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Abstract

We use data on coupon-bearing Australian Government bonds and overnight
indexed swap (OIS) rates to estimate risk-free zero-coupon yield and forward
curves for Australia from 1992 to 2007. These curves, and analysts’ forecasts
of future interest rates, are then used to fit an affine term structure model to
Australian interest rates, with the aim of decomposing forward rates into expected
future overnight cash rates plus term premia. The expected future short rates
derived from the model are on average unbiased, fluctuating around the average
of actual observed short rates. Since the adoption of inflation targeting and the
entrenchment of low and stable inflation expectations, term premia appear to have
declined in levels and displayed smaller fluctuations in response to economic
shocks. This suggests that the market has become less uncertain about the path
of future interest rates. Towards the end of the sample period, term premia have
been negative, suggesting that investors may have been willing to pay a premium
for Commonwealth Government securities. Due to the complexity of the model
and the difficulty of calibrating it to data, the results should not be interpreted too
precisely. Nevertheless, the model does provide a potentially useful decomposition
of recent changes in the expected path of interest rates and term premia.

JEL Classification Numbers: C51,E43,G12
Keywords: expected future short rate, term premia, term structure decomposition,
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A TERM STRUCTURE DECOMPOSITION OF THE
AUSTRALIAN YIELD CURVE

Richard Finlay and Mark Chambers

1. Introduction

The relationship between the level of interest rates across different maturities is
known as the term structure of interest rates. The term structure can be used
to assess the financial markets’ expectations for the future path of monetary
policy. For example, the pure expectations hypothesis (which ignores the possible
existence of term premia) asserts that market participants’ expectations of future
short-term interest rates are simply given by forward rates as observed in the
market.1

The term structure of interest rates is often presented as a yield curve, which plots
the yields to maturity of bonds with varying terms to maturity. Typically, the yield
curve is presented for risk-free interest rates. In Australia, Australian Government
bonds are normally used, since these are considered to have essentially zero
probability of default and hence the yields do not incorporate any credit risk
premia. However, the yield curve does not give a direct reading of interest rate
expectations for two reasons. First, the yield to maturity of a bond is affected by
the bond’s coupon rate; the higher the coupon rate, the less important will be the
payment at maturity as a share of the bond’s total income stream and hence the
yield to maturity will be affected more by short-term expectations of monetary
policy relative to longer-term expectations. Second, if investors are risk-averse
and the future path of interest rates is uncertain, then long-term interest rates
will incorporate a term premium as compensation for investing in the face of this
uncertainty.

If these two components of long-term yields can be stripped away, the resulting
curve would provide a better indication of the markets’ expectations of the future
path of short-term interest rates, specifically the overnight interest rate used by the
Reserve Bank of Australia as the instrument for monetary policy.

1 By forward rate we mean an overnight interest rate which is observed in the market now but
does not apply until some time in the future.
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To abstract from the first of these complications, it is possible to use a set of
yields on coupon bonds – that is physical government bonds – to estimate a set
of yields on (hypothetical) zero-coupon bonds, which are bonds that do not make
any periodic interest payments. There are a number of established methods to do
this, which give broadly similar results.

The most direct method to abstract from the second complication – that is, to
estimate expected future short rates separate from term premia – would be to
use analysts’ forecasts of future monetary policy decisions, as these give a direct
reading on cash rate expectations. However, this method suffers from a number of
drawbacks, chief among these being that analysts’ expectations may not always
be reflected in market pricing, and typically extend over only a relatively short
horizon. An alternative is to specify and estimate a model of how expected future
short rates and term premia evolve over time. The fact that these two elements are
time-varying and are confounded in their effect on bond prices makes the choice
of model crucial. The approach we employ is to combine these two methods,
using data on analysts’ forecasts within the model-based approach to aid separate
identification of expected future short rates and term premia. Nevertheless, the
central role of the assumed model (along with the computational complexities
of fitting the model to data) means that it is prudent to treat the results of such a
term structure model with some caution – a different model may generate different
results.

