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Abstract

We explore the role of inflation credibility in self-fulfilling debt crises. In particu-
lar, we propose a continuous time model of nominal debt with the potential for self-
fulfilling debt crises as in Calvo (1988) and Cole and Kehoe (2000). We characterize
crisis equilibria conditional on the level of commitment to low inflation. With strong
commitment, which can be interpreted as joining a monetary union or issuing foreign
currency debt, the environment is a version of the one studied by Cole and Kehoe.
The paper contrasts this framework with one in which sovereign debt is nominal and
is vulnerable to ex post devaluation. Inflation is costly, but reduces the real value of
outstanding debt without the full punishment of default. In a debt crisis, a government
may opt to inflate away a fraction of the real debt burden rather than explicitly de-
fault. This flexibility potentially reduces the country’s exposure to self-fulfilling crises.
On the other hand, the government lacks commitment not to inflate in the absence of
crisis. This latter channel raises the cost of debt in tranquil periods and makes default
more attractive in the event of a crisis, increasing the country’s vulnerability. We char-
acterize the interaction of these two forces. We show that there is an intermediate level
of commitment that minimizes the country’s exposure to rollover risk. On the other
hand, low inflation credibility brings the worst of both worlds – high inflation in tran-
quil periods and increased vulnerability to a crisis. Weak inflationary commitment also
reduces the country’s equilibrium borrowing limit. These latter results shed light on
the notions of original sin and debt intolerance highlighted in the empirical literature;
that is, the fact that developing economies issue debt exclusive in foreign currency to
international investors as well as encounter solvency issues at relatively low ratios of
debt-to-GDP.

∗We thank Vincenzo Quadrini for helpful comments.
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1 Introduction

We propose a tractable, continuous-time model of self-fulfilling debt crises with nominal

bonds. Our focus is on the effect of inflation credibility in determining the vulnerability to

rollover risk. The option to inflate may be a powerful tool in response to a crisis, and indeed

may even eliminate a crisis equilibria all together. Our framework allows us to explore when

this is true, why it may fail, and implications for welfare.

We build on the canonical models of Calvo (1988) and Cole and Kehoe (2000).1 In

particular, the sovereign lacks commitment to repay debt, debt is non-contingent, and the

incentive to default depends on the equilibrium interest rate, raising the possibility of multi-

ple equilibria. We extend the Cole and Kehoe framework to nominal debt in an environment

in which the government chooses the inflation rate subject to a utility cost of high infla-

tion. The latter cost proxies for the government’s commitment to low inflation in a manner

reminiscent of the reputational punishment following an outright default. Letting this cost

become arbitrarily large recaptures the Cole and Kehoe framework of a small open economy

issuing foreign currency debt (or a small member of a monetary union facing idiosyncratic

rollover risk).2 We also recast the Cole and Kehoe framework in continuous time, which al-

lows simple, analytical solutions to the government’s value function and associated optimal

policies. We maintain the Cole and Kehoe benchmark of deterministic output to focus on

the uncertainty arising from the bond market.

A major finding of the analysis is that nominal debt has an ambiguous impact on the

possibility of a self-fulfilling debt crisis. To provide intuition for this ambiguity, start with

the Cole and Kehoe model of real bonds and a zero-one default decision. If creditors fail to

roll over bonds, the government is faced with a choice of default versus repaying the principal

on all outstanding debt. For large enough debt levels, default is preferable, and this may be

the case even if the government is willing to service interest payments rather than default,

raising the possibility of self-fulfilling debt crises.

If debt is denominated in domestic currency, the government has a third option; namely,

1The literature on self-fulfilling debt crises is large, some of which is surveyed and discussed in Aguiar
and Amador (in progress). In addition to Calvo (1988) and Cole and Kehoe (2000), our paper is related
to Da-Rocha et al. (forthcoming) which models the interplay of devaluation expectations and default in a
model in which debt is denominated in foreign goods and the government chooses both a real exchange rate
and a debt policy. Recent papers exploring themes involving currency denomination of debt or self-fulfilling
crises include Jeanne (2011) and Roch and Uhlig (2011).

2In a companion paper, Aguiar et al. (2012), we discuss the fiscal externalities that arise in a currency
union in the presence of limited commitment and vulnerability to self-fulfilling debt crises. In the model
presented below, issuing foreign currency debt can be viewed as being a small member of a large currency
union which can credibly commit to low inflation and no bailouts. Moving away from this extreme, mem-
bership in a currency union involves different inflation and debt dynamics than in the small open economy
model presented here. See Aguiar et al. (2012) for details.
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inflate away part of the principal and repay the rest. What is perhaps the conventional

wisdom regarding debt crises is that this third option lowers the burden of repayment and

eliminates the possibility of default, at least for a range of debt stocks. That is, adding an-

other policy instrument (partial default through inflation) reduces the occurrence of outright

default. However, this conclusion must be tempered by the fact that the lack of commitment

to bond repayments also extends to inflation. If the commitment to low inflation is weak,

then high inflation will be the government’s policy even in the absence of a crisis. This drives

up interest rates on debt in the non-crisis equilibrium, making default relatively attractive

in all equilibria. This latter effect can generate an environment in which nominal bonds are

more vulnerable to self-fulfilling runs; that is, the option for partial default makes outright

default more likely.

More precisely, we establish a threshold for inflationary commitment below which an

economy is more vulnerable to crises for a larger range of debt. A middle-range of infla-

tionary commitment generates the conventional wisdom of less vulnerability. It is this level

of commitment in which the economy can best approximate the state-contingent policy of

low inflation in tranquil periods and high inflation in response to a liquidity crisis. Full

commitment to low inflation renders nominal bonds into real bonds, recovering the Cole and

Kehoe analysis.

In terms of welfare, a weak commitment to inflation is strictly dominated by issuing

foreign currency (real) bonds, as the vulnerability to a crisis is greater and inflation is high

in all equilibria. This rationalizes the empirical fact that emerging markets typically issue

bonds to foreign investors solely in foreign currency, so-called “original sin.” A moderate

commitment to inflation makes nominal bonds strictly preferable for intermediate levels of

debt, where the reduction in crisis vulnerability is at work. Moreover, a strong commitment

to low inflation raises the limit on borrowing in the good equilibrium by keeping nominal

rates low. Strong commitment to low inflation also reduces the incentive to save, as reducing

debt is no longer necessary to recapture inflationary commitment in equilibrium. Countries

with newly minted inflation credibility (either through a monetary union or a hard peg) often

increase their borrowing in practice. Our framework captures this through the prediction

that a strong commitment to low inflation reduces the incentive to lower debt levels and

raises the borrowing limit in the non-crisis equilibrium.
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2 Environment

2.1 Preferences and Endowment

We consider a continuous-time, small-open-economy environment. There is a single, freely-

traded consumption good which has an international price normalized to 1. The economy

is endowed with y units of the good each period. We consider an environment in which

income is deterministic, and for simplicity assume that y is independent of time. The local

currency price (relative to the world price) at time t is denoted Pt = P (t) = P (0)e
∫ t
0 π(t)dt,

where π(t) denotes the rate of inflation at time t. To set a notational convention, we let

π : [0,∞)→ R+ denote inflation as function of time and let π(t) or πt denote the evaluation

of π at time t. When convenient, we use π ∈ R+ to denote a particular inflation choice. A

similar convention is used for other variables of interest, like consumption and debt.

The government has preferences over paths for aggregate consumption and domestic

inflation, x(t) = (c(t), π(t)) ∈ R2
+, given by:

U =

∫ ∞
0

e−ρtv(x(t))dt =

∫ ∞
0

e−ρt (u (c(t))− ψ(π(t))) dt. (U)

Utility over consumption satisfies the usual conditions, u′ > 0, u′′ < 0, limc↓0 u
′(c) = ∞,

plus an upper bound restriction: limc→∞ u(c) ≤ ū <∞ needed for technical reasons. Power

utility with a relative risk aversion coefficient greater than one satisfies these conditions.

The disutility of inflation is represented by the function ψ : R+ → R+, with ψ′ > 0 and

ψ′′ ≥ 0. In the benchmark model discussed in the text, we let ψ(π) = ψ0π, ψ0 ≥ 0, and

we restrict the choice of inflation to the interval π ∈ [0, π̄]. In Appendix B, we consider a

strictly convex cost of inflation, and use numerical examples to explore the robustness of

the benchmark’s analytical results. While we do not micro-found preferences over inflation,

a natural interpretation is that ψ is a reduced-form proxy for a reputational cost to the

government of inflation. A large cost represents an environment in which the government

has a relative strong incentive for (or commitment to) low inflation. The reputational cost can

be augmented by real distortions to a good that enters separably from tradable consumption.

Allowing for inflation to reduce the (instantaneous) tradable endowment as well would pose

no difficulties; for example, replacing y(t) = y with y(t) = (1 − π(t))y. The cost ψ is not

state contingent; in particular, the costs of inflation will be independent of the behavior of

creditors, although we discuss implications of relaxing this assumption in section 4.5.

The government chooses x = (c, π) from a compact set X ≡ [0, c̄] × [0, π̄]. The upper

bound on consumption c̄ is assumed to never bind.3 The upper bound on π will bind in the

3As we discuss in the next sub-section, we impose and upper bound on assets (or lower bound on debt),
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benchmark case of linear cost, and as we shall see it implies a discrete choice between low

(zero) inflation or high (π̄) inflation. Let X denote admissible controls: the set of measurable

functions of time x : [0,∞)→ X.

2.2 Bond Contracts and Budget Sets

The government can trade a nominal non-contingent bond. Let Bt denote the outstanding

stock of nominal bonds, and let bt ≡ Bt/Pt denote the real value of outstanding debt.

The government contracts with competitive (atomistic) risk-neutral lenders who face an

opportunity cost in real terms given by the world interest rate r? = ρ. Bonds carry an

instantaneous interest rate that is conditional on the outstanding stock of real debt. In

particular, we consider stationary equilibria in which the government faces a time-invariant

interest rate schedule r : Ω → R+, where Ω = [bmin, bmax] denotes the domain of real

debt permissible in equilibrium. The debt domain is characterized by a maximal debt level

bmax ∈ R+ above which the government cannot borrow. The value of bmax will be an

equilibrium object. For expositional convenience, we put a lower bound on debt (or an

upper bound of assets) of bmin ∈ R−; the analysis is not sensitive to this bound. As the

government is the unique supplier of its own bonds, it understands the effects of its borrowing

decisions on the cost as given by the entire function r.

