as can be seen by it having a steeper slope (captured by a higher ψ) when not constrained

by the ELB — and this causes the Taylor rule to support both high and low real interest

rate outcomes. In this case, as we will discuss in detail, there will be two stable equilibrium

outcomes and these are highlighted on the figure: one with a high nominal and real interest

rate (point E1) and one with the nominal rate at the ELB corresponding to a low real rate

(point E2). The two other equilibrium crossings on the figure will be shown to be unstable.

On the horizontal axis, we represent the transitional dynamics for inflation in the presence

of nominal frictions. In panel B, we see that whether the high-real-rate or the low-real-rate

equilibrium emerges depends on where inflation starts. This is expected given the system

exhibits hysteresis in the presence of two stable steady states.

In Panel C, monetary policy becomes even more aggressive as reflected by an even

steeper Taylor rule above the ELB. In this case, the basins of attraction corresponding to

the two different real rate equilibrium outcomes react asymmetrically. The basin of attrac-

tion of the low-real-rate equilibrium expands, while that of the high-real-rate equilibrium

contracts. In addition, the basin of attraction of the high-real-rate equilibrium becomes it-

self very asymmetric. To the left of the high-inflation, high-real-rate equilibrium, the basin

of attraction becomes small, implying that the high-real-rate equilibrium will not be robust

to downward inflation shocks. In contrast, the low-real-rate equilibrium remains robust to

both upward and downward shocks to inflation, and consequently it would take a large

exogenous positive shock to inflation to move the economy from a low-real-rate equilibrium

to a high-real-rate equilibrium.

The above discussion was aimed at hinting how the presence of more than one steady
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Figure 2: The interaction of a Taylor rule with more than one equilibrium r ∗
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state equilibrium real interest rate r ∗ can imply that nominal factors like monetary policy

have the scope to affect long-run real outcomes, and especially that aggressive monetary

policy could favour the emergence of a low-real-rate trap where a large shock is required

to escape it. However, before being able to discuss such a possibility more rigorously, we

need to step back and build up the elements. First, we need to ask which features of the

environment — in the absence of nominal considerations — may give rise to multiple r ∗s

and whether there is empirical evidence which provides support for such a possibility. After

this first step, we can proceed to explore how such real features interact with monetary

policy, fiscal policy and inflation shocks in a New Keynesian set-up with sticky prices or

wages.
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To understand the type of features that can give rise to multiple steady state real

interest rates, properties of savings and asset demand are key. In a standard infinitely

lived representative agent model, the long-run asset demand by households is stark. If the

real interest rate is below the households’ subjective discount rate (adjusted for growth),

then households will not want to hold any assets in the long run. If it is slightly above

the subjective discount rate, then households want to hold an infinite amount. Such a

set-up exemplifies an asset demand function that is increasing in interest rates, albeit in an

extreme form. While there are several modifications that can make such a long-run asset

demand function less extreme, many commonly used models maintain the property that the

long-run asset demand, especially relative to consumption, is monotonically increasing in

interest rates. However, there are many reasons to question our reliance on models where

asset demand is monotonically increasing in real interest rates. As is well known, there exist

income effects associated with interest rates that could reverse this property. For example,

when interest rates fall, households may want to hold more assets — not fewer — if at least

part of their asset holdings are for retirement motives, bequest motives or precautionary

motives. A very simple example of such non-monotonicity is when the demand for assets

has a C-shaped relationship with respect to real interest rates. If long-run asset demands

are non-monotonic in interest rates, this opens the door to multiple steady states.

In this paper, we present a simple continuous time OLG environment that gives rise

to long-run asset demands which are C-shaped in real interest rates. The model builds

on the work of Blanchard (1985) and Yaari (1965), and is closest to Gertler (1999), in

having stochastic transitions between stages of life. We use this environment to study

the potential macroeconomic implications of C-shaped asset demands. In particular, we

examine how monetary policy can affect long-run outcomes in an environment in which

money is essentially neutral in the long run.3

An important element of our analysis is to show how a C-shaped asset demand can

interact with a Taylor rule specification of monetary policy when the latter is subject to an

ELB constraint. It is the interaction between these two forces that drives several of our

results regarding the role of monetary policy. From Benhabib, Schmitt-Grohé, and Uribe

(2001), Benhabib, Schmitt-Grohé, and Uribe (2002), and related literature, we know that

an ELB constraint can give rise to multiple equilibria.4 However, most of this literature is

3A large literature supports the notion that money is neutral in the long run: see King and Watson
(1997) for a survey. However, an emerging literature is questioning such a view. For example, Jordà,
Singh, and Taylor (2020) and Willems (2020) provide evidence of the non-neutrality of money over long
periods; that is, they show that monetary policy has real effects that last more than a decade.

4Expectations-driven liquidity traps have also been applied to fiscal policy, optimal monetary policy and
open economy issues. See for example, Mertens and Ravn (2014), Bilbiie (2018), Nakata and Schmidt
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not aimed at explaining changes in real interest rates, as the long-run real interest rate in

the ELB regime is the same as the one in the non-ELB regime. In contrast, in our set-up, we

show that the real interest rate that emerges when the ELB constraint is binding is lower

than when it is not binding. Therefore, a shift from a non-ELB-constrained equilibrium

toward an ELB-constrained equilibrium is associated with a fall in real interest rates.5

Before delving into the above conceptual possibilities, we first present observations which

run counter to the notion — inherent to many macroeconomic models — that long-run

asset demands are monotonically increasing in real interest rates. To do this, we look into

the decomposition of aggregate asset demand and saving rates in the US over the period

of falling real rates. Given this focus, we examine changes in households’ asset holdings

over the period 1989-2019. For multiple real interest rates to be potentially supported

as an equilibrium outcome in the long run, it must be the case that — at least over

a certain range — households want to increase their demand for assets as the long-run

return on assets falls. As is well known, when interest rates decrease, this likely leads to

valuation effects that effectively act as a boost to asset supply. Given this, asset demands

would need to rise sufficiently in response to a fall in interest rates if there is to be the

possibility of an alternative equilibrium at a lower interest rate. Hence, a multiple steady

state narrative behind the fall in real interest rates observed over 1989-2019 period requires

that people of a given age and given real incomes in 2019 hold much more financial wealth

than similar people thirty years ago. Such a “within” group narrative around changes in

asset demands contrasts with the more common “between” group (compositional effects)

narrative whereby higher asset demands over this period mainly reflect increases due to

aging of the population and/or changes in the income distribution. Hence, the first step

of our empirical analysis will be to examine the within and between group decomposition

of the rise in asset holdings over the period 1989-2019. This will then be complemented

by examining the within group changes in savings rates to see if increases in observed

wealth holdings reflect increases in desired wealth holdings or, if alternatively, they reflect

over-accumulation due to unexpected valuation effects.

Our main finding from this empirical analysis is that over the 30 year-period where

interest rates were falling, within group desired wealth holdings increased substantially. In

effect, we find that the increase in the wealth-to-income ratio observed over this period

(2021), Aruoba, Cuba-Borda, and Schorfheide (2018), and Kollmann (2018).
5Fernández-Villaverde, Marbet, Nuño, and Rachedi (2021) also consider how monetary policy can affect

the long-run level of real interest rates. Specifically, they show, in a quantitative HANK model with an
ELB constraint, that the interaction between the inflation target and wealth inequality is an important
determinant for the level of real interest rates. However, their approach does not explore how monetary
policy can affect the set of steady states and their basins of attraction as we do here.
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is predominantly a within group phenomenon as opposed to resulting from changes in

demographics or income distribution, and furthermore we show that the saving behavior

supports the interpretation of the observed higher wealth holdings as reflecting desired

increases as opposed to temporarily above target levels.

The remainder of the paper is organized as follows. Section 2 exploits household level

data to provide evidence against the property – as implied by many macroeconomic models–

that long-run asset demands are monotonically increasing in interest rates. Instead, we

show that these data point toward either C-shaped asset demands or asset demands that

are decreasing in interest rates. Section 3 presents an OLG model — similar in spirit to that

of Gertler (1999) — that integrates both inter-temporal substitution forces and retirement

preoccupations in wealth accumulation. These two forces are shown to interact in a manner

that gives rise to C-shaped asset demands when the inter-temporal elasticity of substitution

is not too high. Section 4 embeds such C-shaped asset demand in a general-equilibrium

setting. The section begins with an environment without nominal rigidities to show how

and when the real side of this economy generates more than one steady state real interest

rate. Then the section introduces sticky wages/prices, with monetary policy following a

Taylor rule subject to an ELB constraint. Here, we show how monetary policy can affect the

emergence, stability and basin of attraction of different long-run real interest rate outcomes.

Section 5 enriches the environment by including a claim on a productive asset — where

the price of the asset increases when interest rates decrease — in order to examine the

implications of asset valuation effects. The main additional feature that arises with the

presence of a productive asset is that a low-real-rate trap does not necessarily happen only

at the ELB. It can also arise with nominal interest rates above the ELB and with inflation

close to target. Hence, this set-up offers an explanation for why economies can get stuck

with low-real-interest rates at either the ELB or above the ELB, with a high valuation

of productive assets. Section 6 returns to a more general formulation of the model for

robustness analysis. Section 7 concludes.

2 The Between versus Within Household Decomposition of Aggregate Asset

Holdings over 30 years: 1989-2019

While real interest rates were declining over the last several decades (as seen in Figure 1),

Figure 3 indicates that the aggregate wealth-to-income ratio in the US increased significantly

and the aggregate saving rate mildly decreased. The question we want to address is how

best to interpret such observations; should they mainly be interpreted as reflecting between

group (composition) effects or do they instead largely reflect within group choices. In
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particular, we want to ask if measured within group changes in asset holdings over the

period appear consistent with asset demands that are monotonically increasing in real

interest rates or if they place in doubt such monotonicity and open the door to multiple

steady state equilibrium interest rates.6

Between group (compositional effect) explanation. A common explanation to the

increase in aggregate wealth-to-income ratio is that it reflects increase in demand for assets

induced by changes in demographics and income distribution. As the population aged, and

more income was concentrated in higher income groups, the demand for wealth increased.

This put downward pressure on interest rates, which through valuation effects among others,

raised the effective supply of wealth. The higher savings of the older and richer population

was compensated by a decreased incentive to save by the population at large due to lower

interest rates, leaving the overall savings rate relatively flat. Such narrative is essentially a

“between” group narrative, that is, it is a narrative that relies on compositional changes in

types of individuals to explain the increased demand for wealth. In particular, it suggests

that, for similar age and income levels, as interest rates fell, households may have saved less

and accumulated less wealth, but due to the changes in the age and income distributions

of the population, the aggregates behaved very differently from individual level outcomes.7

Within group explanation. At the other end of the spectrum, a multiple steady state

equilibrium story suggests that the joint pattern of increased aggregate wealth, lower interest

rates and decreasing saving rates potentially reflects a “within” group phenomenon. In this

alternative view, we still have that as interest rates decrease, the effective supply of wealth

increases through valuation effects. However, now the endogenous increase in supply does

not need to be primarily driven by an exogenous increase in demand. Instead, it can

be accompanied by a simultaneous endogenous response of demand whereby households

choose to hold more wealth at lower interest rates due to income effects. Note that such

a multiple steady state equilibrium story would not negate the possibility of between group

effects arising from demographics and inequality, but it does not rely on them. In fact, a

change in demographics or income inequality could complement this type of multiple steady

state equilibrium story by helping to explain why the economy may have switched from a

6The analysis of this section will not in itself provide any direct evidence of multiple steady state
equilibria. Instead it is aimed at shedding light on whether long-run asset demands are likely monotonically
increasing in real interest rates — which would make multiple steady states very unlikely — or whether
they point to an alternative configuration where asset demands are at least decreasing in interest rates
over a range — which opens the door to multiple steady state equilibria. The later case is a necessary
condition for the source of multiple steady state equilibria we will analyze in theory section.

7In this type of scenario, the between group effect should actually explain more than 100 percent of the
increase in asset demand as the within component should be negative.
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Figure 3: Household saving rates and aggregate wealth-to-income ratios in the US from
1989 to 2019
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high real interest rate to a low real interest rate at this time in history.

The above discussion underlines the relevance of understanding the relative roles of

within versus between group effects in explaining the increased wealth holdings in the

US over the last three decades. To do so, we use the Survey of Consumer Finances

(SCF) and focus on the difference in asset holdings across cohorts between 1989 and 2019.

We choose this period for our analysis as it corresponds quite closely to the period of

decreasing real interest rates presented in Figure 1.8 Furthermore, by looking at this thirty-

year difference, we hope to minimize higher frequency movements in wealth accumulation

dynamics associated with business cycles forces and crises.

The SCF is the most comprehensive source of data on household-level wealth and its

components in the United States. It also has a consistent sampling methodology, over-

sampling the rich, in all the survey waves between 1989 and 2019, which is useful for our

analysis. The survey has between 3 and 5.5 thousand households, and we use weighted

estimates in the analysis. In addition, we supplement the SCF with the estimates on defined

benefit pensions of households from Sabelhaus and Volz (2020). In this section, we use

estimates of wealth-to-income ratio as computed in the SCF, which show similar upward

movement in the dynamics of household wealth-to-income ratio, but slightly overstate its

magnitude relative to the aggregate data. We will also show that our findings are robust

8The exact years chosen reflect the availability of consistent SCF data.
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to rescaling SCF estimates of wealth and income to match aggregates reported in the Fi-

nancial Flow Accounts and National Income and Product Accounts. Since this is the case,

we choose to focus on the results using raw SCF data, and use adjusted data later in the

paper.

The aggregate wealth-to-income ratios in 1989 and 2019 we use for our decompositions

are calculated from the SCF as the ratio of the sum of the wealth of each household to

the sum of incomes of each household, respectively denoted
(

w
y

)
89

and
(
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y

)
19

. In our

baseline, we include all household wealth reported in the SCF in our measure of wealth.

To explore robustness, we also provide calculations when we exclude wealth in a primary
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to-income ratio in the SCF increased from 4.61 in 1989 to 7.03 in 2019, which is an increase

of about 2.42. This is the increase associated with an inclusive wealth measure from the

SCF. When we exclude net housing wealth from this measure, the increase in the ratio is

of similar magnitude at 2.24. When accounting for wealth in defined benefit pension plans,

the wealth-to-income ratios increase by respectively, 2.62 and 2.45 depending on whether

housing wealth is included. These increases are all substantial as they correspond to more

than 50 percent of 1989 levels.

To examine the within versus between components of increased wealth holdings, we

pursue two complementary approaches.

Approach 1: shift share analysis. The first approach is a simple shift share analysis.

We place households in I bins, with Ni households in a bin i = 1, ..., I . The change in the

aggregate wealth-to-income ratio can be decomposed as follows:

(
w

y

)
19

−
(
w

y

)
89

=
∑

i

(
w̄i

ȳi

)
89

[(
yi

y

)
19

−
(
yi

y

)
89

]
︸ ︷︷ ︸

between group or compositional effect

+
∑

i

(
yi

y

)
19

[(
w̄i

ȳi

)
19

−
(
w̄i

ȳi

)
89

]
︸ ︷︷ ︸

within group

, (1)

where the first summation term represents the between group component and the second

represents the within group component.9 In this expression, yi is the total income in bin

i , ȳi is the average income in bin i , w̄i is the average wealth in bin i and finally y is the

total income across all bins. All nominal variables are converted into real variables indexed

in 2019 dollars. As can be seen from Equation (1), the changes in the total wealth-to-

9In the appendix discussing the regression approach, we clarify the close relationship between this shift-
share approach and a regression approach. This discussion helps to highlight under what conditions the first
component represents the between component and the second component represents a within component.
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income ratio can be divided into the between group component determined by the shift in

the share of income going to each of the individual groups (yi/y) and the within group

component determined by changes in the (average) wealth-to-income ratio of each group

(w̄i/ȳi ). If the wealth-to-income ratio of individual groups were stable across time (e.g.,

(w̄i/ȳi )19 = (w̄i/ȳi )89 for all groups i), the change in the aggregate wealth-to-income ratio

would need to be fully explained by the between group component (i.e., by the change in

income share alone). However, at the other extreme, if the income and age distributions

remained stable across time (e.g., if (yi/y)19 = (yi/y)89 for all groups i), then the within

group components would need to account for all the change in the aggregate wealth-to-

income ratio.

We start by dividing the population households into age groups, defined by the age of

the household, to look narrowly at the effects of demographic changes in isolation. Then,

we divide the population of households into income groups to examine only the effects of

changes in the income distribution. Finally, in our preferred specification, we combine the

two and place households into 30 age-income specific bins. The results of the shift share

analysis for these groups are presented in Tables 1 and 2.