Despite these caveats, the importance of the shape of the yield curve and
expectations of future interest rates in understanding economic and financial
market developments make the separation of yields into term premia and
expectations a worthwhile exercise. To this end we employ an affine term structure
model of zero-coupon yields that has been used widely in the literature and
currently appears to be the best available candidate for such work.2

The remainder of this paper is set out as follows. Section 2 provides a brief
overview of the affine term structure model, the literature on affine term structure
models, and their development. Section 3 details the term structure model that
we employ, while Section 4 discusses how we use estimated zero-coupon yield

2 An affine term structure model represents interest rates as being a linear combination of a small
set of factors and parameters. See, for example, Duffee (2002) and Dai and Singleton (2002)
for discussion of competing term structure models.
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data, along with analysts’ forecasts of future interest rates, as the inputs into the
estimation procedure for our model. Section 5 gives the results of our estimation
over two sample periods, with the output of most interest being the expected future
short rates and term premia produced. Finally, Section 6 concludes. More technical
detail regarding zero-coupon yield curve estimation from data on coupon-bearing
Australian Government bonds, as well as the affine term structure model and its
implementation, are provided in the appendices.

2. Model Overview and Related Literature

The focus of this paper is the estimation of an affine term structure model for
Australian interest rates, with the aim of decomposing forward rates into expected
future short rates and term premia. While mathematical details of the model are
given in Section 3, a brief description of the model here provides the reader with
some intuition regarding what is to follow.

We start by estimating zero-coupon yield curves from observed overnight indexed
swap (OIS) and government bond data (for further details see Section 4 and
Appendix A). These, along with analysts’ forecasts of future interest rates,
constitute the data used to estimate our term structure model.

Our term structure model describes how the cash rate might evolve. The model
assumes that the cash rate can be expressed as a constant plus the sum of three
latent factors, which in turn follow the continuous time equivalent of a vector auto-
regressive process with normally distributed shocks. Each latent factor is assumed
to have zero mean, so that according to our model, the cash rate has a constant
long-run steady-state value. The cash rate moves away from this steady-state value
when shocks cause the latent factors to move away from zero.

Arbitrage conditions allow us to link bond prices to the evolution of the cash
rate. In a world where investors are risk-neutral, the price of a zero-coupon bond
would be given by the expectation of the bond’s discounted future pay-off, where
discounting is with respect to the cash rate process just described. However,
investors need not be risk-neutral. If they are risk-averse, they may require extra
compensation for holding a bond whose value fluctuates, as opposed to cash whose
value does not. This extra compensation can be considered as the term premium.
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However, exactly how investors’ risk preferences collectively affect term premia is
not clear a priori. On the one hand, it is reasonable to think that investors should be
compensated for holding long-term bonds over cash, since the value of long-term
bonds can fluctuate and thus expose investors to the possibility of mark-to-market
losses. On the other hand, for investors who have long-term fixed liabilities, a
long-term bond for which the value at maturity is fixed may be less risky than a
cash account for which the value will depend on the variable path of short-term
interest rates. Term premia could therefore be positive or negative, depending on
the mix of investors trading bonds.

Hence, bond prices (and therefore observed yields) depend on both expected future
short rates and term premia. Of course observations of bond yields alone are not
sufficient to separately identify these two components. We can get information
about expected future short rates separate from term premia in two ways. First, we
can obtain estimates of the latent factors which can be used to derive expected
future short rates. Second, we can augment the zero-coupon yield data with
analysts’ forecasts of future interest rates when estimating the model – forecasts
of the future cash rate are a direct reading of expected future short rates separate
from term premia, and so aid in the estimation of the actual short rate process.

The latent factors are not observable, but must be estimated along with the
parameters of the model. We use the Kalman filter and maximum likelihood to
estimate the latent factors and parameters. The latent factors are estimated so as
to provide the best fit possible between the model’s implied yields and the actual
observed yields. Although no economic structure is imposed on them, the latent
factors tend to explain different components of the yield curve. Typically one latent
factor is highly correlated with the level of the yield curve, another is correlated
with the slope of the yield curve, and the third is correlated with the curvature of
the yield curve.

