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Abstract
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1 Introduction

DSGE models have become the paradigm for policy analyses in academic and policy circles over the

last 10 years. Relative to earlier structures, current models are of larger scale and feature numerous

frictions on the real and nominal side of the economy that help to closely replicate the dynamic

responses that structural VARs produce. Also, while a few years ago it was standard to informally

calibrate DSGE models, increased computing power, longer time series and recent developments in

system-wide estimation methods allow researchers to routinely employ a variety of full information

techniques in structural estimation exercises (see, e.g., Smets and Wouters (2003), Ireland (2004),

Rabanal and Rubio Ramirez (2005) among many others).

Despite the increased popularity, structural parameter estimation faces important conceptual

and numerical problems. For example, as emphasized by Canova (2007b), full information classical

estimation makes sense only if the model is assumed to be the data generating process (DGP)

of the observables, up to a set of serially uncorrelated measurement errors, an assumption which

is hard to entrain unless the model is augmented with ad-hoc dynamics. Furthermore, there are

abundant population identification problems (see Canova and Sala (2006)), numerical difficulties

are widespread, singularities are often important (there are typically less shocks than endogenous

variables in the model) and errors-in-variables are present (the variables in the model do not often

have a direct counterpart in the data). Finally, the vast majority of the models used in the literature

are time invariant and intended to explain only the cyclical portion of the data fluctuations while

actual data includes, at a minimum, growth components, cyclical fluctuations and high frequency

noise, all of which may be subject to breaks and other forms of slowly moving variations.

When faced with the problem of fitting stationary cyclical DSGE models to the data, applied

investigators typically select a subsample where time invariance is more likely to hold, filter the

raw data with an arbitrary statistical device, and treat the filtered data as the relevant measure of

stationary cyclical fluctuations. Occasionally, one find authors, see e.g. Kehoe (2007), suggesting

that filtering should be applied to both actual data and data simulated by the model but, to the

best of our knowledge, such an approach has, so far, no followers in the estimation literature.

Alternatively, a unit root in total factor productivity is assumed and the data filtered using a

model-driven transformation.

Both statistical and model-based filtering are problematic. For example, while the profession

largely agrees that a cyclical model should explain fluctuations with 8-32 quarters average peri-

odicities, there is little agreement on how to obtain these fluctuations from the data and only a

partial understanding of the consequences that incorrect or suboptimal filtering induce. For ex-

ample, it is common to use linearly detrended or first differenced data as input in the estimation

process, but such transformations do not extract fluctuations with the required periodicities (see



1 INTRODUCTION 2

e.g. Canova (1998)). A band pass (BP) filter which, with infinite amount of data can exactly

isolate the fluctuations of interest, it is typically discarded in the estimation literature because

its two-sided nature may change the timing of the data information - a similar argument is made

also for Hodrick and Prescott (HP) filtered data. In addition, with samples of typical length, all

filters induce considerable sampling errors in the estimates of the cyclical component which pile on

top of population misspecification problems. On the other hand, model-driven filtering does not

necessarily leave only cycles with 8-32 quarters average periodicity in the data (see Canova (2008))

and, lacking information on the sources of non-cyclical movements in the data, imposing a unit

root in technology makes model-based filtering also subject to specification errors.

Two additional important issues should be mentioned. While researchers filter each series

separately prior to estimation, theory suggests that there may be important commonalities in the

non-cyclical component of the data (a balanced growth path is often used as working assumption).

Hence, should economic theory or pragmatic considerations guide filtering? Moreover, while real

variables typically show long run drifts, nominal variables just display low frequency fluctuations.

Should we filter all the data or only real variables? Conversely, should we treat all the fluctuations

present in, say, inflation as relevant for parameter estimation or not? Since different researchers

choose different methods to filter a portion (or all) of the available data prior to estimation, and

since measurement error with unknown properties is introduced regardless of the filtering approach

one employs, the economic conclusions one draws from the analysis are likely to be distorted and

the magnitude of the distortions function of the transformation employed (see Canova (2008)).

This paper proposes a method to estimate the structural parameters of a time invariant cyclical

DSGE model using noisy and potentially mismeasured vectors of cyclical data. The approach bor-

rows ideas from the recent data-rich environment literature (see Boivin and Giannoni (2005)) to

set up an estimated structure where vectors of data filtered with alternative procedures are treated

as contaminated estimates of the true cyclical component. We set up a signal extraction frame-

work where the cyclical DSGE is the unobservable factor; vectors of filtered data are treated as

contaminated observable proxies, and the parameters of the DSGE model are jointly estimated to-

gether with the non-structural parameters using signal extraction techniques. This paper therefore

complements those of Canova (2008), who study how to estimate DSGE models when the cycli-

cal component is not solely located at business cycle frequencies and, conversely, the non-cyclical

component may play an important role at these frequencies and of Ferroni (2008), who suggests

ways to test trend specifications in DSGE models and compares the properties of one and two step

estimators of its structural parameters.

Our approach is advantageous in, at least, two respects. Since we do not have to arbitrarily

choose one filtering method prior to the estimation, we avoid specification errors of various sorts.

Moreover, cyclical data obtained with one-sided and two-sided filters of both univariate and mul-
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tivariate nature can be used in estimation, as long as the list of filters is sufficiently rich. Second,

if different filters have sufficiently different features, measurement error may have different time

series properties. Since the implicit information averaging our procedure produces may reduce

measurement error and eliminate its cyclicality, estimates of the cyclical components are more re-

liable and precise, making parameter estimates and inference, to a large extent, free of preliminary

data transformation biases.

We investigate the properties of our approach using experimental data of the typical length used

in macroeconomics. We show that estimating the structural parameters of the model with just one

arbitrary filter typically induces large biases in the estimates and that these biases are considerably

reduced with our approach. We also show that in an unconditional forecasting exercise, the one step

ahead MSE produced by our approach is smaller than the MSE obtained with standard procedures

and that the biases we have noticed in traditional approaches translate in conditional forecasts

which are considerably distorted.

To show that the biases are not only statistically relevant but also economically important,

we revisit the role of money in transmitting monetary business cycles. The literature has largely

neglected the stock of money when studying monetary business cycles and Ireland (2004) has shown

that such an approach is, by and large, appropriate using US data, standard filtering techniques and

a maximum likelihood estimation setup. We show that when the information produced by multiple

filters is jointly used in the estimation, real balances statistically matter for the transmission of

cyclical fluctuations in output and inflation, both directly and indirectly, via its effects on interest

rate determination. Furthermore, we show that the propagation of primitive shocks in the estimated

economy differs from the one obtained when only one data transformation is used.