Table 1: Shift Share Decomposition of the Change in the Aggregate Wealth-to-Income
Ratio Between 1989 and 2019

Groups Total Change Between Within Fraction due to Within

(%)

Age Groups

5 age groups 2.415 0.722 1.693 70.1
12 age groups 2.415 0.750 1.665 68.9

Income Groups

6 income groups 2.415 0.221 2.194 90.9
12 income groups 2.415 0.270 2.145 88.8

Note: The 5 age groups are: 18-34, 34-35, 35-44, 45-54, 54-64, 65+ and the 12 age groups are: <25, 25-29,
30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, and 75+. The 6 income groups (in thousands of
real 2019 dollars) are: 0-20, 20-40, 40-60, 60-80, 80-120, 120+ and the 12 income groups: 0-20, 20-40, 40-60,
60-80, 80-120, 120-160, 200-250, 250-500, 500-750, 750-1250, 1250+.

In Table 1, we report results for the more narrow focus on either only age or income

groups. For this table, we use the inclusive measure of wealth from the SCF. With respect
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to the results based on demographics the table presents two breakdowns: one based on 5

age groups and one based on 12 age groups. For these two breakdowns, we get very similar

results: the within component explains about 70 percent of the change in the wealth-to-

income ratio. Then, we look at only two income groupings: one based on 6 groups and

one based on 12 groups. In this case, the between component only explains 9-11 percent

of the change, leaving the within component explaining between 89 and 91 percent of the

change.

In Tables 2 and 3, we present our preferred specification where we allow for 30 groups

as the product of 5 age groups and 6 income groups. In these tables, we report results using

four different measures for wealth: our baseline inclusive measure from SCF, the baseline

measure less net housing wealth (primary residence), the baseline measure plus the implied

value of defined benefit pension schemes and finally this later measure minus net housing

wealth. In all four of these cases in Table 2, we find that the within component — that is,

the component associated with changes in the wealth-to-income ratio of different groups —

accounts for more than 60 percent of the change with the between component explaining

around 40 percent.10

Table 2: Total Change in the Aggregate Wealth-to-Income Ratio Between 1989 and 2019
and the Fraction of the Change due to Within and Between Effects: Shift Share Decom-
position

Definition Total Change Within Between

(%) (%)

Wealth (Baseline) 2.415 61.5 38.5
Wealth less housing 2.244 61.2 38.8

Wealth plus DB 2.618 61.5 38.5
Wealth plus DB less housing 2.447 61.3 38.7

Note: DB refers to the value of defined benefit pension schemes. The decomposition is done for 30 groups which
are the product of 5 age groups and 6 income groups. The age groups are: 18-34, 34-35, 35-44, 45-54, 54-64,
65+ and the income groups (in thousands of real 2019 dollars) are: 0-20, 20-40, 40-60, 60-80, 80-120, 120+.

Approach 2: regression. In the second approach, we use the 1989 cross section to

estimate a wealth holding function, which we denote by F89(age, y), where age represents

10Using the SCF data scaled to the aggregates and 30 groups we find the share of the within component
to be between 40 and 50%.
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Table 3: Total Change in the Aggregate Wealth-to-Income Ratio Between 1989 and 2019
and the Fraction of the Change due to Within and Between Effects: Decomposition Based
on Regression

Definition Total Change Within Between

(%) (%)

Wealth (Baseline) 2.415 64.0 36.0
Wealth less housing 2.244 59.0 41.0

Wealth plus DB 2.618 67.4 32.6
Wealth plus DB less housing 2.447 63.1 36.9

Note: DB refers to the value of defined benefit pension schemes. The decomposition is done for 30 groups which
are the product of 5 age groups and 6 income groups. The age groups are: 18-34, 34-35, 35-44, 45-54, 54-64,
65+ and the income groups (in thousands of real 2019 dollars) are: 0-20, 20-40, 40-60, 60-80, 80-120, 120+.

the age of the household head and y represents real income of a household. Function F

can take different forms. In this section, we focus on the polynomial function F in income

and age.11 Then, for each household in the 2019 cross section, we use estimated function

F89(age, y) to create a predicted wealth holding, which we denote by ŵ19. These predicted

wealth levels allow us to create a predicted wealth-to-income ratio in 2019 by adding up ŵ19

across households, and by dividing it by the aggregate income in 2019 (denoted
(

ŵ
y

)
19

).

By using the same prediction function for the wealth in 2019, as in 1989, the predicted

ratio reflects only the changes in the proportions of different groups in the population.

Accordingly, the fraction of the change in the wealth-to-income ratio explained by the

within component can be expressed as

1−


(

ŵ
y

)
19
−
(

w
y

)
89(

w
y

)
19
−
(

w
y

)
89

 . (2)

In Table 3, we also report the results of this exercise using our four measures of wealth.

Using a third order polynomial in income and age (including cross terms) to build predicted

11We have run our predictive regressions using polynomials of order 3, 4, and 5 with and without cross-
terms. Polynomial function of order 3 with cross-terms delivers the best prediction. In Appendix B we
show that these results are also similar to using a regression with a set of dummy variables for income and
age groups, which we refer to as a step-function approach.
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wealth, we find that the between component accounts for between 32 percent and 39 per-

cent of the change in the aggregate wealth-to-income ratio, leaving the within component

again accounting for over 60 percent of the rise. While these findings still support an im-

portant role of changes in demographics and income inequality in explaining movements in

the wealth-to-income ratio, they indicate that an even greater share is due to changes in

wealth holdings keeping income and age constant.

It must be immediately noted that these decomposition results — by themselves — do

not imply that within group desired wealth holdings have necessarily gone up. Instead, if

households’ wealth holdings are sticky, it could be that these high levels of within-group’s

increases in wealth holdings simply reflect the fact that falls in real interest rates have

led to increased valuation of wealth, and that households in 2019 are holding much more

wealth than they desire relative to similar households in 1989. This could be the case if

people have not had enough time to readjust their portfolios. This is especially likely for

housing, which is why we reported results excluding housing. As we saw, results are not

driven by housing wealth. Nonetheless, to explore this possibility more thoroughly, we need

to examine the changes in saving rates by age-income groups.

2.1 Within-group saving behavior: Are households in 2019 trying to shed their

increased wealth?

In the previous section we documented that a large share of the increase in the aggregate

wealth-to-income ratio in the US over the period 1989-2019 is accounted for by increases

in wealth for given levels of age and income, that is, it is predominantly a within group

phenomenon. There are at least two potential interpretations of such an observation. On

the one hand, increases in wealth-to-income ratio could reflect increases in desired wealth

holdings due to low expected returns on assets. On the other hand, such increases in wealth

could reflect unanticipated valuation effects, where the observed higher wealth holdings are

not representing higher desired wealth holdings, but instead are reflecting wealth holdings

that are above their desired levels. To help discriminate between these two possibilities, in

this section we look at the changes in within group saving patterns over the same period. In

particular, if the observed within group increases in wealth-to-income ratios reflect wealth

levels in 2019 that are above desired levels, then we should see household groups with large

increases in wealth wanting to spend more and save less to get their wealth back down to

its target level. Accordingly, we should see them decreasing their savings rates. Hence,

the absence of a negative relationship between increased wealth and savings rates would

indicate that the extra wealth holdings are likely desired not excessive.
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In line with the previous section, we focus on within group changes in saving rates for

the 30 groups we used for our analysis of changes in wealth-to-income ratios. We measure

saving in the SCF using the wealth-based synthetic saving approach, widely adopted in the

literature, which approximates saving by each group by netting out valuation effects from

their changes in wealth between two SCF waves.12

To construct changes in wealth, we, first, follow the literature by scaling the SCF

aggregates13 for different asset classes using the factors that allow them to be matched to

corresponding aggregates from the Financial Flow Accounts for the US.14 For the purposes

of constructing saving out of income we also scale SCF income to match the aggregates

from the National Income and Product Accounts. We then distribute these scaled wealth

and income values between our 30 groups using their weights in the SCF. For valuation

effects we apply asset inflation factors from Mian, Straub, and Sufi (2020), which are

aggregate in nature, and use their methodology to extend them to 2019 (in particular,

for the residual equity inflation). Appendix A provides further details of the saving rate

construction.

Table 4 reports changes in saving rates15, changes in wealth-to-income ratios and

changes in log wealth16 for our 30 groups. In the table we flag with a “*” the groups

that had an increase in their wealth levels over the period. Looking first at averages, we

can see that within group saving rates slightly declined over the period. However, this slight

decrease is not driven by groups that experienced an increase in their wealth-to-income ra-

tios. If we look only at the groups that increased their wealth, the average change in saving

rates is slightly positive.

If we turn to correlations, we see from the table that there is a slight positive correlation

12Thus, our saving rates are calculated over a three-year window. Saving rates for 1989-92 and 2016-2019
periods, respectively, correspond to the start and the end of our 30-year period used to analyze changes in
the aggregate wealth-to-income ratio in the US. In our robustness exercises using the SCF, we additionally
exclude net inheritances from changes in wealth. We also consider an income minus consumption approach
to saving, followed by Mian, Straub, and Sufi (2021b).

13We also used the raw SCF data for calculating savings rates and especially correlations between wealth
changes and saving rates. The correlation patterns, which represent the main results of this section, are
similar whether or not we scale the data. For example, using raw SCF data to compute the correlation
between group changes in wealth-to-income ratios and saving rates, results in a coefficient that is similarly
close to 0, at -0.06, as that reported later in this section, using the scaled data. However, given that the
saving rates constructed using raw SCF data were low relative to aggregate measures of saving rates in
FFA/NIPA, in the main text we are using results based on the scaled SCF measures of saving rates.

14This literature, for example, includes Feiveson and Sabelhaus (2019), Mian, Straub, and Sufi (2020),
and Bauluz and Meyer (2019).

15For our baseline results we measure saving rates as a fraction of income, but using saving rates as a
fraction of wealth gives very similar results.

16The change in log wealth is only calculated for the groups that had an increase in wealth.
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between changes in saving rates and within group changes in wealth-to-income ratios. This

correlation suggests that groups that experienced greater increases in wealth-to-income

ratios do not appear to be systematically trying to reverse such accumulation by decreasing

their rates of saving relative to groups that did not experience large increases. In Figure 4,

we complement this correlation by plotting the changes in saving rates against the changes

in log wealth for all the groups that experienced increases in wealth. As noted previously,

the average change in savings rates for this subset is slightly positive. Moreover, as can

be seen in the figure (and is confirmed by the correlation), higher increases in wealth are

not on average associated with larger decreases in saving rates. It must be recognized that

our measure of saving rates, which is common to the literature, is quite noisy. Accordingly,

we witness substantial variation in saving rates. Nonetheless, we view these patterns as

providing support to the notion that increases in within group wealth-to-income ratios

documented in the previous section are more likely reflecting changes in desired wealth

holdings as opposed to reflecting wealth holdings that exceed desired levels.17

Figure 4: Change in saving rates vs. change in log wealth for age-income groups with
wealth increases between 1989 and 2019
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Sources: Survey of Consumer Finances values scaled using aggregates from the Financial Flow Accounts and National Income
and Product Accounts.

17In Appendix C we also repeat this analysis using scaled SCF aggregates for the construction of changes
in both saving rates and wealth-to-income ratios. The results remain unchanged.
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Table 4: Dynamics of Saving and Wealth-to-income ratios in 30 Age-income Groups

Group Change in saving Change in wealth-to- Change in log
rate, pp income ratio wealth

Income 0-20K
age 18-34 0.53 -1.27
age 35-44* -0.08 9.72 0.84
age 45-54* 0.03 0.31 0.14
age 55-64* -0.03 11.30 0.59
age 65+* -0.06 12.36 0.53

Income 20-40K
age 18-34 1.3 -1.12
age 35-44 -1.57 -1.22
age 45-54* 1.90 -1.18 0.21
age 55-64* -2.08 -1.78 0.30
age 65+* -1.56 0.08 0.11

Income 40-60K
age 18-34 -3.5 -0.59
age 35-44* -0.92 -0.12 0.00
age 45-54 -1.72 -1.74
age 55-64* 2.58 -1.42 0.05
age 65+* -6.83 -0.69 0.31

Income 60-80K
age 18-34 2.63 -1.17
age 35-44 1.13 -0.88
age 45-54* -2.18 -0.23 0.15
age 55-64* 0.06 0.83 0.28
age 65+* -6.28 0.67 0.47

Income 80-120K
age 18-34 -1.33 -0.50
age 35-44 2.86 -0.10
age 45-54 -8.55 -0.40
age 55-64* -0.3 0.92 0.38
age 65+* 2.54 -2.03 0.47

Income 120K+
age 18-34* -0.17 -0.20 0.13
age 35-44* 11.73 1.39 0.32
age 45-54* 7.13 1.35 0.46
age 55-64* -19.98 3.11 0.65
age 65+* 21.64 4.84 0.66

1989-1992 2016-2019
Aggregate s/y, annualized % 10.4 9.9

1989-2019
Corr(s/y, w/y) 0.07

Note: For each income-age group, the first column reports the changes in the three-year saving (%) over 1989-
1992 and 2016-2019 periods normalized by aggregate incomes in 1989 and 2016, respectively. The second
column reports the change in the wealth-to-income ratio between 1989 and 2019 (reported in Section 2). The
third column reports the change in the log level of wealth for the groups, which have seen an increase in wealth
over the 1989-2019 period. “*” refers to groups that experience increases in the level of wealth.
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3 Model

The asset holding pattern presented in the previous section suggests that the quantity

of asset holdings desired by households may be increasing with low frequency decreases in

interest rates, at least over certain ranges. As indicated previously, such a property is not

theoretically problematic as interest rate changes can have both income and substitution

effects on desired wealth holdings. The question for us is how best to explain such an

observation and what does it imply about the potential role of monetary policy in affecting

long-run outcomes. The workhorse infinitely lived agent model is not a good starting point

for asking these questions as it is not consistent with desired wealth holdings decreasing

with higher interest rates. In contrast, the positive effect of lower interest rates on asset

demands can in principle be easily captured in an OLG type framework. However, the

perpetual youth OLG model of Blanchard (1985) and Yaari (1965), by omitting retirement

savings needs, downplays precisely the potential income effects of interest rates which could

help explain the pattern of interest to us. For these reasons, in this section we build on

a model similar to that of Gertler (1999) that integrates both inter-temporal substitution

forces and retirement preoccupations in wealth accumulation.18 In particular, these two

forces will be shown to interact in a manner that gives rise to C-shaped wealth demands

where desired wealth holdings increase when long term interest rate decrease at low levels.

In the subsequent section, we will embed this household decision model into a general

equilibrium set-up to show how it can lead to multiple steady state real interest rates (r ∗)

and how it creates a role for monetary policy to influence long run real interest rates. In

particular, the model will highlight why aggressive inflation targeting monetary policy may

have contributed to the fall in real interest rates over the last thirty years. It is worth noting

that the mechanisms we will highlight are not driven by monetary policy simply affecting

beliefs in a multiple equilibrium setting but are instead associated with monetary policy

affecting the inherent dynamics of a system with multiple steady states.

3.1 The household’s decision problem with both inter-temporal substitution

and retirement motives

When thinking about consumption and wealth accumulation decisions, it is common to

think about people in different states. As is standard in simple OLG models, we can think

of a household in one of three states: an active work state, a retirement state and a death

18We depart from Gertler (1999) by maintaining the more common CRRA utility specification instead
of adopting RINSE preferences.
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state. Following Blanchard (1985), Yaari (1965) and Gertler (1999) we want to think of

these states as evolving stochastically. To be more precise, let us assume that a person

starts life in a work state and transits out with instantaneous probability δ1. In the absence

of fixed retirement dates, this shock can be thought as a health shock. At this transition,

with probability q, the person retires and with probability (1−q), the health shock is severe,

and the person dies. If the person retires, the person will die with instantaneous probability

δ2 ≥ δ1. If we denote the expected discounted utility of entering the retirement state at

time t by Vt , we can express the utility of an active household, that is a household in the

work state, as: ∫ ∞
0

e−(δ1+ρ)t

[
c1−σ1

t

1− σ1
+ δ1qVt

]
dt, σ1 > 0

where ct is consumption, ρ is the subjective discount rate and σ1 > 0 is the inverse of the

elasticity of substitution (1/σ1), or alternatively the risk aversion parameter.