The model of interest rates just described builds on a modelling approach that
was first proposed in Duffie and Kan (1996). That work introduces the affine term
structure model, an arbitrage-free multifactor model of interest rates in which the
yield on any risk-free zero-coupon bond is an affine function of a set of unobserved
latent factors. Duffie and Kan also provide a method to obtain the coefficients
on the latent factors in the affine function and therefore to price risk-free zero-
coupon bonds. The improvement of this model on the previous literature is that it
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is scaleable, driven by estimable factors which have arbitrary correlation, while at
the same time retaining a good level of tractability.

de Jong (2000) implements this model on Treasury yield data from the United
States. He estimates one-, two- and three-factor versions of the model, concluding
that the one- and two-factor versions are misspecified, but that the three-factor
version seems to do a good job of capturing the relevant dynamics of yields.
de Jong uses a Kalman filter in estimating the models, which has the advantage
that it provides tractable estimation when there are more input yields than factors.
Consequently, it has become the most common technique for estimating affine
term structure models.

Duffee (2002) generalises the specification of the market price of risk used by
Duffie and Kan (1996) and de Jong (2000). He removes the restriction that
compensation for interest rate risk must be a multiple of the variance of that risk
and suggests a modification which allows it to move independently of the variance.
Duffee estimates this new variant (called the ‘A0(3)’ model), the original model
and a hybrid model, and demonstrates that the extra flexibility of the A0(3) model
provides significant improvements to goodness-of-fit.

Dai and Singleton (2002) implement various specifications of the Duffee (2002)
model on US data. They show that while regular yields fail the expectations
hypothesis, the ‘risk-premium adjusted’ yields from the A0(3) model satisfy the
expectations hypothesis. A further contribution of Dai and Singleton is that they
also provide analytical formulae for the coefficients of the affine function, enabling
simpler estimation than the method of Duffie and Kan (1996).

Kim and Orphanides (2005) take the A0(3) model of Duffee (2002) but incorporate
survey data of analysts’ forecasts of short-term interest rates as an additional
input to the estimation problem. Using US data, they estimate models both with
and without the forecasts and find that those models that incorporate forecasts
produce a better fit. Monte Carlo trials suggest that the inclusion of forecasts helps
to reduce small-sample problems arising in the estimation of highly persistent
factors, especially when data sets of only limited length are available. They find
that between the early 1990s and 2003, term premia in the US fell and that the fall
was tied to the moderation of macroeconomic volatility seen over the period. The
fall in term premia helps to explain the fall in treasury yields also observed. The
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model used in this paper is a variation of the Kim and Orphanides model, changed
slightly to accommodate the different nature of our survey data.

Affine term structure models have also been implemented at other central banks.
Kremer and Rostagno (2006) from the European Central Bank use a two-factor
affine term structure model to examine the low bond yields observed in the euro
area over the first half of this decade. They find a sharp reduction in estimated term
premia, indicating that a reduction in risk compensation may have been driving
yields lower. In addition, the term premia are found to be related to measures of
liquidity, suggesting that excess liquidity may also have been playing a part in
driving risk aversion down.3

Westaway (2006) also finds falling term premia in the United Kingdom. Given the
complexities of the model and the fact that term premia are in effect residuals of
the model he is, however, somewhat cautious in interpreting the results. Westaway
estimates a dynamic stochastic general equilibrium (DSGE) model of a closed
economy and finds that a decline in the volatility of economic shocks should lead
to lower term premia, a result consistent with the term structure model. However,
the DSGE model does not result in an overall fall in real yields and so cannot fully
account for the low level of yields observed.