We want to be explicit for why we propose a procedure to improve parameters estimates of

time invariant cyclical DSGE models, rather suggest to write and estimate DSGE models which

are designed to jointly fit cyclical and non-cyclical fluctuations. In the long run, the latter should

clearly the scope of model builders and of applied investigators. However, right now such a task

appears unfeasible. In theory, little is known about mechanisms propagating cyclical shocks at

longer frequencies (exceptions are Comin and Gertler (2006) or Canova et al. (2007)) or creating

important cyclical implications from long run disturbances; moreover, it is also convenient, at least

for policy purposes, to assume that the mechanisms driving cyclical and non-cyclical fluctuations are

distinct and orthogonal. In practice, breaks of various sorts make data less informative about the

relationships of interest than otherwise and samples are always helplessly short to get information

about, say, medium term cycles.

The rest of the paper is organized as follows. Next section shows the problems one encounters

using a single filtering method to estimate the parameters of DSGE models. Section 3 presents our

approach and applies to experimental data. Section 4 examines the role of money in transmitting
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monetary business cycles. Section 5 concludes.

2 Filtering and structural estimation

To illustrate why the prevailing approach induces important measurement errors in the estimated

cyclical components and to investigate how these errors affect structural estimates, we simulate data

from a textbook New-Keynesian model (see Gali (2008)), where agents face a labor leisure choice,

production is carried out with labor, firms face an exogenous probability of price adjustments and

monetary policy is represented with a conventional Taylor rule. The log-linearized equilibrium

condition, in deviation fro the steady states, are:

λt = χt −
σc
1− h

(yt − hyt−1) (1)

yt = zt + (1− α)nt (2)

wt = −λt + σnnt (3)

rt = ρrrt−1 + (1− ρr)(ρππt + ρyyt) + vt (4)

λt = Et(λt+1 + rt − πt+1) (5)

πt = kp(wt + nt − yt + μt) + βEtπt+1 (6)

χt = ρχχt−1 + ιχt (7)

zt = ρzzt−1 + ιzt (8)

where kp =
(1−βζp)(1−ζp)

ζp
1−α

1−α+�α , λt is the Lagrangian on the consumer budget constraint, yt is

output, nt is hours, wt is the real wage and rt the nominal interest rate; zt is a technology shock,

χt a preference shock, vt is a monetary policy shock and μt a markup shock. The structural

parameters of the model are β, the discount factor, σc the risk aversion coefficient, h the coefficient

of consumption habit, 1 − α the share of labor in production, σn the inverse of Frish elasticity, �

the elasticity among consumption varieties, ζp the probability of changing prices, while ρπ, ρy are

parameters of the monetary policy rule. In addition, the parameter vector includes ρr, ρχ, ρz the

autoregressive parameters, and σi, i = χ, z, μ, v, the standard deviation of the four shocks.

We assume that either the technology shock or the preference shock has two components (a sta-

tionary autoregressive and a unit root), while the monetary policy and the markup shocks are iid.

In the simulations we set β = 0.99; σc = 3.00;h = 0.70;σn = 0.70; � = 7.0;α = 0.6; ρr = 0.2; ρπ =

1.30; ρy = 0.05; ζp = 0.8, and ρχ = 0.5; ρz = 0.8; σχ = 0.0112;σz = 0.0051;σv = 0.0010;σμ =

0.2060, while the standard deviation of the shock driving the unit root component is σz,nc = 0.0021

for the technology shock and σχ,nc = 0.0221 for the preference shock. The exact magnitude of

the standard deviations of these two shocks is relatively unimportant here because our parameters

choice implies that the non-cyclical component has limited importance at business cycle frequencies.
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We simulate 1300 data points for four observable variables (yt, wt, πt, rt), discard 1030 initial ob-

servations to eliminate the effect of initial conditions, and use the last 100 for forecasting exercises.

This means that the sample size used in estimation is 170.

Figure 1 presents the log-spectrum of filtered output and of filtered and unfiltered inflation for

the two DGPs when linear (LT), Hodrick and Prescott (HP), band pass (BP) and first difference

filtering (FOD) are used. In each box, the two vertical bars isolate the frequencies corresponding

to cycles of 8-32 quarters. Figure 2 reports the autocorrelation function of filtered output and of

filtered and unfiltered inflation for the two DGPs.
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Figure 2: Autcorrelation functions

Figure 1 clearly indicates that all filters imperfectly isolate the power of the series at business

cycles frequencies. This is due in part to the nature of the filters (in the case of LT, HP and FOD

filtering) and in part to small sample distortions. In general, the estimated cyclical component

will be contaminated by measurement errors no matter what filter is used and this error will not

only be located in the high frequencies of the spectrum. Consequently, the persistence and the

variability of the cyclical component is mismeasured, making estimates of income and substitution

effects and of the structural parameters regulating preferences and technologies generally distorted.

We show below that this is indeed the case. Figure 1 also shows that the spectral power of the
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measurement error depends on filter used. Different amounts of measurement errors, in particu-

lar the low frequencies of the spectrum, imply that the persistence of the cyclical component is

mismeasured more with some filters than others (see figure 2) and this makes the magnitude of

the distortions in the estimated structural parameters filter dependent. Finally, figures 1 and 2

demonstrate that inflation is a highly persistent but stationary variable, even when shocks have a

unit root component, but the simulated series have about as much power at cyclical as non-cyclical

frequencies. Hence, fitting the model to filtered or unfiltered inflation will make a difference for

structural parameter estimation except, perhaps, after linear filtering.

Parameter Distribution Mean Standard Deviation

σc Γ(20, 0.1) 2.00 0.45
σn Γ(20, 0.1) 2.00 0.45
h B(10, 3) 0.76 0.11
α B(3, 8) 0.27 0.13
� N(6, 0.5) 6.00 0.50
ρr B(10, 6) 0.71 0.09
ρπ N(1.5, 0.2) 1.50 0.20
ρy N(0.4, 0.2) 0.40 0.20
ζp B(6, 6) 0.50 0.14

ρχ B(10, 6) 0.71 0.09
ρz B(10, 6) 0.71 0.09
σχ Γ−1(10, 20) 0.0056 0.0020
σz Γ−1(10, 20) 0.0056 0.0020
σv Γ−1(10, 20) 0.0055 0.0020
σμ Γ−1(10, 20) 0.0056 0.0020

Table 1: Prior Distribution for the structural parameters.

To show that indeed the measurement error produced by imperfect filtering distorts our ability

to understand the features of the true economy, that the amount of distortions depends on the filter

used and on whether some or all variables are filtered, we take the two sets of experimental data we

have constructed and estimate the structural parameters after passing the raw data with LT, HP,

BP and FOD filters. Estimation is conducted using Bayesian methods. We choose loose priors for

all the parameters (see table 1) and, to give the best chance to the routine, start estimation at the

true parameter values. Posterior estimates are obtained with a random walk Metropolis algorithm,

where the jumping variable has a t-distribution with 5 degrees of freedom and variance is tuned up

to have an acceptance rate of about 30 percent for each filtering approach. Half a million draws

were made for each filtered/DGP combination convergence was checked with a standard CUMSUM

statistic and achieved after about 250000 iterations. We keep one out of hundred of the last 100,000



3 THE IDEA OF THE PAPER 8

draws to compute statistics of the posterior distribution.

