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Abstract
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1 Introduction

The 1990’s have witnessed a remarkable development in the specification of busi-
ness cycle models and steps forward have also been made in estimating them us-
ing limited information approaches (see, e.g., Rotemberg and Woodford (1997),
Christiano, et. al. (2005)) or full information likelihood based procedures (see e.g.
Kim (2000), Smets and Wouters (2003), Ireland (2004), Canova (2004), Rabanal
and Rubio Ramirez (2005) among many others).
Regardless of the estimation approach one employs, the model used to restrict

the data is taken very seriously. In fact, in classical estimation it is implicitly
assumed that the model is the DGP of the data, up to a set of serially uncorrelated
measurement errors. Since current business cycle models, even in the large scale
versions currently used in central banks and international institutions, are still too
simple to capture the complexities and the heterogeneities of the macrodata, such
an assumption is hard to be credibly entertained. When a Bayesian framework
is employed, the assumption that the model is the DGP is unnecessary to derive
the posterior distribution of parameters. Still, even in this framework, it is hard
to interpret misspecified estimates, unless an explicit loss function is employed
(see Schorfheide (2000)).
Structural estimation faces two additional problems. First, because the ag-

gregate decision rules are non-linear functions of the structural parameters and
the mapping is computable only numerically parameter identification becomes an
issue (see Canova and Sala (2006)). Second, these methods use considerable com-
puter time and require a dose of ingenuity to solve practical numerical problems.
The 1990s have also witnessed an extraordinary development of structural

VAR (SVAR) methods. Their increasing success is due to two reasons: the com-
putational complexities are minimal relative to those of structural techniques; the
analysis can be performed without conditioning on a single, and possibly misspec-
ified, model. Structural VARs, however, are not free of problems. For example,
the identification restrictions researchers employ are often not derived from any
model that could potentially be used to interpret the results (see Canova and Pina
(2005)) or may be so weak that they can not separate fundamentally different
DGPs (see Faust and Leeper (1997), Cooley and Dwyer (1998)). Moreover, the
small scale specifications typically used in the literature are likely to face omitted
variable problems. Finally, there are models which can not be recovered when the
Wold representation is used to setup a VAR (see Sargent and Hansen (1991) or
Lippi and Reichlin (1994)), that may not admit a finite order VAR representation
(see Fernandez Villaverde et. al. (2007)) or that, in small samples, are poorly
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represented with VARs (see Chari et. al (2006)).
Parameter estimation is seldomly the final goal of an applied investigation and

conditional forecasting exercises or welfare calculations are generally of interest.
For these experiments to be meaningful, one must assess the quality of a model’s
approximation to the data. and techniques which are simple, reproducible, ef-
fective in comparing the economic discrepancy between the model and the data
and informative about the reasons for why differences emerge are needed for this
purpose. Unfortunately, existing statistical techniques fail to meet these criteria
for two reasons. Traditional econometric methods are unsuited to measure the
magnitude of the discrepancy when the model is known to be a false description
of the data; statistical criteria give little information on the economic relevance
of the discrepancy. Del Negro and Schorfheide (2004) and (2006) have suggested
an interesting way to evaluate misspecified models. However, their approach is
computationally intensive and not yet tested in coherent experimental designs.
This paper presents a simple approach which employs the flexibility of SVAR

techniques against model misspecification and the insight of computational exper-
iments (see e.g. Kydland and Prescott (1996)) to design probabilistic measures
of fit which can discriminate among local alternative DGPs and are informative
about the economic relevance of the discrepancies with the data. We take se-
riously the objection that models are at best approximations to portions of the
DGP. We are sympathetic to the claim that too little sensitivity analysis is typi-
cally performed on calibrated/estimated models and that the reported outcomes
may depend on somewhat arbitrary choices. We also pay attention to the fact
that identification restrictions typically used in SVAR are often unrelated to the
class of models that researchers use to interpret the results.
Our starting point is a class of models which has an approximate state space

representation once (log-)linearized around their steady states. We examine the
dynamics of the endogenous variables in response to shocks for alternative mem-
bers of the class using a variety of parameterizations. While magnitude restric-
tions are often fragile, sign and, at times, shape restrictions are much more robust
to the uncertainty we consider. We use a subset of these robust restrictions to
identify structural disturbances in the data. Therefore, the minimal set of ”un-
controversial” constraints we employ to obtain a structural VAR is a collection of
robust model-based sign restrictions. We then use the dynamics of unrestricted
variables to construct qualitative and quantitative measures of economic discrep-
ancy between a member of the class and the data or between two members of the
class. The approach is constructive: if the discrepancy is deemed large at any
stage of the evaluation, one can respecify the model and repeat the analysis.
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Our methodology is advantageous in several respects. First, it does not require
that the true DGP is a member of the class of models we consider. Instead, we
only require that a subset of the robust sign restrictions that the selected class
implies has a counterpart in the data. Second, our approach does not need
the probabilistic structure of the model to be fully specified to be operative.
Third, by focusing SVAR identification on robust model-based restrictions, our
methodology catches several birds with one stone: it de-emphasizes the quest for
a good calibration, a difficult task when data is short, unreliable or scarce; it gives
content to identification restrictions used in SVARs; it shields researchers against
omitted variable biases and representation problems. Fourth, the approach is
flexible, it can be used in a limited information or full information mode, and
has a few degrees of freedom that can used to make shock identification more
or less constrained. Finally, the procedure requires negligible computing power
(basically a log-linear solver and a SVAR routine), it is easily reproducible and
potentially applicable to a number of interesting economic issues.
We show that our approach can recognize the qualitative features of true DGP

with high probability and can tell apart models which are local to each other.
It can also provide a good handle on the quantitatively features of the DGP if
two conditions are satisfied: identification restrictions are abundant; the variance
signal of the shock(s) one wishes to identify is strong. When this is the case, our
approach is successful even when the VAR is misspecified relative to the time
series model implied by the aggregate decision rules and the sample is short.
We illustrate the practical use of the methodology by studying the impact

effect of technology shocks on hours and of government expenditure shocks on
consumption, two questions which have received a lot of attention in the recent
literature (see e.g. Gali and Rabanal (2004) and Perotti (2007)).
The rest of the paper is organized as follows. The next section describes the

approach. Section 3 examines the ability of the methodology to recognize the true
DGP and to distinguish between locally alternative DGPs, both in population
and in small samples, in a few controlled experiments. Section 4 presents the two
applications. Section 5 concludes.

2 A sign restriction approach to evaluation

It is our presumption that DSGE models, while useful to qualitative character-
ize the dynamics induced by shocks, are still too stylized to be taken seriously,
even as an approximation to part of the DGP of the actual data. Since this mis-
specification will not necessarily vanish by completing the probabilistic space of
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the model, we do not try to find parameters that make the model and the data
quantitative ”close” and statistically measure the magnitude of the discrepancy.
To describe the details of our approach we need some notation. Let F (ws

t (θ),

α0(θ), α1(θ)|�t,M) ≡ F s(θ) be a set of functions, which can be simulated con-
ditional on the structural disturbances �t, using models in the class M. F s(θ)

could include impulse responses, conditional cross correlations, etc., and depends
on simulated time series ws

t (θ), where θ are the structural parameters, and, pos-
sibly, on the parameters of the VAR representation of simulated data, where
α0(θ) is matrix of contemporaneous coefficients and α1(θ) the companion matrix
of lagged coefficients. Let F (wt, α0, α1|ut) ≡ F (α0) be the corresponding set of
functions in the data, conditional on the reduced form shocks ut.
We take the class M to be broad enough to include sub-models with in-

teresting economic features. For example, M could be one of the standard
New Keynesian models used in the literature and the sub-models of interest
versions where one or more frictions (say, wage stickiness or price indexation)
are shut off. The class M is misspecified in the sense that even if there ex-
ists a θ0 such that α0 = α0(θ0) or α1 = α1(θ0) or both, ws

t (θ0) 6= wt and/or
F (ws

t (θ), α0(θ0), α1(θ0)|�t,M) 6= F (wt, α0, α1|ut).
Among all possible functions F s(θ), we restrict attention to those F̃ s(θ) which

are robust: the J1 × 1 vector F̃ s
1 (θ) ⊂ F̃ s(θ) is used for estimation and the

J2 × 1 vector F̃ s
2 (θ) ⊂ F̃ s(θ) for evaluation purposes. F̃ s

1 (θ) is termed robust
if sgn(F s

1 (θ1)) = sgn(F s
1 (θ2)), ∀θ1, θ2 ∈ [θl, θu], while F̃ s

2 (θ) is termed robust if
sgn(F s

2 (θ1)|Mj) = sgn(F s
2 (θ2)|Mj), ∀θ1, θ2 ∈ [θl, θu], where sgn is the sign of

F s
i ; θl, θu are the upper and lower range of economically reasonable parameter
values andMj ∈M. Hence, F̃ s

1 (θ) contains functions whose sign is independent
of the sub-model and the parameterization and F̃ s

2 (θ) functions whose sign is in-
dependent of a parameterization, given a sub-model. The nature of the economic
question and the class of modelsM dictates the choice of F s

1 (θ) and F s
2 (θ).

