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FULL EMPLOYMENT AND OUTPUT GAP UPDATE - JUNE QUARTER 20241 

This document details the impact of new data and model updates on the NAIRU and output gap estimates. 
The model average NAIRU estimate, which is SAMM’s preferred model-based estimate, increased from 4.60 
per cent at the time of August SMP to 4.67 per cent. Around -1bps reflects the new flow of data and around 
+8bps reflects technical adjustments since last round. The model average model estimate of the output gap
has been revised from 0.8 per cent to 0.9 per cent in the June quarter. Around 0.2 percentage points reflects
the new flow of data while -0.1 percentage points reflects technical adjustments.

This note focuses on mechanical changes in the model estimates due to data updates and technical revisions; 
a more thorough update to the central estimates as they relate to the economic outlook will be provided at 
the start of the November forecast round.  

Full employment 

Our suite of models indicates that the unemployment gap remains negative, roughly between -1 to -¼ per 
cent, and has narrowed slightly relative to August SMP (Graph 1). The underutilisation gap also remains 
negative and has narrowed slightly. These estimates indicate that the labour market is continuing to gradually 
move towards full employment.  

The model average NAIRU estimate, which is SAMM’s preferred model-based estimate, increased from 4.60 
per cent at the time of August SMP to 4.67 per cent (Graph 2). The increase in the model-based estimate of 
the NAIRU reflects: 

• Data revisions following August SMP and prior to June Quarter national accounts: +4bps
• Model enhancements to full employment suite (see Technical adjustments): +8bps
• New June quarter data: -5bps

If EA were to maintain the -15bps judgement from the August SMP round, the implied NAIRU assumption 
would be 4.52 per cent. 

Graph 1 Graph 2 

Contributions of new data 

New data in the June quarter contributed to a -5bps decrease in the NAIRU model average (Graph 3). The 
decrease was mostly driven by actual AENA outcomes coming in lower than predicted by the full employment 
models, contributing to a -7bps decrease in the NAIRU model average. This was slightly offset by a positive 
contribution from productivity. 

1  We would like to thank  and the rest of SAMM for help with the contents of this note. 
We’d also like to thank PWL and  for support with the NAIRU technical adjustments. 
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The negative contribution of new data to the NAIRU model average in the June quarter follows three quarters 
of upward revisions (Graph 3). This is reflected in a broad-based increase in model estimates of the NAIRU 
over the past year (Graph 4). The exception is the Slack model, which has declined since early 2022. Unlike 
other models in the suite, the Slack model takes signal from alternative measures of labour market slack such 
as job ads, vacancies and labour utilisation.  

Graph 3 

 

Graph 4 

 

Technical adjustments 

Following the August forecasting round, SAMM made several technical adjustments to the full employment 
suite (see Technical Appendix for further detail). This reflects that the full employment models are relatively 
new, and difficulties about how to treat volatile data due to the pandemic. Going forward, the frequency of 
technical adjustments is expected to decline.  

The overall impact of technical adjustments was an increase in the model average NAIRU estimate by 8 basis 
points (Graph 5). The ‘contributions’ of each individual change to the model average NAIRU estimate depend 
on the order to which they are applied.  

While some adjustments are technical in nature, 
others reflect changes in SAMM/PWL’s 
assessment of the data. These are: 

• FWC data: rather than take no signal 
from the September Quarter 2023 FWC 
decision, we are taking partial signal as 
per  (2024). We are 
also taking partial signal from the 
September quarter 2022 FWC decision. 
This results in around a +11bps revision in 
the NAIRU model average. 

• Serially correlated inflation errors: rather 
than reducing the signal that the NAIRU 
takes from inflation over the COVID 
period through a volatility break, we 
instead explicitly model positively 
correlated inflation errors. This reduces 
the signal taken from persistently high 
inflation over that period, reflecting our 
assessment that this mainly reflects 
cost-push shocks. This results in around a 

Graph 5 
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-15bps revision in the NAIRU model 
average. 

Output gap 

Our suite of model estimates suggest the output gap was still positive in June quarter 2024. The estimates 
range from about -0.4 per cent to 1.6 per cent of potential output (Graph 6). The range of estimates is wide, 
reflecting a large degree of uncertainty at this point in the cycle and different perspectives from different 
models in the suite.  

The model average output gap estimate, which is SAMM’s preferred model-based estimate, was revised 0.1 
percentage points in June quarter 2024, from 0.8 per cent to 0.9 per cent (Graph 7). This revision largely 
reflects the effect of new data, while technical adjustments made to the models since August SMP had an 
offsetting effect.  