A retiree’s decision problem. For the household in the retirement state, the preferences

are given by: ∫ ∞
0

e−(δ2+ρ)τ c1−σ2
τ

1− σ2
dτ , σ2 ≥ σ1

We are allowing the parameters governing inter-temporal substitution, σ1 and σ2, to differ

between the two states of life to illustrate important forces at play. Later, we will restrict

attention to the more standard case where σ1 = σ2.

The budget constraint facing the retired household is given by:

ȧt = atrt − ct ,

where at is the asset holding of a retired person at time t and rt is the return on the asset

a. As can be seen from the budget constraint of the retirees, moving into the retirement

state is associated with the absence of labor income implying that households must rely

only on asset income for consumption. The need to rely on asset income in retirement will

play an important role in our results. Given this structure, the discounted expected utility

of a household who retires at time t1, Vt1 , can be solved explicitly and expressed as19

19The expected utility associated with the retirement state is found by first solving for the optimal
consumption path, which is governed by the Euler equation ċt

ct
= rt−ρ−δ2

σ2
and then integrating the implied

utility flow over the expected duration of retirement.
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Vt1 =
a1−σ2

t1

1− σ2

[∫ ∞
t1

e
−

∫ t
t1

1
σ2

[(ρ+δ2)−(1−σ2)r(τ)]dτ
dt

]σ2

,

where at1 is the level of assets held by the household at time of retirement. For convenience,

we will also express Vt1 as

Vt1 = V (at1 , Γt1) =
a1−σ2

t1

1− σ2
[Γt1]σ2 ,

where

Γt1 =

∫ ∞
t1

e
−

∫ t
t1

1
σ2

[(ρ+δ2)−(1−σ2)r(τ)]dτ
dt,

with Γt1 being a function of the whole future path of returns {rt}∞t1
. Expressing utility as

V (at1 , Γt1) =
a

1−σ2
t1

1−σ2
[Γt1]σ2 makes clear that the utility of someone who retires at time t1

depends on both the asset at the time of retiring and the entire path of asset returns over

the retirement period. As we shall see, the degree of inter-temporal substitution 1
σ2

will

play an important role in controlling how asset returns affect marginal value of assets.

For future reference, it is useful to note that Γt1 obeys the following differential equation

Γ̇t = −1 + Γt

[
ρ + δ2

σ2
− 1− σ2

σ2
rt

]
. (3)

To see most easily how asset returns affect retirement utility, note that if the return on

asset a is constant, rt = r , then Vt1 can be expressed as

Vt1 =
a1−σ2

t1

1− σ2

[
ρ + δ2

σ2
− 1− σ2

σ2
r

]−σ2

Here we see that higher r increases utility in both the case where σ2 < 1 or when

σ2 > 1, that is, retired individuals always like higher interest rates as this gives them a

superior income stream . However, what will play an important role in our analysis is how

higher r affects the marginal value of at1 to a retiree. This is given by the following key

lemma

Lemma 1. At fixed r , the marginal value of assets to a retiree, as given by
∂2Vt1

∂at1∂r
= a−σ2

t1
(1−

σ2)
[
ρ+δ2

σ2
− 1−σ2

σ2
r
]−σ2−1

, is decreasing in interest rates when σ2 > 1 and is increasing in

interest rates when σ2 < 1.

In general, the effect of asset returns on the marginal value of assets for retirees depends
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on σ2. As noted in Lemma 1,20 this marginal value is decreasing in r when σ2 > 1. In other

words, when a retiree has limited opportunities to inter-temporally substitute consumption

across time, the retiree will view assets at time of retirement to have a greater marginal

value when interest rates are low than when they are high. This property will influence

the wealth accumulation behaviour of non-retirees as will be the focus below.21 It is worth

noting that, although we have not allowed for an annuity market for the effect of uncertainty

about time of death, Lemma 1 is not dependent on the presence or not of such a market.

The content of Lemma 1 would remain identical if we were to allow for an annuity market

similar to that in Blanchard (1985).22

An active household’s decision problem. Let us now turn to the decision problem of

an active household. Its decision problem will incorporate the continuation value of assets

in retirement and can be written as:∫ ∞
0

e−(δ1+ρ)t

[
c1−σ1

t

1− σ1
+ δ1qV (at , Γt)

]
dt,

subject to

ȧt = yt − ct (4)

with yt = wt + rtat −Tt , where yt is disposable income, wt is labor income and Tt are

taxes.

The consumption Euler equation for the active household becomes

20Lemma 1 can be trivially extended to include the case of log preferences. In this case, the marginal

value of assets is independent of interest rates, i.e.,
∂2Vt1

∂at1
∂r = 0.

21When σ2 > 1, an increase in interest rates will cause the optimal path of post-retirement consumption
to be higher at all dates and therefore the marginal value of assets is lower. This is easily understood
and intuitive. In contrast, when σ2 < 1 different interest rates will cause optimal paths of post-retirement
consumption to cross; with the retiree consuming initially less in a higher interest rates environment but
having his/her consumption decline more slowly over time. Because of this crossing property, the effect of
interest rates on the marginal value of assets is not straightforward when σ < 1. Lemma 1 indicates that
the net effect is that higher interest rates increase the marginal value of assets when σ2 < 1 due to this
crossing feature.

22Like Gertler (1999), a key assumption is the absence of a pension system which acts as a perfect insur-
ance market against loss of labor income. The absence of such market implies consumption in retirement
depends on the accumulated savings when active.
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ċt

ct
=

rt − ρ− δ1

σ1
+

cσ1
t

σ1
δ1qVa(at , Γt) (5)

Relative to a standard infinitely lived agent Euler equation, this Euler equation incorpo-

rates forces associated with both inter-temporal substitution and retirement preoccupations

as in Gertler (1999). The first term in this Euler equation maintains the standard substitu-

tion effect of interest rates on consumption. However, this effect now relates to short-term

interest rates movements holding the future path of interest rates constant. When both

short-term and long-run interest rates move together the net effect is more involved. The

additional term in the Euler equation — c
σ1
t

σ1
δ1qVa(at , Γt) — represents the incentive to

save due to retirement motives and this is affected by future interest rates. Given this term

is always positive, it implies that retirement adds a force towards postponing consumption

and favouring asset accumulation.23 The key element for us, and which will allow us to

capture features of the data, is that the retirement incentive to save is affected by long run

returns to savings. In particular, when interest rates are constant, rt = r , we have seen

that Va,r (at , r) < 0 when σ2 > 1. Hence, interest rates have two opposing effects in our

set-up when σ2 > 1. Low interest rates will favour higher consumption today due to inter-

temporal substitution forces, while at the same time, low interest rates are an incentive for

greater retirement savings if the low interest rates are viewed as persistent.

To help further highlight implications of this Euler equation, it is helpful to examine

the implied long-run asset holdings of the active household when the return of asset a

is constant and therefore Γt = [ρ+δ2

σ2
− 1−σ2

σ2
r ]−1. We will denote an active household’s

steady state asset holding function by aa,ss(y , r). Proposition 1 indicates that aa,ss(y , r) is

attractive and describes the key properties of the function aa,ss(y , r).

Proposition 1. The asset holdings of active households will converge to aa,ss(y , r)24 given

by

aa,ss(y , r) = (δ1q)
1
σ2

[
ρ + δ2

σ2
− 1− σ2

σ2
r

]−1

[ρ + δ1 − r ]
−1
σ2 y

σ1
σ2 , (6)

with r in the interval defined by [ρ+δ1−r
δ1q

(ρ+δ2

σ2
− (1−σ2)r

σ2
)σ2]

1
σ1 > max[0, r ].

23This force is also present in models with warm-glow bequest motives, but in that case it does not
depend on interest rates, which is the key feature for our purposes.

24In the case when σ1 = σ2, this equation implicitly defines the asset-to-income ratio as a function of
interest rates.
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The long-run asset holdings of active households aa,ss(y , r) are increasing in income.

Moreover, if σ2 ≤ 1, then aa,ss(y , r) are monotonically increasing in asset return r , while if

σ2 > 1, they are C-shaped in r .

See Appendix D.1 for the proof.

The first property noted in Proposition 1 is straightforward. If an active household has

greater income, its target level of asset holding will be higher. This remains true regardless

of the degree of inter-temporal substitution. The most important element in Proposition 1

relates to the effects of steady state returns on desired long-run asset holdings. In partic-

ular, we see that if σ2 ≤ 1 , then desired long run asset holdings would be monotonically

increasing in r because the substitution effect always dominates retirement savings effect.

However, recall from Section 2 that this property runs counter the within households asset

accumulation over the few decades. For this reason, the case that interests us is when

σ2 > 1. In this case, the effects of returns on long-run asset holdings are non-monotonic.

For high levels of returns, desired holdings are increasing in r , while for low returns they are

decreasing in r . To understand this effect, recall that interest rates have two effects in this

model. At low interest rates, households are encouraged to consume more, and accumulate

less, through the standard inter-temporal substitution channel. However, retirement preoc-

cupations play a counterbalancing role. When long-term interest rates are low and σ2 > 1,

active households have an increased marginal incentive to accumulate assets for retirement

needs. What Proposition 1 indicates is that there will be a point of reversal of the effect of

steady state r on accumulation incentives. When r is sufficiently high, a marginal increase

in steady state r would lead to more accumulation as the positive substitution effect dom-

inates the decreased retirement need effect even if σ2 > 1. When interest rates are low

then the increased need for retirement income will dominate the inter-temporal substitution

effect and favour a greater accumulation of asset when σ2 > 1.25

The shape of the active household’s long-run asset demand aa,ss(y , r) is illustrated in

Figure 5 when σ2 > 1. Here we see the C-shape of the long-run asset demand keeping

income, y , constant. Moreover, we can see that the long-run asset demand (when σ2 > 1)

is delimited by two levels of r . As r tends to ρ + δ1, desired asset demands relative to

consumption tend to infinity. As r tends to ρ+δ2

1−σ2
< 0, desired asset demand relative to

25Our paper has some similarities with the work of Brunnermeier and Koby (2019) on the reversal interest
rate. In their work, there is a reversal rate of interest whereby interest rates below the reversal rate become
contractionary. Their reversal rate result comes from banking frictions. Our set-up can also be thought
as having a reversal rate, which we denote r̄ . Our reversal rate arises from expected income effects in
retirement that drive up households’ desired savings while working and therefore depress consumption.

23



Figure 5: Active households’ long-run asset demand

 

 

 

 

 

 

 

 

 

 

 

 

  

𝜌 + 𝛿1 

𝑟 

𝑎 

𝜌 + 𝛿2
1 − 𝜎2

 

�̅� 

consumption will tend again toward infinity. When σ2 > 1, there exists also a threshold or

point of inflexion

r̄ =

[
σ2(σ2 − 1)(ρ + δ1)− (ρ + δ2)

(σ2 − 1)(σ2 + 1)

]
,

such that the asset demand of active households is increasing in interest rates when r is

above r̄ and is decreasing in interest rates when r is below r̄ .

Even before we specify the general-equilibrium setting, one can see why this C-shaped

property of asset demands by active households may create a situation with multiple steady

states. An economy populated with such households will face a residual asset supply coming

from the total asset supply in the economy minus that held by retired households. Even

if this residual asset supply is monotonic and well-behaved, it is likely to cross the steady

state asset demand of active households more than once. The object of the next section is

to set up a general equilibrium structure where this possibility can be examined explicitly.

To simplify the presentation, the remaining sections of the paper will restrict attention

to the case of interest where σ1 = σ2 ≡ σ > 1.

4 General equilibrium

We now want to look at the general equilibrium properties of an OLG economy populated

with active and retired households with preferences as defined in the previous section. In
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particular, we want to look at the implications of having active households whose long-run

asset demands are non-monotonic in asset returns when σ > 1.26 To begin, we will examine

a setting without any nominal constraints. This will allow us to show how the real side

of this economy is likely to generate more than one steady state real interest rate. In our

baseline set-up, we will allow for only one asset and this will be a government bond. We

will later include trade in a productive asset to allow for asset valuation effects.

In our model economy, we normalize the population to have a measure 1 of households,

with the implied fraction φ ≡ δ2

δ1q+δ2
who are active and the fraction 1− φ who are retired.

When a household dies it is replaced by the birth of a new active household.

The government in this one-good economy spends an amount G , has an outstanding

debt in the amount B and levies taxes T1t on active households. The taxes adjust to satisfy

the government budget constraint

φT1t = G + rtB ,

where rt is the interest rate on government debt. Each active household is endowed with

one unit of labor that produces w goods. Total production in this economy is given by

output produced with the labor of active workers and therefore is equal φw . We will limit

attention to cases where B is not so large that it could not be financed by active households.

Since ρ + δ1 is the highest possible interest rate in this economy, we restrict attention to

cases where B(ρ + δ1) < φw . Since we have not introduced annuity markets, private

agents will generally have positive asset holdings when they die and therefore there will

be unintended bequests. We assume that the unintended bequest of a household goes to

the newborn household replacing that household. To keep the structure more tractable,

we assume that the government ensures — through a tax T2t on active households —

that newborn households receiving bequest from retired parents have the same average

starting wealth as the newborn households inheriting from active households. Under this

assumption, if asset holdings are equal across active households at a point in time, then

the system inherits a representative agent structure for active households.27 The second

tax on households, T2t , is defined by the following budget condition.

δ1(1− q)φat + δ2(B − φat) = [δ1(1− q)φ + δ2(1− φ)] at + φT2t .

26Note that we take the empirical observations we presented previously as placing in serious doubt the
relevance of the case with σ < 1 as the observed pattern is not easily reconcilable with asset demands
which would be monotonically increasing in real interest rates.

27Assuming that active households act like a large family as in Gertler, Kiyotaki, and Prestipino (2020)
would lead also to maintain the tractability of the representative agent structure.
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The first term on the left hand side of this equation is the total funds received from

accidental bequests.28 On the right hand side, the first term is the funds needed to give to

newborn active households while the second term is the tax levied on all active households

to equalize wealth between newborn that inherited from retired and active households.

Rearranging the equation, we obtain that T2t = δ2(B − at)/φ.

Definition 1. An equilibrium for this economy will be composed of a consumption profile

and asset allocation profile for the different types of households, a time path of interest

rates, and taxes such that (1) given interest rates, taxes, government expenditures and

public debt, household consumption and asset allocation profiles maximize households’

utility, (2) both the markets for goods and assets clear at each point in time, and (3) the

government budget is balanced.

Let us begin by examining the behavior of total asset demands in this economy in a

steady state with constant interest rates and taxes. This demand is comprised of both

the long-run asset demand function of active households, aa,ss(y , r), and that of retired

households, denoted ar ,ss .29 The steady state asset demand function of active households

when interest rates are constant is given explicitly in Proposition 1 where it is shown to be

C-shaped in r . Since long-run asset demands relative to consumption of active households

go to ∞ when either r goes to ρ + δ1 or −ρ+δ2

σ−1
, we can restrict attention to situations

where r ∈
(
−ρ+δ2

σ−1
, ρ + δ1

)
as this is the only feasible range for a steady state equilibrium.

To get the steady state asset demand for retired households, we need to aggregate the

asset holdings across the different retirement cohorts. With r < ρ + δ1 ≤ ρ + δ2, retired

households will be depleting their asset holdings as they age. In particular, this will cause

the asset holdings of a retired household who retired τ periods ago with a assets to be

given by ae−(
ρ+δ2−r

σ
)τ .30 Since in steady state, each retiree starts retirement with the same

amount of assets, which is equal to the steady state asset holdings of active households

(aa,ss), the aggregate asset demand of retirees (ar ,ss) is given by

28This equation includes the asset market clearing condition φat + ar
t = B implying that the total asset

demand of retirees is ar
t = B − φat .

29We are focusing on potential steady states where all active households have the same wealth level in
the steady state. There may be other types of steady states. However, if wealth levels of active households
start from a position of equality, then they always stay equal because of the government tax-transfer
scheme.

30Note that the consumption of retirees satisfies the relationship c r
t = ar

t Γ−1, where ar
t is the asset at

time t. Hence, asset accumulation dynamics for constant interest rates are given by ȧr
t = −ρ+δ2−r

σ ar
r .
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Figure 6: Active households’ asset demand and total asset demand
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ar ,ss = aa,ss(y , r)(1− φ)
δ2

ρ+δ2−r
σ

+ δ2

= aa,ss(y , r)(1− φ)g(r) g ′(r) > 0,

where

g(r) ≡ δ2

ρ+δ2−r
σ

+ δ2

.

As a result, total asset demand in the steady state of this economy can be expressed as

at,ss(y , r) = φaa,ss(y , r)

(
1 +

g(r)(1− φ)

φ

)
.