2.1 The algorithm

To keep the presentation simple we describe our approach in the form an algo-
rithm. The procedure involves six specific steps:

1. Find robust implications of the class of models. That is, find the set of
functions F̃ s(θ) and select F̃ s

1 (θ) and F̃ s
2 (θ).

2. Use some robust implications to identify shocks in the data. That is, find the
set of α0 that minimizes I[sgnF1(wt,α0,α1|ut)−sgnF1(wst ,α0(θ),α1(θ)|�t,M) 6=0], where
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θ ∈ [θl, θu] subject to A0A
0
0 = Σu, α0 = A0H, HH 0 = I where I[.] is a

counting measure, Σu the covariance matrix of reduced form disturbances.
If there is no α0 such that 0 ≤ ι ≤ I[.], some ι ≥ 0, stop evaluation.

3. Evaluate the performance qualitatively by computing (a) S1(Mj) =
1
N
×

I[sgnF2(wt,α̂0,α1|ut)−sgnF s
2 (w

s
t ,α0(θ),α1(θ)|�t,Mj)]=0 and /or (b) S2(Mj) =

1
N
×

I[shpF2(wt,α̂0,α1|ut)−shpF s
2 (w

s
t ,α0(θ),α1(θ)|�t,Mj)]=0 , where shp is the dynamic shape

of F2, α̂0 are the N values of α obtained in step [2.], and S1 and S2 are
conditional on modelMj .

4. Cross validate qualitatively members of the class if needed, i.e. repeat [3.]
for each candidate. If one candidate must to be selected, chooseMh, h =

1, 2, . . . to minimize S(Mh) =
PJ1

j=1w
1
jS1j(Mh)+

PJ2
j=1w

2
jS2j(Mh), whereP

j w
1
j +

P
j w

2
j = 1 are weights chosen by the researcher.

5. If the discrepancy in 3.-4. is not too large, continue the validation process
quantitatively. For example, compute Pr(F s

2 (θ) ≤ F2(α̂0)) ∀θ ∈ [θl, θu]
or the degree of overlap between D(F s

2 (θ)) and D(F2(α0)), where the dis-
tributions D are computed randomizing over θ and the α0 found in [.2].

6. Respecify the model if the performance in either 2. or 3.-4.-5. is unsatis-
factory. Otherwise, undertake policy analyses, computational experiments,
etc. as needed.

In the first step of our procedure we seek implications which are representative
of the class of models we want to evaluate. For example, if the sign of the
conditional covariations of output and the nominal interest rate in response to
monetary shocks is unchanged when we vary the risk aversion coefficient within
a reasonable range, and this is true for an interesting subset ofM, we call this a
robust implication. Robustness is not generic as many features are sensitive to the
parametrization. Moreover, since models are misspecified, magnitude restrictions
are unlikely to hold in the data. Hence, the robust implications we consider take
the form of sign restrictions, primarily on the impact period. Also, while both
unconditional and conditional moments can be used, we find statistics based on
the latter more informative.
In the second step we make the class of models and the data share quali-

tative aspects of their conditional moments. This step is easily implementable
using the numerical approaches of Canova and De Nicolo’ (2002) or Uhlig (2005).
One can ”strongly” or ”weakly” identify disturbances, by imposing a large or a
small number of robust restrictions, across horizons and/or variables. In line with
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SVAR practice, we use a minimal set of restrictions in the identification process.
Contrary to standard practices, we derive them explicitly from a class of models
and employ only qualitative constraints which are robust. Clearly, some robust
restrictions may not hold in the data. In that case, one would either repeat step
[2.] imposing an alternative set of robust restrictions, or, if all robust implica-
tions are exhausted and no shocks with the required properties found, stop the
evaluation process and go back to the drawing board.
The third step is similar to the one employed in computational experiments

where some moments are used to estimate/calibrate the structural parameters;
others to check the performance of the model. Here robust sign restrictions are
employed to identify structural shocks; the sign and shape of robust dynamic
response of unrestricted variables is used to check the quality of the model ap-
proximation to the data. We differ from standard practices because, at both
stages, we only consider qualitative implications. In the evaluation process we
select functions which are robust from the point of view of the sub-model and,
ideally, void of measurement error. For example, if a ”supply” shock is identified
by means of the sign of the joint responses of output and inflation, we could
examine whether the sign and the shape of the response of investment or hours
to this shock are qualitatively similar in the sub-model and in the data, if the
model has robust predictions about the dynamics of these two variables to supply
shocks and if their responses can be accurately measured in the data.
At times a researcher may be concerned with the relative likelihood of models

which differ in terms of frictions or basic microfundations. If none of the candi-
dates models is discarded after the first three steps of the evaluation procedure,
it is possible to qualitatively compare them using qualitative devices such as the
sign and shape of selected responses to shocks. A weighted average of counting
measures can be used to select the sub-model with the smaller discrepancy with
the data. If robustness is a concern, pseudo-bayesian averaging, where a scaled
version of S(Mh) is employed as weight, can be used. Note that candidates could
be nested and or non-nested: our method works for both setups.
When the scope of the analysis is to give quantitative answers to certain ques-

tions, to undertake conditional forecasting exercises or perform welfare calcula-
tions, the quality of the model can be further assessed using probabilistic Monte
Carlo methods, i.e. constructing probabilities of interesting events or measures of
distance between distributions of outcomes (as e.g. Canova (1995)). The compu-
tational costs of this step are minimal since model distributions are obtained in
step [1.], and distributions of data outputs in step [3.]. Quantitative evaluation
is not a substitute for a qualitative one: candidates can be eliminated and the
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burden of evaluation reduced if a qualitative check is performed first.

2.2 Discussion

We believe that the procedure is informative about the properties of models
and the discrepancy measures provide useful indications on how to reduce the
mismatch with the data. For example, shape differences may suggest what type
of propagation may be missing while sign differences the frictions/shocks that
need to be introduced. Also, contrary to many procedures, the approach permits
both sequential and joint identification of different shocks.
The approach we propose compares favorably to direct structural estimation

and testing of business cycle models for at least two reasons. Classical estimation
and inference are asymptotically justified under the assumption that the model
used is the DGP of the data. As we have mentioned, such an assumption is
probably still too heroic to be entertained, even after frictions, delays restrictions
and measurement errors are added to standard constructions. Furthermore, as
Canova and Sala (2006) have shown, the mapping between structural parameters
and objective functions in existing models is highly nonlinear and this creates
severe identification problems even in large samples.
Both issues are relatively unimportant in our setup. First, the use of robust

identification restrictions shields, to a large extent, researchers from the issue of
model and parameter misspecification. Furthermore, since we consider only re-
strictions which are robust to parameter/specification variations, we do not have
to take a stand on the relationship between the class of models we consider and
the DGP of the data. Second, since our approach does not explicitly use the
mapping between structural parameters and objective functions lack of parame-
ters identification is less of a problem for our approach. Moreover, since the set
of α0’s in step [2.] is not necessarily a singleton, the procedure recognizes that
with finite samples it may be difficult to uniquely pin down a value of α0.
SVAR analyses are often criticized because identification restrictions lack a

link with the theory that it is used to interpret the results. Since we employ theory
based robust sign restrictions, such a problem is absent in our framework. A
number of authors have also indicated that another form of subtle misspecification
may be present in SVARs. While the literature has cast this problem into an
”invertibility” issue (see Fernandez-Villaverde et. al. (2007), Christiano, et. al
(2005), Chari et. al (2006) and Ravenna (2007)), it is more useful to think of it
as an omitted variable issue for our purposes. It is well known that the aggregate
decision rules of a log-linearized of a general equilibrium dynamic model have the
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following state space format

x1t = A(θ)x1t−1 +B(θ)et

x2t = C(θ)x1t−1 +D(θ)et (1)

where et ∼ iid(0,Σe), x1t are the states, x2t the controls, et the exogenous shocks
and A(θ), B(θ), C(θ), D(θ) continuous differentiable function of the structural
parameters θ. (1) implies that log-linearized decision rules are members of a
larger class of VAR(1) models of the form:∙

I − F11c F12c
F21c I − F22c

¸∙
y1t
y2t

¸
=

∙
G1

G2

¸
et

Suppose y1t is a vector of variables excluded and y2t a vector of variables included
in the VAR and that these vectors do not necessarily coincide with those of the
state x1t and control variables x2t. Then, the representation for y2t is

(I − F22c− F21F12(1− F11c)
−1c2)y2t = [G2 − (F21(1− F11c)

−1G1c]et (2)

Hence, while the model for y2t is an ARMA(∞,∞), the impact effect of the
shocks in the full and the marginalized systems are identical, both in terms of
magnitude and sign. Therefore, as long as robust sign restrictions are imposed
on impact, this form of misspecification will not affect shock identification. In
general, one should derive robust implications integrating out the variables which
will be excluded from the VAR (see e.g. Canova et. al. (2006)). In this case, our
approach applies with no alterations to this reduced system of equations.