Table 2 reports the median and the standard deviation of the posterior of each of the structural

parameters. The top panel refers to the situation when all variables are independently filtered prior

to estimation. The bottom panel to the case when only output and the real wage are independently

filtered. We only show results obtained when the preferences shock has two components, since those

obtained with the other DGP are roughly similar.

The table shows that there are important estimation biases and the magnitude of these biases

can be as large as 100 percent. Since measurement error has, in general, important low frequency

components, the persistence of the shocks is typically overestimated and the variability of the shocks

is typically underestimated and, in some cases, by quite a lot (see e.g. the monetary and the markup

shocks). Furthermore, as expected, there are parameters whose posterior distribution depend on

the preliminary filtering one employs (see e.g. the coefficient on inflation in the Taylor rule ρπ,

and the share of labor in production α in the first panel). Finally, distortions are generally larger

when only real variables are filtered. This happens because the combination of filtered and filtered

data ” unbalances” the likelihood - some equations become more misspecified than others. Since

likelihood based methods produce parameters estimates which minimize the largest discrepancy

between the model and the data, biases tend to be larger in this case.

How could eliminate the distortions induced by imperfect filtering? One option is to increase the

sample size and consider only filters, which at least asymptotically isolate the frequencies of interest.

However, even if longer samples were available, new problems will emerge because time invariance

will be difficult to assume. Alternatively, one could choose a non-symmetric non-stationary version

of a band pass filter (as suggested by Christiano and Fitzgerald (2003)), which is able to isolate

much better the frequencies of interest, even in small samples. However, since band pass filters

are two-sided, the properties of estimated parameters and the transmission of shocks could be

distorted. Furthermore, the Christiano and Fitzgerald filter is asymmetric and may induce phase

shifts, with unpredictable consequences on parameter estimates. One final possibility is to design

one-sided filters which minimize the leakage and the compression at the frequencies of interest in

small samples. While possible in theory, such an option is not currently available to the applied

investigator. All in all, none of these alternatives seems viable.

3 The idea of the paper

Our suggestion is to use the information contained in the cyclical data obtained with different filters

to try to average out the low frequency component of the measurement error. In other words,

rather than arbitrarily selecting one filter and estimating the model with the resulting filtered

data, we treat cyclical data extracted with various filtering methods as contaminated estimates of
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Filter LT HP FOD BP Factoru Factorr

true Median (s.e.) Median (s.e.) Median (s.e.) Median(s.e.) Median (s.e.) Median(s.e.)

All filtered

σc 3.00 1.63 (0.09) 1.70 (0.14) 1.98 (0.08) 1.87 (0.10) 1.58 (0.11) 2.08 (0.20)
σn 0.70 1.56 (0.07) 1.63 (0.10) 1.64 (0.07) 1.49 (0.06) 0.67 (0.16) 0.49 (0.09)
h 0.70 0.64 (0.02) 0.65 (0.02) 0.49 (0.02) 0.64 (0.02) 0.60 (0.04) 0.77 (0.10)
α 0.60 0.32 (0.02) 0.20 (0.04) 0.52 (0.02) 0.15 (0.02) 0.41 (0.03) 0.48 (0.02)
� 7.00 3.99 (0.13) 4.09 (0.14) 4.07 (0.13) 3.85 (0.13) 6.21 (0.12) 6.38 (0.12)
ρr 0.20 0.44 (0.05) 0.32 (0.03) 0.53 (0.02) 0.44 (0.04) 0.31 (0.07) 0.26 (0.05)
ρπ 1.30 2.01 (0.07) 2.05 (0.08) 1.68 (0.05) 2.03 (0.07) 1.50 (0.02) 1.50 (0.05)
ρy 0.05 0.11 (0.02) 0.15 (0.02) 0.11 (0.00) 0.18 (0.02) 0.43 (0.03) 0.21 (0.02)
ζp 0.80 0.92 (0.03) 0.93 (0.03) 0.87 (0.03) 0.94 (0.03) 0.81 (0.02) 0.79 (0.02)
ρχ 0.50 0.98 (0.03) 0.98 (0.03) 1.00 (0.03) 0.99 (0.03) 0.93 (0.01) 0.85 (0.01)
ρz 0.80 0.92 (0.03) 0.94 (0.03) 0.92 (0.03) 0.95 (0.03) 0.62 (0.02) 0.59 (0.04)
ωχ 1.10 0.19 (0.03) 0.25 (0.04) 1.34 (0.45) 0.20 (0.04) 0.86 (0.16) 2.36 (0.48)
ωz 0.57 0.64 (0.08) 0.59 (0.08) 3.67 (0.28) 0.19 (0.03) 0.66 (0.23) 0.47 (0.12)
ωv 0.12 0.05 (0.01) 0.05 (0.01) 0.06 (0.01) 0.05 (0.01) 0.08 (0.01) 0.09 (0.01)
ωμ 20.64 6.42 (0.36) 11.25 (0.82) 6.35 (0.23) 3.77(0.23) 5.17 (0.64) 6.38 (1.00)

Real variables filtered

σc 3.00 1.92 (0.07) 1.89 (0.07) 1.93 (0.07) 1.96 (0.09) 1.98 (0.22) 1.73 (0.26)
σn 0.70 2.10 (0.08) 2.11 (0.08) 2.04 (0.08) 2.03 (0.09) 0.68 (0.17) 0.69 (0.09)
h 0.70 0.58 (0.02) 0.58 (0.02) 0.52 (0.02) 0.62 (0.02) 0.68 (0.02) 0.76 (0.03)
α 0.60 0.48 (0.02) 0.47 (0.02) 0.52 (0.02) 0.43 (0.02) 0.66 (0.04) 0.57 (0.04)
� 7.00 3.71 (0.13) 4.21 (0.15) 4.00 (0.13) 3.73 (0.15) 6.27 (0.10) 6.37 (0.12)
ρr 0.20 0.53 (0.04) 0.55 (0.05) 0.42 (0.01) 0.19 (0.03) 0.44 (0.03) 0.33 (0.09)
ρπ 1.30 1.26 (0.05) 1.32 (0.05) 1.01 (0.03) 1.22 (0.04) 1.53 (0.04) 1.53 (0.05)
ρy 0.05 -0.17 (0.01) -0.04 (0.02) -0.00 (0.00) -0.14 (0.02) 0.30 (0.06) 0.17 (0.05)
ζp 0.80 0.76 (0.02) 0.76 (0.03) 0.68 (0.02) 0.72 (0.02) 0.82 (0.05) 0.84 (0.04)
ρχ 0.50 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 0.96 (0.01) 0.96 (0.01)
ρz 0.80 0.84 (0.03) 0.90 (0.03) 0.87 (0.03) 0.85 (0.03) 0.95 (0.02) 0.95 (0.01)
σχ 1.10 0.09 (0.01) 0.21 (0.05) 3.07 (0.14) 0.16 (0.02) 1.07 (0.20) 1.66 (0.21)
σz 0.57 0.32 (0.04) 0.25 (0.03) 6.55 (0.24) 0.12 (0.01) 0.33 (0.07) 0.49 (0.21)
σmp 0.12 0.07 (0.01) 0.06 (0.01) 0.05 (0.01) 0.06 (0.01) 0.08 (0.01) 0.09 (0.01)
σμ 20.64 13.29 (0.64) 16.11 (1.03) 8.03 (0.26) 12.70 (0.63) 5.36 (0.88) 6.94 (1.02)