Total asset demand in a steady state is therefore equal to the total asset demand —

i .e.,φaa,ss(y , r) — of active households multiplied by the factor 1 + g(r)(1−φ)
φ

. Accordingly,

total asset demand will reflect several of the properties of the asset holdings of active

households. In particular, this total asset demand will be non-monotonic in r with the

additional property that as r goes to either ρ + δ1 or −ρ+δ2

σ−1
, demand will go to infinity.

However, even if total asset demand takes this form, it may not always inherit the simple C-

shape of the active household’s long-run asset demands. The possibility of a more complex

non-monotonic shape for total asset demand is illustrated in Figure 6.
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From Figure 6, we can see why such an economy is likely to have more than one steady

state values for r . For a given level of total bonds B in the economy, there are likely to be

more than one interest rate that clears the asset market. However, this simple argument is

not complete as the income of active households, y , is being held fixed in this figure while

in this set-up it is endogenous. Proposition 2 nonetheless confirms this line of reasoning.

Proposition 2. When σ > 1 and bonds B are in fixed supply, then a unique steady state

equilibrium interest rate – a unique r ∗– is generically impossible.31 There will either be

more than one steady state value for r ∗ or, if the supply of bonds is sufficiently small, there

will be no equilibrium.

See Appendix D.2 for the proof.

In the next section, we will introduce nominal rigidities and show how an aggressive

inflation targeting regime can effect which real interest rate arises in equilibrium, their

stability properties and the size of their basin of attraction. In particular, we will show

that an aggressive anti-inflation monetary policy can favour the emergence, stability and

attractiveness of a low real interest rate outcome. In the subsequent section, we will also

add productive assets to the analysis to explore the effects of valuation effects.

Prudent “perpetual” youth assumption. Much of our analysis could be conducted in

the current set-up. However, to allow for an easier presentation of results we will now adopt

a very useful simplifying assumption.32 In the last section we will drop this assumption and

come back to the general case to show that this assumption is not driving any of our main

31The generic property relates to the amounts of bonds. There can be one value for B where a unique
equilibrium can exist if the bond supply happens to satisfy a precise tangency condition. However, such an
equilibrium configuration would not be robust to any minor change in the amount of bonds.

32In the version of the model without nominal rigidities, the equilibrium dynamic system can still be
analytically tractable if we are in a situation where the wealth of active households have converged to
the same level. Once the active households have the same wealth, it will remain that way with active
households acting like a representative household. In this case, the equilibrium behaviour is described by
the following system of three dynamic equations:

ċt

ct
=

rt − ρ− δ1

σ
+

cσt
σ
δ1qVa(B, Γt)

Γ̇t = −1 + Γt

[
ρ+ δ2

σ
− 1− σ

σ
rt

]

ȧt = w + rtat +
(B − at)δ2

φ
− G + Brt

φ
− ct

plus the goods market clearing condition
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insights. To immediately get a sense of why we want to add a simplifying assumption, it

is helpful to focus on the long run demand for asset by active households as presented in

Figure 5 . As we have stressed, this demand is C-shaped when σ > 1. The equilibrium

determination of r ∗ can then be viewed as depending on the interaction of this C-shaped

demand curve for assets with a residual supply curve for assets. The relevant residual supply

curve corresponds to the total supply of assets in this economy minus that held by retired

agents. Depending on the properties of this residual supply curve, it is obvious from Figure

5 that many different equilibrium configurations could arise. In particular, as expressed in

Proposition 2, there is likely more than one equilibrium value for r ∗. In fact, depending

on the shape of this residual supply curve, even if it is monotonic, there could be two,

three or more equilibrium values for r ∗. Our model in its full generality does not rule out

any such possibilities. However, analyzing all these possibilities at once can be confusing.

The following simplifying assumption will allow us to approach the problem in steps, where

we first focus on a case which produces exactly two potential equilibrium values for r ∗,

then we introduce productive assets and discuss the case of three values. The general case

embeds the features emphasized in these special cases but potentially allows for even more

equilibria. At this point, we do not see any added insights from the cases with more than

two or three potential equilibrium values for r ∗. It is for this reason we find the adoption

of following simplifying assumption useful.

In particular, consider a modification of the above setting where the probability q of

surviving the health shock that moves one to retire has an objective component and a

subjective component with the subjective value being denoted qs while the objective value

φct = φw − G − (B − φat)Γ−1
t

where ct is the consumption of the representative active household and at is its asset holdings. However,
when we extend the model to include nominal rigidities this dynamic system expands to a 4th and 5th

degree system making analytical results very difficult. It is for this reason, we choose to make the additional
simplifying assumption of having q go to zero with ε > 0. Under this addition assumption, the dynamic
system is reduced in the absence of nominal rigidities to the pair of dynamic equations

ċt

ct
=

rt − ρ− δ1

σ
+

cσt
σ
δ1q

sVa(B, Γt)

Γ̇t = −1 + Γt

[
ρ+ δ2

σ
− 1− σ

σ
rt

]
plus the goods market clearing condition

ct = w − G .

This lower dimensional system can be more easily extended to allow for nominal rigidities and still be
analytically tractable.
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is still given by q with qs = q + ε (ε > 0). In this setting, ε is governing the extent to

which people are over-estimating the probability of needing their retirement savings. Now

consider this model as q goes to zero. In this limit, we will have active agents that are

saving for retirement but no actual retirees.33 This simplifies the analysis by removing the

need to track the wealth holdings of the retirees. In effect, under this assumption, the

steady state demand for assets is now given entirely by the desired wealth holdings of the

active population and has a simple C-shape.34 Hence, steady state equilibrium real interest

rates are given by the intersection of the C-shaped asset demand of active households and

the exogenous supply of bonds as shown in Figure 7. As can be easily seen on this figure,

under this simplifying assumption, the steady state will never be unique. This was also

true in the more general case, but was harder to visualize. Moreover, if the supply of asset

is sufficiently large, there will always be exactly two steady state values for r , which we

will denote r ∗H and r ∗L for the high and low real steady state rate respectively. In the

continuation, we will assume that B is sufficiently large such that an equilibrium exists as

stated below. Lemma 2 indicates some key properties of r ∗H and r ∗L.

Going forward will will assume that the quantity of outstanding government bonds

(B) is sufficiently large to guarantees the existence of an equilibrium, that is, B > B̄ ≡
(δ1qs)1/σ(ρ + δ1 − r̄)−1/σ

[
ρ+δ2

σ
− 1−σ

σ
r̄
]

.

Lemma 2. The low and high natural interest rates r ∗H and r ∗L have the following properties:

(i) r ∗H > r̄ and r ∗L < r̄ ; (ii) the high real interest rate (r ∗H) increases with government

bonds B while the low real rate r ∗L decreases with B; and (iii) r ∗H increases with the

probability of death of retirees δ2 while r ∗L falls with δ2.

See Appendix D.10 for the proof.

The two steady state real interest rates depicted in Figure 7, r ∗H and r ∗L, will continue

to play an important role in the presence of nominal rigidities. To foreshadow future results,

monetary policy will be shown to potentially affect which of these real interest rates are

stable and which are more likely to arise in the long run. However, monetary policy will

simultaneously maintain a neutrality property, in that it will not affect the values of the

potential long-run real interest rate that can arise. These will always be either r ∗H or r ∗L.35

33In similarity to the perpetual youth model of Blanchard (1985) and Yaari (1965), this version of our
model can be considered as a “prudent” perpetual youth model where agents are prudently preparing for
retirement even if they never retire. They are young, working and saving for retirement until they die.

34In the case without nominal rigidities, the income and consumption levels of the active household
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Figure 7: Long-run asset demand and asset supply: multiple steady state real interest rates
(r ∗)
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4.1 Introducing nominal rigidities and a vertical long run Phillips curve

In the environment considered up to now, we have not included any nominal rigidities.

In this section, we extend the model to allow demand considerations to affect economic

activity in the short run while maintaining that in the long run economic activity is entirely

determined by the economy’s productive capacity. In other words, we extend the model in

a way that allows for a Philips curve which reflects a short-run tradeoff between inflation

activity but not a long-run tradeoff. To this end, we slightly modify the environment and

assume that output is produced using labour by a set of competitive firms. The production

function is given by yt = Alt , where productivity A > 0 is constant. Goods prices pt are

perfectly flexible and therefore competition between firms will ensure that the price of the

output good is equal Wt

A
, where Wt is now the nominal wage. This implies that real wages

are always equal to A. We denote l̄ and ȳ = Al̄ the natural rate of employment and output

respectively.36

become exogenous with c = y = w − G .
35At this juncture, the low steady state real rate r∗L may appear unstable. However, as we shall show,

in the presence of nominal rigidities, the stability properties around both r∗L and r∗H will depend on the
nature of monetary policy.

36The household’s budget constraint in real terms is now given by the following, where lt will be endoge-
nously determined: ct + ȧt = Alt + rtat − Tt .
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The key nominal rigidity is related to the wage determination process. Nominal wages

are assumed to adjust slowly to excess labor supply according to:37

Ẇt

Wt
= πe

t + κ′(lt − l̄), κ′ > 0,

where πe
t is the expected inflation rate and (lt − l̄) represents the deviation of employment

from full employment l̄ . If we further assume that expected inflation:

πe
t = πt + µπ̇t ,

then we get the Phillips curve of the form

π̇t = κ(yt − ȳ), (7)

where κ = κ′

−Aµ
. The parameter µ > 0 governs the relationship between inflation and the

output gap. If we assume perfect foresight in this simple setup, with µ = 0, both the short

term and long-run Phillips curve would be vertical. Hence, we allow µ 6= 0.

With this formulation, when κ > 0 (µ < 0), we have a backward-looking Phillips curve

and πt needs to be treated as a state variable. Alternatively, if κ < 0 (µ > 0), we have

a forward-looking Phillips curve and πt needs to be treated as a jump variable. We will

focus on the case with κ > 0 in the main text.38 The characterization of stable steady

states is similar in both cases. However, the narrative around inflation is potentially more

compelling in the κ > 0 case as inflation is sluggish and without jumps.

Since we now allow for variable inflation, we now need to distinguish between real and

nominal rates of interest. We will denote the nominal rate by it with the real rate given by

rt = it − πt .

The equilibrium dynamics for this economy with nominal wage rigidities (and q = 0) is

now governed by the following dynamic system

π̇ = κ(ct + G − ȳ)

ċt

ct
=

it − πt − ρ− δ1

σ
+

cσt
σ
δ1qsVa(B , Γt)

37Note that in this model, wage inflation is equal to price inflation πt .
38Details for the case with κ < 0 are available from the authors upon request.
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Γ̇t = −1 + Γt

[
ρ + δ2

σ
− 1− σ

σ
(it − πt)

]
To complete this model, we need to specify how monetary policy sets the nominal

interest rate it . Our main focus will be monetary policy that is governed by a simple Taylor

rule of the form

it = max
{

0, iT + ψ(πt − πT )
}

ψ > 1, (8)

where iT is a nominal interest rate target, πT is the central bank’s inflation target, ψ > 1

satisfies the Taylor principle and the effective lower bound on interest rates is set to 0.

However, instead of looking immediately at the implications of this constrained Taylor rule,

it is easiest to start with the two embedded sub-cases: (1) it = iT + ψ(πt − πT ), that is,

disregard the ELB constraint and (2) it = 0, setting the interest rate at the ELB.

Propositions 3 and 4 highlight how monetary policy affects the stability of the system.39

In particular, Proposition 3 indicates that if the nominal interest rate setting is unconstrained

by an ELB and satisfies the Taylor principle, then the only equilibrium configuration that

can be stable is one where the steady state equilibrium real interest rate is equal to r ∗H .

Moreover, if the central banks targets that real natural rate, it will achieve its target for π.

Proposition 4 covers the converse case. It shows that if nominal interest rates are set at

the ELB, then the only possible configuration for a stable steady state equilibrium is one

where the real interest rate equals r ∗L.

Proposition 3. If it = iT + ψ(πt − πT ) and ψ > 1, the economy admits only one

stable steady state equilibrium.40 In this equilibrium, the real interest rate equals r ∗H . If

iT = r ∗H + πT , the central bank attains its inflation target.

See Appendix D.3 for the proof.

Proposition 4. If it = 0, the economy admits only one stable steady state equilibrium. In

this equilibrium, the real interest rate equals r ∗L and π = −r ∗L.

39The setup allows for a more general result: The high real interest rate steady state will be stable if
nominal policy interest rates setting locally satisfies the Taylor principle, while the low real interest rate
steady state will be stable if nominal policy interest rates setting locally does not satisfy the Taylor principle.

40When referring to a stable equilibrium here we are referring to a saddle path stable equilibrium where
there are two roots of the system that are positive and one that is negative.
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See Appendix D.4 for the proof.

To understand why the stability properties around two different equilibrium real interest

rates can depend on the monetary regime, it is helpful to recognize that when inflation

is high because consumption is high, endogenous dynamics must favour a reduction in

consumption to induce stability. This is actually the case behind both Propositions 3 and 4.

However, the underlying mechanisms are quite different. When the system is near the steady

state real rate r ∗H and nominal interest rates increase more than one-to-one with inflation,

higher inflation pushes real rates above r ∗H . With such higher real rates, consumption

decreases because the inter-temporal substitution force dominates the retirement motive

near r ∗H . This makes this combination — being near r ∗H and with real rates rising with

inflation — locally stable. In contrast, when the system is near the steady state real rate

r ∗L and it is at the ELB, higher inflation pushes down real rates. These lower real rates

then depress consumption near r ∗L because the retirement motive of savings dominates the

inter-temporal substitution motive. This makes the alternative combination —being near

r ∗L with real rates falling with inflation — locally stable.

Now, we turn to looking at possible equilibrium configurations when the Taylor rule

is constrained by the ELB. To give more structure, let us assume that iT = r ∗H + πT ;

that is, the central bank targets a real rate (i.e., a natural interest rate) equal to r ∗H .

Given Propositions 3 and 4, one may think that two stable equilibrium configurations would

now always be possible with such a rule. However, that is not the case as implied by

Proposition 5. Proposition 5 indicates that such a Taylor rule not only has the power to

affect the stability properties of different steady state equilibrium real interest rates, it also

has the power to affect which actually arise in equilibrium. In particular, if the policy is

not very aggressive, that is if ψ > 1 is sufficiently close to 1, then only one type of stable

equilibrium configuration will arise and that configuration has the real interest rate equal

to r ∗H and inflation on target. In contrast, if the policy is sufficiently aggressive (and πT

is not too small), then two stable equilibrium configurations are possible with two different

real interest rates. The low real rate equilibrium is accompanied by a nominal rate at the

ELB, while the high real rate is accompanied by with the nominal rate being at target.

Proposition 5. When it is set according to it = max
{

0, r ∗H + πT + ψ(πt − πT )
}

with

ψ > 1 and πT > −r ∗L, then there will be a cutoff level of monetary tightness ψ̄ > 1, such

that the following holds

• if ψ > ψ̄ (i.e., if monetary policy is sufficiently aggressive), the economy admits two
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stable steady state equilibrium outcomes; one with the real interest rate equal to r ∗H

and one with the real rate equal to r ∗L. In the equilibrium with the real interest rate

equal to r ∗H , inflation is on target. In the equilibrium with the real interest rate equal

to r ∗L, inflation is below target and the policy rate it is at the ELB.

• If 1 < ψ < ψ̄, then the economy admits only one stable equilibrium. In this equilib-

rium the real interest rate is equal to r ∗H and inflation is on target.

See Appendix D.5 for the proof.

To understand why monetary policy has the power to affect long-run real interest rate

outcomes as indicated by Proposition 5, it is useful to recall how a constrained Taylor rule

translates inflation into real rates. This is illustrated in Figure 8. As is indicated on the

figure, the ELB constraint becomes binding at the inflation level πELB ≡ (ψ−1)πT−r∗H

ψ
. To

the right of this binding level of inflation, real rates are increasing with inflation, while to

the left, real rates are decreasing with inflation. A higher value of ψ implies that the ELB

constraint will become binding at higher levels of inflation. Therefore, a smaller ψ > 1

allows for a smaller range of real interest rates. Accordingly, with a ψ > 1 sufficiently close

to 1, r ∗L will not be feasible, while r ∗H would be feasible. As ψ increases, this allows for

a larger range of real rates and generally makes an equilibrium with the real rate at r ∗L

feasible (as long as πT > −r ∗L).41

4.2 Illustrating transitional dynamics and how monetary policy can affect basins

of attraction

We saw from Propositions 3, 4 and 5 that in the presence of multiple steady state real

interest rates r ∗, monetary policy can affect which real interest rate may arise in equilibrium

and what stability properties it may have. In this section, we illustrate the transitional

dynamics associated with the different possible outcomes. In particular, we want to show

how aggressive monetary policy can go beyond allowing a low real interest rate equilibrium

to emerge, but can also affect its basin of attraction and therefore make it more likely to

arise the more aggressive policy is (higher ψ).