2.3 Comparing our approach to the literature

The methodology we proposed is related to early work by Canova, Finn and
Pagan (1994), who tested a RBC model by verifying the unit root restrictions
it imposes on a VAR; and to the recent strand of literature who identify VAR
shocks using sign restrictions (see Canova and De Nicolo’ (2002) or Uhlig (2005)).
It is also related to Del Negro and Schorfheide (2004) and (2006), who use the

data generated by a DSGE model as a prior for reduced form VARs. Two main
differences set our approach apart: we condition the analysis on a general class of
models rather than a single one; we only work with qualitative restrictions rather
than quantitative ones. This focus allows generic forms of model misspecification
to be present and vastly extends the range of structures for which validation
becomes possible.
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Corradi and Swanson (2007) have also suggested a procedure to test misspeci-
fied models. Their approach is considerably more complicated than ours, requires
knowledge of the DGP and is not necessarily informative about the economic rea-
sons for the discrepancy between the model and the data. Finally Chari, et. al.
(2007) evaluate business cycle models using reduced form ”wedges”. Relative to
their work, we use a structural conditional approach and probabilistic measures
for model comparison exercises.

3 The procedure in a controlled experiment

We choose for our exercises a class of New-Keynesian models similar to the one
employed by Erceg et. al. (2000) and Rabanal and Rubio Ramirez (2005), which
allows for habit in consumption, and for price and wage indexation mechanisms.
We choose this class for two reasons: several simpler models are nested into
the general setup; the structure is flexible, tractable and informative about the
properties of our approach. In the first part we investigate properties of our
procedure in population, when data is generated by different members of this
class. Later we describe how conclusions are altered by sampling uncertainty.

3.1 The class of models

The equilibrium conditions of the prototype economy, where all variables are
expressed in log deviations from the steady state, are

λt = Etλt+1 + (rt − πt+1) (3)

λt = ebt −
σc
1− h

(yt − hyt−1) (4)

yt = ezt + (1− α)nt (5)

mct = wt + nt − yt (6)

mrst = −λt + γnt (7)

wt = wt−1 + πwt − πt (8)

πwt − μwπt−1 = κw [mrst −wt] + β(Etπ
w
t+1 − μwπt) (9)

πt − μpπt−1 = κp [mct + eμt ] + β(Etπt+1 − μpπt), eμt ∼ N(0, σ2μ) (10)

rt = ρrrt−1 + (1− ρr)
£
γππt + γyyt

¤
+ ert , ert ∼ N(0, σ2r) (11)

ezt = ρze
z
t−1 + ut, ut ∼ N (0, σ2z) (12)

ebt = ρbe
b
t−1 + vt, vt ∼ N (0, σ2b) (13)

Equation (3) is the consumption Euler equation: λt is the marginal utility of
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consumption, rt the nominal interest rate, πt price inflation, and ebt a preference
shock. Equation (4) defines the marginal utility of consumption with external
habit formation. The production function is in (5); ezt is an exogenous produc-
tivity process and nt hours worked. Real marginal costs mct are defined in (6),
where wt is the real wage. Equation (7) gives an expression for the marginal rate
of substitution mrst. Equation (8) is an identity linking real wage growth to the
difference between nominal wage and price inflation. The wage and price Philips
curves arising from Calvo nominal rigidities are in (10) and (9). μp and μw pa-
rameterize the degree of backward-lookingness in price setting and wage setting,
respectively; eμt is a price markup shock, and πwt wage inflation. The slope of
the price Phillips curve is κp ≡

(1−ζp)(1−βζp)
ζp

1−α
(1−α+α�) and the slope of the wage

Phillips curve is κw ≡ (1−ζw)(1−βζw)
ζw(1+ϕγ)

. The central bank adjusts the nominal inter-
est rate rt according to the rule in (11). The four exogenous processes are driven
by mutually uncorrelated, mean zero innovations. The total factor productivity
shock ezt and the preference shock ebt have autocorrelation coefficients ρz and ρb,
respectively. The monetary shock ert and the markup shock e

μp
t are iid.

It is straightforward to check that at least five different sub-models are nested
into this general structure, which we label M1 - a flexible price, sticky wage model
(ζp = 0), which we label M2; a sticky price, flexible wage model (ζw = 0), which
we label M3; a flexible price and flexible wage model (ζp = 0, ζw = 0), which we
label M4; a model with no habits (h = 0), which we label M5, a model with no
indexation (μp = 0, μw = 0), which we label M6.
First, we need to find robust sign restrictions that hold across parameter values

and for sub-models in the class represented by (3)-(13). We specify a uniform
distribution for the unrestricted parameters over an interval, which we choose to
be large enough to include theoretically reasonable values, values obtained with
structural estimation procedures or used in calibration exercises - see Table 1.
The discount factor β and the markup parameters � and ϕ are fixed as they

are not separately identified - they enter the two Phillips curves as composites,
together with the price and wage stickiness parameter, respectively. The ranges
for other parameters are quite standard. For example, the interval for risk aver-
sion coefficient contains the values used in the calibration literature (typically 1 or
2), but it also allows higher values which are sometimes used in the asset pricing
literature (see e.g. Bansal and Yaron (2004)). Also, we are quite agnostic about
the possible values that the habit and the Calvo parameters can take: the ranges
include, roughly, the universe of possible values considered in the literature.
Given these intervals, we draw a large number of replications, compute im-

pulse responses and examine the sign of the 95 percent response bands at certain
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Parameter Support

β discount factor 0.99
� elasticity in goods bundler 6
ϕ elasticity in labor bundler 6
σc risk aversion coefficient [1.00, 5.00]
γ inverse Frish elasticity of labor supply [0.00, 5.00]
h habit parameter [0.00, 0.95]
ζp probability of keeping prices fixed [0.00, 0.90]
ζw probability of keeping wages fixed [0.00, 0.90]
μp indexation in price setting [0.00, 0.80]
μw indexation in wage setting [0.00, 0.80]
α 1 - labor share in production function [0.30, 0.40]
ρr inertia in Taylor rule [0.25, 0.95]
γy response to output in Taylor rule [0.00, 0.50]
γπ response to inflation in Taylor rule [1.05, 2.50]
ρz persistence of productivity [0.50, 0.99]
ρb persistence in taste process [0.00, 0.99]

Table 1: Support for the parameters.

horizons. Table 2 reports the signs on the impact period - figure A.1 in the
appendix shows that, in the model M1, several restrictions hold for a number
of horizons for serially correlated shocks. For each shock, table 2 reports six
columns, one for each of the models: a ’+’ indicates robustly positive responses;
a ’-’ robustly negative responses; a ’?’ responses which are not robust; and ’na’
responses which are zero by construction. The variables are the real wage (wt),
the nominal rate (rt), the inflation rate (πt), the output gap (yt) and hours (lt).

Markup shock Monetary shock Taste shock Technology shock
M1 M2 M3 M4 M5 M6M1 M2 M3 M4 M5 M6M1 M2 M3 M4 M5 M6M1 M2 M3 M4 M5 M6

rt + + + + + + + + + na + + + + ? ? + + - - - - - -
wt - - - - - - ? + - na ? ? ? - ? - ? ? ? + ? + ? ?
πt + + + + + + - - - na - - + + ? ? + + - - - - - -
yt - - - - - - - - - na - - + + + + + + + + + + + +
lt - - - - - - - - - na - - + + + + + + - - - - - -

Table 2: Sign of the impact responses to shocks, different models.

Many of the contemporaneous responses to shocks have robust signs, both
across parameterizations and sub-models. For example, positive markup shocks
increase the nominal interest rate and inflation, while they decrease the real wage,
employment and output on impact with high probability. This pattern is simple
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to explain: positive markup shocks increase production costs. Therefore, for
a given demand, production and employment contract while inflation and the
nominal rate increase. In general, taste shocks are the disturbances delivering
contemporaneous responses which are less robust across sub-models and the real
wage the variable whose impact response is less robust to shocks in sub-models.
This is because the sign of real wage responses crucially depends on the degree
of wage stickiness relative to price stickiness. Since we allow for a wide range of
values for these parameters, real wages may fall or rise.
The response of the real wage is of particular interest when distinguishing sub-

models in the class. For instance, in model M3 (sticky prices, flexible wages) real
wages fall in response to a contractionary monetary shock. With flexible wages,
workers are on their labor supply schedule and on impact wt =

¡
σc +

γ
1−α
¢
yt, so

that real wages positively comove with monetary shocks. In model M2 (flexible
prices and sticky wages), workers are off their labor supply schedule and from the
firm’s labor demand schedule, wt = − α

1−αyt. Hence, real wages negatively comove
with monetary shocks with sticky wages and flexible prices. Clearly, one cannot
distinguish between sticky price and sticky wage models using unconditional mea-
sures of the cyclicality of wages. In each model, there are shocks that make real
wages countercyclical and others that make them procyclical. As table 2 shows,
the sign restrictions can shed light on the validity of different sub-models.