The evolution of nominal debt is governed by:

Ḃ(t) = P (t)(c(t)− y) + r(b(t))B(t).

Dividing through by P (t) and using the fact that Ḃ/B = ḃ/b+π gives the dynamics for real

debt:

ḃ(t) = f(b(t), x(t)) ≡ c(t)− y + (r(b(t))− π(t))b(t). (1)

We are interested in environments in which r may not be a continuous function. For

technical reasons, we need to place some restrictions on the nature of these discontinuities.

Definition 1. Given a domain Ω = [bmin, bmax], the set R(Ω) consists of functions r : Ω→
R+ such that

(i) r is bounded and lower semi-continuous on Ω;

so an upper bound on consumption does not become an issue. The upper bound on assets is not restrictive
for the analysis.
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(ii) r is such that y − (r(b) − π̄)b ≥ M > 0 for all b ∈ Ω; that is, it is always feasible to

have ḃ = 0 with strictly positive consumption;

(iii) r contains a finite number of discontinuities denoted by b1, b2, ..., bN with bmin < bn <

bn+1 < bmax for all n ∈ {1, 2, .., , N − 1};

(iv) r is Lipschitz continuous on sets Ωn for all n ∈ 0, ..., N , where Ω0 ≡ (bmin, b1); Ωn ≡
(bn, bn+1) for n = 1, ..., N − 1; and ΩN = (bN , bmax).4

Denote the closure of Ωn as Ωn, and note that Ω = ∪Nn=0Ωn.

The debt-dynamics equation (1) implies that b(t) is always continuous; however, ḃ =

f(b, x) may not be continuous in b. For r ∈ R(Ω), continuous policies imply continuous

dynamics except at finitely many points {b1, ..., bN}, at which the dynamics can change

discretely.

For a given policy x, debt dynamics are governed by f(b, x) = c + (r(b) − π)b − y, as

defined in equation (1). It will be useful to also define:

f∗(b, x) ≡ c− y − πb+ lim inf
b′→b

r(b′)b′, (2)

which represents the debt dynamics associated with a given policy under the most favorable

interest rate for the government in the neighborhood of b. These alternative dynamics will

be relevant at points of discontinuity in r(b).

2.3 Limited Commitment

The government cannot commit to repay loans or commit to a path of inflation. At any

moment, it can default and pay zero, or partially inflate away the real value of debt. As

noted above, we model the cost of inflation with the loss in utility ψ(π). We model outright

default as follows. If the government fails to repay outstanding debt and interest at a point

in time, it has a grace period of length δ in which to repay the bonds plus accumulated

interest.During this period, it cannot issue new debt, but is also not subject to the full

sanctions of default. If it repays within the grace period, the government regains access

to bond markets with no additional repercussions. If the government fails to make full

repayment within the grace period, it is punished by permanent loss of access to international

debt markets plus a potential loss to output. We let V represent the continuation value after

a default, which we assume is independent of the amount of debt at the time of default.5

4That is, for all n, there exists Kn <∞ such that r(b′)− r(b′′) ≤ Kn|b′ − b′′| for all (b′, b′′) ∈ Ωn × Ωn.
5For concreteness, we can define V = u((1− τ)y)/ρ as the autarky utility, where τ ∈ [0, 1) represents the

reduction in endowment in autarky.
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We assume that V > u(0)/ρ, so the country prefers default to consuming zero forever. We

discuss the payoff to utilizing the grace period in section 4.1.

Modeling limited commitment in this manner has a number of advantages. First, by

separating the costs of inflation from the costs of outright default, we can consider environ-

ments in which the two are treated differently by market participants. It may be the case

that the equilibrium costs or “punishment” of inflation may be greater or less than the that

of outright default, and the model encompasses both alternatives. For example, the high

inflation of the 1970s in the US and Western Europe eroded the real value of outstanding

bonds; however, the governments did not negotiate with creditors or lose access to bond

markets, as typically occurs in cases of outright default. A short-coming of the analysis is

we do not present a micro-founded theory of why these costs may differ in practice; we take

them as primitives, and explore the consequences for debt and inflation dynamics.

Second, in practice countries can exit default status by repaying outstanding debt in full.

We proxy this with a grace period, which allows the government to avoid the full punishment

of default by repaying outstanding principal and interest. As we shall see, in equilibrium the

government will opt for full repayment only if the payoff to doing so weakly dominates V . In

this manner, a grace period allows a tractable, continuous time representation such that it

is feasible to repay a positive stock of debt even if creditors do not purchase new bonds.6As

with the costs of inflation and default, we treat δ as a primitive of the environment.

3 No-Crisis Equilibria

We first characterize equilibria in which creditors can commit to (or coordinate on) rolling

over debt. In particular, we assume that the government can always trade bonds at an

equilibrium schedule r with no risk of a rollover crisis. There remains limited commitment

on the part of the government with regard to inflation and default.

We solve the government’s problem under the restriction that default (with or without

subsequent repayment) is never optimal on the domain Ω. This is not restrictive in equilib-

rium.In particular, in the deterministic environment under consideration in this section, the

equilibrium restricts debt to a domain on which it is never optimal to default.

For a given Ω; r ∈ R(Ω); and for all b0 ∈ Ω; the government’s value function can be

6An alternative formulation is the one in He and Xiong (2012) in which each debt contract has a random
maturity, which generates an explicit iid sequencing of creditors at any point in time. Long-maturity debt
poses tractability issues in solving for an equilibrium given that the interest rate charged to new debt is a
function of the inflation policy function over the bond’s maturity horizon.
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written as

V (b0) = max
x∈X

∫ ∞
0

e−ρtv(x(t))dt, (P1)

subject to:

b(t) = b0 +

∫ t

0

f(b(t), x(t))dt, and

b(t) ∈ Ω for all t.

Before discussing the solution to the government’s problem, we define our equilibrium

concept:

Definition 2. A Recursive Competitive Equilibrium is an interval Ω = [bmin, bmax], an

interest rate schedule r : Ω→ R+, a consumption policy function C : Ω→ [0, c̄], an inflation

policy function Π : Ω→ [0, π̄], and a value function V : Ω→ R such that

(i) r ∈ R(Ω);

(ii) given (Ω, r) and for any b0 ∈ Ω, the policy functions combined with the law of mo-

tion (1) and initial debt b0 generate sequences x(t) = (C(b(t)),Π(b(t))) that solve the

government’s problem (P1) and deliver V (b0) as a value function;

(iii) given C(b) and Π(b), bond holders earn a real return r?, that is, r(b) = r? + Π(b) for

all b ∈ Ω; and

(iv) V (b0) ≥ V for all b ∈ Ω.

The final condition imposes that default is never optimal in equilibrium. In the absence of

rollover risk, there is no uncertainty and any default would be inconsistent with the lender’s

break-even requirement. As we shall see, condition (iv) imposes a restriction on the domain

of equilibrium debt levels.7

We solve the government’s problem using the continuous time Bellman equation. Let

H(b, q) : Ω× R→ R be defined as

H(b, q) = max
x∈X
{v(x) + qf(b, x)}

= max
(c,π)∈X

{u(c)− ψ(π) + q (c− y + (r(b)− π)b)} .

7It must also be the case that the government never prefers to default and then repay within the grace
period. We postpone that discussion until section 4.1.
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Note thatH is defined conditional on an equilibrium interest rate schedule, which we suppress

in the notation. The Hamilton-Jacobi-Bellman equation is:

ρV (b)−H(b, V ′(b)) = 0. (HJB)

For points of discontinuity in r(b), it is also useful to define H∗(b, q) : Ω× R→ R as

H∗(b, q) = max
x∈X
{v(x) + qf∗(b, x)} (3)

= max
(c,π)∈X

{
u(c)− ψ(π) + q

(
c− y + lim inf

b′→b
(r(b′)− π)b′

)}
,

which is the Bellman equation under the government’s “best-case” dynamics f∗(b, x). As we

shall see below, this will provide an upper bound on the value function in the neighborhood

of points of discontinuity in r(b).

We proceed to show that the value function is the unique solution to (HJB). There

are two complications. The first is that r may not be continuous, so the HJB may be

discontinuous in b. The second is that the value function may not be differentiable at all

points, so its derivative, V ′(b), may not exist. Nevertheless, the value function is the unique

solution to (HJB) in the viscosity sense. We use the definition of viscosity introduced by

Bressan and Hong (2007) for discontinuous dynamics adapted to our environment:

Definition 3. For a given Ω and r ∈ R(Ω), a viscosity solution to (HJB) is a continuous

function w ∈ C0(Ω) such that for any ϕ ∈ C1(Ω) we have:

(i) If w − ϕ achieves a local minimum at b, then

ρw −H∗(b′, ϕ′(b)) ≤ 0;

(ii) If the restriction of w − ϕ to Ωn achieves a local maximum at b ∈ Ωn, then

ρw −H(b′, ϕ′(b)) ≥ 0,

where Ωn is defined in definition 1;

(iii) For b ∈ {bmin, b1, b2, ..., bmax}, ρv(b) ≥ maxπ∈{0,π̄}
u(y−(r(b)−π)b)−ψ(π)

ρ
.

We make a few remarks on these conditions. First, suppose V is differentiable at b and r

is continuous at b. In this case, a local max or min of V −ϕ implies V ′(b) = ϕ′(b). Moreover,

continuity of r at b implies that H∗(b, ϕ
′(b)) = H(b, ϕ′(b)). The first two conditions then are

equivalent to the classical Bellman equation ρV −H(b, V ′(b)) = 0.
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Now suppose that r is continuous at b, so that b is in the open set Ωn, but V has a kink

at b. As H(b, q) is convex in q, a few steps show the two conditions imply that V cannot

have a concave kink at b.8 That is, V is semi-convex at b, which means the smooth portions

of the function can be either concave or convex, but the non-differentiable point must be

convex.9

Finally, suppose that r jumps discretely, up or down, at b, so b = bn for some n ∈
{1, . . . , N}. To make things concrete, suppose bn > 0 and thus the H∗ selects the lowest in-

terest rate: lim infb′→bn r(b
′). Condition (i) then states that the value function is weakly less

than if the government could carry over the low interest rate into the neighboring domain.

If bn < 0, the condition states the government cannot carry over a high interest rate on its

assets. This provides a natural upper bound on the the value function at points of discon-

tinuity. The government always has the option of staying put at the point of discontinuity,

and thus the value function is weakly greater than the steady state value function, which

is condition (iii). Note that condition (ii) only refers to the open sets on which the interest

rate is continuous, and thus condition (iii) provides the relevant floor on the value function

at the boundary points.