Graph 6 

 

Graph 7  

 

Contributions of new data 

New data contributed to a 0.2 percentage point increase to the output gap model average for June quarter 
2024. This revision largely reflects changes to estimates of the supply side of the economy as model estimates 
replace the ‘house view’ assumption of potential output growth that is used over the forecast horizon (Graph 
8). All our model estimates of potential output growth are lower than the house view (Graph 9). While trend 
labour productivity is assumed to contribute to potential output growth in the house view, the production 
function model (PF) suggests trend productivity continues to detract from growth while estimates from 
SMOG-PPE implies it has a negligible contribution to growth.  
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Graph 8 

  

Graph 9 

 

Model adjustments 

Following the August forecasting round, SAMM has made some technical adjustments to the model suite. In 
total, these changes result in a 0.1 percentage point downward revision to the model average output gap 
estimate in June quarter 2024. We have: 

• Added SMOG-PPE (  2024) to the suite and to the model average.  

• Switched our baseline estimates in the Joint-Stars model to the ‘ex-ante’ specification of the model (we 
were previously using ‘ex-post). The ex-ante specific deflates the nominal cash rate using forward-looking 
inflation expectations. This better captures how households and businesses make decisions (i.e. they are 
forward-looking). 

• Removed forecasts from the production function model. Filtering over forecasts is a common strategy to 
try and improve the real-time reliability of filtered estimates. However recent analytical work (  
forthcoming) shows filtering over forecasts in the production function model does not improve the real-
time reliability of our estimates.  

 

 
SAMM 
5 September 2024 
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A PRIMER ON THE RBA’S FULL EMPLOYMENT AND POTENTIAL OUTPUT MODELS1

Over the past year the Bank has overhauled its models for estimating full employment and potential output. 
We now have a suite of models for estimating both. Estimates from the suite are used to inform the Bank’s 
assessment of spare capacity that is published in the Statement on Monetary Policy (Graphs 1 and 2). This is 
in line with the Statement on the Conduct of Monetary Policy, which requires the Bank to publish its 
assessment of full employment and potential output (Treasurer and Reserve Bank Board, 2023). Central 
estimates from the model suites also provide the foundations for the assumptions used in EA’s forecasting 
framework and are particularly important for the inflation forecast.

Given recent model changes and the greater focus on full employment and potential output in the economic 
narrative, this note provides a high-level summary of the models that underpin our estimates and their 
limitations. The key takeaways from this note are:

1. All our models in the NAIRU and potential output suites are ‘semi-structural’ models that filter out
cyclical variations and noise in the data from structural trends. Despite the name, the models do not
provide a structural explanation for changes in the estimate. To help hone a coherent narrative, the
estimates could be complemented with further evidence; this could involve routine analytical work,
or more sophisticated approaches drawing on theory, other data or additional modelling.

2. Most of our models infer the NAIRU and potential output by using signal variables such as inflation
and WPI. The models make predictions for these signal variables, and the errors (the difference
between the actual outcome and prediction) inform how much to update estimates of the NAIRU or
potential. These model predictions should not be confused with past or present EA forecasts. At
times model prediction errors can be inconsistent with EA’s forecast errors. This can present a
communication challenge for the Bank.

3. Estimates are uncertain and are subject to revision. There is ongoing work to quantify the real-time
reliability of our estimates. Nevertheless, the model estimates provide a useful foundation for
forming the Bank’s assessment of full employment and potential output.

Graph 1 Graph 2

How do we think about the NAIRU and potential output?

There are multiple definitions of full employment and potential output. As an inflation-targeting central bank, 
we define full employment and potential as the levels of employment and output that are consistent with 

1 This note draws on a large body of work undertaken by Economic Group over the past year to improve the Bank’s estimate of full 
employment and potential output. Links to this body of work are in the Appendix. I’d like to thank  

 
 for their help on this note.  

2

https://www.rba.gov.au/monetary-policy/framework/stmt-conduct-mp-8-2023-12-08.html
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low and stable inflation in the medium term. This definition combines both prices and quantities, which 
means when the economy is operating at potential and full employment, there is both a balance between 
demand and supply in the labour and product markets, and inflation is also consistent with achieving the 
inflation target, at least in the medium to long-run. In the short run, the economy may be operating at 
potential but unemployment may not be at full employment or inflation may not be at target due to frictions 
in the goods and labour market and shocks in the economy.  

How do we estimate the NAIRU and potential output? 