3.2 Can we recover the true model?

We conduct a few experiments designed to check whether our procedure can
recover the sign of certain impact responses when we endow the researcher with
the correct model and a subset of the restrictions shown in table 2.
In the first experiment, we take M2, the flexible price, sticky wage model

as our DGP and consider a VAR with the five variables of interest. To avoid
singularity, one measurement errors is attached to the law of motion of the real
wage. The parameter of the DGP are in the first column of table 3. We assume
that both the model dynamics and the covariance matrix of the reduced form
errors Σ are known. We draw a large number of normal, zero mean, unitary 5×5
matrices, use a QR decomposition and construct impact responses as S∗Q, where
S is matrix orthogonalizing the covariance matrix of VAR shocks, and examine
whether the impact response of the real wage can be signed with high probability.
Initially, we impose 16 impact restrictions on output, inflation, hours and

the nominal rate and identify all four shocks. We find that 32 of the 106 draws
satisfy the restrictions and that the sign of the impact response of the real wage to
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Parameter Value Value

β discount factor 0.99 0.99
� elasticity in goods bundler 6 6
ϕ elasticity in labor bundler 6 6
σc risk aversion coefficient 8.33 8.33
γ inverse Frish elasticity of labor supply 1.74 1.74
h habit parameter 0 0
ζp probability of keeping prices fixed 0 0.75
ζw probability of keeping wages fixed 0.62 0
μp backward lookingness price setting 0 0
μw backward lookingness wage setting 0 0
α 1 - labor share in production function 0.36 0.36
ρr inertia in Taylor rule 0.74 0.74
γy response to output in Taylor rule 0.26 0.26
γπ response to inflation in Taylor rule 1.08 1.08
ρz persistence of productivity 0.74 0.74
ρb persistence in taste process 0.82 0.82
σz standard deviation of productivity 0.0388 0.0388
σμ standard deviation of markup 0.3167 0.3167
σb standard deviation of preferences 0.1188 0.1188
σr standard deviation of monetary 0.0033 0.0033
σm1 standard deviation of measurement error 1 0.0001 0.0001

Table 3: Parameter values used in experiments.

markup, monetary, taste and technology shocks has the correct sign in 100, 71, 96
and 100 percent of the cases, respectively. To examine the importance of imposing
enough constraints in the identification process, we repeat the experiment by
eliminating the contemporaneous restrictions on output. That is, we impose only
12 impact constraints to identify the four shocks. In this case, we find that 278 of
the 106 draws satisfy the restrictions. For these draws the impact responses of the
real wage to markup, monetary, taste and technology shocks have the right sign
in 100, 54, 95, 99 per cent of the cases, respectively. Why is there a significant
decrease in the percentage of correctly recognized impact signs of the real wage
to monetary shocks? Real wage increases in response to monetary shocks in the
model but the magnitude is pretty small. Therefore, unless there are abundant
restrictions, the estimated impact response of the real wage may marginally fall
in certain draws.
Next, we examine whether the results are sensitive to the choice of the number

of shocks we identify. Intuitively, one should expect to find a larger number of
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draws satisfying the restrictions when a smaller number of shocks is identified,
but the percentage of impact responses of the variable of interest correctly signed
will not necessarily increase. Consistent with our expectations, we find that if,
e.g., we identify only technology shocks, about one-fourth of the 106 draws satisfy
the impact restrictions we impose but that in only 77 percent of the cases the
responses of the real wage are correctly signed. However, no drop in the precision
is found for markup shocks: about that two-third of the 106 draws satisfy the
restrictions and in 100 percent of the cases the impact response of the real wage
is correctly signed.
Why is it that the sign of the real wage responses to markup shocks is always

correctly recognized regardless of the number of restrictions we impose? As we
will see in details in the next experiment, the variance of the structural shocks
matters for the properties of our procedure. From table 3 is evident that markup
generate a strong signal. Therefore, they are easy to identify regardless of the
number of restrictions we impose.
The second experiment we run takes the same model but considers a four

variable VAR with output, inflation, nominal rate and the real wage. We fix the
parameters of the DGP exactly as in the previous experiment - no measurement
error is added here - and still assume that the AR coefficients and the variance
covariance matrix of reduced form shocks are known. We impose 12 impact
restrictions on the response of inflation, the nominal rate and the wage rate and
check whether our procedure can correctly sign the impact response of output
to each shock. This experiment differs from the previous one in an important
aspect: while the previous VAR excluded a state variable - the observed real
wage is a contaminated signal of the true one - the current one includes all them.
However, given the previous discussion and since we are considering population
impact responses, no major changes in the quality of the results are expected.
We run three separate exercises with this specification: (a) we jointly identify

all the shocks; we only identify (b) the monetary policy shock or (c) the markup
shock. For exercise (b), we allow the variance of the monetary shocks to have
different magnitude. Paustian (2007) has shown that what matters for identifica-
tion is the relative variance of the shocks. The previous experiment indicates that
what may be crucial is the combination of number of restrictions and magnitude
of the variance of the shocks. Is this qualification is valid in the current setup?
When 12 restrictions on the impact responses are imposed, we find 15 out

of 106 draws satisfy the restrictions and that the percentage of correctly signed
impact output responses is 100, 37, 62, 100 for markup, monetary, taste and
technology shocks respectively. When we identify monetary policy shocks only,
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about one percent of the draws satisfy the three impact restrictions we impose,
but the output response is correctly signed in only 35 percent of the cases. This
value increases to about 70 (85) percent if the variance of the monetary shocks
is multiplied by a factor of 10 (100). Finally, we confirm that markup shocks are
much easier to identify than other shocks: they are obtained in 98 per cent of the
draws and the output response is correctly signed in over 90 percent of the cases,
regardless of the variance of the other shocks.
In sum, this set of experiments suggests that our procedure can recognize

the qualitative features of the DGP with high probability, when the ideal con-
ditions we consider in this section hold. Nevertheless, three points need to be
made. First, when a small number of identification restrictions is used - both in
the sense of leaving many variables unrestricted or identifying only one shock -
identification becomes weak and, unless the variance of the shock is large, results
are less favorable. Hence, it may be dangerous to be too agnostic in the iden-
tification process without some a-priori knowledge of the volatility of structural
shocks. Second, the relative strength of the variance signal is crucial for successful
inference: the responses of disturbances which are strong and loud are much more
easily characterized, regardless of the number of restrictions we impose. Third,
and consistent with the theoretical arguments, omitting state variables from the
empirical model becomes less crucial when sign restrictions on the impact re-
sponses are used for identification and outcomes are evaluated using probabilistic
measures.

3.3 Summarizing the features of DGP

So far our analysis has concentrated on the sign of the impact effect of selected
variables left unrestricted in the identification process. For many empirical pur-
poses this is focus is sufficient: business cycle theories are typically silent about
the magnitude or the persistence of the responses to shocks. At times, however,
a more quantitative evaluation is needed. For example, one may be interested in
knowing in which percentile of the estimated distribution of responses the true
responses lie or whether there exists a location measure that reasonably approx-
imates the true conditional dynamics.
To examine these questions we perform a number of exercises using the flex-

ible price, sticky wage model M2, where we let the real wage be contaminated
by iid errors. We identify shocks in a 5 variable VAR using sign restrictions on
the impact response of output, inflation, the nominal rate and hours worked and
examine the response of the real wage to the identified shocks for 12 horizons. We
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assume that both the coefficients of the VAR representation and the covariance
matrix of the shocks are known - the only source of randomness is due to identi-
fication uncertainty. To be able to measure this uncertainty with some precision,
we draw until at least 200 candidates satisfying the restrictions are found - we
have checked that with this number of draws identification uncertainty is robustly
characterized. For these draws, the contemporaneous response of the real wage
to markup, monetary, taste and technology shocks is correctly signed in 100, 57,
99 and 95 percent of the cases.
Figure 1 plots the median and the 95 percent bands of the responses (com-

puted ordering the candidate responses, horizon by horizon, and taking the 2.5,
50 and 97.5 percentile of the distribution) and the true responses. The median
is a reasonable although imperfect estimator of the true real wage dynamics in
response to shocks. The imperfection comes from the fact that true responses
are at times in the tail of the distribution of responses at almost all horizons and
at times near the middle of the band (compare wage responses to markup and
to technology shocks). Because of this heterogeneity a single location measure
must display some bias. Other location measures, such as the trimmed mean,
have similar properties, except for real wage responses to monetary shocks since
the distribution of these responses is somewhat asymmetric and displays some
outliers (see figure 1).
To check of the performance of the median (or the mean) response as es-

timator for the true responses, we have calculated the population contempora-
neous correlation between the true disturbances and disturbances obtained by
taking the median (average) value of the identification matrix. This correlation
is computed as follows. The VAR residuals ut and the true structural residu-
als �t are related via ut = DΣ0.5� �t, where Σ� is the diagonal covariance matrix
of structural shocks and the matrix D comes from the state space representa-
tion of the decision rules. Our algorithm delivers for any accepted draw j a
matrix Qj such that Qj(Qj)0 = I . Therefore, a candidate vector of structural
shocks satisfies �jt = (SQ

j)−1ut, where S is the lower triangular Choleski factor
of the VAR residual covariance matrix. Since structural shocks �t have unitary
variances, the correlation between the candidate structural shocks �jt and the
true structural shocks �t, is corr(�

j
t , �t) = (Qj)−1S−1DΣ0.5e . Hence, the median

correlation is corr(�med
t , �t) = (Qmed)−1S−1DΣ0.5� and the average correlation is

N ∗corr(�At , �t) =
P

j(Q
j)−1S−1DΣ0.5� , where N is the number of accepted draws.