The following states that we can confine attention to the viscosity solution of (HJB):

Proposition 1. For a given Ω and r ∈ R(Ω), the government’s value function is the unique

bounded Lipschitz-continuous viscosity solution to (HJB).

We now characterize equilibria in the no-rollover-crisis environment. We first state that

r(b) takes two values, r? and r? + π̄, and is monotone in b.

Lemma 1. In any no-crisis equilibrium, r(b) ∈ {0, π̄} and is non-decreasing for all b ∈ Ω.

In particular, in any equilibrium there exists a bπ such that r(b) = r? for b ∈ [bmin, bπ] and

r(b) = r? + π̄ for b ∈ (bπ, bmax].

The intuition for monotonicity follows from the fact that the incentives to inflate increase

with b. The one subtlety is that the incentives to inflate decrease with consumption, and so

the result also relies on the fact that consumption is non-increasing in b, which is established

below. Given that the costs of inflation are linear, there may exist a debt level in which the

8In particular, suppose V (b) has a concave kink at b ∈ Ωn; that is, V ′(b−) > V ′(b+). This implies
that we can find ϕ such that V − ϕ has a maximum at b, with ϕ′(b) ∈ [V ′(b+), V ′(b−)]. Using the fact
that V is smooth as we approach from the left or right of b, continuity of V and r implies that ρV (b) =
H(b, V ′(b−)) = H(b, V ′(b+)). The fact that V ′(b−) > V ′(b+) implies that c(b−) > c(b+) and π(b−) ≤ π(b−),
which in turn implies that H2(b, V ′(b−)) > 0 > H2(b, V ′(b+)). Strict convexity of H(b, q) in q then implies
that H(b, q) > H(b, V ′(b−)) = ρV (b) for q ∈ (V ′(b+), V ′(b−)), which violates condition (ii).

9More precisely, w(b) is semi-concave (with linear modulus) on Ωn if there exists C ≥ 0 such that
w(b + h) + w(b − h) − 2w(b) ≤ C|h|2, for all b, h ∈ R such that [b − h, b + h] ∈ Ωi. A function w(b) is
semi-convex if −w(b) is semi-concave.
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government is indifferent between inflation rates. Nevertheless, the requirement that r(b) be

lower semi-continuous implies that the point of indifference produces zero inflation.

The threshold bπ characterizes the equilibrium r(b). We can define an interval which

contains all possible bπ:

Definition 4. The values b̄π, bπ are given by the unique solutions to:

ψ0 = u′(y − r?b̄π)b̄π, and ψ0 = u′(Cπ(bπ))bπ

where b 7→ Cπ(b) ∈ (0, y − r?b) is defined uniquely by10

u(y − r?b)− u(Cπ(b)) + ψ0π̄ + u′(Cπ(b))(Cπ(b)− y + r?b) = 0. (4)

Note that both b̄π and bπ exist and are such that y/r? > b̄π > bπ > 0. The threshold

b̄π relates to the optimal decision of the government regarding inflation when it faces the

interest rate r? and consumes c = y−r?b. As r? = ρ, there is no incentive to save or borrow if

it has zero inflation and faces the interest r?. From (HJB), and using the envelope condition

−V ′(b) = u′(c) = u′(y− r?b), low inflation is optimal as long as u′(y− r?b)π̄b−ψ0π̄ ≥ 0. For

b > b̄π, this condition is violated. The threshold bπ and the associated function Cπ relate

to the solution of (HJB) when the interest rate is r? + π̄. In particular, as discussed below,

Cπ(bπ) denotes the optimal consumption assuming high inflation in the neighborhood above

bπ, and the condition defining bπ ensures that optimal consumption is consistent with high

inflation.

The following proposition characterizes the set of recursive competitive equilibria and

the associated equilibrium objects:

Proposition 2. All recursive competitive equilibria can be indexed by bπ ∈ [bπ, b̄π] and are

characterized as follows. For a given bπ, define the following extended value function V̂ :

(−∞, y/r?)→ R,

V̂ (b) =


u(y−r?b)

ρ
if b ≤ bπ

V̂ (bπ)− u′(Cπ(bπ))(b− bπ) if b ∈ (bπ, b
∗]

u(y−r?b)−ψ0π̄
ρ

if b ∈ (b∗, y/ρ),

where b∗ = (y − Cπ(bπ))/r?. Define b̄ = max{b ≤ y/r? |V ≤ v̂(b)}. Then for any bmax ≤ b̄

and bmin ∈ R−, define Ω = (bmin, bmax], and the following constitutes a recursive equilibrium:

10To see that Cπ(b) exists, fix b and consider the function G(c) = u(y−r?b)−u(c)+ψ(π̄)+u′(c)(c−y+r?b),
which is the left hand side of (4). Note that G′(c) > 0 for c < y − r?b, G(y − r?b) = ψ(π̄) > 0, and
limc↓0G(c) < 0 by the condition that limc↓0 u

′(c)→∞.
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(i) The interest rate schedule r : Ω→ {r?, r? + π̄} defined by

r(b) =

r? if b ≤ bπ

r? + π̄ if b ∈ (bπ, bmax];

(ii) The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;

(iii) The consumption policy function C : Ω→ R+ defined by

C(b) =

y − r?b if b ≤ bπ or b ≥ b?

Cπ(bπ) if b ∈ (bπ, b
?); and

(iv) The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if b ≤ bπ

π̄ if b ∈ (bπ, b̄].

Proposition 2 characterizes the set of possible equilibria, in which each equilibrium is

indexed by the value of bπ. That is, each equilibrium corresponds to an interest rate function

which has a jump at bπ. If bπ ≥ b̄, then inflation is zero for the entire domain Ω as default

is preferable to the consequences of inflation. More generally, each value bπ ∈ [bπ, bπ] ∩ Ω

specifies a distinct equilibrium with an interest rate function that jumps up at bπ.

To gain some intuition for the nature of the equilibrium, note that the function V̂ in the

proposition consists of three segments. For b ≤ bπ, V̂ (b) is the steady-state value function

with low inflation when the government faces a low interest rate. As noted above, low

inflation is the best response to r = r? for b ≤ b̄π, given this value function. Moreover, this

value function and c = y − r?b satisfies (HJB) for b < bπ. Similarly, the final segment of

V̂ is the steady-state value function with high inflation when the government faces a high

interest rate. This function satisfies (HJB) for b > bπ. These two functions are labelled V1

and V3, respectively, in figure 1. While the segments satisfy (HJB) locally, they are not a

viscosity solution over the entire domain Ω. This is due to the fact that they are not equal

bπ, and so stitching V1 and V3 together is not continuous. Note that viscosity condition (i)

implies that V1 is an upper bound on the value function in the neighborhood of bπ.

The difference at bπ is equal to the discounted cost of inflation ψ0π̄
ρ

. In the neighborhood

above bπ, the government’s optimal response to the jump in the interest rate is to reduce debt

to bπ, and not to remain in the high-inflation zone indefinitely. It therefore will consume less
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than the steady state consumption level y−(r(b)− π̄)b = y−r?b. Given the value function at

bπ, we can solve for optimal consumption from (HJB). The consumption that satisfies (HJB)

at V̂ (bπ) is given by Cπ(bπ), introduced in definition 4, which uses the envelope condition

−V̂ ′(b+
π ) = limb↓bπ u

′(C(b)) = u′(Cπ(bπ)). Note that V̂ ′(b−π ) 6= V̂ ′(b+
π ), so the value function

has a kink at bπ. This kink reflects that consumption equals y − r?b to the left of bπ, but

is strictly lower to the right given the incentive to save. To ensure that this consumption

is indeed the solution to (HJB) at bπ, high inflation must be optimal. This is the case if

ψ0 < u′(Cπ(bπ))b for b > bπ, which motivates the definition of bπ in definition 4.

As r? = ρ, there is no incentive to vary consumption while the government saves. That

is, the desire to save is in response to the discontinuity in the interest rate at bπ, not because

the current (real) interest rate is high relative to impatience. Thus C(b) = Cπ(bπ) over the

domain of active savings, and then jumps to y−r?bπ at bπ. This is depicted as the horizontal

segment of the consumption policy function depicted in figure 1 panel (c). The domain of

active savings extends to b∗, at which point y − Cπ(bπ)b∗ = 0, and consumption is equal

to the steady state consumption level. At this level of debt, the government is indifferent

to saving towards bπ or remaining at that debt level forever. From the envelope condition,

−V̂ ′(b) = u′(Cπ(bπ)) for b ∈ (bπ, b
∗); that is, the slope of the value function is constant over

this region. This is represented by the linear portion V2(b) depicted in figure 1. Note that

V2 is tangent to V3 at b∗, as by definition Cπ(bπ) is the steady state consumption at b∗.

3.1 Comparative Statics

We are interested in how debt dynamics depend on the inflationary regime. Towards this

goal, consider an increase in the cost of inflation ψ0 to ψ′0 > ψ0. To characterize what

happens to the set of monotone equilibria, note that the expressions in definition 4 imply

that bπ and b̄π increase. Let b′π and b̄′π denote the new thresholds, respectively.

First consider bπ ∈ [b′π, b̄π]; that is, a point of discontinuity that is consistent with equi-

librium for both ψ0 and ψ′0. The low-inflation steady state value function remain unaffected

by the increase in ψ0, while the high-inflation steady state value function shifts down in a

parallel fashion by the amount
(ψ′

0−ψ0)π̄

ρ
. From the expression for Cπ in definition 4, Cπ(bπ)

declines, which means a higher savings rate and steeper slope associated with the linear por-

tion of the value function. The decline in Cπ implies that b∗ = (y − Cπ(bπ))/r? increases as

well, so the domain for the linear portion increases. The steeper slope and larger domain for

the linear segment is consistent with the shift down and strict concavity of the high-inflation

steady state value function. The new value function is strictly below the original for all

b > bπ. For a given value of V , this implies that the amount of debt that can be sustained
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Figure 1: Government’s Solution with No Crisis
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has decreased (as long as b̄ is higher than bπ). This is shown in panel (a) of Figure 2.