An illustration of transitional dynamics associated with the case of one stable steady

state is represented in Figure 9, while the case with two stable steady states is represented

41From such a diagram one can also see that for a given feasible real rate, the system would allow for
two associated outcomes. One at the ELB and one above the ELB. Proposition 5 indicates that the stable
one will be the one above the ELB when the real rate is r∗H and the one at the ELB when the real rate is
r∗L.
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Figure 8: Link between real interest rates and inflation under a Taylor rule constrained by
the ELB
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in Figure 10. On this figure, we represent the steady state condition between c and π

implied by the ċt = 0 condition when Γ̇t = 0. This is best represented by pieces:

If π < πELB , the ċt = 0 curve is given by

c = B (δ1qs)−1/σ [ρ + δ1 + π]1/σ

[
ρ + δ2

σ
+

1− σ
σ

π

]
and if π ≥ πELB , the ċt = 0 curve is given by

c = B (δ1qs)−1/σ [ρ + δ1 − (i − π)]1/σ

[
ρ + δ2

σ
−
(

1− σ
σ

)
(i − π)

]

where i − π = r ∗H + (ψ − 1)(π − πT ).

On this figure we also depict the steady state condition π̇t = 0 which corresponds to

c = Al̄−G . The crossing between these two curves gives us the set of steady states. Finally

on the figure we plot transitional dynamics in blue which illustrate the stability properties

of the steady state. These transitional dynamics should be viewed as a projection of the

actual transitional dynamics which are in the three dimensional space {ct , πt , Γt}.42 Note

42Alternatively, these transitional dynamics can be viewed as exact ones associated with having future
expected values of rt being set to the current rate r .
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Figure 9: Equilibrium trajectories when monetary policy follows a not too aggressive Taylor
rule: one stable steady state
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that the ċt = 0 curve almost mirrors itself around the cutoff πELB .

In Figure 9, E1 is the only stable steady state. E1 is a high-real-interest-rate (r ∗H)

with inflation on target. There is also a low-inflation steady state in Figure 9, but it is

not stable. The nominal interest rate at the unstable steady state in the figure is in the

ELB region since the level of inflation arising from that equilibrium point is less than πELB .

This type of configuration, where there is an unstable steady state at the ELB and a stable

steady state with i > 0, echoes what arises in a standard infinitely lived representative

agent environment without our bequest motives (see Benhabib, Schmitt-Grohé, and Uribe

(2001)).43 In contrast, in Figure 10 we now have two stable steady states. The high-real-

interest stable steady state, denoted E1, remains, but now we also have one low-real-rate

(r ∗L), low-inflation stable steady state denoted E2. The E2 steady state is in the ELB

region, while the E1 steady state remains in the region where i > 0 and where the Taylor

principle is operative. Proposition 5 expresses this possibility. In this setting, given the

two stable steady states, the system will exhibit hysteresis.44 If inflation starts above the

level π̃ = πT + r∗L−r∗H

ψ−1
denoted on Figure 10, the system will converge to E1, while if

43Recall that we are assuming a backward-looking Phillips curve in the main body of the text. When
assuming a forward-looking Phillips curve, this equilibrium would exhibit indeterminacy.

44In the case where the parameter κ in the Phillips curve is negative, the same two steady states are
determinate stable, and the system would jump to one of them instead of exhibiting hysteresis.
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Figure 10: Equilibrium trajectories when monetary policy follows a sufficiently aggressive
Taylor rule: two stable steady states
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it starts below, it will tend to converge to E2. In this set-up we can consider the effects

of shocks, especially qs shocks which increase the desire to accumulate more assets for

retirement (precautionary) motives. For example, if the economy were to start at E1, and

there was a large temporary rise in qs , the steady state equilibrium E1 could temporarily

disappear — the reason being that there would then be too much demand for assets relative

to supply, which depresses demand. As a result, there would be a contractionary period

with deflation. Once the shock reverses itself, the level of inflation would be starting from

a lower level. If this new inflation level was below π̃, the economy would converge to the

long-run equilibrium at E2 even if it was at equilibrium point E1 before the temporary shock

to qs .

In this setting, we can highlight the potential role of increasing the aggressiveness of

monetary policy — as captured by high values of ψ — in making the low-inflation equilibrium

outcome in Figure 10 more likely, that is, making it more likely that the economy converges

to a low real interest rate.45 Recall that we are always assuming that ψ > 1, so the Taylor

45We also examined the effect on equilibrium outcomes of changing the inflation target πT . Among other
results, we find that increasing πT favours the status quo; that is, we find that the basin of attraction of
neither the stable ELB equilibrium nor the non-ELB equilibrium decreases when πT increases. Accordingly,
if an economy were caught in a low-inflation, low-real-rate trap, increasing πT would not help the economy
exit this trap.
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principle is active when not constrained by the ELB. If monetary policy is not too aggressive

in the sense of ψ not being much greater than 1, then the equilibrium configuration will

take the form we represented in Figure 9.46 So in this case with monetary policy not

too aggressive (but still satisfying the Taylor principle when above the ELB), the economy

can only converge to the E1 equilibrium. This has the desired outcome of supporting

inflation close to target. However, as ψ increased the range of inflation that leads monetary

authorities to set i at the ELB increases. A rise in ψ can therefore be seen as changing the

equilibrium configuration from that depicted in Figure 9 to that depicted in Figure 10. In

fact, as ψ gets very big, the equilibrium dynamics can make the high-real-rate equilibrium

fragile. This can be seen in Figure 11. In this figure, we return to representing equilibria

in the (i , π) space as this offers an alternative perspective to discuss dynamics. The two

different real rates are represented in the panels of this figure as before by lines with slope

of one and with a Taylor rule super-imposed. In this space, equilibrium dynamics can be

summarized along the π axis, as π is the only state variable and the dynamics are driven by

the stability of the different steady states for π. As can be seen in Figure 11, moving from

Panel A to Panel B — that is, when monetary policy reacts more to below target inflation

— leads the range of inflation rates above π̃ that support the higher-inflation equilibrium

E1 to become arbitrarily small. This implies that when such an economy in Panel B is

subjected to shocks, even if it starts at the high-real-rate equilibrium with inflation on

target, it is very likely to end up at the low-inflation ELB equilibrium. In this sense, a high

ψ policy of reducing interest rates aggressively in response to deviation of inflation from

target can contribute to the economy ending up at a low steady state real rate of interest.

It is worth emphasizing that at this equilibrium, inflation is low (possibly negative), but it is

nonetheless stable even if the Taylor principle does not hold.47 Proposition 5 confirms that

the existence of the E2 equilibrium depicted in Figure 10 and Figure 11 actually depends

on ψ > 1 being sufficiently large. If ψ is not sufficiently large, the configuration depicted

in Figure 10 cannot arise.

4.2.1 Real factors and the emergence of the low-real-rate, low-inflation trap

In the previous discussion, we emphasized how more aggressive monetary policy can

simultaneously favour the emergence of a low-real-rate equilibrium at the ELB while also

expanding its basin of attraction. We now want to briefly discuss the role of real factors

46For this precise equilibrium configuration, we are assuming that πT > −r̄ and ψ > r∗H +πT

r̄+πT . See
Appendix D.4.

47A downward spiral in inflation is nonetheless possible in this set-up if inflation gets sufficiently close
to −(ρ+ δ1). See Cochrane (2017).
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Figure 11: Equilibrium trajectories when monetary policy follows a very aggressive Taylor
rule: two stable steady states
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in allowing for such an equilibrium outcome. In particular, countries or regions that may

have fallen into a low-inflation trap (such as Japan and Europe) do not appear to have

a substantially more aggressive monetary policy than elsewhere. So monetary policy is

unlikely to be the sole or main driver. Instead, these are countries that are generally viewed

as having real factors that favour savings, and these are the factors that are commonly

thought to contribute to demand being depressed and monetary policy being pushed to the

ELB. In our set-up, real factors that favour savings play a very similar role to monetary

policy in favouring the emergence of the low-real-rate, low-inflation trap. This is most

easily seen by varying δ2, which governs the expected duration of retirement. As indicated

in Proposition 6, for a given monetary policy stance parameterized by ψ, δ2 has to be

sufficiently low for an equilibrium configuration such as in Figure 10 to arise. In Figure 12

we depict the effect of a change in δ2 on the equilibrium configuration.48 As illustrated

in the figure, a higher δ2 will make the E2 equilibrium that arises with a low δ2 disappear.

So if an economy finds itself in a low-real-rate equilibrium like E2 in the figure, it is both

48Under Lemma 2, a rise in δ2 also increases r∗H .
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Figure 12: Equilibrium trajectories when the probability of death δ2 rises to δ′2 > δ2
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because δ2 is sufficiently low and ψ is sufficiently high. In this sense, monetary policy can

be viewed as contributing to the emergence of a low-real-rate trap, but it cannot be seen

as the only driving factor. Real factors affecting savings are also key.

Proposition 6. The existence of a stable low-real-rate, low-inflation trap at the ELB is

only possible if δ2 is sufficiently small (holding other parameters fixed).

See Appendix D.6 for the proof.

4.2.2 Exiting the low-real-rate trap: the effects of Inflation shocks and expan-

sionary fiscal policy

When the economy is in a low-real-rate trap, as represented by the equilibrium outcome

E2 shown in Figures 10 and 11, a sufficiently large exogenous shock to inflation could move

inflation above the central bank’s inflation target.49 If such a high rate of inflation were

to arise, the central bank would increase nominal interest rates aggressively causing real

rates to rise also. This would place the economy temporarily in recession in order to reduce

49We are interpreting an inflation shock as an entirely unexpected shock to the production cost of firms,
which is passed through to prices. In other words, it is an unexpected shock to the Phillips Curve equation
which causes a discrete jump in inflation.
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inflation. As inflation declines and the employment recovers, interest rates — both real and

nominal — gradually decrease. However, the economy would not return to E2. Instead, it

would converge to the steady state E1 with the high real rate. Hence, when the economy

is at E2 and there is a large inflation shock, this can cause the long-run real interest rate

to increase from r ∗L to r ∗H .

Fiscal policy can also help create an exit from the low-real-rate steady state, but this

exit will be non-monotonic. An increase in government debt B corresponds to an upward

shift in the ċt = 0 in Figure 10. This implies that the long-run equilibrium point E2 will

move to the right when B is larger, implying higher inflation and lower real interest rates

(see Lemma 2). This is expressed in Proposition 7. However, the effect of changes in B on

long-run interest rates and inflation will be discontinuous. As debt rises, there will come a

point where the E2 equilibrium will cease to exist. At that point, the only stable equilibrium

will be E1. Hence, both the long-run real interest rate and the rate of inflation in such

an economy can change discretely in response to a large fiscal expansion. A sufficiently

large increase in B can create a switch from the long-run equilibrium E2 to the long-run

equilibrium E1. Fiscal policy in this case, is pushing the economy out of the low-real-rate,

low-inflation steady state, but that is coming at the cost of a discrete jump in long-run

inflation and r ∗.50

Proposition 7. The inflation rate at the ELB stable steady state is increasing in government

debt B, while real interest rates are decreasing. However, when B becomes sufficiently large,

the equilibrium at the ELB will cease to exist. At that point, long-run inflation and real

interest rates will exhibit a discontinuous jump to higher levels.

See Appendix D.7 for the proof.

5 Extending the Model to Include Productive Assets: Lucas Trees

Up to now we have been examining the equilibrium determination of long-run real

interest rates — and the role of monetary policy — in the presence of only one asset:

government bonds. In this section, we enrich the environment by introducing a claim on

a productive asset, where the price of the asset increases when interest rates decrease,

that is, we introduce valuation effects into the analysis. As we shall see, valuation effects

render the analysis more complex but do not overturn our main results regarding both the

50Acharya and Dogra (2021), Eggertsson and Mehrotra (2014), and Mian, Straub, and Sufi (2021a) also
find that rising public debt favours an escape from the ELB.
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possibility of multiple r ∗ and the role of monetary policy in affecting which r ∗ is most likely

to arise. It is for this reason that we left the introduction of valuation effects until now.

To introduce a second asset into our set-up, suppose there is a mass s of Lucas trees

that produce a flow f of goods every period.51 In order to introduce the possibility of

something akin to a risk premium on these assets, we will assume that trees die at flow

rate ω ≥ 0 and that dead trees are continuously replaced with new trees redistributed in a

lump sum fashion to active households. In aggregate, trees are not risky, they simply decay

at rate ω. A household can now hold a combination of bonds and trees. If we denote by

zt the price of a mass of one of trees at time t, then arbitrage between the two assets will

cause zt to satisfy the following asset pricing relationship

żt

zt
=

f

zt
− (rt + ω),

and households will be indifferent between holding bonds or trees. The advantage of

allowing for trees to decay is that they permit situations where r can be zero and the

price of trees is still finite. The household consumption Euler equation in this case can be

re-written as

ċt

ct
=

rt − ρ− δ1

σ
+ δ1qs cσt

σ
Va(Ωt , Γt),

where Ω denotes household wealth which includes both the holdings of bonds and trees.

The main effect of introducing this second asset is that it causes the effective supply of

assets that must be held by the market, B + zts, to contain valuation effects. To present

this case more easily, it is helpful to recognize that the steady state of the consumption

Euler equation can be presented as expressing a household’s desired ratio of consumption-to-

wealth as a function of interest rates. Note that this is simply a reinterpretation of the steady

state condition for households’ consumption decision in the previous sections. Accordingly,

the desired consumption-to-wealth ratio maintains the hump shaped property because it

balances inter-temporal substitution effects and retirement incentives. Furthermore, the

desired consumption-to-wealth ratio maintains the property that it goes to zero as r goes

to either ρ + δ1 or to ρ+δ2

1−σ . Relative to our analysis with only bonds, household desired

wealth holding is unchanged with the introduction of trees. The feature that changes with

the introduction of productive assets is the properties of the feasible aggregate long-run

51A Lucas tree set-up is one where we have productive assets but these assets are not themselves
expandable. We have also explored the possibility of allowing for reproducible productive assets and have
not found it to give novel insights relative to the case analyzed here. For this reason we chose to focus on
the simpler case.
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consumption-to-wealth ratio. Previously, the feasible long-run consumption-to-wealth ratio

was Al̄−G
B

and therefore independent of r . The economy’s feasible long-run consumption-

to-wealth ratios with trees is now given by

c

Ω
=

Al̄ + sf − G

B + sf
r+ω

,

where the numerator represents full employment output plus the flow of goods from

trees less government consumption and the denominator represents the total value of assets

in steady state. This is the aggregate consumption-to-wealth ratio that is consistent with

full employment and żt = 0. This feasible consumption-to-wealth ratio is increasing in r

for r > ω, and starts from zero when r = −ω. If s = 0, then this feasible consumption-to

wealth ratio is independent of interest rates and we are back to our previous analysis where

the only possible equilibrium configuration is one where there are two natural interest rates

r ∗. The introduction of trees increases the possible equilibrium configurations. This is

due to it changing the shape of the feasible consumption-to-wealth ratios. In the absence

of sticky prices, there now can be at least three equilibrium configurations. These are

illustrated in Figure 13, and as can be seen in the figure, these depend on slope of the

feasible consumption-to-wealth ratio curve compared to the slope of desired consumption-

to-wealth ratio curve.

Figure 13 is aimed at representing the set of steady states for the following system of

dynamic equations.

ċt

ct
=

rt − ρ− δ1

σ
+ δ1qs cσt

σ
Va(Ωt , Γt),

Γ̇t = −1 + Γt

[
ρ + δ2

σ
− 1− σ

σ
rt

]
Ω̇t

Ωt − B
=

fs

Ωt − B
− (rt + ω),

where r needs to adjust to satisfy the market clearing condition

ct = Al̄ + sf − G .