The NAIRU and potential output are latent variables. They cannot be observed directly, but they can be 
inferred indirectly because they affect variables that are more easily observed. For example, if we observe 
high wages growth, we might infer the current unemployment rate is below the NAIRU. Models provide a 
formal framework for using observable data to infer the NAIRU and potential output. Most of the models in 
the potential output and NAIRU model suite are unobserved component models.2 This type of model infers 
unobservable variables from observables variables by separating cyclical variations (i.e. the unemployment 
gap and output gap) and noise in the data from structural trends (i.e. the NAIRU and potential output). 

Figure 1: Decomposition of Unemployment and GDP into Trend and Cycle

Observable variables (also called signal variables) differ between models. We choose signal variables based 
on a combination of economic theory and statistical properties. For example, the Phillips curve posits there 
is a relationship between inflation and spare capacity in the economy. This implies inflation may be a good 
observable variable to take signal from to infer cyclical variations in unemployment and output (i.e. the 
unemployment gap and output gap). Once we have the unemployment and output gap the model can then 
determine whether what is left over is noise or structural (persistent) trends in the data (i.e. the NAIRU and 
potential output). Signal variables for each model are summarised in Table 1. 

Table 1: Signal variables

NAIRU 
models

Underlying 
inflation ULC AENA WPI Productivity

Underutil
isation Unemployment

Labour 
capacity 

utilisation

Jobs ads 
and 

Vacancies

Original  

AENA  

WPI    

WPI, no 
inflation   

Treasury(a)  

Gap model       

2 We also have two production function models in the potential output suite. Like unobserved component models, production 
function models estimate unobserved or trend variables by filtering out the cyclical component from data. Rather than taking 
signal from price variables, production function models estimate potential output by focusing on the factors of production – that 
is labour, capital and productivity. 

GDP   =   Potential output   +   Output gap   +   Error

UnobservableObserved

Structural trend Cyclical variation Noise

Unemployment rate   =   NAIRU   +   Unemployment 
gap

UnobservableObserved

Structural 
trend

Cyclical variation
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Potential 
output 
models

Underlying 
inflation ULC GDP

Part 
rate Productivity

Hours 
worked

Unemployment
/Employment Population Capital

SMOG   

SMOG-PPE     

Joint-stars        

Production 
function(b)       

OECD 
production 
function(b)

  

(a) Based on Ruberl et al (2021).
(b) Production function models are a different class of model compared to unobserved component models. Strictly speaking, 
variables in these models are not signal variables, but they do inform estimates of potential output and the output gap. These 
models are included in the table above to give a more complete picture of what variables inform our estimates of potential output. 
Sources: RBA

More specifically, to infer estimates of unobserved variables unobserved component models exploit the 
historical relationship between observed variables. For example, if the unemployment rate declines and 
inflation does not increase by as much as historical relationships would suggest, then the model interprets 
this to mean there is more spare capacity in the labour market, which implies a lower NAIRU, all else equal. 
To infer estimates the model makes predictions for each signal variable using historical data, and the 
prediction error informs the model how much to update estimates of the NAIRU or potential3. For example, 
if a NAIRU model predicted that inflation would come it at 0.7 per cent in the quarter, but the actual outcome 
was 0.9 per cent, then to explain the higher inflation the model would prefer a larger (negative) gap, and so 
the NAIRU is revised upwards accordingly. Typically, the estimate of the unobserved variable only changes a 
small amount relative to the size of the prediction errors. The rest of the prediction error would be attributed 
to the residual in the signal equation. Model predictions are based on so-called signal equations (see Figure 
2). For inflation, this typically takes the form of a Phillips Curve; for unemployment this typically takes the 
form of an Okun’s law relationship. 

Figure 2: Example of a Signal Equation

What causes changes in the NAIRU and potential estimates?

When there is new data the model updates its estimate of the NAIRU and potential. How much the estimate 
is updated by is determined by the prediction error and model parameters, as discussed above. New data 
typically leads to past estimates being revised. In the case of smoothed estimates (or two-sided estimates), 
past estimates will be updated to take into account the latest data. The latest estimates of smoothed 
estimates are especially vulnerable to large updates as there is no future data to help refine the estimates. 
This problem is known as the end point problem. New data may also lead to different parameters in the 
model which can affect past estimates, but this is generally a minor source of revision forthcoming) . 
Finally, revisions to historical data can change model estimates and possibly model parameters.