Consider now what happens to the equilibrium indexed by bπ = bπ. The fact that bπ < b′π

implies that a discontinuity at bπ is no longer consistent with equilibrium at the increased

cost of inflation ψ′0. In panel (b) of figure 2 we contrast the value function for an initial

equilibrium bπ = bπ with a new equilibrium bπ = b′π. The region (bπ, b
′
π] shifts from being a

high-interest rate zone to a low-interest rate zone. The new optimal policy of low inflation

in this zone implies higher welfare, as the government avoids the costs of inflation. That

is, the value function is now higher in that region, and by continuity will be higher even at

debt levels in which the interest rate jumps up. This reflects the increased proximity to the

low-inflation zone. However, given that the linear portion of the value function has a steeper

slope under ψ′0, eventually the new value function intersects the original one from above (see

panel (b) of figure 2). Note that depending on the level of V , the borrowing limit b̄ can shift

up or down. A similar analysis holds for bπ ∈ (b̄π, b̄
′
π]. Discontinuities at b̄′π ≥ bπ > b̄π were

not consistent with equilibrium under the original ψ, but now become supportable under ψ′0.

This opens a larger potential domain for low interest rates.

The implication for savings of an increase in ψ is therefore mixed. In panel (a), the

savings rate is always weakly greater when ψ0 is higher, and strictly so for the range (bπ, b
∗′).

In panel (b), when bπ shifts up as a result of the increase in ψ0, there is a region (bπ, b
′
π)

in which the low-ψ economy is saving while the high-ψ economy is not. This reflects that

inflation rate is higher in this region for the low-ψ economy, and savings is the method to

regain commitment to a low inflation rate. As we let ψ0 go to infinity, the low inflation

zone covers the entire space, and savings is zero everywhere. In this limiting case, a strong

commitment to low inflation is consistent with weakly higher steady state debt levels and a

higher maximal debt limit.

4 Equilibria with Rollover Crises

The preceding analysis constructed equilibria in which bonds were risk free. We now consider

equilibria in which investors refuse to purchase new bonds and the government defaults

in equilibrium. This links the preceding analysis of nominal bonds with Cole and Kehoe

(2000)’s real-bond analysis of self-fulfilling crises and allows us to explore the role of inflation

credibility in the vulnerability to debt crises.

Recall that bonds mature at every instant. If investors refuse to roll over outstanding

bonds, the government will be unable to repay the debt immediately. However, the gov-

ernment has the option to repay within the grace period δ to avoid the full punishment of

default. We first characterize the sub-problem of a government that enters the default state
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Figure 2: The Role of Inflation Commitment Absent a Crisis: Increase in ψ
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but repays the debt within the grace period. We then characterize the government’s full

problem and characterize equilibria with rollover crises.

4.1 The Grace-Period Problem

To set notation, let W (b0, r0) denote the government’s value at the start of the grace period

with outstanding real bonds b0 carrying a nominal interest rate r0. We re-normalize time

to zero at the start of the grace period for convenience. To avoid permanent default, the

government is obligated to repay the nominal balance on or before date δ, with interest

accruing over the grace period at the original contracted rate r0. We impose the pari passu

condition that all bond holders have equal standing; that is, the government cannot default

on a subset of bonds, while repaying the remaining bondholders. Therefore, the relevant

state variable is the entire stock of outstanding debt at the time the government enters the

grace period.
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The function W (b0, r0) is the solution to the following problem:

W (b0, r0) = max
x∈X

∫ δ

0

e−ρtv(x(t))dt+ e−ρδV (0), (5)

subject to :

ḃ(t) = c(t) + (r0 − π(t))b(t)− y

b(0) = b0, b(δ) = 0, ḃ(t) ≤ −π(t)b(t).

(6)

where for the grace-period problem the controls x and admissible set X refer to measurable

functions [0, δ]→ X. The V (0) in the objective function represents the equilibrium value of

returning to the markets with zero debt (which is to be determined below in equilibrium)

at the end of the grace period. Note that if the government repays before the end of the

grace period, it could exit default sooner. However, as it has no incentive to borrow again

once b = 0, it is not restrictive to impose no new debt for the entire grace period. The

final constraint, ḃ(t) ≤ −π(t)b(t) is equivalent to the constraint of no new nominal bonds,

Ḃ(t) ≤ 0.

The grace period problem is a simple finite-horizon optimization with a terminal condition

for the state variable. We do not discuss the solution in depth, but highlight a few key

implications. An important feature of (5) is that W (b0, r0) is strictly decreasing in both

arguments. Moreover, for a given value of V (0), W is decreasing in ψ0, and strictly decreasing

if positive inflation is chosen for a non-negligible fraction of the grace period. In order to

repay its debt quickly, the government has an incentive to inflate away a portion of the

outstanding debt. The cost of doing so is governed by ψ0.

Regarding a piece of unfinished business left over from the no-crisis analysis, with W

in hand we can state explicitly why the government would never choose to enter default

in the non-crisis equilibria discussed in the previous section. In particular, the government

could always mimic the grace period policy in equilibrium. The one caveat is that r0 is

held constant in the grace period, while the equilibrium interest rate varies with b outside of

default. However, as debt is strictly decreasing and r(b) must be monotone in any no-crisis

equilibrium, this caveat works against choosing to default.

4.2 Rollover Crises

If investors do not roll over outstanding bonds, the government will be forced to default, but

may decide to repay within the grace period to avoid V . If such an event occurs at time t,
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then the government will repay within the grace period if and only if W (bt, rt) ≥ V . The

weak inequality assumes that the government repays if indifferent.

We assume that a rollover crisis is an equilibrium possibility only if W (bt, rt) < V . This

equilibrium selection assumption is motivated as follows. Suppose that lenders call in their

bonds and the government repays within the grace period. The outstanding bonds would

carry a positive price in a secondary market and individual lenders would be willing to

purchase new bonds at the margin from the government at a positive price. Indeed, the face

value of the bonds will be paid in full. It is an artifact of continuous time that a rollover crisis

induces (temporary) default in a region of the state space in which the government is willing

to honor all nominal obligations within the specified interval of time. Such crises would

not survive in discrete-time equilibria. In particular, a grace period of δ = 1 in a discrete

time formulation with one-period bonds would rule out all such crises (as in Cole and Kehoe

(2000)). We avoid such artificial outcomes through the equilibrium selection assumption.

On the other hand, a rollover crisis when W (bt, rt) < V has a natural interpretation.

If this inequality holds and all other investors refuse to roll over their bonds, an individual

lender would have no incentive to extend new credit to the government. Assuming each

lender is infinitesimal, such new loans would not change the government’s default decision.

Moreover, as the government would not repay this new debt, such lending would not be

challenged by outstanding bondholders. Such crises would survive in a discrete-time formu-

lation.

Similar to Cole and Kehoe (2000) we assume that, as long as W (bt, r(bt)) < V , a rollover

crisis occurs with a Poisson arrival probability equal to λ. The value of λ will be taken as a

primitive in the definition of an equilibrium below, as is δ, the grace period. We can define

an indicator function for the region in which outright default is preferable to repayment

within the grace period:

Definition 5. Let I : R2 → {0, 1} be defined as follows:

I(b0, r0) =

1 if W (b0, r0) < V

0 otherwise

The Poisson probability of a crisis at time t can then be expressed as λI(bt, rt). Given an

equilibrium r(b), we shall refer to the set {b ∈ Ω|I(b, r(b)) = 1} as the “crisis zone,” and its

complement in Ω as the “safe zone.”
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4.3 The Government’s Problem

We now state the problem of the government when not in default. As in the no-crisis

equilibrium of section 3, we assume the government faces a bond-market equilibrium char-

acterized by domain Ω and a r ∈ R(Ω), as well as the parameters δ and λ defining the

duration of the grace period and the Poisson probability bonds are called conditional on

I(bt, r(bt)) = 1. Let T ∈ (0,∞] denote the first time loans are called (i.e., a rollover crisis

occurs). From the government’s and an individual creditor’s perspective, T is a random

variable with a distribution that depends on the path of the state variable. In particular,

Pr(T ≤ τ) = 1− e−λ
∫ τ
0 I(b(t),r(b(t)))dt. The realization of T is public information and it is the

only uncertainty in the model. The government’s problem is:

V (b0) = max
x∈X

{∫ ∞
0

e−λ
∫ t
0 I(b(s),r(b(s))ds−ρtv(x(t))dt (P2)

+λV

∫ ∞
0

e−λ
∫ t
0 I(b(s),r(b(s)))ds−ρtdt

}
subject to:

b(t) = b0 +

∫ t

0

f(b(t), x(t))dt and

b(t) ∈ Ω for all t.

As in the non-crisis case, we impose the equilibrium restriction on Ω that default is never

optimal.11

The associated Bellman equation is:

(ρ+ λIb)V (b)− λIbV = maxx∈X {v(x)− V ′(b)f(b, x)} (HJB’)

= max
(c,π)∈X

{u(c)− ψ(π)− V ′(b) (c+ (r(b)− π)b− y)} ,

where Ib is shorthand for the crisis indicator I(b, r(b)). As in the no-crisis case, the govern-

ment’s value function is the unique solution to this equation:

Proposition 3. For a given Ω and r ∈ R(Ω), the government’s value function defined in

(P2) is the unique bounded Lipschitz-continuous viscosity solution to (HJB’).

4.4 Crisis Equilibrium

We can now state the definition of equilibrium with crisis:

11That is, V (b) ≥ max〈V ,W (b, r(b))〉 for all b ∈ Ω will be satisfied in any equilibrium.
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Definition 6. A Recursive Competitive Equilibrium with Crisis is an interval Ω = [bmin, bmax],

an interest rate schedule r, a consumption policy function C : Ω→ [0, c̄], an inflation policy

function Π : Ω→ [0, π̄], and a value function V : Ω→ R such that

(i) r ∈ R(Ω);

(ii) given (Ω, r) and for any b0 ∈ Ω, the policy functions combined with the law of mo-

tion (1) and initial debt b0 generate sequences x(t) = (C(b(t)),Π(b(t))) that solve the

government’s problem (P2) and deliver V (b0) as a value function;

(iii) given C(b) and Π(b), bond holders earn a real return r?, that is, r(b) = r? + Π(b) +

λI(b, r(b)) for all b ∈ Ω; and

(iv) V (b0) ≥ V for all b ∈ Ω.

Note that when λ = 0 this equilibrium corresponds to the equilibrium in Definition 2.

As in section 3, we can restrict attention to equilibria in which r(b) takes discrete values:

Lemma 2. In any equilibrium with crisis, r(b) ∈ {r?, r?+ π̄, r?+λ, r?+ π̄+λ} for all b ∈ Ω.