More broadly, the strategy of incorporating time-varying term premia in modelling
long-run interest rates is a response to extensive empirical evidence contradicting
the pure expectations hypothesis; that is, evidence that long-run interest rates are
not simply an average of the expected path of future short-term interest rates.
In particular, studies have found that long-run interest rates display both ‘excess
volatility’ (fluctuating more than would be expected given the volatility of the
underlying macroeconomy) and ‘excess sensitivity’ (responding to information
that might be expected to only influence short-term rates).4

The estimation approach used in this paper belongs to the ‘pure-finance’ branch
of the term structure literature, where term premia are estimated using observed
yield data and perhaps some survey forecast data. This is opposed to the ‘macro-
finance’ branch, typified by Rudebusch and Wu (2008), where the interaction

3 In this context, excess liquidity refers to the amount of money and liquid assets circulating in
the economy.

4 See Gürkaynak, Sack and Swanson (2003) or Beechey (2004) for an overview of this literature.
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between the macroeconomy and the term structure is also modelled. As noted
by Kim and Wright (2005), pure-finance models, which rely on latent factors to
explain the yield curve, generally have the advantage of being more robust to
model misspecification, and provide a better fit to the data, than macro-finance
models. Conversely, although macro-finance models generally do not fit the data
as well as pure-finance models, they may be easier to interpret from an economic
viewpoint given the structure that they impose.

One criticism of the term structure literature is given in Swanson (2007),
who argues that different modelling techniques result in different term premia
estimates, so that some degree of caution must be placed on any term premia
estimate. The criticism is a reasonable one – term premia by their nature are
hard to estimate since their effect on observable bond prices is confounded with
expectations of future short-term rates. On the other hand, it is not entirely
surprising that different modelling techniques, which make different assumptions
about financial markets and the economy, should produce different results. A
useful survey paper on this topic is that of Rudebusch, Sack and Swanson (2007),
who review five alternative term premia estimation methodologies. They find
that although different models do produce different term premia estimates, the
estimates are generally not too different.5

We make some modest contributions to these term structure models; we extend the
Kim and Orphanides (2005) model to accommodate a different type of forecast
data (cash rate and 10-year bond yield forecasts as opposed to treasury note
forecasts), and we extend the zero-coupon yield estimation method to allow the
model to account for the actual cash rate prevailing at any given time. Our larger
contribution is the estimation of zero-coupon bond yields, and a linear affine term
structure model, for Australia.

5 Rudebusch et al (2007) consider term premia estimates for US data arising from five different
term strucuture models, one of which is equivalent to the term structure model which we use.
They find that the model which is equivalent to our model produces term premia which are
very similar to those produced by two other models (correlation coefficients of 0.98 and 0.94);
that the model which is equivalent to our model produces term premia which are very similar,
except for a level shift, to another model (correlation coefficient of 0.96); and finally, that the
last model (correlation coefficient of 0.81) produces term premia which are less similar to all
other models for theoretical reasons regarding modelling assumptions.
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3. The Model in Detail

In this section we outline the model we use. In what follows, scalars are lower-
case and not bold, vectors are bold upper-case and lower-case, and matrices are
upper-case and not bold. For mathematical convenience and to be consistent with
the literature, the model is considered in continuous time; discrete time versions
of such models are also possible.

Let rt be the instantaneous short rate or cash rate and assume that

rt = ρ +1′ ·xt (1)

where 1 = (1,1,1)′, xt = (x1,t ,x2,t ,x3,t)
′, and

dxt =−Kxtdt +Σ dWt , (2)

where K is lower triangular and Σ is diagonal, both 3× 3 matrices, and Wt
is standard multivariate Brownian motion which is analogous to a continuous
time version of a random walk. Equations (1) and (2) imply that the short
rate is a function of a constant ρ and three time-varying (‘latent’) factors,
xt = (x1,t ,x2,t ,x3,t)

′, with the evolution of xt following a zero-mean Ornstein-
Uhlenbeck process, the continuous time analogue of a vector auto-regressive
process. Here the drift term −Kxtdt is the deterministic component of the
stochastic differential equation, with K controlling the speed of mean reversion,
and the diffusion term Σ dWt is the random component, with the Brownian motion
Wt providing random shocks to the system. As mentioned earlier, the latent factors
xt are not observable and need to be estimated with the parameters of the model.