Model predictions of signal variables like inflation should not be confused with past or present EA forecasts. 
They are unrelated to forecasts produced by EA and can at times give a different read to EA’s forecasts. For 

3 See  (2023) for more information on state space models (of which unobserved component models are a specific type). 

𝜋𝑡 = 𝑩𝑿𝑡 + 𝜆𝑔𝑎𝑝𝑡 + 𝜖𝜋
𝑡

Signal variable

Vector of observable explanatory variables

Unobserved variable of interest

Noise

https://treasury.gov.au/sites/default/files/2021-04/p2021-164397_estimatingthenairuinaustralia.pdf
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example, Graph 3 compares model predictions from the WPI NAIRU model from August SMP to PWL 
nowcasts (excluding judgement) from different SMP rounds. While PWL’s nowcasts pointed to a gradual 
increase in WPI growth over 2023, the WPI NAIRU model prediction implied steady quarterly growth around 
0.8 per cent. 

Graph 3

There are many reasons why model predictions diverge from EA’s forecasts. First, EA’s nowcasts are generally 
based on a suite of models which incorporate different methods and data to inform the nowcast. On the 
other hand, model predictions are from a single equation in the model. Second, even if the same modelling 
framework is used by EA and in the NAIRU model (e.g. a Phillips Curve), these models may have different 
specifications as the models are used for different purposes. Finally, EA’s nowcasts incorporate judgement, 
while the model predictions do not. For example, in the September quarter 2023 PWL nowcasted strong 
wages growth in anticipation of an usually strong FWC decision on award wages, but the NAIRU models did 
not incorporate that information. Difference between model predictions and EA’s forecasts can present a 
communication challenge for the Bank.  

Limitations of the models

There are limitations to using unobserved component models to estimate the NAIRU and potential output. 
First, there is considerable uncertainty around the model estimates. Sources of uncertainty include 
uncertainty from the data (measurement error, statistical noise), parameter uncertainty, model uncertainty 
and filtering uncertainty which is inherent when trying to inferred unobservable variables through the 
movement of observable variables. Standard error bands capture the uncertainty around the model 
estimates (see for example Graph 2 in  (2023)). Although our standard error bands are wide, they are 
not so wide that we can’t say anything useful about the NAIRU or potential output. For example, we can 
provides probabilities of the labour market being above or below full employment, as in  (2024). 

Second, real time reliability of our model estimates can be a concern to the extent that new data leads to 
large changes in our real time estimates. This can pose a challenge for how the Bank communicates its 
inflation forecasts and its assessment of spare capacity. There is ongoing work to evaluate the real time 
reliability of our estimates. For example, work by  (forthcoming) estimates the expected change in the 
current estimate of the NAIRU from the ‘WPI’ model in the NAIRU suite due to an additional quarter of data. 
It shows the expected change in the current estimate has a standard deviation of 15 basis points, and 95 per 
cent of revisions are expected to be smaller than 30 basis points in absolute value. These estimates account 
for both the arrival of new data and parameter re-estimation.  

Finally, the models do not provide a structural interpretation of changes in the NAIRU or potential output. 
They do not consider the underlying structural factors that determine the long-run productive capacity of 
the economy – for example how much labour households are willing to supply and how much labour 
businesses are willing to employ. Given the considerable uncertainty with estimating the NAIRU and potential 
output, additional evidence that provides a structural interpretation could help corroborate our estimates 
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and communicate them to a wider audience. However, this would require a structural model (such as a SVAR 
or a DSGE) that is equipped to produce these insights, or analysis aimed at teasing out the underlying 
mechanisms. While the Bank has a DSGE model, it is not currently well suited to produce estimates of the 
NAIRU and potential output and would require considerable time and resourcing to develop this capability. 
Aside from structural interpretations, additional evidence can be brought to bear on how conditions in the 
labour market and broader economy currently compare to full employment and potential output, thereby 
indirectly providing corroborating evidence for our estimates.

Structural Analysis & Macroeconomic Modelling 
Economic Analysis Department
9 October 2024
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HOW MUCH SHOULD WE EXPECT OUR NAIRU ESTIMATES TO BE REVISED II: THE ROLE OF 
PARAMETER ESTIMATION1 

This note quantifies the expected magnitude of quarterly changes in our NAIRU estimates, extending previous 
analysis to account for estimation of model parameters, like the slope of the Phillips curve. Using Monte Carlo 
simulation, I approximate the distribution of NAIRU estimates in 2024Q3 conditional on information available 
in 2024Q2 and hence construct a conditional distribution for the quarterly change in the estimate. Focusing 
on one model in the suite, the expected change in the current NAIRU estimate has a standard deviation of 
15 basis points, and 95 per cent of changes are expected to be smaller than 30 basis points in absolute value. 
The bulk of this variation reflects the ‘direct’ influence of incoming data (i.e. it would occur absent parameter 
re-estimation). This suggests that the choice of how frequently to re-estimate the parameters of our NAIRU 
models would not have material implications for the variability of our NAIRU estimates. Also, it is unlikely that 
we would have to explain large parameter-driven changes in our estimates to decisionmakers or the public. 