Table 2: Parameters estimates using different filters; preference shocks with two components.
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an unobservable cyclical component and use the information provided by different filters jointly

in the estimation of the structural parameters. As long as the measurement error is close to be

idiosyncratic across filtering methods, less distortions should be present and more precise estimates

of the cyclical features of the economy should be obtained. In this sense our approach builds on

ideas of Boivin and Giannoni (2005), who suggest that a data rich environment can help to estimate

the structural parameters of a DSGE model and more precisely forecast out-of-sample.

Let the log-linearized solution of a cyclical DSGE model be of the form:

x1t = RR(θ)x2t−1 + SS(θ)x3t (9)

x2t = PP (θ)x2t−1 +QQ(θ)x3t (10)

x3t = NN(θ)x3t−1 + ιt iotatsim(0,Σ(θ)) (11)

where PP,QQ,RR,SS are time invariant matrices which are functions of the vector of structural

parameters θ = (θ1, . . . , θk), x2t = x̃2t − x̄2 includes predetermined states, xt = x̃1t − x̄1 the

endogenous variables, x3t the exogenous disturbances and x̄i, i = 1, 2 are the steady states of x̃1t

and x̃2t. We let x
m
t = S[x2t, x1t]

0, be a n × 1 vector where S is a selection matrix picking, out

of x1t and x2t, those variables which are observable and interesting from the point of view of the

analysis. Even though we suppress the dependence of xmt on θ, it should be understood that the

data produced by the model is in fact conditional on the choice of θ.

Let xit be the vector of filtered observable time series obtained with method i = 1, 2, ...g and let

xdt = [x
1
t , x

2
t , . . . , x

g
t ]
0. Assume the following structure:

xdt = λ0 + λ1x
m
t + ut (12)

where λ0 is a ng × 1 vector of constants, λ1 a ng × n matrix of non-structural parameters and ut

is a ng × 1 vector of measurement errors. For estimation purposes, we normalize the n× n block

λ11 = I so that the remaining blocks of the matrix λ1 can be interpreted as loadings relative to

those of the first method. Joint estimation of the structural parameters θ and the non-structural

parameters λj is now possible because (9)-(11)and (12) represent a state space system with the

latter being a measurement equation and the former, state equations. Specifically, equations (9)-

(11) and equation (12) can be cast into the state space system

st+1 = Fst +Gat+1 (13)

ot = Hst + ηt (14)

by setting

st+1 =
³
y1t y2t zt+1

´0
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F =

⎛⎜⎝ 0 RR SS
0 PP QQ
0 0 NN

⎞⎟⎠
G =

³
0, 0, I

´0
at+1 = ιt+1

ot =
³
xit/σ

i
x − λi0, i = 1, 2, . . . , g

´0
H =

³
λ1S 0

´
λ1 =

³
λi1, i = 1, 2, . . . , g

´0
ηt =

³
uit, i = 1, 2, . . . , g

´0

The likelihood of (13)-(14) can be computed with the Kalman filter. In our context the vector

of parameters is ν of interest includes θ and (λi0, λ
i+1
1 , σkη , i = 1, 2, . . . , g; k = 1, . . . , ng, which

comprises both structural and non-structural parameters. If Bayesian estimation is preferred,

the non-normalized posterior distribution of ν, can be obtained with Monte Carlo Markov Chain

simulators. For example, one can employ the following algorithm, which appears to give reasonable

results in estimation. Starting from an initial value νc−1, given a Σ, and a prior g(ν):

1. Draw a shock vector υ from t(0,Σ, 5) and construct a candidate ν∗ = νc−1 + υ

2. Solve the model using ν∗; if the solution is indeterminate or no solution is found set L(ν|o) = 0.
Otherwise, evaluate the likelihood of the observables ot at ν

∗ L(ν∗|o) with the Kalman filter.

3. Calculate ğ(ν∗|o) = g(ν∗)L(ν∗|o) and the ratio MR∗ = ğ(ν∗|o)
ğ(νc−1|o)

4. Draw ς from U [0, 1]; if MR∗ > ς set νc = ν∗, otherwise set νc = νc−1

Iterated a large number of times, the algorithm ensures that the sample (νL̄, νL̄+1, . . . , ) for an

appropriately chosen L̄ is a draw from the target distribution that we need to sample from (for

further details see Canova (2007a)).

In (12) different cyclical estimates xit are treated as contaminated proxies of the true cyclical

component. They are contaminated in two senses: they introduce fluctuations which are non-

cyclical according to the definition we have used; they compress the power of the spectrum of

the series at cyclical frequencies. The amount of information they contain for the model relevant

concepts of cyclical fluctuations is measured by the vector λ0 and the matrix λ1. Ideally, λ0 is a

vector of zeros and λ1 a matrix with the identity in each n× n block, so that each measure is an

unbiased and perfectly correlated although noisy signal of the true cyclical component. In general,
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we expect either λi0 6= 0 or λi+11 6= I, or both, for some or all i’s. Since we have normalized λ11,

estimates of λi+11 gives us an idea of the amount of correlation distortions each method displays

relative to the first.

This setup is advantageous in, at least, two respects. First, since we do not have to arbitrarily

choose one filtering approach prior to the estimation, we avoid specification errors. In addition,

the output of one-sided and two-sided filters as well as the output of univariate and multivariate

procedures can all used as observables for estimation, as long as the list of filters is sufficiently rich.

Second, if different filters have sufficiently different features, measurement error may have different

time series properties. Since the implicit information averaging that our procedure produces may

reduce measurement error and eliminate part of its cyclicality, estimates of the cyclical compo-

nents will be more reliable, structural parameter estimates better shielded from filtering errors and

inference ore robust.

It is important to stress that, in this paper, we make two important assumptions. First, we

assume that the model generating xmt is correctly specified; that is, there are no missing variables

or shocks. When this is not the case, the interpretation of the λ’s becomes more difficult. Second,

we assume that the cyclical and the non-cyclical components are uncorrelated. While the majority

of models used in the literature employ this assumption, the presence of such a correlation may

introduce additional biases, which are neglected in this paper.

The literature is largely silent about the issues we address in this paper. Cogley (2001) and

Gorodnichenko and Ng (2007) are concerned with the problem of estimating the structural parame-

ters of a cyclical DSGE when the trend specification is incorrect, but they do not investigate what

are the consequences of small sample filtering nor their implications for the structural estimates.