In contrast to the non-crisis case in the previous section, we can construct non-monotone

equilibria. In particular, r(b) need not be monotonic in the crisis zone.We restrict attention

to monotone equilibria; that is, equilibria in which r(b) is non-decreasing. As W is strictly

decreasing in both arguments, monotonicity in r(b) ensures that I(b, r(b)) is non-decreasing

as well, and the safe zone can be defined as an interval [bmin, bλ] for some bλ ∈ R++. This

threshold for the safe zone can be characterized as follows. Define bλ and bλ by:

Definition 7. Let

bλ ≡ sup

{
b ≤ (1− e−r?δ)y

ρ

∣∣∣∣W (b, r? + π̄) ≥ V

}
; and

bλ ≡ sup

{
b ≤ (1− e−r?δ)y

ρe−π̄δ

∣∣∣∣W (b, r?) ≥ V

}
.

These two thresholds correspond to the maximal debt the government is willing to repay

within the grace period if the interest rate is r? + π̄ and r?, respectively. From the govern-

ment’s problem described in section 4.1, we have bλ < bλ. This follows from the fact that

W is strictly decreasing in both arguments. As we shall see, the equilibrium threshold for a

rollover crisis bλ ∈ [bλ, bλ], the exact value within this interval being determined by optimal

inflation.

We now turn to two thresholds that determine the optimal inflation policy. We know from

the analysis of section 3 that there is an indeterminacy regarding the threshold for inflation,
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bπ. We consider equilibria in which the low inflation zone is as large as possible. In the non-

crisis equilibria, the maximum threshold is b̄π from definition 4, which is the maximal debt

consistent with zero inflation when the government is offered an interest rate of r?. With the

possibility of a rollover crisis, we introduce a second threshold, b̃π. This threshold concerns

the best response when the interest rate is r? + λ. As we shall see, and consistent with the

no-crisis analysis, an increase in the interest rate from r? to r? + λ provides an incentive

to save and a corresponding incentive to inflate. We define the inflation threshold b̃π to be

consistent with a discontinuity in r at bλ; we shall see that this is the relevant threshold in

equilibrium. Specifically,

Definition 8. Let b̃π be defined as:

b̃π =

{
ψ0

u′(cλ)
if cλ ≤ y − (r?+λ)ψ0

u′(cλ)
ψ0

u′(y−(r?+λ)b̃π)
otherwise,

where cλ ∈ (0, y − (r? + λ)bλ) is defined uniquely by

(ρ+ λ)u(y − r?bλ)
ρ

= u(cλ)− u′(cλ)(cλ − y + r?bλ) + λV .

The consumption cλ satisfies (HJB’) as we approach bλ from above if V (bλ) = u(y− r?bλ)/ρ,

r(b) = r? + λ and π = 0. At this consumption level, π = 0 is optimal if ψ0 ≥ u′(cλ)b.

If b > (y − cλ)/(r
? + λ), then the government would prefer the steady-state consumption

y − (r? + λ)b to cλ, hence the second line in the expression for b̃π. The threshold b̃π is the

maximum debt when there is the possibility of a crisis and yet the government opts for low

inflation. Note that b̃π < b̄π, as cλ < y − (r? + λ)bλ < y − r?bλ, where the last term is the

steady-state consumption when r(b) = r?.

The equilibrium will depend on the relative magnitudes of these four thresholds. In

particular, the thresholds define the maximum debt levels consistent with no crisis and/or low

inflation, and so will be useful in defining the greatest domain for low interest rates.12Before

characterizing the equilibria in full, we discuss their general properties regarding inflation

and vulnerability to rollover crises.

Any monotone equilibrium r(b) will be characterized by {bπ, bλ} that determine the edge

of the low-inflation and safe zones, respectively. From the above discussion, bπ ∈ [b̃π, b̄π] and

bλ ∈ [bλ, bλ]. Figure 3 presents the four possible configurations for the thresholds. Each panel

12 In section 3 we also considered bπ, the smallest domain for a low interest rate. As creditors are indifferent
and the government prefers a low interest rate, the maximal domain is weakly Pareto superior. We focus
in this section on these upper-bound thresholds, tracing out the Pareto-dominant equilibrium interest rate
function, conditional on parameters.
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depicts the crisis cutoffs {bλ, bλ} and the inflation cutoffs {b̃π, b̄π}. While we know bλ < bλ and

b̃π < bπ, the magnitude of the inflation thresholds relative to the crisis thresholds depends

on parameters. The four panels of figure 3 depict four possible cases.

Case 1 is depicted in panel (a). In this case, ψ0 is low and so bπ = b̄π < bλ. In case 1,

inflation is high for part of the safe zone. The relevant crisis threshold is therefore bλ = bλ.

That is, the crisis threshold is determined by W (b, r?+ π̄), as inflation is high at the relevant

debt level.

Recall that the inflation cutoffs are strictly increasing in ψ0 and that the crisis thresholds

are weakly decreasing (and strictly decreasing if inflation is optimal in the grace-period

problem). As ψ0 increase, the inflation thresholds shift right, and the crisis thresholds (at

least weakly) shift left, which corresponds to the movement from panel (a) to panel (b)

in the figure. Once bλ < b̄π, r(b) = r? at bλ. Therefore, the threshold bλ is not relevant.

However, inflation jumps at bπ = b̄π. If bλ < b̄π, then the associated jump in the interest

rate is sufficient to generate crises. In panel (b), we depict the case bλ < bπ < bλ, and so this

jump at b̄π = bπ = bλ defines the crisis zone. This is case (2).

For higher ψ0, b̄π > bλ. At bλ, a crisis becomes possible even if π = 0. In panel (c),

bλ = bλ defines the crisis zone. Moreover, the fact that bλ > b̃π implies that the optimal

response to being in the crisis zone involves inflation. Therefore bλ = bπ also defines the

inflation zone (case 3). However, if ψ0 is large enough, b̃π > bλ, and then inflation is high

only for b > b̃π = bπ, which is case (4) in panel (d).

The four thresholds as functions of the parameter ψ0 are depicted in figure 4. The portions

in bold refer to the equilibrium threshold for crisis b (panel (a)) and inflation bπ (panel (b)).

As noted above, the crisis thresholds are (weakly) decreasing in ψ0 with bλ < bλ, and the

inflation thresholds are strictlty increasing in ψ0, with b̃π < b̄π. There are three values of ψ0

that are of interest:

Definition 9. Define ψ1 as the cost of inflation such that b̄π = bλ; define ψ2 as the cost of

inflation such that b̄π = bλ; and define ψ3 as the cost of inflation such that b̃π = bλ.

Note that ψ1 < ψ2 < ψ3. These three values divide the parameter space into four

regions. The next four propositions characterize the equilibria in the four possible cases. As

the propositions share many similarities, we redefine notation when convenient. After each

proposition, we discuss the characteristics of the equilibrium before moving to the next case.

Case 1: ψ0 ∈ [0, ψ1]

We now characterize equilibria for ψ0 < ψ1, which relates to panel (a) of figure 3:
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Figure 3: Thresholds for Inflation and Crisis

bb̃π bπ bλ bλ

High Inflation →

Crisis →

(a) Case 1: bπ = b̄π < bλ = bλ

bb̃π bπbλ bλ

High Inflation →

Crisis →

(b) Case 2: bλ = bπ = b̄π

bb̃π bπbλ bλ

High Inflation →

Crisis →

(c) Case 3: bλ = bπ = bλ

bb̃π bπbλ bλ

High Inflation →

Crisis →

(d) Case 4: bλ = bλ < bπ = b̃π

23



Figure 4: Thresholds as a Function of Inflation Commitment
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Proposition 4. Suppose b̄π ≤ bλ (that is, ψ0 ∈ [0, ψ1]). Define cπ = Cπ(b̄π), where Cπ(b) is

as in definition 4. Define b∗π = (y − cπ)/r?. For b ≤ bλ, define V̂ (b) by13

V̂ (b) =


u(y−r?b)

ρ
if b ≤ b̄π

u(y−r?b̄π)
ρ

)− u′(cπ))(b− b̄π) if b ∈ (b̄π,min〈b∗, bλ〉)
u(y−r?b)−ψ0π̄

ρ
if b ∈ [b∗, bλ],

Define cλ ∈ (0, y − (r? + λ)bλ) as the solution to

(ρ+ λ)V̂ (bλ) = u(cλ)− ψ0π̄ − u′(cλ)(cλ + (r? + λ)bλ − y) + λV .

Let b∗λ = (y − cλ)/(r? + λ). For b > bλ, define V̂ (b) by

V̂ (b) =

V (bλ)− u′(cλ)(b− bλ) if b ∈ (bλ, b
∗
λ)

u(y−(r?+λ)b)−ψ0π̄
ρ+λ

+ λ
ρ+λ

V if b ≥ b∗λ.

Define bmax = max{b ≤ y/(r? + λ)|V ≤ V̂ (b)}. Then define Ω = [bmin, bmax] for bmin ∈ R−,

and the following constitutes a recursive equilibrium with crisis parameter λ:

(i) The interest rate schedule r : Ω→ {r?, r? + π̄, r? + π̄ + λ} defined by

r(b) =


r? if b ∈ [bmin, b̄π] ∩ Ω

r? + π̄ if b ∈ (b̄π, bλ] ∩ Ω

r? + π̄ + λ if b ∈ (bλ, bmax] ∩ Ω;

(ii) The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;

(iii) The consumption policy function C : Ω→ R+ defined by

C(b) =



y − r?b if b ∈ [bmin, b̄π] ∩ Ω

cπ if b ∈ (bπ,min〈b∗, bλ〉] ∩ Ω

y − r?b if b ∈ (b∗, bλ] ∩ Ω

cλ if b ∈ (bλ, b
∗
λ] ∩ Ω

y − (r? + λ)b if b ∈ (b∗λ, bmax] ∩ Ω;

13In defining V̂ in each proposition, for notational ease we do not include the restrictions on debt that
ensure consumption is non-negative. As we later truncate V̂ to a domain on which consumption is positive,
this extended domain is not relevant to the equilibrium characterization.
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(iv) The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if ∈ b ∈ [bmin, b̄π] ∩ Ω

π̄ if b ∈ (b̄π, bmax] ∩ Ω.

The equilibrium is depicted in figure 5. In the case of b̄π < bλ, the government has an

incentive to inflate in a region in which there is no probability of a crisis, reflecting the low

level of inflationary commitment. This implies that in the region b ≤ bλ, the analysis is the

same as in section 3. For low debt, the government does not inflate and enjoys steady-state

utility. This is the first segment of the value function depicted in figure 5. Low inflation is

no longer optimal for b > b̄π, and inflation and the interest rate respond accordingly. As in

the no-crisis case of section 3, this jump in inflation and the corresponding increase in the

interest rate provides an incentive to save. In the neighborhood above b̄π, consumption is

constant at cπ as the economy saves towards this threshold, with consumption satisfying the

corresponding Bellman equation. If the distance between b̄π and bλ is large enough (which

is not the case depicted in figure 5), there may be a high-inflation/no-crisis region where the

government sets ḃ = 0 (i.e., (b∗, bλ]). Given the high debt levels and the low consumption,

the government’s optimal policy is to inflate, rationalizing the jump in the interest rate as

an equilibrium.