Introduction 

Estimates of the non-accelerating inflation rate of unemployment (NAIRU) are important inputs into our 
assessment of full employment and inflation forecasts (e.g. Ballantyne, Sharma and Taylor 2024;  2024). 
Better understanding the properties of these estimates is important for managing their role in the policy 
process and is an ongoing area of work for EC. In  (2024b), I quantified the expected magnitude of 
changes in our NAIRU estimates (‘revisions’), which I referred to as ‘revisability’.2 I focused on revisions purely 
due to incoming data, holding model parameters fixed. By abstracting from other sources of revision, 
including parameter re-estimation and data revisions, I provided a lower bound on revisability.  

In this note, I extend my earlier work to account for parameter re-estimation. I provide a more 
comprehensive indication about the likely size of NAIRU revisions and assess the relative importance of 
parameter re-estimation in driving revisions. This analysis can be useful for considering the implications of 
less-frequent re-estimation of our NAIRU models or when planning how to communicate about the NAIRU 
estimates; for example, it could be difficult to explain the reasons for changes in our NAIRU estimates to 
decisionmakers or the public if these are largely driven by changes in model parameters, whereas changes in 
estimates due to inflation prediction errors should be easier to explain.3 

I use Monte Carlo simulation to approximate the distribution of the revision between 2024Q2 and 
2024Q3, conditional on information available in 2024Q2. 

Imagine that we have estimated one of our NAIRU models using data up to 2024Q2 and have computed an 
estimate of the NAIRU. When we receive data for 2024Q3, we will re-estimate the model and produce an 
estimate of the NAIRU in 2024Q3. The properties of the method that we use to estimate the NAIRU (the 
Kalman filter) imply that the expected value of the 2024Q3 estimate will be the same as the 2024Q2 estimate, 
so the revision will be zero in expectation. Of course, the actual revision will be non-zero. How different might 
the 2024Q3 estimate be to the 2024Q2 estimate?  

To answer this question, I use Monte Carlo simulation to approximate the distribution of the input data (e.g. 
inflation) in 2024Q3, accounting for uncertainty about the parameters governing the data-generating process 
(DGP). At each simulated data sample, I re-estimate the NAIRU model and compute the 2024Q3 NAIRU 
estimate. This generates a distribution of revisions in the NAIRU estimate. These revisions can be thought of 
as comprising two components: 1) the ‘direct’ effect of incoming data on the NAIRU estimate given fixed 
model parameters, which is the concept considered in (2024b); and 2) the ‘indirect’ effect of new data 
on the NAIRU estimate via changes in the model’s parameter estimates, which influence how the model 
infers movements in the NAIRU from the data. See the Appendix for details about the methodology. 

1  Thanks to  at 
the SAMM Wednesday Meeting and ER Thursday Coffee for useful input. Replication files here: D24/308747. 

2  The previous analysis made a distinction between revisions and changes in estimates. If 𝑈𝑡|𝑠
∗  is the estimate of the NAIRU in time

𝑡 given information available at time 𝑠, the revision was defined as 𝑈𝑡|𝑡+1
∗ −𝑈𝑡|𝑡

∗  and the change was defined as 𝑈𝑡+1|𝑡+1
∗ −𝑈𝑡|𝑡

∗ .

For ease of exposition, in the current note I refer to the latter concept as a revision.  
3  Differences between model-implied prediction errors and SMP forecast errors could also raise issues, as discussed in  (2024). 

3

https://www.rba.gov.au/publications/bulletin/2024/apr/assessing-full-employment-in-australia.html
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I focus on a single model in the NAIRU suite – the ‘WPI’ model from  and  (2023).4 The 
exercise is hence narrower in scope than in  (2024b), where I explored how revisability varies over time 
and across models, as well as revisability of the model-average estimate (  et al 2024). I keep the scope 
narrow for a few reasons. First, the Monte Carlo exercise is computationally intensive. Second, I have 
encountered numerical convergence issues when estimating the model on earlier sample periods. Finally, it 
is not obvious what to assume about the DGP when interest is in the behaviour of a model-average estimate. 
Given the focus on a single model, the results below should be viewed as indicative. 

The revision has a standard deviation of 15 basis points and 95 per cent of revisions are expected to be 
smaller than 30 basis points in absolute value. 