Investors demand compensation for holding bonds, whose value depends on the
random, and hence risky, latent factors; cash is free of this risk. The amount of
compensation demanded is termed the market price of risk, and it is this price of
risk that determines term premia (it is worth emphasising that the price of risk and
term premia are not the same thing; see Section 4). We assume that the price of
risk is of the form

λλλ t = λλλ 0 +Λxt (3)

where λλλ t = (λ1,t ,λ2,t ,λ3,t)
′, with λi,t the price of risk associated with the latent

factor xi,t at time t, λλλ 0 = (λ0,1,λ0,2,λ0,3)
′ and Λ a 3×3 matrix. This specification

implies that for each i, the extra compensation demanded by investors for bearing
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the risk of xi,t is comprised of a constant λ0,i plus a linear combination of the latent
factors, (Λ)1ix1,t +(Λ)2ix2,t +(Λ)3ix3,t .

Given this model, the arbitrage-free price of a zero-coupon bond at time t, paying
1 unit at t + τ , is given by

Pt,τ = E∗t
[

exp(−
ˆ t+τ

t
rsds)

]
(4)

where the expectation is taken with respect to the risk-neutral probability
distribution (also referred to as the risk-neutral measure or equivalent martingale
measure).6 The risk-neutral probability distribution adjusts the actual (real-world)
probability distribution for investors’ risk preferences, and so under this new
distribution we can treat investors as if they were risk-neutral. This means that
under the risk-neutral distribution we can price any asset by simply calculating the
expected discounted present value of its future cash flows (see Appendix B for a
sketch of a proof).7

Equations (1) and (2) describe the dynamics of the short rate under the real-world
probability distribution. To obtain the dynamics of the short rate under the risk-
neutral probability distribution we subtract Σ times the market price of risk, as
given by Equation (3), from the drift component of xt , as given by Equation (2),
to obtain

dxt = (−Kxt−Σλλλ t)dt +Σ dW∗t
=−((K +ΣΛ)xt +Σλλλ 0)dt +Σ dW∗t . (5)

While Wt is Brownian motion under the real-world probability distribution, it is
not Brownian motion under the risk-neutral distribution. However, Wt is related to
Brownian motion under the risk-neutral probability distribution, denoted by W∗t ,
according to W∗t = Wt +

´ t
0 λλλ sds, or equivalently dW∗t = dWt + λλλ tdt. In other

words, W∗t is derived by adjusting Wt for the market price of risk, given by λλλ t .
8

6 See, for example, Duffie and Kan (1996).

7 For more detail on risk-neutral probability distributions see, for example, Cochrane (2001) or
Steele (2001).

8 See, for example, de Jong (2000) or Dai and Singleton (2002).
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Given Equations (1) and (5), Duffie and Kan (1996) show that the price of a zero-
coupon bond (Equation (4)) can be simplified to

Pt,τ = exp [−ατ −βββ
′
τxt ] (6)

where ατ and βββ τ are functions of the underlying parameters ρ, K, Σ, λλλ 0 and Λ

(see Appendix C for details). Given that we can infer zero-coupon bond prices
from government coupon bond data, we can estimate the parameters of the model
by minimising the difference between zero-coupon bond prices and those prices
implied by Equation (6).

Note that from Equations (1) and (2), the only parameters of the model which
affect the short rate, and therefore which determine estimates of the expected
future short rate, are ρ, K and Σ. On the other hand observed bond prices, as
specified by Equation (6), incorporate term premia and are therefore also affected
by the parameters determining the market price of risk: λλλ 0 and Λ. Hence in order
to separate expected future short rates from term premia we need estimates of
λλλ 0 and Λ as well as ρ, K and Σ. However, the matrices K and Λ only appear in
the formulas for ατ and βββ τ (and hence only impact on bond prices) in the form
(K +ΣΛ). That is, when they do appear they only appear together. This means that
observed market prices in and of themselves do not identify K (which in the sense
just described determines expected future short rates) separately from Λ (which
likewise determines term premia).

Instead we rely on the fact that the latent factors evolve according to the real-world
probability distribution as given in Equation (2), where K does appear without Λ.
We also use analysts’ forecasts of future interest rates, which give a clean reading
on expected future short rates abstracting from term premia. As our forecast data
are relatively sparse, estimates of how the latent factors xt evolve play a large role
in separating K from Λ, and these latent factors must in turn be estimated from the
data.