At debt greater than bλ, the economy is vulnerable to a rollover crisis. The interest

rate jumps again to r? + π̄ + λ. This provides the government with a greater incentive to

save, and reflects the kink at bλ, after which the value function declines more rapidly. The

corresponding consumption level is cλ < cπ, which satisfies the Bellman equation at bλ. Note

that consumption is discretely lower at bλ, so inflation is weakly greater, verifying that π̄ is

optimal in the crisis zone as well. The equilibrium behavior of the government therefore is

to save in a neighborhood above bλ to eliminate the possibility of a crisis as well as reduce

inflation; at bλ, it may continue to save at a slower rate in order to reduce inflation, eventually

reaching b̄π.

Case 2: ψ0 ∈ (ψ1, ψ2]

Proposition 5. Suppose b̄π ∈ (bλ, bλ] (that is, ψ0 ∈ (ψ1, ψ2]). Define cπ ∈ (0, y − r?b̄π) as

the solution to

(ρ+ λ)u(y − r?b̄π)

ρ
= u(cπ)− ψ0π̄ − u′(cπ)(cπ + (r? + λ)b̄π − y) + λV .
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Figure 5: Case 1: Crisis Equilibrium if ψ0 ∈ [0, ψ1]

bπ = b̄π bλ = bλ

b

V (b)

(a) Value Function

bπ = b̄π bλ = bλ

b

r?

r? + π̄

r? + π̄ + λ

r(b)

(b) Interest Rate

bπ = b̄π bλ = bλ

b

C(b)

(c) Consumption Policy

bπ = b̄π bλ = bλ

b

0

π̄

Π(b)

(d) Inflation Policy

27



Let b∗ = (y − cπ)/(r? + λ). Define V̂ (b) by

V̂ (b) =


u(y−r?b)

ρ
if b ≤ b̄π

u(y−r?b̄π)
ρ

− u′(cπ)(b− b̄π) if b ∈ (b̄π, b
∗)

u(y−(r?+λ)b)−ψ0π̄
ρ+λ

+ λ
ρ+λ

V if b ≥ b∗.

Define bmax = max{b ≤ y/(r? + λ)|V ≤ V̂ (b)}. Then define Ω = [bmin, bmax] for bmin ∈ R−,

and the following constitutes a Recursive Equilibrium with Crisis:

(i) The interest rate schedule r : Ω→ {r?, r? + π̄ + λ} defined by

r(b) =

r? if b ∈ [bmin, b̄π] ∩ Ω

r? + π̄ + λ if b ∈ (b̄π, bmax] ∩ Ω;

(ii) The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;

(iii) The consumption policy function C : Ω→ R+ defined by

C(b) =


y − r?b if b ∈ [bmin, b̄π] ∩ Ω

cπ if b ∈ (b̄π, b
∗] ∩ Ω

y − (r? + λ)b if b ∈ (b∗, bmax] ∩ Ω;

(iv) The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if b ∈ [bmin, b̄π] ∩ Ω

π̄ if b ∈ (bπ, bmax] ∩ Ω.

In this case, the economy has low inflation at bλ, so this is not the relevant threshold

for the safe zone. However, inflation may be high in equilibrium at bλ, making this an

irrelevant threshold as well. We have instead that the equilibrium threshold for a crisis is

bλ = b̄π, so the jump in the interest rate due to high inflation creates room for a crisis. The

government’s value function is depicted in figure 6. The government is at a low inflation

steady state for b ≤ b̄π = bλ. At b ∈ (bλ, bλ+ε) for some ε > 0 the economy saves towards the

low inflation/safe zone, setting π = π̄. Consumption is cπ with π = π̄ and V (bλ) = u(y−r?bλ)
ρ

.

28



Figure 6: Case 2: Crisis Equilibrium if ψ0 ∈ (ψ1, ψ2]
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Case 3: ψ0 ∈ (ψ2, ψ3]

Proposition 6. Suppose b̄π > bλ ≥ b̃π (that is, ψ0 ∈ (ψ2, ψ3]). Define cλ ∈ (0, y − r?bλ) as

the solution to

(ρ+ λ)u(y − r?bλ)
ρ

= u(cλ)− ψ0π̄ − u′(cλ)(cλ + (r? + λ)bλ − y) + λV .

Let b∗ = (y − cλ)/(r? + λ). Define V̂ (b) by

V̂ (b) =


u(y−r?b)

ρ
if b ≤ bλ

u(y−r?bλ)
ρ

− u′(cλ)(b− bλ) if b ∈ (bλ, b
∗)

u(y−(r?+λ)b)−ψ0π̄
ρ+λ

+ λ
ρ+λ

V if b ≥ b∗.

Define bmax = max{b ≤ y/(r? + λ)|V ≤ V̂ (b)}. Then define Ω = [bmin, bmax] for bmin ∈ R−,

and the following constitutes a Recursive Equilibrium with Crisis:

(i) The interest rate schedule r : Ω→ {r?, r? + π̄ + λ} defined by

r(b) =

r? if b ∈ [bmin, bλ] ∩ Ω

r? + π̄ + λ if b ∈ (bλ, b̄] ∩ Ω;

(ii) The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;

(iii) The consumption policy function C : Ω→ R+ defined by

C(b) =


y − r?b if b ∈ [bmin, bλ] ∩ Ω

cλ if b ∈ (bλ, b
∗] ∩ Ω

y − (r? + λ)b if b ∈ (b∗, bmax] ∩ Ω;

(iv) The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if b ∈ [bmin, bλ] ∩ Ω

π̄ if b ∈ (bλ, bmax] ∩ Ω.

This case is the mirror-image of case 2. In particular, the equilibrium crisis threshold and

the inflation threshold are equivalent, but the reason is reversed. That is, the government

increases inflation at bλ because it faces a rollover crisis and wishes to reduce debt quickly.
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Figure 7: Case 3: Crisis Equilibrium if ψ ∈ (ψ2, ψ3]
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Therefore, the jump in interest rate due to a crisis leads the government to high inflation,

rather than vice versa, as was the situation in case 2. Given this symmetry, the value function

and policy functions in case 3 (figure 7) take the same form as those in case 2.

Case 4: ψ0 > ψ3

Proposition 7. Suppose b̃π > bλ (that is, ψ > ψ3). Define cλ ∈ (0, y − (r? + λ)bλ) as the

unique solution to:

(ρ+ λ)u(y − r?bλ)
ρ

= u(cλ)− u′(cλ)(cλ − y + r?bλ) + λV .

Define b∗λ = (y − cλ)/(r? + λ). For b ≤ b̃π, define V̂ (b) by

V̂ (b) =


u(y−r?b)

ρ
if b ≤ bλ

u(y−r?bλ)
ρ

− u′(cλ)(b− bλ) if b ∈ (bλ,min〈b∗λ, b̃π〉)
u(y−(r?+λ)b)

ρ+λ
+ λ

ρ+λ
V if b ∈ [b∗λ, b̃π].

Define cπ ∈ (0, y − (r? + λ)b̃π) as the solution to

(ρ+ λ)V̂ (b̃π) = u(cπ)− ψ0π̄ − u′(cπ)(cπ + (r? + λ)b̃π − y) + λV .

Let b∗π = (y − cπ)/(r? + λ). For b > b̃π, define V̂ (b) by

V̂ (b) =

V (b̃π)− u′(cπ)(b− b̃π) if b ∈ (b̃π, b
∗
π)

u(y−(r?+λ)b)−ψ0π̄
ρ+λ

+ λ
ρ+λ

V if b ≥ b∗π.

Define bmax = max{b ≤ y/(r? + λ)|V ≤ V̂ (b)}. Then define Ω = [bmin, bmax] for bmin ∈ R−,

and the following constitutes a Recursive Equilibrium with Crisis:

(i) The interest rate schedule r : Ω→ {r?, r? + λ, r? + π̄ + λ} defined by

r(b) =


r? if b ∈ [bmin, bλ] ∩ Ω

r? + λ if b ∈ (bλ, b̃π] ∩ Ω

r? + π̄ + λ if b ∈ (b̃π, bmax] ∩ Ω;

(ii) The value function V : Ω→ R defined by V (b) = V̂ (b) for b ∈ Ω;
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(iii) The consumption policy function C : Ω→ R+ defined by

C(b) =



y − r?b if b ∈ [bmin, bλ] ∩ Ω

cλ if b ∈ (bλ,min〈b∗λ, b̃π〉] ∩ Ω

y − (r? + λ)b if b ∈ (b∗λ, b̃π] ∩ Ω

cπ if b ∈ (b̃π, b
∗
π] ∩ Ω

y − (r? + λ)b if b ∈ (b∗π, bmax] ∩ Ω;

(iv) The inflation policy function Π : Ω→ {0, π̄} defined by:

Π(b) =

0 if ∈ b ∈ [bmin, b̃π] ∩ Ω

π̄ if b ∈ (b̃π, bmax] ∩ Ω.

Case 4 is an environment with a strong commitment to low inflation. It is optimal to set

inflation to zero even in part of the crisis zone (b ∈ (bλ, b̃π]), despite the strong incentive to

reduce debt in the neighborhood of bλ. As ψ0 →∞, b̃π →∞, and there is zero inflation over

the entire domain Ω and in response to a rollover crisis. This corresponds to the environment

of Cole and Kehoe (2000) in which debt is real, both on and off the equilibrium path. The

value and policy functions depicted in figure 8 indicate the typical incentives to save at each

increase in the interest rate, with the value function being linear in these regions.