Graph 1 plots the conditional distribution of the NAIRU revision between 2024Q2 and 2024Q3 when holding 
the parameters fixed at their 2024Q2 values and when re-estimating them. When re-estimating the 
parameters, the standard deviation of the revision is 15 basis points and 95 per cent of revisions are smaller 
than 30 basis points in absolute value. As expected, the size of revisions is larger than implied by the analysis 
in  (2024b), which abstracted from parameter estimation.5  

Graph 1 

 

Graph 2 

 

Graph 2 illustrates the degree of revisability relative to statistical uncertainty, as measured by standard error 
bands.6 A two standard error band around the latest NAIRU estimate is about 1.4 percentage points wide, 
while a two standard deviation band for the expected revision in the NAIRU estimate (a ‘revisability band’) is 
60 basis points wide. The difference in widths reflects differences in the nature of the bands; the standard 
error bands represent uncertainty about the true value of the NAIRU, whereas the revisability bands 
represent how much we might expect the estimate of the NAIRU to change. One way to provide some 
economic context for the size of revisions is to consider what a given revision in the NAIRU implies about 
forecasts of inflation; in MARTIN a 30 basis point increase in the NAIRU increases inflation by about 23 basis 
points after two years. 

Most of the expected variation in revisions reflects the direct effect of incoming data. 

The bulk of the expected variation in the revision is due to the ‘direct’ effect of input data, rather than 
parameter re-estimation; while there is greater dispersion in the distribution of revisions when re-estimating 
the parameters compared with when the parameters are fixed, the difference in dispersion is not large (see 
Graph 1). More precisely, the conditional variance of the revision can be decomposed into three 
components: the ‘direct’ effect of incoming data, holding parameters fixed; the ‘indirect’ effect of parameter 

 
4  The model incorporates correlated measurement errors (  2024a) and the adjustments in  (2024). 
5  The results are not directly comparable to the results in (2024b), since the model used here incorporates recent adjustments 

made by SAMM. Applying the approach in  (2024b) to the current model yields a standard deviation of 11.7 basis points. 
6  The standard error bands capture both ‘filtering uncertainty’ and ‘parameter uncertainty’, as in  (2023a). 
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re-estimation; and a covariance term. The ‘direct’ effect accounts for about 70 per cent of the conditional 
variance or, alternatively, 12 basis points of the total 15 basis point standard deviation.7 

The small contribution of parameter re-estimation suggests that the choice of how frequently to re-estimate 
the parameters of our NAIRU models would not have material implications for the revisability of our NAIRU 
estimates. In contrast, as shown in  (2024b), the frequency at which we update the NAIRU estimates 
themselves can have large implications for revisability; updating the estimates at an annual frequency 
roughly doubles the standard deviation of revisions relative to quarterly updating, making large data-driven 
revisions more likely. Additionally, the small contribution of parameter re-estimation means it is unlikely that 
we would have to explain large parameter-driven revisions in our estimates to decisionmakers or the public 
(which could be challenging). 

Declining parameter uncertainty over time appears to have contributed to a decline in revisability. 

This exercise captures potential time-variation in revisability arising from two sources. First, explicit time-
variation in some model parameters (e.g. structural breaks in variances) can change how incoming data are 
expected to influence the NAIRU estimate. Second, assuming a stable DGP, model parameters should become 
more precisely estimated over time. Consequently, as the sample size grows, incoming data should have a 
smaller effect on parameter estimates and thus a smaller ‘indirect’ effect on the NAIRU estimates. 

To briefly explore how revisability has varied over time, I re-run the Monte Carlo exercise for an earlier period. 
Specifically, I approximate the distribution of the revision between 2017Q4 and 2018Q1, conditional on 
information available in 2017Q4 (based on the current vintage of data).8 The conditional standard deviation 
of the revision in the earlier period was 22 basis points, which is larger than currently (15 basis points). This 
partly reflects greater uncertainty about model parameters in the earlier period; to give a crude sense of this, 
around two-thirds of parameters have a smaller standard error now than in 2017Q4. These results tentatively 
suggest that a real-time estimation exercise, where the model is recursively re-estimated to generate a 
sequence of realised revisions, could overstate how susceptible our current NAIRU estimates are to revision. 

Conclusion 

Variability in our NAIRU estimates of the degree estimated here may pose challenges for how we 
communicate about the role of these estimates in forecasting inflation and assessing full employment. 
Exploring strategies for navigating these challenges is an ongoing area of work for EC. For example,  

 will assess options for updating the NAIRU assumption. On the other hand, the 
results in this note suggest that parameter re-estimation is unlikely to drive material revisions in our NAIRU 
estimates, so it is unlikely that we would have to explain large parameter-driven revisions in our estimates 
to decisionmakers or the public (which could be difficult). 