The contemporaneous correlation between true and average recovered shocks
of the same type is reasonably high (around 0.6 for all four shocks) but, at times,
there is some contamination. For example, the recovered markup shocks have an
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Figure 1: Real wage response to shocks

average correlation of -0.28 with the true taste shocks and the recovered taste
shocks have an average correlation of -0.25 with the true technology shocks. In
all cases and for all the replications we have run, the highest correlation of the
recovered shocks is always with the corresponding true disturbances. This is
good news: since sign restrictions perform well in a quantitative exercise should
increase the confidence that researchers have in using them as evaluation devices.
Fry and Pagan (2007) have recently criticized the practice of reporting the

median of the distribution of responses as a measure of location when structural
disturbances are identified with sign restrictions since the median at each horizon
and for each variable may be obtained from different candidate draws and this
makes inference difficult. As an alternative, they suggest to use the single iden-
tification matrix that comes closest to producing the median impulse response.
Figure 1 also reports this measure and shows that it is extremely close to the
basic median for markup and technology shocks. The two measures differ visibly
for monetary and taste shocks, but the Pagan median is not closer to the true
response. Thus, while the Fry and Pagan median has the attractive property of
generating impulse responses that come from a single orthogonal decomposition
of the covariance matrix, it is not necessarily better than the basic median.
We have conducted a number of additional exercises to check whether the
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performance of location statistics is affected by small changes in the experimental
design. We would like to discuss the results obtained when we reduce the variance
of markup shocks by 90 percent. As mentioned, markup shocks generate a very
strong signal and this makes the identification of other shocks more difficult. By
reducing their variance, one should expect the quality of our location measures
to improve. In fact, we find that it is now easier to recover the other three shocks
for many more candidates the contemporaneous response of the real wage has
the correct sign (up about 15 percent). As a consequence, the median becomes a
better estimator of the true responses to monetary, technology and taste shocks.

3.4 Can we exclude alternative models?

The next set of experiments is designed to evaluate whether our procedure is
able to eliminate candidate sub-models as potential generators of the data. In
the first set of exercises we take M3, the flexible wage, sticky price model, as the
DGP and use the parameters in the second column of table 3. We consider a
VAR with real wages, output, inflation, nominal rate and hours. Since there are
four structural disturbances, we add one measurement error to the real wage to
avoid singularity of the covariance matrix. We maintain that the dynamics and
the covariance matrix of reduced form shocks are known and restrict attention
to monetary shocks, which we identify by imposing the sign restrictions on the
impact response of output, inflation, the nominal rate and hours of table 2. We
ask whether we can exclude that the data were generated by a flexible price,
sticky wage model M2, just by looking at the impact response of the real wage.
We draw 106 identification matrices and follow the same approach of sub-

section 3.2. In about 10 percent of the draws the four impact restrictions are
satisfied and in over 98 percent of cases, the real wage falls as the theory pre-
dicts. Hence, we can exclude that the sticky wage, flexible price version model
is the DGP of the data with high probability. To check that this outcome is not
due to chance, we have examined two alternative parameterizations. When the
variance of monetary (technology) shocks is larger by a factor of ten, about 43 (2)
percent of the draws satisfy the restrictions, but in both experiments the faction
of contemporaneous real wage responses correctly signed exceeds 99 percent.
Next, we turn around the null and the alternative hypotheses, that is, we

simulate data from a sticky wage, flexible price model and ask whether we can
exclude with high probability that the data were generated by the sticky price,
flexible wage model. The parameterization we use is in the first column of table
3; the details of the simulation are identical to the previous ones. Once again,
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the procedure is quite successful: in more than 80 per cent of the draws, the
contemporaneous response of the real wage to monetary shocks has the correct
sign; the average contemporaneous correlation between true and extracted mon-
etary shocks is high (about 95 percent); the recovered monetary shocks have zero
correlation with the true markup, taste and technology shocks; and the pointwise
median response captures well both the magnitude and the shape of the true real
wage responses to monetary shocks.
Canova and Sala (2006) and Iskrev (2007) have shown that structural econo-

metric approaches have difficulties in separating sticky price and sticky wage
models, because the impulse response based distance function or the likelihood
function are flat in the parameters controlling price and wage stickiness. Our re-
sults suggests that the sign of the impact response of the real wage to monetary
shock can recognize very well the nature DGP. Hence, it is comforting to see that
our semi-parametric approach can resolve some of identification problems faced
by more standard approaches.
Finally, one may want to know whether the ability of our procedure in exclud-

ing an alternative sub-model in the same class depends on the parameterization
of the DGP. Since the impact response of real wage to monetary shocks is positive
in M2 and typically sufficiently large for a wide set of parameters, the parame-
terization should have little influence on the results. To confirm this, we draw
1000 parameter vectors from the intervals presented in Table 1, except for setting
θw = 0, and for each draw, we draw 1000 identification matrices. We find that
the sign of the impact real wage response is correctly identified on average 99
percent of the times, with a numerical standard error across draws of 4.13. This
percentage increases to 99.91 when monetary shocks have larger relative variance
(the numerical standard error is 0.8). When the variance of the technology shock
is multiplied by a factor of 10, the average percentage of draws satisfying the
restrictions is 99.04 (the numerical standard error is 1.27).
To conclude, our procedure has good power in distinguishing models in the

ideal situations considered in this subsection: we can exclude potentially relevant
candidate DGPs just by using the sign of the impact responses of the real wage,
and this is true regardless of the relative size of the variance of the shocks and
the exact parameterization of the model. Perhaps more importantly, we can
distinguish models in situations where more structural approaches fail.
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3.5 How does our approach perform in small samples?

The ideal conditions considered in the previous subsections are useful to under-
stand the properties of the procedure but unlikely to hold in practice. Here we are
interested in knowing whether and how conclusions change if the autoregressive
parameters and the covariance matrix of the shocks are estimated prior to the
identification of the structural disturbances.
To measure sample uncertainty we repeat the experiments we have previ-

ously run and consider 200 replications of each experiment. In each replication,
we simulate data, keeping the parameters fixed and injected random noise (and
measurement error) in the form of normal iid shocks with zero mean and vari-
ances reported in table 3. We consider samples with 80, 160 and 500 data points
- 20, 40 and 125 years of quarterly data. For each replication we estimate a
BVAR, where a close to non-informative conjugate Normal-Wishart prior is used
- the results we present are independent of the type of prior we employ. The lag
length of the VAR varies depending on the experiment. We jointly draw from the
posterior of the parameters, the covariance matrix of the shocks and the identifi-
cation matrices until 200 draws satisfying the restrictions are found. We compute
pointwise medians and pointwise credible 95 posterior intervals for the variables
of interest. For comparison with the true response, obtained from the population
VAR representation of the model, we compute the average (or the median) value
across replications of the median and the largest interval containing 95 percent
of the estimated 95 percent bands at each horizon. We complement these mea-
sures with coverage rates - that is, the probability that the true response falls
within the estimated credible interval at each horizon - and the probability that
responses of certain variables to selected shocks are correctly signed.
We begin generating data from a sticky wage, flexible price model with one

measurement error. A 5 variable BVAR with output, inflation, the nominal rate,
hours, the real wage is used to estimate the dynamics and the covariance matrix of
the shocks. The lag length is set to 4 or estimated using a BIC criteria.We identify
the four structural shocks imposing sign restrictions on the impact coefficients of
output, inflation, the nominal rate and hours to shocks and leave the real wage
totally unrestricted. For the sake of presentation, we focus on real wage dynamics
when taste and technology shocks hit the economy, as they give the full latitude
of estimation results. These responses are in figure 2.
Four features of the figure stand out. First, sample uncertainty is small relative

to identification uncertainty. Furthermore, as we add observations, main features
of the estimated dynamics are unchanged. Second, the lag length of the VAR has
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Figure 2: Responses of the real wage to taste and technology shocks

little consequences on the outcomes of the experiment - this is true even when
the sample size is small (see second row of figure 2). Hence, the contribution that
longer lags have to the conditional dynamics of the real wage is small and none
of the problems highlighted by Fernandez-Villaverde, et. al. (2007) is present
here. Third, sample and identification uncertainty compound: the envelope of
the bands at each horizon is wide and includes the zero line at every horizon. One
could make estimation results more precise, for example, by reporting the average
of the upper and lower 95 percent credible intervals across replications. However,
with such a choice true responses do not necessarily fall inside the reported band.
Fourth, regardless of the sample size, the average median is a good estimator of
the shape and of the magnitude of the true wage responses to taste shocks, of the
shape of real wage shocks to technology disturbances but not of the magnitude
of real wage responses to technology shocks. This asymmetry arises because
the persistence and the unconditional variance of technology shocks are poorly
measured.
We have tried to ascertain how large should the sample be to eliminate the

small sample bias in the estimated dynamics following technology shocks. We
found that only when 500 years of quarterly data (2000 data points) are available
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the median becomes a good estimator also of the magnitude of the true dynam-
ics. Hence, for quantitative comparisons, bias correction techniques such Kilian’s
(1999), or tighter priors, are needed before the response analysis is performed.
Coverage rates provide little new information. Note that coverage rates for