We refer to the desired consumption-to-wealth ratios as the consumption-to-wealth

ratios c/Ω that satisfy ċt = Ω̇t = Γ̇t = 0 for different levels of r . The feasible consumption-

to-wealth ratios are defined as the set of Ωt that satisfy Γ̇t = 0, Ω̇t = 0 and the market
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Figure 13: Equilibrium trajectories in the presence of Lucas trees as function of the size of
dividend flow f : three potential steady states

 

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

𝐶𝑡/Ω𝑡 

𝐸2 

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝐶𝑡/Ω𝑡 

𝐸1 

𝐸3 

𝑟𝑡 

𝐶𝑡

Ω𝑡
 

𝜌 + 𝛿1 −𝜔 𝑟∗𝐿𝐿 𝑟∗𝐿 𝑟∗𝐻 𝜌 + 𝛿2

1 − 𝜎
 

Panel 1 

Panel 3 

Panel 2 

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

𝐶𝑡/Ω𝑡 

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝐶𝑡/Ω𝑡 

𝑟𝑡 

𝐶𝑡

Ω𝑡
 

𝜌 + 𝛿1 −𝜔 𝜌 + 𝛿2

1 − 𝜎
 

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

𝐶𝑡/Ω𝑡 

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝐶𝑡/Ω𝑡 

𝑟𝑡 

𝐶𝑡

Ω𝑡
 

𝜌 + 𝛿1 −𝜔 𝜌 + 𝛿2

1 − 𝜎
 

clearing condition.

The first panel of Figure 13 illustrates a case where only two equilibrium values for r ∗

arise. This requires ω to be sufficiently large. The analysis of the previous section extends

directly to the current case, with the only difference being that the consumption-to-wealth

ratio is now lower at r ∗L than at r ∗H . Given this minor difference, we will not dwell on this

case in this section. The second panel illustrates a case where there is a unique equilibrium

value of r ∗ despite the hump shape in desired consumption-to-wealth ratios. This was not

possible in the absence of valuation effects. Such a configuration will arise if desired wealth

holdings never outpace the valuation effects when r decreases. This case is important as

it indicates that even in the presence of C-shaped asset demands, there is not necessarily

more than one equilibrium. There can be a unique equilibrium if valuations effects play the
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right role as illustrated in the second panel of the figure. Finally, the third panel illustrates

the case where there are three possible values of r ∗. Since this is the novel case, we will

focus on it.

The important element to note in Panel 3 of Figure 13 is that there are potentially

three real interest rates (r ∗) compatible with full employment. There are two steady states

which resemble E1 and E2 in terms of how the curves cross, but now a third equilibrium

appears. This third equilibrium, which we will denote E3, has an associated real interest

rate which we denoted by r ∗LL.52 This equilibrium arises with both very low real interest

rates and high asset holdings on the part of households. The households exhibit a very

low consumption-to-wealth ratio in this equilibrium. In the absence of Lucas trees, this

configuration was not possible as the feasible consumption-to-wealth ratio did not change

with r . However, with the Lucas trees, the high demand for assets at r ∗LL is satisfied by the

large valuation of Lucas trees which acts as to endogenously increase the supply of assets.

Assuming that the real side of the economy takes the form as in Panel 3 of Figure 13,

we can re-introduce sticky prices and a Taylor rule to look at the joint determination of ct

and πt as we did before.53

There are now two sub-cases to consider. The easy case is when r ∗LL is small relative

to the inflation target πT in the Taylor rule, that is, when r ∗LL < −πT . In such a case,

monetary policy is ruling out the E3 type equilibrium, and all our previous results again

carry over. In particular, if monetary policy is not very aggressive (but still satisfying

the Taylor principle), then there can be only one stable steady state equilibrium and that

corresponds to the high-real-rate equilibrium E1. As monetary policy gets more aggressive,

the equivalent of equilibrium E2 will appear as a stable steady state of the system with

52Note that r∗LL may well be negative.
53In the presence of Lucas trees, the set of dynamic equations representing equilibrium with sticky prices

and a Taylor rule can be reduced to

ċt

ct
=

it − πt − ρ− δ1

σ
+ δ1q

s c
σ
t

σ
Va(Ωt , Γt),

π̇t = κ(ct + G − Al̄ − fs), κ > 0

Γ̇t = −1 + Γt

[
it − πt + δ2

σ
− 1− σ

σ
(it − πt)

]
Ω̇

Ωt − B
=

fs

Ωt − B
− (it − πt + ω).

it = max
{

0, r∗H + πT + ψ(πt − πT )
}

ψ > 1

46



nominal frictions.54 E2 will again be associated with the nominal interest rate being at the

ELB. And as monetary policy becomes gradually more aggressive, the basin of attraction

of this E2 equilibrium will expand while that of E1 will become small. In this sense, our

previous analysis extends directly to this case even when the configuration in the absence

of sticky prices is of the form given by Panel 3 in Figure 13 as long as r ∗LL < −πT .

Now if r ∗LL > −πT , then the equilibrium dynamics can get more complex than that

presented with only bonds. For example, it can take the form as given in Figure 14. In

this case, it is possible to have three stable steady states with different levels of inflation

and different real rates. The high-real-rate equilibrium corresponding to E1 remains. As

before, an ELB equilibrium with a low real rate at r ∗L will also be present when monetary

policy is sufficiently aggressive. This is point E2. But, now we get the possibility of a

third equilibrium; this one implements the real rate r ∗LL and is not in the ELB region. This

equilibrium has a low real rate — even lower than that of the E2 equilibrium — even though

the nominal interest rate is positive. The price of the Lucas trees at the E3 equilibrium,

which is given by z = f
ω+i−π in steady state, will be higher in the E3 equilibrium than in

both the E2 and E1 steady state equilibria. With such a configuration, if the economy were

to start in the E1 equilibrium and be subject to a set of inflation shocks55, it would likely

go from E1 to E3, with a drop in inflation and a rise in asset prices.

Let us now examine how the equilibrium configuration depicted in Figure 14 changes

as monetary policy gets more aggressive. This is depicted in Figure 15. Like previously,

we return to representing equilibria in the (i , π) space. The three different real rates are

represented in the panels of Figure 15 as before by lines with slope of one and with a

Taylor rule super-imposed. In this space, equilibrium dynamics can be summarized along

the π axis, as π is the only state variable and the dynamics are driven by the stability of

the different steady states for π. As can be seen in Figure 15, when policy becomes more

aggressive (ψ > 1 becomes larger, ie., moving from Panel A to Panel B), the inflation

level at the E3 steady state equilibrium gets closer and closer to that at the E1 equilibrium.

Hence, with very aggressive monetary policy we can get a situation where the two steady

state equilibria E1 and E3 are very close together in terms of inflation outcomes, but far

apart in real interest rate outcomes. This arises because the nominal rate is much lower

at the E3 equilibrium than at the E1 equilibrium since monetary policy is very aggressive

in cutting rates when inflation is below target. Furthermore, in this case, both the E3 and

the E1 inherit a fragility property. As seen previously, the E1 becomes fragile with respect

54The proof of the stability of these steady states is similar to that given for Propositions 3, 4, and 5. It
is available upon request.

55We are interpreting inflation shocks as shocks that change the initial level of inflation.
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Figure 14: Equilibrium trajectories in the presence of Lucas trees when the inflation target
is sufficiently high: three stable steady states

 

−(𝜌 + 𝛿1) −𝑟∗𝐿 𝜋𝐸𝐿𝐵 𝜋𝑇 

𝐸2 

 

𝐸3 

 

𝐶𝑡
ሶ = 0 

𝜋𝑇 +
𝜌 + 𝛿1 − 𝑟∗𝐻

𝜓 − 1
 

𝜋𝑡  

𝑠𝑎𝑑𝑑𝑙𝑒 𝑝𝑎𝑡ℎ 

𝐸1 

 

𝐶𝑡

Ω𝑡
 

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝐶𝑡/Ω𝑡 

to downward shocks to inflation. In contrast, the E3 equilibrium will be quite robust to

downward shocks to inflation as its basin of attraction to its left actually expands as policy

gets more aggressive. However, when the policy is very aggressive, the E3 equilibrium will

become fragile to positive shocks to inflation as the relevant basin of attraction to its right

can become arbitrarily small.

When the economy is at E3 or E1, it could still be pushed to the ELB equilibrium at

E2, This would require a sufficiently large downward shock to inflation. A move from E3

to E2 would cause a drop in inflation, but it would be associated with a fall in asset prices.

The mechanism could also work in reverse. If the economy is at either E3 or E2 and there

were a sufficiently large exogenous positive shock to inflation, then the economy could find

itself back to E1.

In summary, the presence of a productive asset in the form of a Lucas tree enriches

our previous analysis but it does not change the basic messages. Because there can be

more than one real natural interest rate r ∗, monetary policy becomes an important force
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Figure 15: Equilibrium trajectories in the presence of Lucas trees when the inflation target
is sufficiently high and monetary policy is very aggressive
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in determining long-run real rate outcomes. In particular, the more monetary policy ag-

gressively targets inflation, the more likely it is to cause the high-real-rate equilibrium to

be fragile to negative shocks to inflation. This makes the economy likely to converge to

a low-real-rate equilibrium. The main additional property that arises with the presence of

a Lucas tree is that a lower-real-rate equilibrium does not necessarily happen only at the

ELB. It can also arise with nominal interest rates above the ELB and with inflation close

to target. Hence this set-up offers an explanation for why economies can get stuck with

low real interest rates at either the ELB or above the ELB, where in both cases we would

have a high valuation of productive assets.

6 Back to full model

In the previous sections we have been analyzing the monetary policy implications of

having C-shaped asset demands by active households, where the C-shaped arose due to the

competing motives of inter-temporal substitution and retirement. However, we have been

conducting most of our analysis under the simplifying assumption that active households

were actually the only type of living households. Recall that we assumed toward the end of

Section 4 that active households perceived a risk of needing assets to pay for retirement,
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Figure 16: Multiple equilibrium real interest rates in the general model with both active
households and retirees
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but that they actually died before needing these funds. This gave rise to a perpetual youth

type setup where households always stayed young but nevertheless saved for a possible

retirement that never actually happened. In introducing this assumption we claimed that it

was not driving our main results. In this Section, we return to the more general case where

we remove this assumption and allow active and retired households to co-exist. Our goal

in this section is to illustrate why our results carry through to this more general case.

The implications of dropping this assumption (i.e., dropping qs 6= q) can most easily be

seen on Panel A of Figure 16. In this figure, we plot the desired long-run consumption-to-

wealth ratio of active households against real interest rates. This locus, which is in black, is

now familiar and it is not changed with the drop of the assumption. The red line represents

the feasible long-run consumption-to-wealth ratio of active households, where now the

feasible outcome includes the fact that retired individuals are both consuming resources

and holding assets. This figure is abstracting from sticky prices and we are allowing for

both bonds and productive assets to be present.56 This figure is very similar to that we

56The equilibrium behaviour is now described by the following system of four dynamic equations:
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presented in Section 5 where we introduced productive assets. However, there is one main

difference which relates to the precise properties of the feasibility locus. Previously, this

feasibility locus was monotonically increasing in r and concave. However, in the more

general model this feasibility locus can be less well behaved, leading it to potentially cross

the locus of desired consumption-to-wealth ratio of active households several times. To be

clear, in the more general case, there may still only be two or three crossings as before, but

we can’t rule out more crossings. Hence, as shown in the figure, we could, for example,

have five crossings.

In Panel B, we translate this five equilibrium example in Panel A into its implications in

terms of feasible stable steady state equilibria in the presence of sticky prices and an ELB

constrained monetary policy. The five parallel red linear lines in Panel B represent the five

potential real interest rates from Panel A, while the two different blue lines represent two

different monetary policy rules, one being more aggressive than the other (both reflecting

our previous specification of a Taylor rule satisfying the Taylor principle when not constrained

by the ELB). The black dots at the intersections of the lines represent stable outcomes. In

this more general set-up, we can see the main properties we have previously emphasized.

First, the stability around the different real interest rates depends on the local property of

monetary policy. The highest rate interest rates will be stable if monetary policy locally

satisfies the Taylor principle; the next highest real rate will be stable if monetary policy

locally does not satisfy the Taylor principle as is the case at the ELB.57 Any additional

potential real rate equilibrium will reflect the same pattern, alternating between being

ċt

ct
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σ
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cσt
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Γ̇t = −1 + Γt

[
ρ+ δ2

σ
− 1− σ

σ
rt

]

Ω̇t = w + rtΩt +
(B + zts − Ωt)δ2

φ
− G + Brt

φ
− ct

żt
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plus the good market clearing condition

φct = φw − G − (B + zts − φΩt)Γ−1
t

.
This system governs the holding of asset across active and retired households. However, it does not give

a breakdown of holdings of trees versus bonds, as the two are perfect substitutes in equilibrium. An easy
fix to this indeterminacy is to assume that both active households and retirees holds the same fraction of
wealth in bonds and in trees.

57The proof of this statement is available from the authors.
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stable under a monetary policy that satisfies the Taylor principle or the inverse. The second

feature is how monetary policy affects the set of effective steady state equilibria. If monetary

policy is not too aggressive, then the set of steady state equilibria will be more limited.

In the figure, the light blue line represents a monetary policy with limited aggressiveness

which results in only one equilibrium. The dark blue line reflects a more aggressive monetary

policy and results in four possible steady states: two above the ELB and two at the ELB. In

this later case, the lowest real rate from Panel A remains unattainable as part of a nominal

equilibrium with this particular monetary policy. 58

The main message to convey from Figure 16 is that much of our previous analysis–

which relied on an assumption that eliminated retirees but not retirement savings– provided

insights regarding monetary policy that are robust to eliminating the assumption.

7 Conclusion

The idea that monetary policy may have contributed to the secular decline in real in-

terest rates is a popular theme among many financial market participants and economic

commentators. However, evaluating this type of claim is difficult without first specifying

the mechanisms that could in theory generate such an outcome. Motivated by observations

regarding within-group changes in wealth-to-income ratios since the late 1980s, we showed

how savings behavior which is influenced by both inter-temporal substitution and retire-

ment motives could support/rationalize such claims. In particular, we showed how such

savings behavior can give rise to long-run asset demands that are C-shaped with respect

to real interest rates and favour multiple steady state equilibrium real rates. Moreover,

we showed that in such an environment, an aggressive inflation targeting can render the

higher-real-rate equilibrium fragile and favour the convergence to a low-real-rate trap. How-

ever, the resulting low-real-rate trap is not insurmountable. In particular, we showed that

the economy may return to a high-real-rate equilibrium if it is subjected to either a large

exogenous increase in inflation or to a large increase in public debt. Since both these forces

are currently at play, it raises the possibility that the future could involve a much higher

real rate.

58One aspect that is more complicated to present in this general case is the basin of attraction of the
different steady states because the state space is larger.

52



References

Acharya, S., and K. Dogra (2021): “The Side Effects of Safe Asset Creation,”
Journal of European Economic Association, Forthcoming.

Aruoba, S. B., P. Cuba-Borda, and F. Schorfheide (2018): “Macroeconomic
Dynamics Near the ZLB: A Tale of Two Countries,” Review of Economic Studies, 85(1),
87–118.

Auclert, A., and M. Rognlie (2020): “Inequality and Aggregate Demand,”
Manuscript, Stanford University.

Bauluz, L., and T. Meyer (2019): “The Great Divergence: International Wealth
Inequality in the US and France,” 3824260, 2021, Available at SSRN.
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Appendix

A Data

For the main analysis we use four waves of the US Survey of Consumer Finances for
1989, 1992, 2016 and 2019. The 1989 and 2019 SCFs are used for the wealth-to-income
analysis, while the 1989-1992 and 2016-2019 SCFs are used for the construction of saving
rates corresponding to the beginning (1989) and the end (2019) of our period of interest.
For this latter saving rate analysis, we combine the SCF with household-level aggregates
reported in the US Flow of Funds Accounts and the National Income and Product Accounts.

Household wealth in the SCF is defined to include all assets of households (both real
and financial) net of their liabilities. On the one hand, household non-financial (real) assets
include primary and other residential real estate, non-residential equity, as well as equity
holdings in privately held businesses (both corporate and non-corporate) and other assets.
Financial assets, on the other hand, include fixed-income assets, e.g. bonds, deposits, as
well as mutual fund holdings, and directly and indirectly held stocks, and other financial
assets. On the liability side, we include both mortgage and non-mortgage household debt
obligations.

For the total wealth-to-income ratio analysis, we adjust SCF income to match NIPA
aggregates by using scaling factors of 1.21, 1.41, 1.33 and 1.36 for the year 1989, 1992,
2016 and 2019, respectively. For the same years, the adjustments for total net worth are
1.18, 1.34, 1.03 and 1.14.

For the construction of saving rates using the wealth-based approach, we use the same
definition of wealth as in Mian, Straub, and Sufi (2020), which excludes the value of durables
on household balance sheets. The pure price inflation factors are aggregate in nature (same
factors apply to all households). We use the series available from Mian, Straub, and Sufi
(2020) replication package until 2016, and extend them to 2019 using their methodology,
in particular, for the residual equity price inflation.