I have focused on a single model in the suite, though EA’s current ‘preferred’ estimate is a model average. 
The results should therefore be viewed as indicative; the model-average estimate would probably be less 
prone to revision.9 On the other hand, I have abstracted from data revisions, which can be substantial for 
some input series. Capturing the role of data revisions would require real-time estimation exercises.10 

 

Economic Research Department 
15 October 2024 

 
7  Part of the ‘direct’ data effect reflects uncertainty about the parameters governing the DGP, which increases dispersion in the 

input data relative to the case where the parameters are fixed at the MLE (the assumption in  (2024b)). In the current 
exercise, the ‘direct’ data effect is 12.4 basis points, compared with 11.7 basis points when ignoring parameter uncertainty. 

8  The choice of period is somewhat arbitrary; I encountered numerical problems when considering earlier periods. 
9   (2024b) examined the behaviour of quarterly changes in the model-average estimate when recursively estimating the 

NAIRU but without re-estimating model parameters. The sample standard deviation of quarterly changes in the model-average 
estimate was about three-quarters that of the model in this note. As a back-of-the-envelope calculation, scaling down the 
conditional standard deviation of revisions obtained in the current exercise (15 basis points) suggests that the conditional 
standard deviation of revisions in the model-average estimate would be about 11 basis points.  

10  In ongoing work PWL and SAMM have been investigating the properties of ‘star variable’ estimates using recursive estimation 
exercises with real-time data. This also produces ‘vintages’ of star variable estimates, which are useful in forecast evaluations. 
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Appendix 

Let 𝑈𝑡|𝑡
∗ (𝜽̂(𝒀𝑡)) = 𝐸(𝑈𝑡

∗|𝒀𝑡; 𝜽̂(𝒀𝑡))  be the ‘filtered’ estimate of the NAIRU at time 𝑡 , 𝑈𝑡
∗ , which is the 

estimate conditional on the data available up to time 𝑡, 𝒀𝑡 = (𝒚1
′ , … , 𝒚𝑡

′ )′. Given the data and a value of the 

model parameters 𝜽, the filtered estimate is computed using the Kalman filter.11 I write  𝜽̂(𝒀𝑡) to represent 

the maximum likelihood estimate (MLE) of 𝜽 conditional on data up to time 𝑡. So 𝑈𝑡|𝑡
∗ (𝜽̂(𝒀𝑡)) is the filtered 

estimate of the NAIRU when the model parameters are set equal to the MLE given time-𝑡 information.  

I quantify the expected magnitude of the quarterly change in the filtered estimate, which I refer to as 
‘revisions’. Taking into account that new data will change the MLE of the parameters, the revision is 

Δ𝑡:𝑡+1 = 𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀𝑡+1)) − 𝑈𝑡|𝑡

∗ (𝜽̂(𝒀𝑡)). 

Consider decomposing the revision as: 

Δ𝑡:𝑡+1 = [𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀𝑡+1)) − 𝑈𝑡+1|𝑡+1

∗ (𝜽̂(𝒀𝑡))] + [𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀𝑡)) − 𝑈𝑡|𝑡

∗ (𝜽̂(𝒀𝑡))]. 

The first term captures how re-estimation of model parameters changes the NAIRU estimate in period 𝑡 + 1, 
while the second term captures how incoming data change the estimate between period 𝑡 and 𝑡 + 1, holding 
parameters fixed. 

The conditional variance of the revision, Var𝑡(Δ𝑡:𝑡+1), is 

Var𝑡 [𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀𝑡+1)) − 𝑈𝑡+1|𝑡+1

∗ (𝜽̂(𝒀𝑡))] + Var𝑡 [𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀𝑡)) − 𝑈𝑡|𝑡

∗ (𝜽̂(𝒀𝑡))]

+ 2Cov𝑡 [[𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀𝑡+1)) − 𝑈𝑡+1|𝑡+1

∗ (𝜽̂(𝒀𝑡))] [𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀𝑡)) − 𝑈𝑡|𝑡

∗ (𝜽̂(𝒀𝑡))]]. 

This conditional variance has three terms. The first term can be thought of as the ‘indirect’ contribution of 
parameter re-estimation, the second is the ‘direct’ contribution of incoming data (holding parameter 
estimates fixed) and the third is a covariance term.  (2024b) quantified the expected magnitude of 
revisions by computing the second term under the assumption that the parameters governing the DGP are 
known and equal to the MLE. That analysis therefore abstracted from the effect of parameter re-estimation 
and ignored uncertainty about the ‘true’ model parameters, and so could be interpreted as providing a lower 
bound on the true degree of revisability. In large samples, parameter uncertainty will vanish and the 
revisability measure in  (2024b) would hence provide an accurate guide about the expected magnitude 
of actual revisions (abstracting from data revisions). 