Giannone et al. (2006) emphasize that if the variables of the model are measured with error, the

solution has a natural factor structure and exploit this feature to compare responses obtained from

VAR and factor models. Rather then considering a factor structure for the endogenous variables in

terms of the states, we construct an estimable structure where vectors of filtered observable data

have a factor structure in terms of a subset of the variables of the model. However as in Giannone

et al., we emphasize that important measurement errors with low frequency components may exist.

The paper which is closest in spirit to ours is Boivin and Giannoni (2005). Their main point is

that the model variables do not have an exact counterpart in the real world and that some external

indicators to the model may have important information for interesting variables. The point here

is somewhat similar. The cyclical component of the model does not have an exact counterpart in

the data because none of the existing filtering approaches is able to exactly extract fluctuations

with 8-32 quarters average periodicity. Moreover, different cyclical vectors may have idiosyncratic

error components and this error may be averaged out with our signal extraction approach.
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3.1 How does the procedure fares with simulated data?

We estimate the structural parameters of the model using the suggested approach and the same

experimental data used in section 2. As input in our procedure, we employ the vector of LT, HP

and FOD filtered data. Although this is not the best choice, as LT and HP filtered data show

considerable similarities, and the procedure works best if the vector of filtered data one selects are

somewhat idiosyncratic in their spectral properties, it is sufficient to illustrate the features of the

procedures, even in this less than ideal situation. Thus, the vector of observable variables is 12× 1
(the model produces implications for four variables and there are three filtering methods). We

employ the same Bayesian approach used in section 2, assuming the same priors on the structural

parameters shown in table 1 and loose priors on the non-structural parameters entering (12). In

particular, we assume that the prior for each element of λ0 is normally distributed, centered at

zero with variance equal to 0.5; the prior for the free diagonal elements of λ1 is normal, centered

at 1 with variance 0.5: and the prior for the standard deviation of the ut’s is inverted gamma with

mean equal to 0.0056 and variance equal to 0.002.

We consider two specifications: one where the non-structural parameters are filter and series

specific (in this case there are 32 non-structural parameters to be estimated) and another where the

constants and the loadings in (12) are common across series for each filter (in this case, there are

17 non-structural parameters). We refer to the first specification as the unrestricted factor model;

the second one to the restricted factor model.

The last two columns of table 2 present the posterior median and the posterior standard devia-

tion for the structural parameters obtained with the two factor specifications, when the preference

shock has two components. In general, the biases present in the first four columns of the table have

been reduced: economic parameters are all better estimated with reasonably small standard devia-

tion and auxiliary ones, although still biased, are closer to the true ones than those obtained with

standard approaches. Note that, when all variables are filtered, the persistence of the stationary

preference shocks is now estimated to be lower. When only real variables are filtered the reduction

is negligible, primarily because inflation and the nominal rate, which are the most persistent series,

enter three times among the observables unfiltered. The variability of the structural shocks is also

better estimated in both frameworks except for the markup shocks, but this bias has more to do

with the weak identification of this parameter than with the properties of both procedures.

To see how these estimates compare with the true ones and with those obtained with standard

approaches in terms of economically meaningful statistics, we computed the unconditional autocor-

relation function of the cyclical components of output, real wages, inflation, and the nominal rate,

where by this we mean the component generated by the non-unit root shocks when the posterior

median estimates of the parameters obtained when all variables are filtered are used. When we

examine traditional approaches, we only report the autocorrelation of LT and FOD filtered data
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to make the plots readable - the plots produced by HP and BP are similar.
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Figure 3: Autocorrelation of cyclical components

Figure 3, which plots the autocorrelation functions, reinforce previous conclusions. With both

LT and FOD filtered data, the estimated autocorrelation functions are too persistent relative to

the true ones. The same is true also for the autocorrelation function produced by the unrestricted

factor model, except for the nominal rate. Here the large dimensionality of the parameter space

relative to the size of data set plays an important role in determining the quality of the results.

In contrast, the autocorrelation function produced by the mean estimates of the restricted factor

model decays much faster for all series and, except for output, we can not reject the hypothesis
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that the true and the estimated autocorrelation functions are the same.

Our approach also helps in reproducing the unconditional standard deviations of the series

better. Table 3, which reports these statistics, indicates that both factor models average out a

good part of the measurement error that standard procedures introduce. Once again, the restricted

factor model is preferable to the unrestricted one.

Series True LT FOD Factoru Factorr

Output 0.25 0.54 3.70 0.33 0.32
Real wage 0.17 0.21 1.58 0.11 0.16
Inflation 0.11 0.13 1.23 0.11 0.06

Nominal rate 0.17 0.21 1.59 0.11 0.16

Table 3: Standard deviation of the cyclical components; simulated data.

The generally good performance of the restricted factor model is confirmed when looking at

the responses of the endogenous variables to the four structural shocks. Figure 4 presents the

responses produced with the true parameters and those generated with the posterior median es-

timates obtained with the restricted factor model. Overall, both the shape and the persistence

of the conditional responses are well captured. There are a few cases where the impact sign is

wrong (see e.g. the response of the real wage to technology shocks or the response of inflation to

monetary shocks) but differences are not large a-posteriori. Also, in a few cases the magnitude of

the responses is not well estimated but with 170 data points, this is far from surprising.

To gain additional evidence on the properties of the estimated cyclical components obtained

with traditional methods and with the approach we suggest, we have also conducted two forecasting

exercises: an unconditional and a conditional one. In the first case, we compute the sequence of one

step ahead forecast errors for output and inflation, when we take as parameter values the posterior

median estimates obtained using LT and FOD filtered data and our unrestricted and restricted

factor approaches, setting all the shocks in the forecasting period to zero. The MSE is computed

over 100 forecasting periods, when no updating of the parameters in the forecasting sample is

performed, and appears in table 4.

Series LT FOD Factoru Factorr

Output 0.1049 0.2054 0.0340 0.0058
Inflation 0.3501 0.3814 0.5317 0.3407

Table 4: Mean Square Error of the unconditional forecasts; simulated data. Scale 10−3.