B Results using a step-function regression approach and relationship with the
shift-share analysis

The regression approach to estimating the between component using a function F with
a set of age and income group dummies produces the first term in the decomposition below:
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Table B1 reports the shares of within and between components using this decompo-
sition. These shares are very similar to those obtained using both a baseline shift-share
decomposition and a regression approach. In fact, this decomposition can written in a
manner that makes an easy comparison with our baseline shift-share decomposition
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where Θi = Ni ,19ȳi ,89

Ni ,19ȳi ,19
. If the average within group earning ȳi don’t change much over

time, then Θi will be close to 1, making the two decompositions very close,

Table B1: Total Change in the Aggregate Wealth-to-Income Ratio Between 1989 and 2019
and the Fraction of the Change due to Within and Between Effects: Decomposition Using
Step-function

Definition Total Change Within Between

(%) (%)

Wealth (Baseline) 2.415 64.1 35.9
Wealth less housing 2.244 62.9 37.1

Wealth plus DB 2.618 64.5 35.5
Wealth plus DB less housing 2.447 63.3 36.7

Note: DB refers to the value of defined benefit pension schemes. The decomposition is done for 30 groups which
are the product of 5 age groups and 6 income groups. The age groups are: 18-34, 34-35, 35-44, 45-54, 54-64,
65+ and the income groups (in thousands) are: 0-20, 20-40, 40-60, 60-80, 80-120, 120+.

C Saving Results: SCF Scaled to the Aggregates

In this section, we repeat the analysis in Section 2.1 using data from the SCF scaled to
the aggregates in the Financial Flow Accounts and National Income and Product Accounts
for both saving rates and wealth-to-income ratios. The results are simiar. As shown in
Table C2, the correlation between changes in saving rates and changes in wealth-to-income
ratios is still positive and small. Figure C1 also supports the finding in the main text that
there is no systematic relationship between increases in wealth and declines in saving rates
and thus no desire by people to reduce their wealth holdings.
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Table C2: Dynamics of Saving and Wealth-to-income ratios in 30 Age-income Groups: SCF
scaled data

Group Change in saving Change in wealth-to- Change in log
rate, pp income ratio wealth

Income 0-20K
age 18-34 0.53 -6.87
age 35-44* -0.08 0.74 0.31
age 45-54 0.03 -15.50
age 55-64* -0.03 -0.88 0.47
age 65+* -0.06 -8.81 0.15

Income 20-40K
age 18-34 1.3 -3.5
age 35-44 -1.57 -14.02
age 45-54* 1.90 -13.46 0.01
age 55-64 -2.08 -22.8
age 65+* -1.56 -2.9 0.29

Income 40-60K
age 18-34 -3.5 -1.67
age 35-44 -0.92 -5.18
age 45-54 -1.72 -8.31
age 55-64* 2.58 -3.48 0.24
age 65+* -6.83 -3.61 0.50

Income 60-80K
age 18-34* 2.63 -0.59 0.05
age 35-44 1.13 -1.53
age 45-54* -2.18 -2.51 0.24
age 55-64* 0.06 0.23 0.58
age 65+* -6.28 -0.64 0.75

Income 80-120K
age 18-34* -1.33 0.26 0.63
age 35-44* 2.86 -0.02 0.22
age 45-54* -8.55 -0.76 0.24
age 55-64* -0.3 -0.36 0.63
age 65+* 2.54 1.24 0.98

Income 120K+
age 18-34* -0.17 0.95 0.94
age 35-44* 11.73 2.29 0.87
age 45-54* 7.13 2.14 0.92
age 55-64* -19.98 3.72 1.08
age 65+* 21.64 5.30 1.09

1989-1992 2016-2019
Aggregate s/y, annualized % 10.4 9.9

1989-2019
Corr(s/y, w/y) 0.14

Note: For each income-age group, the first column reports the changes in the three-year saving (%) over 1989-
1992 and 2016-2019 periods normalized by aggregate incomes in 1989 and 2016, respectively. The second column
reports the change in the wealth-to-income ratio between 1989 and 2019 with SCF data scaled up to the Flow
of Funds Accounts and National Income and Product Accounts. The third column reports the change in the log
level of wealth for the groups, which have seen an increase in wealth over the 1989-2019 period. “*” refers to
groups that experience increases in the level of wealth.
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Figure C1: Change in saving rates vs. change in log wealth for age-income groups with
wealth increases between 1989 and 2019 (scaled to FFA and NIPA aggregates)
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D Proofs of Propositions and Lemmas

D.1 Proof of Proposition 1

Recall the steady state asset holdings aa,ss(y , r) defined in equation (6)

aa,ss(y , r) = (δ1q)
1
σ2

[
ρ + δ2

σ2
− 1− σ2

σ2
r

]−1

[ρ + δ1 − r ]
−1
σ2 y

σ1
σ2 .

See also Section D.9 for the conditions of convergence to aa,ss(y , r) .
Let us take the derivative of aa,ss with respect to income y

daa,ss

dy
=
σ1

σ2
(δ1q)

1
σ2

[
ρ + δ2

σ2
− 1− σ2

σ2
r

]−1

[ρ + δ1 − r ]
−1
σ2 y

σ1
σ2
−1

.

daa,ss

dy
> 0 since r ∈

(
−ρ+δ2

σ−1
, ρ + δ1

)
. Hence, the long-run asset holdings of active households

are increasing in income y .
Taking the derivative of aa,ss with respect to r , we have

daa,ss

dr
= (δ1q)

1
σ2 (ρ + δ1 − r)

−1
σ2
−1

y
σ1
σ2

(
1

ρ + δ2 + (σ2 − 1)r

)[
1− σ2(σ2 − 1)(ρ + δ1 − r)

ρ + δ2 + (σ2 − 1)r

]
.

If σ2 ≤ 1, daa,ss

dr
≥ 0 and hence the steady state asset holdings of active households are

increasing in the interest rate.
Now let us assume that σ2 > 1. When r = r̄ , we have daa,ss

dr
= 0 where

r̄ ≡ σ2(σ2 − 1)(ρ + δ1)− (ρ + δ2)

(σ2 − 1)(σ2 + 1)
.
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If r > r̄ , daa,ss

dr
> 0. And if r < r̄ , daa,ss

dr
< 0. As a result, aa,ss is increasing (decreasing) in

the interest rate when r is above (below) r̄ . Hence, aa,ss is C-shaped in the space (r , a).
Q.E.D.

D.2 Proof of Proposition 2

In the steady state ċt = 0, Γ̇t = 0, and ȧt = 0. Combining ċt = 0 and Γ̇t = 0 we
obtain the desired consumption-to-wealth ratio (c/a):

c

a
= (δ1q)−

1
σ (ρ+ δ1 − r)

1
σ

[
ρ+ δ2

σ
− 1− σ

σ
r

]
≡ D(r), (D3)

where we denote the desired consumption-to-wealth ratio D(r).
Combing the asset ([φ + (1 − φ)]a = B) and goods (φc = φw − G − (B − φa)Γ−1)

markets clearing conditions leads to the feasible consumption-to-wealth ratio (c/a)

c

a
=

y

B

[
1 +

(1− φ)

φ
g(r)

]
− (1− φ)

φ
g(r)Γ−1 ≡ F (r), (D4)

where F (r) represents the feasible c/a ratio, Γ =
[
ρ+δ2

σ
− 1−σ

σ
r
]−1

, g(r) = δ2σ
ρ+δ2−r+σδ2

,
and y = φw − G .

The function D(r) has the following properties

• D is hump shape and continuous over the interval [ρ+δ2

1−σ , ρ+ δ1]. D(r̄) = 0, if r < r̄ ,
D ′ < 0 and if r > r̄ , D ′ > 0,

• D(ρ + δ1) = 0 and D
(
ρ+δ2

1−σ

)
= 0.

Similarly, the function F (r) has these properties

• F is continuous over the interval [ρ+δ2

1−σ , ρ + δ1],

• F (ρ + δ1) > 0 if B
y
<

1+ (1−φ)
φ

g(ρ+δ1)

(1−φ)
φ

Γ−1
and F

(
ρ+δ2

1−σ

)
> 0.

The steady state equilibrium is obtained when the desired and feasible consumption-to-
wealth ratios cross, that is, when D(r) = F (r).

Given that F
(
ρ+δ2

1−σ

)
> 0 = D

(
ρ+δ2

1−σ

)
, if D and F cross once, they must cross at least

one more time again since F and D are continuous over the interval [ρ+δ2

1−σ , ρ + δ1], D is

hump shape and F
(
ρ+δ2

1−σ

)
> 0 = D

(
ρ+δ2

1−σ

)
.

Q.E.D.
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D.3 Proof of Proposition 3

Recall that πELB = (ψ−1)πT−r∗H

ψ
where the ELB constraint is binding when π ≤ πELB

and it is non binding when π > πELB . πELB is increasing in ψ. Assume that the ELB
constraint is not binding and hence the Taylor rule is given by it = r ∗H + πT +ψ(πt − πT )
with ψ > 1. Let’s also recall the equilibrium dynamics for the economy with nominal wage
rigidities is now governed by the following dynamic system

π̇t = κ(ct + G − ȳ)

ċt

ct
=

it − πt − ρ− δ1

σ
+

cσt
σ
δ1qsVa(B , Γt)

Γ̇t = −1 + Γt

[
ρ + δ2

σ
− 1− σ

σ
(it − πt)

]
In the steady state, π̇t = 0, ċt = 0, and Γ̇t = 0. The π̇t = 0 curve is given by c = ȳ−G .

The Γ̇t = 0 curve is Γ =
[
ρ+δ2

σ
+ 1−σ

σ
π
]−1

, while the ċt = 0 curve (together with Γ̇t = 0)
is given by

c = (δ1q
s)−1/σB

[
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

]1/σ[
ρ+ δ2

σ
−
(

1− σ
σ

)
(r∗H + (ψ − 1)(π − πT ))

]
. (D5)

Some properties of the ċt = 0 curve. We denote the ċt = 0 curve F c(π). When

π > πELB , c = 0 if π = πT + ρ+δ1−r∗H

ψ−1
> πT . The derivative of F c(π) with respect to π is

F c′(π) = −(δ1q
s)−

1
σ B
[
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

] 1
σ−1

(
ψ − 1

σ2

)
[
ρ+ δ2 − (1− σ)(r∗H + (ψ − 1)(π − πT )) + σ(1− σ)

(
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

)]
,

where F c ′(π) = 0 when πopt = πT + (ρ+δ2)+(σ−1)((1+σ)r∗H−σ(ρ+δ1))
(1−σ)(σ+1)(ψ−1)

, that is,

πopt = πT +
r̄ − r∗H

ψ − 1
,

If π < πopt , F c ′ > 0 and if π > πopt , F c ′ < 0. Hence, the ċt = 0 curve is hump
shaped in π with the optimal consumption being equal to F c(πopt) = (δ1q)−1/σB(ρ+ δ1−
r̄)1/σ

[
ρ+δ2

σ
− 1−σ

σ
r̄
]

. The ċt = 0 curve (given by F c) and the π̇t = 0 curve are displayed in
Figures 9 and 10.

Existence of steady equilibria. The steady state equilibrium is determined by the in-
tersection of the π̇t = 0 and ċt = 0 curves, that is
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F c(π) = ȳ − G .

A necessary condition for an equilibrium to exist is 0 < ȳ − G < F c(πopt) which is
satisfied when

B > (δ1qs)1/σ(ρ + δ1 − r̄)−1/σ

[
ρ + δ2

σ
− 1− σ

σ
r̄

]
≡ B̄ .

It is helpful to consider two cases for the discussion of the equilibrium. In the first case,
we assume that F c(πELB) < ȳ − G (see the proof of Proposition 5 in Section D.5 for the
condition). We start with the scenario where π > πopt and F c is strictly decreasing in
π. Since 0 < ȳ − G < F c(πopt) and F c is decreasing, there is an equilibrium inflation
π1 = F c−1(ȳ − G ). We denote this equilibrium E1. We also consider the scenario where
πELB < π < πopt and F c is strictly increasing in π. Similarly, since F c is strictly increasing
there is a second equilibrium π̃ = F c−1(ȳ − G ) (see Section D.4 for the value of π̃). We
denote this equilibrium Ẽ1. The first case shows that there are two equilibria. In the second
case where F c(πELB) > ȳ − G , only equilibrium E1 exists.

Real rate and inflation at equilibrium E1. Are r ∗H and πT the real interest rate and
inflation rate at E1 respectively? To answer this question, first recall that the r ∗H (in the
model without nominal rigidities) is determined by the following equations

F (r) ≡ (δ1q
s)−1/σB [ρ+ δ1 − r ]1/σ

[
ρ+ δ2

σ
−
(

1− σ
σ

)
r

]
= ȳ − G ,

r∗H = F−1(ȳ − G ) > r̄ ,

F ′(r) < 0 if r > r̄ .

Now note that F (i − πT ) = F c(πT ). Hence i − πT = F−1(ȳ − G ) = r ∗H and the
inflation rate at the equilibrium E1 is π1 = πT . We also need to check whether r ∗H is higher
r̄ in the present of nominal rigidities. We know that at the equilibrium E1, πT > πopt and
i − πT < i − πopt . Using the definition of πopt , we obtain i − πT = r ∗H > r̄ . Therefore,
at the equilibrium E1, inflation is at target π = πT and as a result the real interest rate is
r ∗H > r̄ .

Stability. The stability analysis of these two steady states is given by the following dy-
namic system:


˙̂πt

˙̂ct

˙̂Γt

 =


0 κ 0

(ψ−1)c
σ J22 J23

−Γ(ψ − 1)
(

1−σ
σ

)
0 J33


︸ ︷︷ ︸

J Jacobian evaluated at the steady state


π̂t

ĉt

Γ̂t

 ,
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where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x ,

J22 = (ρ + δ1)− (r ∗H + (ψ − 1)(π − πT )),

J23 = [(ρ + δ1)− (r ∗H + (ψ − 1)(π − πT ))]
c

Γ
,

and

J33 =
ρ + δ2

σ
− 1− σ

σ
(r ∗H + (ψ − 1)(π − πT )).

The determinant of the 3x3 Jacobian J is given by

det(J) = −κ(ψ − 1)c

σ2[
ρ+ δ2 − (1− σ)(1 + σ)(ψ − 1)(π − πT )− (1− σ)(1 + σ)r∗H + σ(1− σ)(ρ+ δ1)

]
.

If π > πopt , then det(J) < 0, implying that the steady state equilibrium E1 is saddle stable
since det(J) = λ1λ2λ3 and the eigenvalues (λ1,λ2,λ3) have opposite signs. If π < πopt ,
then det(J) > 0, meaning that the steady state with π̃1 < πopt is unstable. Hence only
one stable steady state equilibrium exists.

Q.E.D.

D.4 Proof of Proposition 4

The proof of this proposition is similar to the one of Proposition 3 except that now
π < πELB and it = 0. Let’s recall the equilibrium dynamics for the economy is governed by
the following dynamic system

π̇t = κ(ct + G − ȳ),

ċt

ct
=
−πt − ρ− δ1

σ
+

cσt
σ
δ1qsVa(B , Γt),

Γ̇t = −1 + Γt

[
ρ + δ2

σ
+

1− σ
σ

πt

]
.

In the steady state, π̇t = 0, ċt = 0, and Γ̇t = 0. The π̇t = 0 curve is given by c = ȳ−G .

The Γ̇t = 0 curve is Γ =
[
ρ+δ2

σ
+ 1−σ

σ
π
]−1

, while the ċt = 0 curve (together with Γ̇t = 0)
is represented by

c = (δ1q
s)−1/σB [ρ+ δ1 + π]1/σ

[
ρ+ δ2

σ
+

(
1− σ
σ

)
π

]
≡ Hc (π). (D6)

The ċt = 0 curve given by Hc and the π̇t = 0 are displayed in Figures 9 and 10.
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Some properties of ċt = 0 curve. When π < πELB , c = 0 if π = −(ρ + δ1). The
derivative of Hc(π) with respect to π is

Hc′(π) = (δ1q
s)−

1
σ B [ρ+ δ1 + π]

1
σ−1

(
1

σ2

)
[ρ+ δ2 + (1− σ)π + σ(1− σ) (ρ+ δ1 + π)] .

Hc ′(π̃opt) = 0 where

π̃opt =
−(ρ+ δ2)− σ(1− σ)(ρ+ δ1)

(1− σ)(σ + 1)
= −r̄ .