partially identified BVARs will be in general lower than those computed with
classical methods and of the nominal rate because of the way identification un-
certainty is treated in the two contexts (see Moon and Schorfheide (2007)). We
find that in response to taste shocks, the coverage rate is about 70% on impact
and increases to about 95% at longer horizons. As the sample size increases,
coverage is slightly lower since the estimated bands shrink but the change is
small. Coverage rates in response to technology shocks are, as expected, worse in
particular at the first few horizons.
In the next experiment we still simulate data from the sticky wage, flexible

price model but consider a VAR with output, inflation, the nominal rate and the
real wage and identify four shocks using impact restrictions on the real wage,
inflation and the nominal rate: this leaves the response of output at all horizons
completely free. We focus the discussion on the responses of output to markup
and monetary shocks to compare the results with those obtained when only iden-
tification uncertainty is present.
As figure 3 shows, sample uncertainty adds little to what we already knew:

the results obtained with 80, 160 or 500 data points are very similar. Output
responses to markup shocks are well estimated, as it was also in the case when
sampling uncertainty was absent, even with 80 data points. While bands are wide
and almost always include the zero line, the impact effect of markup shocks on
output is well captured, even when a traditional econometric criteria is used.
The magnitude of output responses bands to monetary shocks varies some-

what with the sample size, but in all cases they contain the zero line. The
performance of the average median estimator is invariant to the sample size and,
in this instance, not particularly encouraging: while the true output response to
monetary shocks is negative on impact, the average median impact (green line)
is positive. This is due, in part, to asymmetries in the simulated distribution of
the median. For example, the median value of the distribution of the median
(starred black line) has the right sign all horizons.
This experiment also confirm that sample uncertainty is, in general, small

relative to identification uncertainty. For example, without sampling uncertainty,
the impact response of output to monetary shocks was correctly signed in about
37 percent of the cases; this number drops to about 30-32 percent when sampling
uncertainty is considered. As before, the number of restrictions and the relative
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Figure 3: Responses of output to markup and monetary shocks

size of the variance of the shocks matter for the performance of the approach but
sampling uncertainty has little influence on how these features affect the results.
In the next experiment we simulate data from the same model we have used

in the previous experiment and ask whether with typical samples we could distin-
guish such a model from one with sticky price, and flexible wages just by looking
at the sign of the responses of the real wage to monetary shocks. With only iden-
tification uncertainty, we were able to exclude this locally alternative specification
with high probability. Does sample uncertainty changes this conclusion?
We estimate a VAR(2) with output, inflation, nominal interest rate and real

wage and impose identification restrictions on the sign of the impact response
of output, inflation and the nominal rate in response to monetary shocks. This
leaves the responses of the real wage completely unrestricted. Table 4 shows
that, once again, sample uncertainty adds little: sign restrictions are pretty good
tools to distinguish between sticky price and sticky wage models, regardless of the
sample size. For example, when T=80, there is only about a 10 percent chance of
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confusing the two models when we look at the impact response of the real wage.
Table 4 also shows that as the signal produced by the monetary shocks becomes
stronger, sample uncertainty matters even less: if monetary shocks were 100 times
more volatile than we have assumed, the sign of the impact responses of the real
wage would be almost always be correctly recovered. Given these results, it is
not surprising to find that the average median real wage responses is a reasonable
estimator of both the magnitude and the shape of the true responses and that
coverage rates are everywhere good.

Basic monetary shocks 10 times larger shocks 1000 times larger shocks
Horizon T=80 T=160 T= 500 T=80 T=160 T=500 T=80 T=160 T=500

0 0.88 0.89 0.87 0.87 0.87 0.89 0.98 0.98 0.98
1 0.70 0.78 0.80 0.83 0.86 0.89 0.87 0.92 0.96
2 0.68 0.77 0.78 0.76 0.83 0.87 0.81 0.88 0.94
3 0.62 0.74 0.76 0.68 0.78 0.85 0.71 0.83 0.91
4 0.59 0.71 0.74 0.63 0.73 0.82 0.65 0.77 0.87
8 0.52 0.62 0.66 0.57 0.62 0.69 0.58 0.64 0.70
15 0.54 0.59 0.58 0.52 0.55 0.58 0.55 0.57 0.58

Table 4: Probability of correctly signed wage responses to monetary shocks.

Finally, we simulate data from the flexible wage, sticky price model, and ask
whether we could distinguish it from the flexible price, sticky wage model just
by looking at the sign of the wage responses to monetary shocks. Relative to the
previous experiment, we complicate the setup since real wage is now measured
with error, a five variable VAR with output, hours, inflation, the nominal rate
and the real wage is used and the lag length of the model is misspecified.
Table 5 presents the probability that wage responses to monetary shocks are

correctly signed when the lag length is arbitrarily set to 2, 5 or 10. on average or
in the median across replications. Overall, previous conclusions are confirmed and
some interesting new aspects emerge. For example, the median of the distribution
is superior to the average as an estimator of the true responses, regardless of the
sample size and the lag length. Also, increasing the lag length does not necessarily
increase the probability that wage responses are correctly signed, particularly at
short and medium horizons. Finally, even with 80 observations, one can exclude
the local alternative model as DGP with almost 80 percent probability.
To summarize, sample uncertainty does not change any of the conclusions we

have previously reached: our approach is effective in recovering the qualitative
features of the DGP and in excluding local alternative models as potential DGP.
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Horizon
Lags Sample 0 1 2 3 4 8 15
2 80 average 77.22 70.63 68.92 65.55 63.12 51.73 47.67

median 88.00 75.25 72.25 67.50 66.50 52.00 47.50
160 average 80.08 77.26 74.36 70.73 67.03 50.81 42.53

median 93.50 85.00 81.00 76.50 70.50 49.50 42.00
500 average 82.40 79.78 78.66 76.29 72.91 50.91 39.15

median 99.25 90.25 88.00 84.00 77.50 51.75 37.25
5 80 average 81.87 73.82 67.42 58.70 53.94 51.2225 49.37

median 90.00 79.00 71.00 63.50 55.25 52.7500 49.00
160 average 81.84 76.51 70.91 64.15 60.20 52.3200 47.78

median 95.25 83.25 74.25 68.25 60.25 52.7500 46.50
500 average 77.32 76.50 73.61 70.33 63.39 50.0675 44.96

median 97.00 85.25 79.00 74.00 66.50 51.0000 46.25
10 80 average 79.05 66.04 58.47 51.57 50.95 51.56 52.78

median 89.50 69.75 63.00 50.25 49.25 52.75 50.90
150 average 79.21 72.29 65.71 58.87 55.16 50.91 50.90

median 93.50 78.25 71.50 62.50 56.00 51.00 52.25
500 average 81.21 78.42 76.72 72.41 66.05 50.99 49.74

median 99.50 94.00 88.75 78.00 67.50 52.75 50.00

Table 5: Probability of correctly signed wage responses to monetary shocks.

This is true even when the VAR is misspecified relative to the model that has
generated the data and in situations where structural estimation approaches fail.
In general, a few ingredients are needed to give the methodology its best chance to
succeed. First, it is important not to be too agnostic in the identification process:
it is probabilistically easier to recognize the DGP if more identification restrictions
are used, regardless of the sample size. Second, a stronger variance signal and a
sufficiently large number of variables in the VAR help to tell models apart. When
these conditions are met, the pointwise median response is a good estimator of the
sign, the shape and the magnitude of the true responses. Third, if quantitative
evaluations are needed, it is important to eliminate biases in estimated VAR
coefficients prior to identification of shocks. Absent this correction, the median
may become a poor estimator of the dynamics induced by shocks.
Our experiments also show that standard inference is problematic: credible

95 percent intervals tend to be large. Given that sign restrictions produce par-
tially identified models, expecting the same degree of estimation precision as for
exactly identified models is foolish. Since the size of the bands is inversely pro-
portional to the number of robust identification restrictions one imposes, and

25



identification uncertainty rather than sample uncertainty dominates (see Man-
ski and Nagy (1998) for a similar result in micro settings), standard statistical
analysis is meaningful only if the identification process is strengthened by adding
as many sign restrictions as possible. Alternatively, one should consider much
smaller uncertainty bands, say 68 percent bands or interquartile ranges. The
DGP used in this section does not allow much latitude as far as identification
restrictions are concerned, unless the intervals for the structural parameter are
strongly restricted. Since other DGPs may feature similar problems, considering
smaller uncertainty bands should probably be the preferred choice. In general,
when identification uncertainty is present, probabilist statements are more in-
formative about the features of the DGP than asymptotically-based standard
normal tests.