3 THE IDEA OF THE PAPER 16

5 10 15 20
0

0.05

0.1

0.15

0.2

Pr
ef

er
en

ce
Output

5 10 15 20
0

0.01

0.02

0.03

0.04
Real wage

5 10 15 20
-0.2

-0.15

-0.1

-0.05

0
Inflation

5 10 15 20
-1.5

-1

-0.5

0
x 10-3 Nominal Rate

5 10 15 20
0

0.05

0.1

0.15

0.2

Te
ch

no
lo

gy

5 10 15 20
-0.3

-0.2

-0.1

0

0.1

5 10 15 20
-2

-1.5

-1

-0.5

0

5 10 15 20
-1.5

-1

-0.5

0

5 10 15 20
-0.015

-0.01

-0.005

0

M
on

et
ar

y

5 10 15 20
-0.5

-0.4

-0.3

-0.2

-0.1

5 10 15 20
-5

0

5

10
x 10-3

5 10 15 20
-0.1

-0.05

0

0.05

0.1

5 10 15 20
-0.02

-0.015

-0.01

-0.005

0

M
ar

ku
p

5 10 15 20
-5

0

5

10
x 10-3

5 10 15 20
-0.1

-0.05

0

5 10 15 20
0

0.01

0.02

0.03

 

 

True Factor
r

Figure 4: Impulse responses

Figure 5 instead traces out the one-step ahead path of output and inflation that would have

obtained with posterior median estimates of the parameters when monetary shocks were drawn so

as to keep the nominal interest rate fixed over the forecasting path. That is, we allow the nominal

interest rate to endogenously react to output and inflation but make sure that the monetary shocks

we draw are such that the nominal rate is constant over the forecasting path and equal to the value

taken at the date prior to the forecasting period (time 0 in the figure).

Table 4 and the Figure 5 indicate that the differences in the estimates lead to important dif-

ferences in forecasting performance. The restricted factor model unconditionally forecasts one-step

ahead the cyclical component of output better than any standard approach and even the unre-

stricted specification is superior to procedures which first filter, then estimate the parameters and
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then forecast. For inflation, the results are less clear cut, but the restricted factor specification is

at least as good as the LT and the FOD filtered specifications. The conditional forecasting exercise

shows that the bias introduced by traditional procedures translates in conditional output forecasts

which are consistently above those produced by our approach and the differences are statistically

significant. For inflation differences with standard methods are less evident but, for example, one

can clearly see that the cyclicality of the one step ahead conditional inflation series is smaller with

the restricted factor specification than with standard approaches and the differences are, at times,

large.
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Figure 5: One step ahead conditional forecasts

In sum, the biases that a standard procedure induces in parameter estimates have important

consequences for our understanding of both the autocovariance properties of the cyclical component

of the data and of the conditional responses to shocks. Overall, both statistics appear to be much

better reproduced with the specification we suggest The conditional and unconditional forecasts

produced by standard approaches inherit and magnify parameter biases providing a distorted pic-

ture of the cyclicality of, e.g., actual inflation. These problems are either resolved or considerably

reduced with our suggested approach.



4 DOES MONEY MATTER IN TRANSMITTING MONETARY BUSINESS CYCLES? 18

4 Does money matter in transmitting monetary business cycles?

To show that the additional information our procedure uses is relevant for understanding important

economic phenomena, we reconsider the role of money in transmitting monetary business cycles.

The majority of the monetary models nowadays used in the policy and academic literature attributes

a minimal role to the stock of money. In the majority of the cases these models make no reference

whatsoever to monetary aggregates, and when they do, they use a specification where a money

demand function determines how much money needs to supplied, given predetermined levels of

output, inflation and the nominal rate. As a consequence, changes in the nominal (or real) quantity

of money play no direct or indirect role in shaping the dynamics of output and inflation.

Ireland (2004) has constructed a general specification in the class of textbook New Keynesian

models, where real balances may have a role in affecting the dynamics of output and inflation.

He estimated the relevant parameters by likelihood techniques using post 1980 US data and found

evidence supporting current theoretical practices. To construct the likelihood of his cyclical model,

he first transforms the actual data, taking away a separate linear trend from per capita GDP and

per-capita real balances and demeaning inflation and the nominal interest rate.

In this section, we conduct a similar exercise using post 1959 US data and the cyclical versions of

real per-capita output, real par-capita money balances, inflation, and nominal rate series obtained

with 8 different filtering procedures. As a benchmark, we also estimate the model employing

Ireland’s preferred transformation and the same post 1959 sample.

4.1 The model economy

The model we employ is similar to the one considered by Ireland (2004), except that it also permits

real balances to play an indirect role, via its effects on interest rate determination. Relative to the

model we have used in section 2, we allow the real stock of money to potentially matter for the

determination of the output and inflation; consider pricing frictions in the form of adjustment costs

to changing prices rather than with a standard Calvo setup; and set the habit parameter to zero.

Since the economy is quite standard we only briefly describe its features. There is a rep-

resentative household, a representative final good producing firm, a continuum of intermediate

goods-producing firms supplying the differentiated commodity i ∈ [0,1] and a monetary authority.
At each t the representative household maximizes

Et

X
t

βtχt[U(ct,
Mt

ptet
)− ηnt] (15)

where 0 < β < 1, η > 0, subject to the sequence of budget constraints

Mt−1 + Tt +Bt−1 +Wtht +Dt = Ptct +
Bt

Rt
+Mt (16)



4 DOES MONEY MATTER IN TRANSMITTING MONETARY BUSINESS CYCLES? 19

where ct is consumption, nt are hours worked, pt is the price level, Mt are nominal balances, Wt

is the nominal wage and Bt are one period nominal bonds with gross nominal interest rate Rt;

Tt are lump sum nominal transfers made by the monetary authority at the beginning of each t,

and Dt nominal dividends distributed by the intermediate firms. χt and et are disturbances to

preferences and the money demand whose properties will be described below. Let mt ≡ Mt
pt
denote

real balances and πt ≡ pt
pt−1

the period t gross inflation rate.

The representative final good producing firm uses yit units of intermediate good i, purchased

at the price pit to manufacture yt units of final goods according to the constant return to scale

technology yt = [
R 1
0 (y

i
t)
(�−1)/�di]�/(1−�) with � > 1, where � is the constant price elasticity of demand

for each intermediate good. Profit maximization produces demand functions

yit = (
pit
pt
)−�yt (17)

Competition within the sector implies that pt = (
R 1
0 (p

1
t )
1−�di)1/(1−�)

The intermediate good producing firm i, hires nit unit of labor from the representative household

to produce yit units of intermediate good i using the production function yit = ztn
i
t, where zt is

an aggregate productivity shock. Intermediate goods substitute imperfectly for one another in

producing finished goods. Hence, intermediate firms can set the price of their good but must

satisfy (17) at the chosen price. We assume a quadratic cost in adjusting prices, measured in

finished goods, given by
φ

2
(

pit
πspit−1

− 1)2yt (18)

where φ > 0 and πs measures steady state inflation. Optimal prices are chosen to maximize

E
X
t

βtχt[U1(ct,
Mt

ptet
)](

Di
t

pt
) (19)

subject to (17), where βtχtU1(ct,
Mt
ptet
) measures the marginal utility value to the household of an

additional unit of profits t and real dividend are

Di
t

pt
= (

pit
pt
)1−�yt − (

pit
pt
)−�(

wtyt
zt
)− φ

2
(

pit
πpit−1

− 1)2yt (20)

The monetary authority sets the nominal interest rate according to

Rt = Rρr
t−1y

(1−ρr)ρy
t−1 π

(1−ρr)ρπ
t−1 ∆M

(1−ρr)ρm
t vt (21)

where ρr, ρy, ρπ , ρm ≥ 0 are parameters and vt is a monetary policy shock.