If π < π̃opt , Hc ′ > 0 and if π > π̃opt , Hc ′ < 0. Hence the ċt = 0 curve is hump shaped
in π with maximal being given by Hc(π̃opt) = (δ1qs)−1/σB(ρ+ δ1 − r̄)1/σ

[
ρ+δ2

σ
− 1−σ

σ
r̄
]
.59

In this configuration, the condition π̃opt < πELB must hold since the ELB binds. This is
satisfied if πT > −r̄ and ψ > r∗H +πT

r̄+πT .

Existence of equilibria. The steady state equilibrium is determined by the intersection
of the π̇t = 0 and ċt = 0 curves, that is

Hc(π) = ȳ − G .

A necessary condition for an equilibrium to exist is 0 < ȳ − G < Hc(π̃opt) which is
satisfied when B > B̄ .

It is useful to consider two cases for the discussion of the equilibrium. In the first case,
we assume that Hc(πELB) < ȳ − G (see the proof of Proposition 5 in Section D.5 for the
condition). We start with the scenario where π > π̃opt and Hc is strictly decreasing in
π. Since 0 < ȳ − G < Hc(π̃opt) and Hc is decreasing, there is an equilibrium inflation
π2 = Hc−1(ȳ − G ). We denote this equilibrium E2. We also consider the scenario where
πELB < π < π̃opt and Hc is strictly increasing in π. Similarly, since Hc is strictly increasing
there is a second equilibrium π

′
2 = Hc−1(ȳ − G ). We denote this equilibrium Ẽ2. The first

case shows that there are two equilibria. In the second case where Hc(πELB) > ȳ −G , only
equilibrium Ẽ2 exists.

Real rate and inflation at equilibrium E2. We now show that at the equilibrium E2,
inflation π = −r ∗L where the r ∗L is the low real interest rate. To do so, first recall that the
r ∗L (in the model without nominal rigidities) is determined by the following equations

F (r) ≡ (δ1q
s)−1/σB [ρ+ δ1 − r ]1/σ

[
ρ+ δ2

σ
−
(

1− σ
σ

)
r

]
= ȳ − G ,

r∗L = F−1(ȳ − G ) < r̄ ,

F ′(r) > 0 if r < r̄ .

59Note that Hc (π̃opt) = F c (πopt).
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Now note that F (−π) = Hc(π). Hence, in equilibrium −π = F−1(ȳ − G ) = r ∗L.
Since π < π̃opt = −r̄ we also have that −π < r̄ . As a result, in equilibrium E2, inflation
π = −r ∗L.

Stability. The stability analysis of these two steady states is given by the following dy-
namic system:


˙̂πt

˙̂ct

˙̂Γt

 =


0 κ 0

− c
σ J22 J23

Γ
(

1−σ
σ

)
0 J33


︸ ︷︷ ︸

J Jacobian evaluated at the steady state


π̂t

ĉt

Γ̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x ,

J22 = ρ + δ1 + π,

J23 = (ρ + δ1 + π)
c

Γ
,

and

J33 =
ρ + δ2

σ
+

1− σ
σ

π.

The determinant of the 3x3 Jacobian J is given by

det(J) =
κc

σ2
[(1− σ)(1 + σ)π + ρ+ δ2 + σ(1− σ)(ρ+ δ1)]

If π > π̃opt , then det(J) < 0, implying that the steady state equilibrium E2 is saddle stable
since det(J) = λ1λ2λ3 and the eigenvalues (λ1,λ2,λ3) have opposite signs. If π < π̃opt ,
then det(J) > 0, meaning that the steady state with π̃2 < π̃opt is unstable. Hence only
the steady state equilibrium E2 is stable.

Note to find π̃. At π̃, we must have F c(π̃) = Hc(−r ∗L). Rearranging this equation
leads to

π̃ = πT +
r ∗L − r ∗H

ψ − 1
,

where π̃ < πopt = πT + (r̄ − r ∗H)/(ψ − 1).
Q.E.D.

D.5 Proof of Proposition 5

This proof builds on the proofs of Propositions 3 and 4. We start by noting that at
πELB , F c(πELB) = Hc(πELB) where F c and Hc are given by equations (D5) and (D6).60

60Note that at the πELB , the real interest rates are identical: −πELB = r∗H + (ψ − 1)(πELB − πT ).
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Recall that πELB = (ψ−1)πT−r∗H

ψ
and is increasing in ψ.

From the proofs of Propositions 3 and 4, we know that the steady state equilibrium
E1 is always stable. For the second stable steady state equilibrium E2 to exist, we must
have Hc(πELB) < ȳ − G . Since πELB > π̃opt = −r̄ , Hc is decreasing which implies that

πELB > Hc−1(ȳ −G ). Using the definition of πELB , we obtain ψ > r∗H +πT

πT−Hc−1(ȳ−G)
. Knowing

from the proof of Proposition 4 that Hc−1(ȳ − G ) = −r ∗L implies that

ψ >
r ∗H + πT

r ∗L + πT
.

Hence there exists a threshold61 ψ̄ ≡ r∗H +πT

r∗L+πT > 1 such that if ψ > ψ̄, there are two stable

steady state equilibria given by E1 and E2. If ψ < ψ̄ only equilibrium E1 exists.
Q.E.D.

D.6 Proof of Proposition 6

This proof is also similar to the ones of Propositions 3, 4, and 5. The ċt = 0 curve is

Hc (π; δ2) = (δ1q)−1/σB [ρ+ δ1 + π]1/σ

[
ρ+ δ2

σ
+

(
1− σ
σ

)
π

]
.

For given parameters, Hc(π; δ2) ≡ F̃ (δ2) is also increasing in δ2 for any inflation rate π.
At the low-real-rate, low-inflation equilibrium E2, the function Hc(π; δ2) is decreasing in π
(since π > π̃opt = −r̄).

We start by assuming that πELB takes iT as a given constant (that is, the definition of

iT = r ∗H + πT is not taken into account), implying that πELB = −iT +ψπT

ψ
is independent

of δ2.
For an equilibrium E2 to exist in the decreasing part of Hc , the following relationship

must hold:

H(πELB ; δ2) ≡ F̃ (δ2) ≤ ȳ − G .

This implies that:

δ2 ≤ F̃−1(ȳ − G ).

As a result, for sufficiently low δ2, (i.e., δ2 below a cutoff), the low-real-rate, low-inflation
steady state (E2) exists. The steady state equilibrium E2 is also stable (see Section D.4).

When we take into account the definition of iT = r ∗H + πT , we obtain that πELB =
−r∗H +(ψ−1)πT

ψ
and it is decreasing in δ2 since dr∗H

dδ2
> 0. That is, a decrease in δ2 leads to

61Note that ψ > r∗H +πT

r∗L+πT > r∗H +πT

r̄+πT > 1 since r∗L < r̄ < r∗H . This shows that when ψ > ψ̄, both

Hc (πELB ) > ȳ − G and π < πELB .
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an increase in πELB , which in turn leads Hc(πELB) to fall.62 This reinforces the result that
a low-real-rate, low-inflation equilibrium exists only for sufficiently small δ2.

Q.E.D.

D.7 Proof of Proposition 7

The proof is similar to the proof of Proposition 6. Recall that the inflation rate at the
ELB stable steady state (E2) is −r ∗L. Since r ∗L < r̄ we have dr∗L

dB
< 0. Therefore, the

inflation rate −r ∗L at the equilibrium is increasing in government debt B .
First note that Hc(π; B) ≡ F̂ (B) increases with B for any inflation rate π. It is also

important to note that ∂F̂ (B)
∂B

= ∂Hc (πELB ;B)
∂δ2

+ ∂Hc (πELB ;B)
∂πELB

∂πELB

∂B
> 0 since πELB > π̃opt ,

∂Hc

∂πELB < 0, ∂πELB

∂B
< 0, and ∂r∗H

∂B
> 0. Therefore, F̂ (B) is strictly increasing in B .

For the ELB equilibrium (E2) to cease to exist, the following relationship must hold:

Hc(πELB ; B) ≡ F̂ (B) > ȳ − G .

This implies that:

B > F̂−1(ȳ − G ) ≡ Bcutoff .

Consequently, when B > Bcutoff , the ELB equilibrium ceases to exist.
If B < B̄ , limB→Bcutoff (π) = πELB . At the cutoff Bcutoff , there is a discontinuity and the

stable ELB equilibrium disappears.
Q.E.D.

D.8 Proof of Proposition 8

This proof is similar to the one of Proposition 3 in Section D.3. The equilibrium
dynamics of the economy are the same except that now the Taylor rule does not satisfy the
Taylor principle

it = max
{

0, r ∗H + πT + ψ(πt − πT )
}

ψ < 1, πT > 0.

Consider the case where i > 0 (i.e., π > πELB). In the steady state, π̇t = 0, ċt = 0,
and Γ̇t = 0. The ċt = 0 curve is given by

c = (δ1q)−1/σB
[
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

]1/σ[
ρ+ δ2

σ
−
(

1− σ
σ

)
(r∗H + (ψ − 1)(π − πT ))

]
≡ F cc (π). (D7)

62Note that ∂F̃ (δ2)
∂δ2

= ∂Hc (πELB ;δ2)
∂δ2

+ ∂Hc (πELB ;δ2)
∂πELB

∂πELB

∂δ2
> 0 since πELB > π̃opt , ∂Hc

∂πELB < 0, ∂πELB

∂δ2
< 0, and

∂Hc

∂δ2
> 0.
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Some properties of ċt = 0 curve. We denote the ċt = 0 curve F cc(π). When π > πELB ,

c = 0 if π = πT + ρ+δ1−r∗H

ψ−1
< πT . For consumption to be positive, we must have

π > πT + ρ+δ1−r∗H

ψ−1
. The derivative of F cc(π) with respect to π is

F cc′(π) = −(δ1q)−
1
σ B
[
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

] 1
σ−1

(
ψ − 1

σ2

)
[
ρ+ δ2 − (1− σ)(r∗H + (ψ − 1)(π − πT )) + σ(1− σ)

(
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

)]
,

where F cc ′(π) = 0 when πopt1 = πT + r̄−r∗H

ψ−1
> πT . If π < πopt1, F cc ′ > 0 and if π > πopt1,

F cc ′ < 0.

Existence of equilibria. The steady state equilibrium is determined by the intersection
of the π̇t = 0 and ċt = 0 curves, that is F cc(π) = ȳ − G . A necessary condition for an
equilibrium to exist is 0 < ȳ − G < F cc(πopt1) which is satisfied when B > B̄ .

It is helpful to consider two cases for the discussion of the equilibrium. In the first case,
we assume that F cc(πELB) < ȳ − G (see the proof of Proposition 5 in Section D.5 for the
condition). We start with the scenario where π > πopt1 and F cc is strictly decreasing in
π. Since 0 < ȳ − G < F c(πopt1) and F cc is decreasing, there is an equilibrium inflation
π1 = F cc−1(ȳ − G ). We denote this equilibrium A1. We also consider the scenario where
πELB < π < πopt1 and F cc is strictly increasing in π. Similarly, since F cc is strictly increasing
there is a second equilibrium π

′
1 = F cc−1(ȳ −G ). We denote this equilibrium Ã1. The first

case shows that there are two equilibria. In the second case where F cc(πELB) > ȳ − G ,
only equilibrium A1 exists.

Stability. The stability analysis of these two steady states is identical to the Proposition 3
(see Section D.3). The determinant of the 3x3 Jacobian J is still represented by

det(J) = −κ(ψ − 1)c

σ2[
ρ+ δ2 − (1− σ)(1 + σ)(ψ − 1)(π − πT )− (1− σ)(1 + σ)r∗H + σ(1− σ)(ρ+ δ1)

]
,

except that now ψ < 1. If π > πopt = πT + r∗H−r̄
1−ψ , then det(J) < 0, implying that the

steady state equilibrium A1 is saddle stable since det(J) = λ1λ2λ3 and the eigenvalues
(λ1,λ2,λ3) have opposite signs. If π < πopt , then det(J) > 0, meaning that the steady
state with π̃1 < πopt is unstable. Hence only one stable steady state equilibrium exists.
Note that the unique (stable) steady state is such that π > πT + r∗H−r̄

1−ψ > πT since ψ < 1

and r ∗H > r̄ . As ψ converges to 1, πT + r∗H−r̄
1−ψ converges to infinity and consequently π

goes to infinity.

Real interest rate at the stable steady state. We need show that r ∗L is the real
interest rate at the stable steady state equilibrium. To do so, first recall that r ∗L (in the
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model without nominal rigidities) is determined by the following equations

F (r) ≡ (δ1q)−1/σB [ρ+ δ1 − r ]1/σ

[
ρ+ δ2

σ
−
(

1− σ
σ

)
r

]
= ȳ − G ,

r∗L = F−1(ȳ − G ) < r̄ ,

F ′(r) > 0 if r < r̄ .

Now note that F (i − π) = F cc(π). To show that the real interest rate i − π at the
stable steady state equilibrium is r ∗L, we need to show thati − π is less than r̄ . This is
shown as follows:

i − π < r̄ ,

r ∗H + (ψ − 1)(π − πT ) < r̄ ,

π > πT +
r ∗H − r̄

1− ψ
= πopt1.

Consequently, at the stable equilibrium the real interest rate is r ∗L < r̄ .
Q.E.D.

D.9 Proof of Lemma 2

Let’s recall the dynamics of the optimization problem

ċt =

(
rt − ρ− δ1

σ1

)
ct +

cσ1+1
t

σ1
δ1qa−σ2

t Γσ2
t ,

ȧt = rtat + wt − Tt − ct ,

Γ̇t = −1 + Γt

[
ρ + δ2

σ2
− 1− σ2

σ2
rt

]
.

Linearizing this system around the steady state (ċt = 0, ȧt = 0, and Γ̇t = 0) with rt = r
leads to the dynamic system:


˙̂ct

˙̂at

˙̂Γt

 =


ρ+ δ1 − r −σ2

σ1

c
a (ρ+ δ1 − r) σ2

σ1

c
Γ (ρ+ δ1 − r)

−1 r 0

0 0 ρ+δ2

σ2
− 1−σ2

σ2
r


︸ ︷︷ ︸

J Jacobian evaluated at the steady state


ĉt

ât

Γ̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x , and
ρ + δ1 − r = δ1qcσ1a−σ2Γσ2 .
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The determinant of the 3x3 Jacobian J is given by

det(J) = (ρ+ δ1 − r)

(
ρ+ δ2

σ2
− 1− σ2

σ2
r

)(
r − σ2

σ1

c

a

)
If r < σ2

σ1

c
a
, then det(J) < 0, implying that the steady state is saddle stable since det(J) =

λ1λ2λ3 and the eigenvalues (λ1,λ2,λ3) have opposite signs.
Combining ρ + δ1 − r = δ1qcσ1a−σ2Γσ2 and Γ−1 = ρ+δ2

σ2
− 1−σ2

σ2
r leads to

c

a
=

[(
ρ + δ1 − r

δ1q

)(
ρ + δ2

σ2
− 1− σ2

σ2
r

)σ2
] 1

σ1

a
1−σ2

σ1 .

Therefore, the stability condition is r <
[(

ρ+δ1−r
δ1q

)(
ρ+δ2

σ2
− 1−σ2

σ2
r
)σ2
] 1

σ1
(
σ2

σ1

)
a

1−σ2
σ1 .

This represents a necessary condition. A sufficient condition is

max{r , 0} <
[(

ρ + δ1 − r

δ1q

)(
ρ + δ2

σ2
− 1− σ2

σ2
r

)σ2
] 1

σ1

,

where max{r , 0} guarantees consumption to be non-negative.
Q.E.D.

D.10 Proof of Lemma 3

First, we examine the effects government debt B on r ∗L and r ∗H . Recall the Euler
equation in the steady state which include the asset and goods market clearing conditions

ρ + δ1 − r = δ1qcσB−δ
[
ρ + δ2

σ
− 1− σ

σ
r

]−σ
.

The derivative of this equation with respect to B is

dr

dB
=

−σB−1(ρ + δ1 − r)(ρ + δ2 − (1− σ)r)

(1− σ)(1 + σ)r + σ(σ − 1)(ρ + δ1)− (ρ + δ2)
.

The numerator is negative, so the sign of dr
dB

depends on the denominator. Hence, we have:

dr ∗H

dB
> 0 if r ∗H > r̄ and

dr ∗L

dB
< 0 if r ∗L < r̄ .

Second, we show how r ∗L and r ∗H change with δ2: dr
dδ2

= −σ(ρ+δ1−r)
(1−σ)(1+σ)r+σ(σ−1)(ρ+δ1)−(ρ+δ2)

.
Similarly we obtain that

dr ∗H

dδ2
> 0 if r ∗H > r̄ and

dr ∗L

dδ2
< 0 if r ∗L < r̄ .

Q.E.D.
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