4 Two examples

4.1 Hours and technology shocks

There has been considerable debate in the literature concerning the sign of the
responses of hours to technology shocks. While the debate has often been cast
into a RBC vs. New-Keynesian transmission (see Rabanal and Gali (2004) and
McGrattan (2004)), researchers have recently start distinguishing various types
of technology shocks (Fisher (2006)) and offer alternative (Shumpeterian) expla-
nations of the evidence (see Canova, et. al. (2006)). Rather than entering this
controversy, this subsection concentrates on three narrower questions. First, what
kind of hours dynamics are generated by different types of technology shocks?
Second, which type of technology shock drives hours fluctuations most? Third,
how do technology shocks obtained with long run restrictions relate to those
extracted with impact sign restrictions?
To address these questions we use as our prototype, what is considered the

benchmark for policy analysis and forecasting in the literature (see Christiano,
et. al. (2005) and Smets and Wouters (2003)). This class features sticky nominal
wage and price setting, backward wage and inflation indexation, habit formation
in consumption, investment adjustment costs, variable capital utilization and
fixed costs in production. The log-linearized version of the general model can be
characterized as follows. The aggregate demand block is:

yt = cyct + iyit + gye
g
t (14)
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ct =
h

1 + h
ct−1 +

1

1 + h
Etct+1 −

1− h

(1 + h)σc
(Rt −Etπt+1) +

1− h

(1 + h)σc
(ebt −Ete

b
t+1)

(15)

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

φ

1 + β
qt −

βEte
I
t+1 − eIt
1 + β

(16)

qt = β(1− δ)Etqt+1 − (Rt − πt+1) + βr∗Etrt+1 (17)

Equation (14) is the aggregate resource constraint. Total output, yt, is absorbed
by consumption, ct, investment, it, and exogenous government spending, e

g
t . Equa-

tion (15) is a dynamic IS curve: ebt is a preference shock, σc is the coefficient of
relative risk aversion and h the coefficient of external habit formation. The dy-
namics of investment are in equation (16). φ represents the elasticity of the costs
of adjusting investments, qtis the value of existing capital, eIt a shock to the in-
vestment’s adjustment cost function and β the discount factor. In equation (17)
the current value of the capital stock depends positively on its expected future
value and its expected return, and negatively on the ex ante real interest rate, rt.
The aggregate supply block is:

yt = ω(αKt−1 + αψrt + (1− α)lt + ext ) (18)

kt = (1− δ)kt−1 + δit (19)

πt =
β

1 + βμp
Etπt+1 +

μp
1 + βμp

πt−1 + κpmct (20)

wt =
β

1 + β
Etwt+1+

1

1 + β
wt−1 +

β

1 + β
Etπt+1−

1 + βμw
1 + β

πt+
μw
1 + β

πt−1−κwμ
W
t

(21)
lt = −wt + (1 + ψ)rt + kt−1 (22)

Equation (18) is the aggregate production function. In equilibrium ψrt equals the
capital utilization rate and ext is a neutral shock to total factor productivity. Fixed
costs of production are represented by the parameter ω and α is the capital share.
The capital accumulation is in (19). Equation (20) links inflation to marginal
costs, mct = αrt+(1−α)wte

x
t +e

μp
t . The parameter κp =

1
1+βμp

(1−βζp)(1−ζp)
ζp

, is the
slope of the Phillips curve and depends on ζp, the probability that firms face for
not being able to change prices in the Calvo setting. The parameter μp determines
the degree of price indexation and eμpt is a markup shock. Equation (21) links the
real wage to expected and past wages and inflation and to the marginal rate of
substitution between consumption and leisure, μWt = wt−σllt− σc

1−h(ct−hct−1)−e
μw
t ,

where σl is the inverse of the elasticity of hours to the real wage, e
μw
t a labor supply
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shock and κw =
1
1+β

(1−βζw)(1−ζw)
1+

(1+εw)σl
εw

ζw
. Equation (22) follows from the equalization

of marginal costs. Monetary policy is assumed to be conducted according to

Rt = ρRRt−1 + (1− ρR)(γππt + γyyt) + eRt (23)

where εRt is a monetary policy shock.
Equations (14) to (23) define a system of 10 equations in ten unknowns,

(πt, yt, ct, it, qt, lt, wt, kt, rt, Rt). Given these variables, we can generated the productivity-
wage gap (gapt =

yt
lt
− wt). The model features seven exogenous disturbances:

neutral technological, ext , investment-specific, e
I
t , preference, e

b
t , government spend-

ing, egt , monetary policy, e
R
t , and price e

μp
t and labor supply shocks, and eμwt . The

vector St = [ext , e
I
t , e

b
t , e

g
t , e

R
t , ε

μp
t εμwt ]

0, is parametrized as:

log(St) = (I − %) log(S) + % log(St−1) + Vt (24)

where V is a vector of white noises with diagonal covariance matrix Σv, % is
diagonal with roots less than one in absolute value and S is the mean of S.

Parameter Support
σc risk aversion coefficient [1,6]
h consumption habit [0.0,0.8]
σl inverse labor supply elasticity [0.5,4.0]
ω fixed cost [1.0,1.80]
1/φ adjustment cost parameter [0.0001,0.002]
δ capital depreciation rate [0.015,0.03]
α capital share [0.15,0.35]
1/ψ capacity utilization elasticity [0.1,0.6]
gy share of government consumption [0.10,0.25]
ζp degree of price stickiness [0.4,0.9]
μp price indexation [0.2,0.8]
ζw degree of wage stickiness [0.4,0.9]
μw wage indexation [0.2,0.8]
εw steady state markup in labor market [0.1,0.7]
γR lagged interest rate coefficient [0.2,0.95]
γπ inflation coefficient on interest rate rule [1.1,3.0]
ρy output coefficient on interest rate rule [0.0,1.0]
%i persistence of shocks i = 1, . . . , 7 [0,0.9]

Table 6: Support for the parameters.

We split the parameter vector θ = (θ1, θ2), where θ1 = (β, πss,Σv) are fixed
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parameters - we calibrate them to the posterior mean estimates of Smets and
Wouters (2003) - while θ2 are parameters which are allowed to vary. Table 6
gives the intervals for θ2. Note that these ranges are looser than the prior intervals
considered in the Bayesian estimation of this model. The range for the investment
adjustment cost parameter is small otherwise positive investment shocks increase
investment too much relative to output, making inflation increase.
Table 7 reports the sign of the 68 percent credible interval for the impact

responses to the seven shocks. As in section 3, a ’+’ indicates a robustly positive
sign, a ’-’ a robustly negative sign and a ’?’ a sign which is not robust when
considering 95 percent simulation bands. Four features of the table allow us
to identify the four potential sources of technological improvement (neutral, in-
vestment specific, markup and labor supply shocks). First, these shocks increase
output and decrease inflation on impact while the other three shocks produce pos-
itive comovements of these variables. Second, investment specific shocks make
consumption growth fall on impact - the impact response of consumption to the
other supply shocks is positive. Third, the impact response of the growth rate
of the gap measure is positive in response to technology shocks and negative in
response to markup shocks. Fourth, real wage growth falls in response to supply
and investment shocks and increases in response to the other two supply shocks.

NeutralMonetaryTaste InvestmentMarkupLabor supplyGoverment
∆yt + + + + + + +
∆ct + + + - + + -
πt - + + - - - +

∆gapt+ - - ? - + -
∆wt + + + - + - ?
∆lt - + + + + + +
Rt ? - + + ? ? +
LPt + - - - ? - -
it + + - + + + -
ut ? + + ? + ? ?
RRt ? - ? ? ? ? +

Table 7: Sign of the impact responses to shocks.

We use impact restrictions on output growth, inflation, consumption growth,
the productivity-wage gap growth, and the real wage growth to identify the four
shocks of interest in the data. These restrictions are satisfied also in sub-models
of the class, i.e. models with no habit, full utilization, log consumption or linear
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leisure in utility, no wage stickiness or indexation, no wage and price stickiness,
etc. Therefore, they are representative of the class of models we are interested in
studying. Note also, that hours robustly fall in response to neutral shocks and
robustly increase in response to the other three technology shocks and that these
restrictions hold all the sub-models, except when investment adjustment costs
are set to zero 1.
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Figure 4: Responses of hours to technology shocks

Figure 4 reports the median and the posterior 68 credible interval at horizons
from 0 to 20 for the responses of hours to various technology shocks. It is clear
that, while the sign of the responses to labor supply and markup shocks is well
estimated, the one to the other two technology shocks is not. Nevertheless, the
median suggests that hours growth instantaneously falls in response to neutral
shocks and instantaneously increases in response to the other three shocks.
The four technology shocks explain, in the median, about 50 percent of the

forecast error variance of hours growth at horizons varying from 4 to 20 quarters,
but the uncertainty is large. Relatively speaking, labor supply and markup shocks
explain the largest portion of the hours growth variability at short horizons (each
of them accounts for 25-30 percent of the variance) and neutral shocks the larger
portion from horizon six on (about 20 percent). Interestingly, investment shocks

1This robustness implies, for example, that the usual RBC vs. New-Keynesian discussion
is somewhat sterile. Flexible and sticky price versions of the model imply that hours fall in
response to neutral technology shocks, unless investment adjustment costs are set to zero.
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are a minor contributor of hours growth volatility at all horizons (compare with
Justiniano, et. al.(2007)).
It turns out that technology shocks extracted using long run restrictions and

a bivariate VAR with hours and labor productivity are correlated with the neu-
tral and the labor supply shocks we obtain. Interestingly, while the short run
correlation with neutral shocks is the largest, the medium run correlation with
labor supply shocks is the most significant one.
In sum, while the class of models we consider is broadly consistent with the

data, only the dynamics in response to markup and labor supply shocks have
sharp information. Unfortunately, both of them matter for hours growth vari-
ability only in the short run.