The law of motion of the disturbances of the model dt = (χt, et, zt, vt) is characterized by

log dt = d̄+N log dt−1+ ιt, where N is a diagonal matrix with entries ρχ, ρe, ρz, 0, respectively. The
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covariance matrix of the structural shocks Σ, is diagonal with entries σ2χ, σ
2
e , σ

2
z , σ

2
v . In a symmetric

equilibrium all the firm make identical choices so yit = yt, n
i
t = nt, p

i
t = pt,D

i
t = Dt.

Log-linearizing the model around the steady state produces the following equilibrium conditions

ŷt = Etŷt+1 − ω1((R̂t −Etπ̂t+1)− (χ̂t −Etχ̂t+1)) + ω2((m̂t − êt)− (Etm̂t+1 −Etêt+1))(22)

m̂t = γ1ŷy − γ2R̂t + (1− (Rs − 1)γ2)êt (23)

π̂t = βEtπ̂t+1 + ψ(
1

ω1
ŷt −

ω2
ω1
(m̂t − êt)− ẑt) (24)

R̂t = ρrR̂t−1 + (1− ρr)ρy ŷt−1 + (1− ρr)ρππ̂t−1 + (1− ρr)ρm(∆m̂t + π̂) + v̂t (25)

where

ω1 = −
U1(ct,

mt
et
)

ysU11(ct,
mt
ptet
)

(26)

ω2 = −m
s

es
U12(ct,

mt
et
)

ysU11(ct,
mt
et
)

(27)

γ1 = (Rs − 1 + ysrsω2
ms

)(
γ2
ω1
) (28)

γ2 =
Rs

(Rs − 1)(ms/es)
(

U2(ct,
mt
et
)

(Rs − 1)esU12(ct, mt
et
)−RsU22(ct,

mt
et
)
) (29)

ψ =
�− 1
φ

(30)

the superscript s denotes steady state values of the variables, Uj is the first derivative of U with

respect to argument j = 1, 2 and Uij is the second order derivative of the utility function, i, j = 1, 2.

The log-linearized Euler condition (equation (22)) includes terms involving real money balances

and the money demand shocks. They drop out from the expression if and only if utility is separable

in consumption and real balances, i.e U12 = 0 (see equation (27)). Similarly, real balances play a

role in the forward looking Phillips curve (equation (24)), as long as ω2 6= 0, which in turn again
implies that U12 6= 0 is necessary for real balances to matter. Hence, real balances play a direct

role in determining output and inflation if and only if real balances and consumption enter non-

separably in the utility function. On the other hand, the posited policy rule implies that the growth

rate of nominal balances may be an important determinant of output and inflation indirectly, via

interest rate determination. When ω2 and ρm are zero real balances have no direct or indirect role

in propagating cyclical fluctuations.

Since our scope here is illustrative, in the next subsection we focus attention on the estimates

of ω2 and ρm, only.
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4.2 Estimation

We estimate the model with US data from 1959:1 to 2008:2. All the data comes from the FRED

data bank at the Federal Reserve Bank of Saint Louis and it is seasonally adjusted. For real

GDP we take the GDPC96 series, which is a chain weighted real value of domestic production,

convert it in per-capita terms dividing it by the civilian non-istitutional population, age 16 and

over (CNP16OV) and log it. For real balances, we use the stock of M2 (M2SL), divide it by the

GDP deflator (GDPDEF), convert it into per-capita terms scaling it by the civilian non-istitutional

population, age 16 and over and log it. Inflation is calculated annualizing the quarterly growth rate

of the GDP deflator and a three months T-bill series (TB3M) is our measure of interest rates.

As mentioned, we employ 8 procedures to extract the cyclical component of the data. The

first transformation (POLY) fits a second order deterministic polynomial to each series separately,

allowing for a change in all the parameters at 1980:3. The cyclical component is the residual in

the regression. The FOD transformation takes the first difference of all the series as an estimate of

the cyclical component. The HP filter uses the standard value of λ = 1600 and the BP filter uses

Baxter and King (1994) approach to extract cycles with 8 to 32 quarters periodicity. The univariate

Beveridge and Nelson decomposition (BN) fits a ARIMA(1,1,1) model to each series separately and

takes as estimate of the cyclical component the difference between the original series and its model-

based long run forecast. The multivariate version of this procedure (MBN) fits a VAR with 6 lags

to the four variables and takes as an estimate of the cyclical component, the difference between the

level of the variables and their long run path implied by the model. The classical decomposition

(CD) assumes a additive representation of the components, fits a linear trend to the data and takes

the residuals as the cyclical component. Finally, the unobservable component UC decomposition

assumes that the non-cyclical component is a random walk and that the cyclical component has

a trigonometric representation (see Canova (2007a)). This implies that each of the series has a

ARIMA(2,1,0) representation. The cyclical component is then estimated with the projected values

of an AR(2) regression of the growth rate of each variable. Note that, among the procedures

we consider there are some where the non-cyclical component is deterministic, some where it is

stochastic, and some where it is smooth; some use univariate and other multivariate information;

some imply that cyclical and non-cyclical components are independent and some that they are

correlated. Finally, some filtering procedures are two-sided and some one-sided.

We estimate the parameters of the model using MCMCBayesian methods. The vector of observ-

ables is 32×1 (four series, 8 filtering methods) and the vector of states is 4×1. Since we set β = 0.99
and steady state inflation to 2 percent, there are 9 structural parameters (ω1, ω2, ψ, γ1, γ2, ρr, ρp, ρy, ρm)

- � and φ are not separately identifiable - and seven auxiliary parameters (ρχ, ρe, ρz, σχ, σe, σz, σv)

to be estimated. We parameterize the link between the model and the cyclical data, allowing one

intercept and one slope per filter, independent of the series, but allow the idiosyncratic term to be
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series and filter dependent. This implies that the intercept measures the average (across series and

time) bias of each procedure in constructing the cyclical component and the slope measures the

correlation between the data produced by each method and the model based quantities (again, on

average across series). Since we normalize the slope of the first procedure to the identity, we have a

total of 47 non-structural parameters to be estimated (8 intercept, 7 slopes and 32 variances). We

have also experimented with specifications with restrict the variances of the idiosyncratic compo-

nent to be either series specific (independent of the filtering method) or filter specific (independent

of the series) but discarded them because the model fit turns out to be relatively poor.

We draw 500,000 elements of the MCMC chain using the algorithm described in section3. Con-

vergence was achieve in less than 100,000 draws for each model specification we present. Posterior

statistics are computed using one every 100 of the last 200,000 draws.

As a benchmark, we have estimated the parameters of interest using as vector of observables

linearly detrending pre-capita output and per-capita real balances, and the demeaned value of

inflation and the nominal rate. We present the results obtained when we allow for measurement

error in each equation. This is the right specification to employ for comparison purposes since

our approach has idiosyncratic error built in (12) even though, when DSGE models are estimated,

measurement error is typically left out of the specification.