4.5 Inflation Commitment and Crisis Vulnerability

An important result depicted in figure 4 is that the extent of the safe zone is non-monotonic

in ψ0. In particular, the bold portion of panel (a) depicts the equilibrium bλ; that is, the

threshold for debt above which a rollover crisis can occur in equilibrium. The safe zone for

government is b ≤ bλ. For low costs of inflation, in the regions surrounding ψ1, the safe zone

is strictly smaller than if ψ0 = ∞. That is, issuing nominal bonds enlarges the range in

which a rollover crises is possible relative to foreign currency bonds. The intuition is that

the commitment to low inflation is so weak that the country faces a high nominal interest

rate. This reduces the usefulness of inflating away debt in response to a crisis, as inflation

is already priced in, making default more attractive. If ψ0 is low but positive, the country

still pays the cost of inflation in responding to a crisis, but gets no benefit relative to the

equilibrium interest rate. This is why bλ is declining in ψ0 for ψ0 ∈ [0, ψ1]. The downward

sloping curve traces out bλ, which reflects that W is decreasing in ψ0 when the government
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Figure 8: Case 4: Crisis Equilibrium if ψ0 > ψ3
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inflates in the grace period.14

The negative relationship between bλ and ψ0 is reversed once b̄π = bλ (i.e., ψ0 = ψ1). At

this debt level, the safe zone starts expanding with inflation commitment. This reflects the

fact that the temptation to inflate absent a crisis creates the vulnerability to a crisis. The

stronger the commitment to inflation in tranquil periods, the less vulnerable the economy

is to a rollover crisis. At some threshold ψ∗, nominal bonds generate a larger safe zone.

This is the happy medium in which inflation is not high in normal times, but the option

to increase inflation in response to a crisis provides insurance. For ψ0 above ψ∗, therefore,

the economy can approximate state-contingent inflation relatively well. The safe zone peaks

when ψ0 = ψ3, at which point the safe zone begins to shrink again. In this region, the

costs of inflation not only reduce inflation in tranquil periods, but also make responding to

a rollover crisis with inflation very costly. As ψ0 becomes very large, the cost of inflation is

so great that the government will not inflate even in a crisis. In the limit, the size of the safe

zone converges to that of ψ0 = 0, as in both cases the real value of bonds is independent of

the arrival of a crisis.

This non-monotonicity of the safe zone with respect to inflation commitment is not due

to the discreteness (or linear costs) of inflation choices. In numerical examples with strictly

convex costs of inflation, the non-monotonicity in regard to the costs of inflation is verified.

These simulations will be added in an appendix in a future version.

Moreover, the depiction makes clear that the slopes of bλ and bλ depend on the assumption

that ψ0 is independent of the arrival of a crisis. However, b̄π depends on the non-crisis ψ0.

Therefore, even if bλ and bλ were independent of ψ0 (that is, they depended on a crisis-specific

cost of inflation), the fact remains that the equilibrium interest rate determines whether bλ

or bλ is the relevant threshold, and this depends on the non-crisis ψ0 implicit in b̄π.

A second question is whether an economy is better off issuing nominal or real debt. We

depict two cases in figure 9. In each panel, the dashed line is the value function for ψ0 =∞,

which corresponds to issuing foreign currency bonds. The solid line is the value from issuing

nominal debt, where the two panels differ by the costs of inflation. All lines coincide for low

b as inflation is zero and there is no risk of a crisis in this region.

Panel (a) is such that ψ0 ≤ ψ∗, so the safe zone is smaller with nominal bonds. In

particular, bπ, the point at which the economy begins inflating, is within the safe zone. At

this point, the nominal bond economy becomes worse off due to the inability to deliver

14If the grace period is long enough and ψ0 high enough, the government may not inflate during the
grace period. In this parameter space, bλ and bλ have slope zero. Figure 4 depicts the case in which the
thresholds are decreasing at the points of intersection with the inflation cutoffs. The crisis thresholds are
strictly decreasing at ψ0 = 0, as inflation will always be optimal for low enough costs. The eventual flattening
out of the crisis thresholds as ψ0 →∞ is implied as bλ converges to the horizontal dashed line in panel (a).
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Figure 9: Government Welfare as a Function of Inflation Commitment
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low inflation. At bλ, the economy becomes vulnerable to a rollover crisis, while the crisis

threshold is b′λ for the foreign currency bond scenario. The safe zone is smaller with nominal

bonds as debt carries with it the burden of inflation, making default relatively attractive. In

this case, the economy is always strictly better off with foreign currency debt. The incentive

to inflate is high in equilibrium, lowering welfare without reducing the exposure to a rollover

crisis. Most emerging markets rely solely on foreign currency debt for international bond

issues. The analysis rationalizes this so-called “original sin” as the optimal response to a

weak inflationary regime, with or without self-fulfilling debt crises.

Panel (b) depicts a case in which ψ0 > ψ∗. That is, nominal bonds reduce the exposure to

a rollover crisis, but at the expense of higher equilibrium inflation for very large debt levels.

This makes nominal bonds optimal for intermediate stocks of debt, but sub-optimal for high

levels of debt. The closer ψ0 is to the peak-safe-zone level ψ3, the greater the range for which

domestic currency debt strictly dominates. Thus governments that have a moderate degree

of inflation commitment strictly prefer domestic currency debt over a non-negligible interval

of debt. For extremely high levels of debt, the economy will inflate (and face a crisis), and

so the commitment to zero inflation in this region is preferable.

5 Conclusion

In this paper we explored the role inflation commitment plays in vulnerability to a rollover

crisis. We confirmed that for an intermediate level of inflationary commitment, an economy
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is less vulnerable to a crisis with nominal bonds. The intermediate commitment provides the

missing state contingency, delivering low inflation in tranquil periods but high inflation in

response to a crisis. Extreme commitment to low inflation eliminates the option to inflate in a

crisis. In the model, strong commitment can be seen as equivalent to issuing foreign currency

debt; such commitment may also arise by being a small member of a monetary union subject

to idiosyncratic rollover risk. On the other hand, weak commitment to inflation renders an

economy more vulnerable to a rollover crisis if it issues domestic currency bonds. This

rationalizes the exclusive issuance of foreign currency bonds to international investors by

governments with limited inflation credibility.
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Appendices

A Proofs

Under Construction: All proofs are preliminary.

A.1 Proof of Proposition 1

Proof. Our model is a particular case of the general environment studied by Bressan and

Hong (2007) (henceforth, BH). The proof therefore involves ensuring the hypotheses in BH

are satisfied. We alter some of the BH notation to be consistent with our text, and translate

the minimization of cost problem considered by BH into a maximization of utility. BH restrict

attention to non-negative costs (non-positive utility), which we incorporate by re-defining

v(x) = v(x) − ū for all x ∈ X, where ū is the upper bound on utility from consumption.

BH consider the state space over the entire real line. We extend our problem to this larger

domain by assigning the steady state utility to b < bmin and some utility u ≥ ρV for b > bmax,

where u is chosen to ensure continuity of the value function at bmax. On these extended

domains, we assume f(b, x) = 0 for all x = X, so there are no debt dynamics regardless

of policy.We choose u to ensure continuity of the value function at bmax. As these domains

have trivial decisions and dynamics, we do not explicitly discuss them in the verification of

BH’s hypotheses in what follows other than to include bmin and bmax as boundary points of

discontinuous dynamics.

BH decompose the state space (R in our case) into M < ∞ disjoint manifolds (in-

tervals in our case): R = M1 ∪ M2 ∪ ... ∪ MM . In our environment, this corresponds

to the points of discontinuity {bmin, b1, ..., bN , bmax} as well as the intervening open sets,

(−∞, bmin), (bmin, b1), ..., (bmax,∞). These satisfy the BH conditions: if j 6= k, then Mj ∩
Mk = ∅; and if Mj ∩Mk 6= ∅, then Mj ∈ Mk. Let i(b) denote the index of the interval

that contains b.

Following BH, define a subset of controls Xi ⊂ X for each interval Mi that produce

tangent trajectories. That is,

Xi ≡
{
x ∈ X

∣∣∣∣limh→0

infb′∈Mi
|b+ f(b, x)h− b′|

h
= 0 ,∀b ∈Mi

}
.

Let TMi
(b) denote the set of feasible tangent trajectories for b ∈ Mi. For the open sets

between points of discontinuity, all admissible controls produce tangent trajectories, and so

Xi = X and TMi
(b) = [minx∈X f(b, x),maxx∈X f(b, x)]. For the boundaries, {bmin, b1, ..., bmax},

we have the steady state controls: Xi = {x|f(bn, x) = 0} if Mi = {bn} and TMi
(bn) = {0}.
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BH consider the following sets. Define

F̂ (b) ≡
{

(h,w)
∣∣h = f(b, x), w ≤ v(b, x), x ∈ Xi(b)

}
⊂ R2.

This is the set of feasible tangent trajectories f(b, x), x ∈ Xi paired with the payoff interval

(−∞, v(b, x)]. For a point b, we consider the convex combinations of tangent trajectories

and associated utility in the neighborhood of b. In particular, let coS denote the convex hull

of a set S. Define

G(b) ≡
⋂
ε>0

co
{

(h, l) ∈ F̂ (b′) ||b′ − b| < ε
}
⊂ R2.

BH define the Hamilton-Jacobian-Bellman equation as:

ρV (b)− H̃(b, V ′(b)) = 0 (BH:HJB)

where H̃(b, q) ≡ sup
(h,w)∈G(b)

{w + qh} .

We now map the (BH:HJB) equation into our equation (HJB). Recall that

f∗(b, a) ≡ x− (r? + π)b− y + lim inf
b′→b

r(b′)b′.

Similarly, define

f ∗(b, a) ≡ x− (r? + π)b− y + lim sup
b′→b

r(b′)b′,

as the worst-case dynamics. Let H(b) ≡ [minx∈X f∗(b, x),maxx∈X f
∗(b, x)] as the relevant

interval of debt dynamics for x ∈ X. Given b, and for h ∈ H(b), define

Ŵ (h, b) = max
x∈X

v(b, x),

subject to f∗(b, a) ≤ h. Ŵ (h, b) represents the maximum utility of generating debt dynamics

less than or equal to h. The function h 7→ Ŵ (h, b) is non-decreasing and concave. We also

have:

G(b) =
{

(h,w)
∣∣∣h ∈ H(b), w ≤ Ŵ (h, b)

}
.
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Moreover, for q ≤ 0, we have

H̃(b, q) = sup
(h,w)∈G(b)

w + qh = max
x∈X

v(b, x) + qf∗(b, x) = H∗(b, q),

where H∗ was defined in (3). With this equivalence, the definition of a viscosity solution

given in the text corresponds to that used in BH.15

Given this mapping from our environment into that of BH, we now verify the BH as-

sumptions. The definition of the set R ensure that conditions H1 in BH hold on Ω, and our

extension to the entire real line also satisfies the conditions on the extended domain. BH as-

sumption H2 holds in our environment as the tangent trajectories are either all trajectories

(on the open sets of continuity) or the steady-state dynamics on the points of discontinuity.