To approximate the conditional distribution of revisions (Δ𝑡:𝑡+1), I use Monte Carlo methods. The approach 
involves two key assumptions. First, I assume that the usual asymptotic normal approximation of the 
sampling distribution of the MLE is approximately equivalent to a Bayesian posterior distribution for the 
model parameters.12 This means I can capture uncertainty about the parameters governing the true DGP by 
randomly drawing parameter vectors from a normal distribution centred at the MLE. Accounting for 
uncertainty about the parameters governing the DGP means that the Monte Carlo distribution of input data 
has more dispersion than if I were to condition on a particular value of the model parameters (e.g. the MLE). 
Second, I assume that model shocks are normally distributed. 13  This allows me to approximate the 
conditional distribution of Δ𝑡:𝑡+1 by drawing 𝒚𝑡+1 from a normal distribution with mean and variance given 
by outputs from the Kalman filter, evaluated at each draw of the parameters.14 

The following algorithm details how I approximate the conditional distribution of revisions:  

 
11  See  (2023b) for an overview of state-space models and methods, including the Kalman filter, or Hamilton (1994) for a 

textbook treatment. 
12  This approach is motivated by the Bernstein von Mises theorem, which states that (under some conditions) the sampling 

distribution of the MLE centred around the true parameter value asymptotically coincides with the posterior distribution centred 
around the MLE. The same idea underlies the approach that we use to approximate uncertainty about the NAIRU (  2023a).  

13  Normality of shocks is also assumed in  (2024) when computing the probability of spare capacity in the labour market. 
14  Sequentially drawing parameters and then data given the draws of the parameters means that I am drawing from an 

approximation of a Bayesian posterior predictive distribution for the data. 
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1) Draw 𝜽 ∼ 𝑁(𝜽̂(𝒀𝑡),𝛀(𝒀𝑡)), where 𝛀(𝒀𝑡) is the variance-covariance matrix of the MLE obtained 
using data up to time 𝑡.15 

2) Draw 𝒚̃𝑡+1 ∼ 𝑁(𝒚̂𝑡+1|𝑡(𝜽), 𝑭𝑡+1(𝜽)) , where: 𝒚̂𝑡+1|𝑡(𝜽)  is the expected value of 𝒚𝑡+1  given data 

available at time 𝑡, conditional on the model parameters being equal to the draw of 𝜽 from Step 1); 
and 𝐹𝑡+1(𝜽) is the associated prediction error variance. Both quantities can be obtained using the 
Kalman filter. 

3) Augment the history of input data up to time 𝑡 with the simulated data in time 𝑡 + 1 and let 𝒀̃𝑡+1 =
(𝒚̃𝑡+1

′ , 𝒚𝑡
′ , … , 𝒚1

′ )′. Evaluate: 

a. 𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀𝑡)) by applying the Kalman filter to 𝒀̃𝑡+1 with model parameters 𝜽̂(𝒀𝑡). 

b. 𝑈𝑡+1|𝑡+1
∗ (𝜽̂(𝒀̃𝑡+1))  by applying the Kalman filter to 𝒀̃𝑡+1  with re-estimated model 

parameters  𝜽̂(𝒀̃𝑡+1). 
4) Repeat Steps 1-3 1,000  times and approximate conditional variances or standard deviations by 

Monte Carlo sample analogues. 

This exercise generates a model-implied distribution of potential revisions. An alternative would be to run a 
real-time estimation exercise, where the model is recursively estimated each quarter using available data. 
The sample standard deviation of revisions in such an exercise tells us about the average magnitude of 
revisions over time, but it could give a misleading sense about how prone our current estimates are to 
revision. That said, real-time estimation exercises require weaker assumptions and can capture other sources 
of revisions, such as revisions in input data. The two different approaches can be viewed as complementary. 

The NAIRU models include exogenous (pre-determined) variables on the right-hand side of the Phillips curve 
measurement equations, such as the unemployment rate and inflation expectations. Accounting for 
estimation of the coefficients on these variables requires making assumptions about these variables’ values 
in time 𝑡 + 1. I hold these variables constant in time 𝑡 + 1 at their time-𝑡 values.  

 
15  I use the Huber-White ‘robust’ sandwich estimator of the variance-covariance matrix. 
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