4.2 Does consumption increase in response to government
expenditure shocks?

The impact response of consumption to government expenditure shocks is contro-
versial. While a portion of the literature suggests that government consumption
raises private consumption (see Perotti (2007)), crowding out of private consump-
tion is hard to exclude. Gali et al. (2007) suggested that sticky prices and a large
portion of non-ricardian consumers can produce a simultaneous rise in output
and consumption in response to a government spending shock. The log-linearized
conditions of Gali et al. (2007) model are

qt = βEtqt+1 + [1− β(1− δ)]Etr
k
t − (rt − Etπt+1) (25)

it − kt−1 = ηqt (26)

kt = δit + (1− δ)kt−1 (27)

cot = cot+1 − (rt −Etπt+1) (28)

crt =
1− α

μγc
(wt + nrt )−

1

γc
trt (29)

wt = cjt + φnjt j = o, r (30)

rkt = xt + ezt + (1− α)(nt − kt−1) (31)

wt = xt + ezt − α(nt − kt−1) (32)

yt = ezt + (1− α)nt + αkt−1 (33)

yt = γcct + γiit + gt (34)

πt − μpπt−1 = κ(xt + eut ) + β(Etπt+1 − μpπt) (35)

rt = ρrrt−1 + (1− ρr)(γππt + γyyt) + ert (36)
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bt = (1 + ρ)[(1− φb)bt−1 + (1− φg)e
g
t ] (37)

tt = φbbt−1 + φge
g
t (38)

Equations (25)-(26) describe the dynamics of Tobin’s Q and its relationship
with investments it. The loglinearized accumulation equation for capital kt is
in equation (27). Equation (28) is the Euler equation for consumption, cot , of
optimizing agents. Consumption of rule of thumb agents crt is determined by their
labor income from supplying nrt hours of labor at wage wt net of paying taxes trt
as in equation (29). With flexible labor markets, the labor supply schedule for
each group is in equation (36)̇. Cost minimization implies (31) and (32), where xt
is real marginal cost, ezt total factor productivity and r

k
t the rental rate of capital.

Output is produced according to a constant returns to scale technology as in (33).
Market clearing requires that output is absorbed by aggregate consumption ct,
investment it and government spending e

g
t .The new Keynesian Phillips curve is in

equation (35) where eut is an iid markup shock and μp parameterizes the degree of
indexation. The central bank conducts monetary policy according to a standard
Taylor rule and ert a monetary policy shock. The government budget constraint
together with the fiscal rule gives rise to equation (37) where bt denotes bonds.
The fiscal rule is given by the last equation. The share of rule of thumb agents is
λ. Aggregation implies that ct = λcrt + (1− λ)cot and nt = λnrt + (1− λ)not .

To test for the presence of rule of thumb consumers and the importance of
sticky prices, we check whether consumption increases after a government expen-
diture shock in the data. To obtain robust model implications, we draw structural
parameters from the intervals in table 8.
The range for most of the parameters is the same as in the baseline model in

section 3. For the fiscal rule parameters we choose an interval centered around
the calibrated values in Gali et al. (2007). We draw 105 sets of structural para-
meters and keep only those draws for which a determinate rational expectations
equilibrium exists - about 75 percent of the draws. Table 9 presents the sign of
the 68 percent credible intervals for impact responses to the four shocks.
Before we take the model to the data, we examine how our approach fares

with artificial data generated from this model. We take spending and technology
shocks to be autocorrelated with AR(1) coefficients set to 0.9. The markup and
monetary shocks are taken to be iid. We calibrate the model in the same way that
Gali et al. (2007) do in their baseline calibration and set the standard deviations
of monetary shocks to 0.025, of the markup shock to 0.3, of the government
spending shock to 0.1 and of total factor productivity to 0.07. We assume the
researcher observes data on hours, investment, consumption and inflation and
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Parameter Support
λ share of rule of thumb agents [0.00,0.90]
δ depreciation of capital [0.00,0.05]
α capital share [0.30,0.40]
θ price stickiness [0.00,0.90]
φ inverse of labor supply elasticty [0.00,5.00]
η elastictiy of investment [0.50,2.00]
ρr inertia in monetary policy [0.00,0.90]
γπ policy response to inflation [1.05,2.50]
γy policy response to output [0.00,0.50]
μp indexation in price setting [0.00,0.80]
φb fiscal rule response to bonds [0.25,0.40]
φg fiscal rule response to expenditure [0.05,0.15]
ρg AR(1) parameter gov. spending [0.50,0.95]
ρt AR(1) parametr productivity [0.50,0.95]
μ gross monopolistic markup [1.10,1.30]
γg steady state spending share in output [0.15,0.20]

Table 8: Support for the parameters.

that the population VAR representation of these variables is known. We first take
as the true DGP the model without any rule of thumb consumers, λ = 0, and
ask whether we can recover that consumptions falls in response to a government
spending shock if we impose that government spending shocks increase hours and
inflation and crowd out investment on impact. Since such a pattern could also be
induced by negative technology shocks we jointly identify both types of shocks by
imposing that a positive technology shock reduces hours and inflation, increases
investment, and increases consumption.
Figure 5 shows that on impact 100 percent of the accepted draws have con-

sumption falling. Furthermore, the median identified response of consumption
tracks the actual response almost perfectly. Recall that no restriction was im-
posed on the response of consumption to government spending shocks. Hence, the
method works well at pointing towards an absence of rule of thumb consumers.
Next, we turn to the case where there is a large enough fraction of rule of

thumb consumers, such that consumption clearly rises in response to a spending
shock. We set λ = 0.8 and impose the same restrictions on the population VAR
as before. In this case, the identified set includes both positive and negative
responses, but consumption rises on impact in about 70 percent of the accepted
draws and the median response is again reasonably close to the true response.
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markupmonetary spending technology
r ? ? + -
w - - ? ?
π ? - + -
y - - + +
l - - + -
i ? ? - +
c - - ? +

Table 9: Sign of the impact responses to shocks.
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Figure 5: Consumption responses to government spending shock.

We estimate a 5 variable BVAR with a Normal Inverted-Wishart prior on
quarterly on U.S. data from 1954-2007 obtained from the FRED database. The
lag length is chosen with BIC. Our measure of government spending is govern-
ment consumption expenditures and gross investment (federal, state and local).
The BVAR includes hours worked in the nonfarm business sector, consumption,
investment, and GDP inflation. All variables enter in logs and first differences,
except inflation that is in log levels. We identify government spending shocks, by
imposing that they raise inflation, government spending growth, hours growth,
and lower investment growth on impact, and technology shocks, by imposing that
they lower inflation, hours growth, and raise investment growth and consump-
tion growth on impact. We jointly draw from the posterior and the orthonormal
matrices until 2000 draws that satisfy the restrictions are found.
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Figure 6: Response to a government spending shock in U.S. data, 1954-2007

Figure 6 shows that consumption growth does increase following a govern-
ment spending shock. The crowding out effect on investment growth appears
to be short-lived, whereas the responses of hours growth, consumption growth
and inflation are more persistent. Overall, the data is consistent with the key
implications of the model by Gali et al. (2007). This finding is qualitatively
unchanged if we do not identify the technology shock. When only government
spending shocks are identified, the 68 percent credible set contains the zero line at
almost all horizons but, the median response still indicates a rise in consumption
growth.

5 Conclusions

This paper presents a simple methodology based on sign restrictions to exam-
ine the validity of business cycle models. The approach employs the flexibility
of SVAR techniques against model misspecification and the insight of compu-
tational experiments to design probabilistic measures of discrepancy which can
discriminate among local alternative DGPs and are informative about its eco-
nomic relevance.
Our starting point is a class of models which has an approximate state space

representation once (log-)linearized around their steady states. We examine the
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dynamics of the endogenous variables in response to shocks for alternative mem-
bers of the selected class using a variety of parameterizations. A subset of these
robust restrictions is used to identify structural disturbances in the data. We then
use the dynamics of unrestricted variables to construct qualitative and quanti-
tative measures of economic discrepancy between a member of the class and the
data and between two members of the class.
Our approach can recognize the qualitative features of true DGP with high

probability and it can tell apart models which are local to each other. It can
also provide a good handle on the quantitatively features of the DGP if two
conditions are satisfied: identification restrictions are abundant; the variance
signal of the shock(s) one wishes to identify is strong. In this case, our approach
is quantitatively successful even when the VAR is misspecified relative to the time
series model implied by the aggregate decision rules and the sample is short.
Our methodology is advantageous in several respects. First, it does not require

the true DGP to be a member of the class of models we consider. Second, it
does not need the probabilistic structure of the model to be fully specified to be
operative. Third, it de-emphasizes the quest for a good calibration and shields
researchers against omitted variable biases and representation problems. Fourth,
the approach is flexible, it can be used in a limited information or full information
mode and require negligible computer time.
We show by means of two examples that the methodology is very useful to

characterize the responses to shocks and to identify theories which are more rel-
evant to explain the data. Recent work by Dedola and Neri (2007) and Pappa
(2005) indicate that a number of questions can be addressed using the methodol-
ogy proposed in this paper and that the answers it provides are useful to applied
researchers.
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Figure A1: 95 percent response bands in the general model
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