Condition H3 in BH requires a weaker form of continuity than Lipschitz continuity, so our

requirement of Lipschitz continuity for the viscosity solution satisfies this condition. Condi-

tionH4 of BH requires that V (b) is globally bounded. This is satisfied in our environment as
ū
ρ
≥ V (b) ≥ V for all b. Finally, equation (46) in BH requires that the flow utility function

be Lipschitz continuous with respect to b. As v(x) is independent of b in our environment,

this is satisfied trivially. Under these conditions, Corollary 1 in BH states that the value

function is the unique viscosity solution to (HJB) satisfying these regularity properties.

Proof of Lemma 1 and Proposition 2

We begin with the first claim in lemma 1:

Claim. In any equilibrium, r(b) ∈ {r?, r? + π̄}.

Proof. Suppose not. Then there exists an open set (b′, b′′) such that r(b) ∈ (r?, r? + π̄)

for all b ∈ (b1, b2). This follows from the lower semi-continuity requirement of equilibrium

r.16Equilibrium requires that Π(b) ∈ (0, π̄) for b ∈ (b′, b′′). As V is Lipschitz continuous, it

is differentiable almost everywhere. The optimization step in the Hamilton-Jacobi-Bellman

equation implies that −V ′(b)b = u′(c)b = ψ0 for almost all b ∈ (b′, b′′). Therefore C(b) is

increasing a.e. on (b′, b′′), which implies C(b) 6= y − r?b a.e., which in turn implies that

f(b, (C(b),Π(b))) 6= 0, a.e. for b ∈ (b′, b′′). That is, debt and consumption are not constant

over time outside a set of measure zero for b ∈ (b′, b′′). Recall as well that r(b) is continuous

almost everywhere. For some initial b ∈ (b′, b′′), we can thus find a non-negligible interval

15BH define the concept of a viscosity solution in the context of a cost minimization problem. We redefine
their definition to conform to a utility maximization problem.

16In particular, suppose the set A ≡ {b|r? < r(b) < r? + π̄} contained no open set; that is, it consisted
of a finite set of points {b1, b2, ..., bN}, then the set {b|r(b) > r?} would be closed, contradicting lower
semi-continuity.
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of time [0, τ ] such that c(t) is not constant, r(b(t)) is continuous, but r(b(t)) − π(t) = ρ, a

violation of optimality. Therefore, the candidate r(b) cannot be an equilibrium.

The second part of lemma 1 concerns monotonicity:

Claim. All equilibria are monotone. That is, r(b) is non-decreasing in b.

Proof. We proceed by considering a non-monotone r(b), impose the equilibrium choice of

inflation implied by r(b), and solve for the government’s optimal consumption. We then

show that this generates a contradiction if r(b) is not monotone.

Consider a non-monotone r(b) with domain Ω. Specifically, let I ≡ {i|r(b) = r? + π̄,∀b ∈
Ωi}, denote the intervals for which r(b) = r?+π̄. Equilibrium requires that r(b) ∈ {r?, r?+π̄}
for all b ∈ Ω. Lower-semicontinuity of r ∈ R implies that high-interest domains are open

sets. It is straightforward to show that Π(b) = 0 for b ≤ 0 in any equilibrium, and so we can

rule out 0 ∈ I. Therefore, any non-monotone equilibria has 1 ∈ I, implying that I is the set

of odd integers less than or equal to N .

The proof proceeds by first characterizing the value function and consumption policy

function on Ωi, i ∈ I, imposing equilibrium conditions regarding the inflation policy function.

We then derive a contradiction regarding optimal inflation policy. Let V denote our candidate

equilibrium value function, and Π and C the corresponding policy functions. We impose

that Π(b) = π̄ for all b ∈ Ωi, i ∈ I, and that Π(b) = 0 otherwise. This is a requirement of

equilibrium.

We construct a candidate V as follows. Let V (b) = u(y − r?b)/ρ for all b ∈ Ωj, j /∈ I.

That is, when r(b) = r? = ρ, the optimal consumption policy is to set ḃ = 0. For i ∈ I, we

construct the value function piecewise on the domain Ωi = (bi, bi+1). We consider the case

of i < N first; that is, intervals of high interest that do no include the upper bound debt m.

This case is depicted in figure A1.

Starting from the upper end point of (bi, bi+1), let c−i+1 > y − r?bi+1 solve

ρV (bi+1) = u(c−i+1)− ψ0π̄ − u′(c−i+1)
(
c−i+1 + r?bi+1 − y

)
.

The “−” reflects that we are considering a neighborhood to the left of bi+1. Note that

V (bi+1) is the low-interest, low-inflation steady state, and the HJB that defines c−i+1 imposes

the equilibrium condition π = π̄. Define Vi+1(b) = V (bi+1) − u′(c−i+1)(b − bi+1) for b ∈
[(y− c−i+1)/r?, bi+1) and Vi+1(b) = (u(y− r?b)−ψ0π̄)/ρ for b ∈ (bi, (y− c−i+1)/r?). Let Ci+1(b)

be the consumption policy function associated with Vi+1. Note that by construction c−i+1

satisfies the HJB at bi+1 with π = π̄. In particular, it is the solution that implies borrowing

towards the low-interest zone Ωi+1. This function is depicted as Vi+1 in figure A1, panel
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(a), in the case that there is no steady state between bi and bi+1. The consumption policy

function c−i+1 is depicted as in panel (c).

Turning to the neighborhood above bi, let c+
i ∈ (0, y − r?bi) solve

ρV (bn) = u(c+
i )− ψ0π̄ − u′(c+

i )
(
c+
i + r?bi − y

)
.

The “+” reflects that this will be optimal consumption in the neighborhood above bn. Define

Vi(b) = V (bi) − u′(c−i )(b − bi) for b ∈ (bi, (y − c+
i )/r?] and Vi(b) = (u(y − r?b) − ψ0π̄)/ρ for

b ∈ ((y − c+
i )/r?, bi+1). Let Ci(b) be the consumption policy function associated with Vi.

Note that by construction c+
i satisfies the HJB at bi with π = π̄. In particular, it is the

solution that implies saving towards the low-interest zone Ωi−1. (See Vi in figure A1 panel

(a) and c+
1 in panel (c)).

Note that V ′i (b) < V ′i+1(b). Moreover, there exists b̃ ∈ Ωi such that Vi(b̃) = Vi+1(b̃).

To see this, note that Vi(bi) = u(y − r?bi)/ρ. Moreover for b ∈ Ωi, V
′
i (b) = −u′(Ci(b)) ≤

u′(y − r?b), as Ci(b) ≤ y − r?b, with the inequality strict in the neighborhood of bi. This

implies that Vi(bi+1) < V (bi+1) = Vi+1(bi+1). Similarly, Ci+1(b) ≥ y − r?b for b ∈ Ωi. This

implies that V ′i+1(b) ≥ u′(y− r?b), with the inequality strict in the neighborhood of bi+1. As

Vi+1(bi+1) = u(y − r?bi+1)/ρ, we have that Vi+1(bi) < V (bi) = Vi(bi). By continuity, the two

curves Vi and Vi+1 must intersect in the interior of Ωi.

Our candidate value function becomes V (b) = Vi(b) for b ∈ (bi, b̃] and V (b) = Vi+1(b) for

b ∈ (b̃, bi+1). The consumption policy function is defined accordingly. We can repeat these

steps for all i ∈ I such that i < N . That is, for all high-interest zones excluding (bN ,m],

where m is the upper bound on equilibrium debt.

If N ∈ I, that is, the final segment (bN ,m] is also a high-interest rate zone, we proceed

as follows. c−N+1 is the solution to the HJB at b = m replacing V (m) with (u(y − r?m) −
ψ0π̄)/ρ, the high-inflation, high-interest steady state value function. The segment vN+1(b) is

constructed accordingly. The segment vN(b) is constructed as before, by picking the saving

solution to the HJB at b = bN . However, there is no guarantee that vN(m) ≤ vN+1(m),

as the latter is the high-inflation steady state value function and it may be optimal to save

towards bN from all b ∈ ΩN . If vN(m) ≤ vN+1(m), there exists an intersection point b̃ and

we proceed as before. If not, then V (b) = vN(b) for all b ∈ (bN ,m].

The value function V (b) so constructed is a viscosity solution to HJB,assuming the

policy function Π = r(b) − r? implied by equilibrium is indeed optimal. It is therefore the

only possible value function consistent with equilibrium. The contradiction arises as follows.

Note that C(bi+1) = y − r?bi+1, for i ∈ I and i < N , consistent with the low-interest, low-

inflation steady state value at the end point of a high inflation zone. Optimality of inflation
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requires that u′(y − r?bi+1)bi+1 ≤ ψ0. However, limb↑bi+1
C(b) = c−i+1 > y − r?bi+1, the latter

inequality following from the definition of c−i+1 as the borrowing solution to the HJB at bi+1.

Optimality of high inflation as we approach bi+1 from below requires that u′(c−i+1)bi+1 < ψ0.

The combined implication that ψ0 ≤ u′(y − r?bi+1)bi+1 < u′(c−i+1)bi+1 < ψ0 generates the

contradiction.

The proof of proposition 2:

Proof. The proposition characterizes by construction all equilibria with bπ ∈ [bπ, bπ]. Equi-

libria for bπ outside this interval can be ruled out using the definition of the intervals. In

particular, equilibrium requires that Π(b) = r(b) − r?. Impose this condition on the gov-

ernment’s problem and solve for optimal consumption. At bπ, implied inflation is zero and

r(b) = r? = ρ. The government’s optimal policy response is to set C(bπ) = y − r?bπ, so that

ḃ = 0 and V (bπ) = u(y − r?b)/ρ. We now check whether consumption is consistent with

implied inflation using the HJB equation at bπ. Optimal consumption in the neighborhood

above bπ is given by Cπ(bπ) from equation (4). If bπ < bπ, this consumption is inconsistent

with high inflation, violating the equilibrium requirement to the right of bπ. Conversely, if

bπ > b̄π, then zero inflation is inconsistent with the steady state consumption at bπ, violating

the equilibrium requirement that Π(bπ) = 0.

Proof of Proposition 3

Proof. The proof follows directly from Bressan and Hong (2007). See the proof of Proposition

1 for details.

Proof of Lemma 2

Proof. The proof of this lemma is the same as the proof of the part of lemma 1. Namely,

Π(b) = {0, π̄}.

Proofs of Propositions 4, 5, 6 and 7

Proof. These propositions follow by construction.

B Convex Inflation Costs
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Appendix Figure A1: Government’s Solution with No Crisis: Non-Monotone r(b)
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