4.3 The results

Before we present the results of interest we briefly comment on the outcomes of the estimation

of the non-structural parameters in our procedure. First, the vector of λ0 is estimated, for all

purposes, to be zero with very small standard errors. Therefore, all filtered data do not present

level biases relative to the cyclical components produced by the model. Second, the loadings

parameters are estimated to be between 0.60 (for the UC filtered data) up to 0.86 (with the CD

filtered data). Therefore, there is sufficient idiosyncratic information in the data produced by the

various procedures. Since posterior standard errors are tight, differences in the loadings between

any of the procedures we consider are a-posteriori relevant. Third, the error ut appears to have a

highly idiosyncratic variance, both across series and across filtering methods. This clearly reflects

the fact that the variability of an individual series depends on the filtering approach used and that

filtered series display very different amounts of cyclical information. This is the reason for why,

for example, a restricted version of the setup we use, where only one parameter characterizes the

variability across series or across filtering methods, produces a poor fit.

Table 5 presents the marginal likelihood of the unrestricted specification, where both direct and

indirect effects of money are allowed, and for three restricted specifications, where either the direct

effect is eliminated (ω2 = 0), the indirect effect is eliminated ρm = 0, or both are eliminated.

Clearly, a specification where both effects are present is preferable to the other specifications
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Specification Acceptance rate Marginal log Likelihood ω2 ρm

Unrestricted 33.86 16274 0.44 (0.02) 0.48 (0.02)
ω2 = 0 33.64 16237 0 0.96(0.01)
ρm = 0 38.15 16212 0.43(0.02) 0

ω2 = 0, ρm = 0 33.77 16220 0 0

Standard with m.e. 0.03 (0.02) 0.04 (0.03)

Table 5: Marginal likelihood and Posterior estimates, various specifications

and restricting both ρm = 0 and ω2 = 0 is preferable to restricting only ρm = 0. Overall, at

least in terms of model fit, both the direct and indirect effects that money has in the model are

important. This result is confirmed when looking at location measures of the posterior of the two

parameters. Our specification implies a economically moderate direct and indirect effects of money

on output and inflation fluctuations. Statistically, both parameters are estimated tightly and both

are a-posteriori different from zero. A standard specification with measurement error, on the other

hand, implies that both direct and indirect effects are quite small, and for all purposes, they can

be set to zero.

How important are the differences in the point estimates with have in table 5? Figure 6 presents

responses to the four shocks for our specification and a standard specification with measurement

errors. Responses look qualitatively similar in the two cases, but there are differences in the

magnitude and the persistence of the responses to shocks. In particular, the persistence of the

responses to monetary shocks is reduced, the one of the technology shocks is increased and the

responses to money demand shocks have both different magnitude and persistence relative to a

standard approach.

In sum, our estimates are statistically significant. Given the experimental evidence we have

collected in the previous section, it is also likely that they are less biased than those obtained with

a standard approach, as far as persistence of the shocks and measurement of the substitution and

income effects are concerned. From an economic point of view, our estimates suggest that to cor-

rectly understand how monetary business cycles are generated, money must be given a meaningful

and intuitive way in the model.
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Figure 6: Impulse responses, standard and new approaches

5 Conclusions

This paper proposes a method to estimate the structural parameters of a time invariant cyclical

DSGE model using multiple cyclical information. The approach borrows ideas from the recent

literature employing data-rich environments to estimate DSGE models (see Boivin and Giannoni

(2005)) to set up an estimated structure where vectors of filtered data obtained with alternative

procedures are treated as contaminated estimates of the true cyclical component. Measurement

error may have different features and different power at different frequencies, depending on the

filtering approach used. We set up a signal extraction framework where the cyclical DSGE model

is the unobservable factor, vectors of filtered data are contaminated observable proxies, and the

parameters of the DSGE model are jointly estimated together with non-structural parameters using
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signal extraction techniques.

Our approach is advantageous in, at least, two respects. Since we do not have to arbitrarily

choose one filtering method prior to the estimation, we avoid specification errors of various sorts.

Moreover, cyclical data obtained with one-sided and two-sided filters of both univariate and mul-

tivariate nature can be used in estimation, as long as the list of filters is sufficiently rich. Second,

if different filters have sufficiently different features, measurement error may have different time

series properties. Since the implicit information averaging our procedure produces may reduce

measurement error and eliminate its cyclicality, estimates of the cyclical components are more re-

liable and precise, making parameter estimates and inference, to a large extent, free of preliminary

data transformation biases. The only constraint to the number of the vectors of filtered data used

in the estimation is the RAM capacity of the computer.

We investigate the properties of our approach using experimental data. We show that estimating

the structural parameters of the model with just one arbitrary filter typically induces large biases

in the estimates and that these biases are considerably reduced with our approach. We also show

that, in an unconditional forecasting exercise, the one step ahead MSE produced by our approach

is smaller than the MSE obtained with standard procedures and that the biases the latter possesses

translate in conditional forecasts which are considerably distorted.

To show the biases induced by standard approaches have relevant economic implications, we

revisit the role of money in the monetary business cycle. The literature has largely neglected the

stock of money when studying monetary business cycles and Ireland (2004) has shown that such an

approach is by and large appropriate using US data and a standard estimation setup. We show that

when the cyclical information produced by alternative filters is jointly used in estimation, both the

direct and the indirect channels through which money may play a role, are statistically important

and economically significant. These features imply that the propagation of primitive shocks in the

estimated economy is different from the one obtain if only one data transformation is used.

One may wonder why the literature uses time invariant cyclical models in the first place and does

not, instead, employ (time varying) models which can explain both the cyclical and the non-cyclical

properties of the data. We think there are three reasons for why such an approach is currently

unfeasible. First, jointly modeling cyclical and non-cyclical fluctuations is a very ambitious task

since there are few theoretical mechanisms which are able to propagate temporary shocks for a

long period of time (we need, for example, R&D, as in Comin and Gertler (2006) or Schumpeterian

creative destruction, as in Canova, et al. (2007)) or create important cyclical implications from

long run disturbances. Second, it is convenient to assume that the mechanism driving growth and

cyclical fluctuations are distinct and orthogonal. Third, time varying structures are difficult to

deal with in theory and hard to handle computationally (see e.g. Fernandez Villaverde and Rubio

Ramirez (2007)).
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Given these problems, this paper offers a setup where specification and measurement error biases

could be reduced making estimates of time invariant cyclical DSGE models more meaningful. In

this sense, this work complements those of Canova (2008) and Ferroni (2008) who also provided

new methodologies to reduce specification and small sample errors in the estimation of cyclical

DSGE models. Future work in the area will include revisiting known puzzles in the macroeconomic

literature, and investigating whether they can be solved with the approach proposed in this paper,

and better understanding the properties of the procedure using interesting experimental designs.
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