4. Data and Model Implementation

Estimation of the model presented in Section 3 requires observations of zero-
coupon bond yields. As zero-coupon bonds are not currently issued in Australia,
we need some way to infer these yields from coupon-bearing Australian
Government bonds.
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We estimate zero-coupon bond prices from coupon-bearing Australian
Government bond data using a modified Merrill Lynch Exponential Spline
(MLES) methodology.9 This amounts to estimating a risk-free discount function,
which we take as a linear combination of hyperbolic basis functions.10 As the
estimation of the zero-coupon yield curve is not the primary focus of this paper we
provide the technical details and a discussion of the issues involved in Appendix A
rather than in the main text. A number of different zero-coupon estimation
methodologies were considered, with the MLES method chosen due to its ease
of implementation and goodness-of-fit.

To estimate the risk-free zero-coupon yield curve at the short end, we use Treasury
notes when they are available and OIS rates with maturities less than or equal
to 1 year when Treasury notes are not available.11 For maturities longer than
18 months we use the yields of Australian Government bonds. Bonds with shorter
maturities can become quite illiquid, and tend to suffer from pricing anomalies.
We calculate zero-coupon rates at terms to maturity of 3 and 6 months, as well as
for 1, 2, 4, 6, 8 and 10 years. The data are sampled at weekly intervals between
July 1992 and April 2007.

We supplement these data with survey forecasts of the cash rate and the 10-year
bond yield.12 The cash rate forecast data are roughly monthly and are available
from March 2000 to April 2007 for forecast horizons from 1 to 8 quarters. These
forecasts are not available every month, or at all horizons when they are available;
the majority come after March 2002 and are for horizons out to 1 year. The

9 Our modification of the MLES procedure results in the 1-day yield being fixed at the target
cash rate. See, for example, Bolder and Gusba (2002) for a discussion of competing estimation
methodologies.

10 The discount function evaluated at t gives the value today of 1 unit at time t in the future.
11 OIS contracts are over-the-counter derivatives in which one party agrees to pay the other party

a fixed interest rate in exchange for receiving the average cash rate recorded over the term of the
swap. As no principal is exchanged these contracts are virtually risk-free, and so the fixed rates
paid are a good approximation of the average cash rate expected to prevail over the life of the
contract. Hence they can be used in place of Treasury notes to estimate the short end to the risk-
free yield curve. See RBA (2002) for details of how OIS contracts operate, and Appendix A for
more discussion on OIS rates.

12 The cash rate forecast data are compiled from Bloomberg, Reuters and Consensus Economics,
while the 10-year yield forecasts come from Consensus Economics.
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10-year bond yield expectation data are monthly, run from December 1994 to
April 2007, and are for horizons of between 3 months and 10 years. In addition
to their helpfulness in identification as discussed above, survey data have been
shown to counteract many small sample problems (including different parameter
sets giving similar model outputs, the mean reversion of latent factors being too
fast, and imprecise estimates). Although survey data give average expectations,
not the marginal investor’s expectation, this is unlikely to be a major problem.
In fact survey data have been found to greatly improve accuracy and stability in
model estimation.13

Since the pricing equation, Equation (6), requires knowledge of the latent factors,
which are unobservable, these latent factors need to be estimated along with the
parameters of the model. This is done via the Kalman filter. Using Equation (6),
we can write the zero-coupon yield as implied by the term structure model at time
t, for a bond maturing at time t + τ , as

yt,τ = aτ +b′τxt (7)

where aτ = ατ/τ and bτ = βββ τ/τ are both functions of ρ, Σ, λλλ 0 and (K +ΣΛ). Our
term structure implied zero-coupon yields should match the zero-coupon yields we
have estimated using traded government bond and OIS rates, however, and so for
each observation occurring at time t we can then stack the versions of Equation (7)
corresponding to each maturity, τ , as follows yt,0.25

...
yt,10

=

 a0.25
...

a10

+

 b′0.25
...

b′10

xt +

 ηt,0.25
...

ηt,10


or in matrix notation

yt = a+Bxt +ηηη t . (8)

Here yt gives the observed zero-coupon yields, and the error term ηηη t occurs
because our term structure model implied yields a + Bxt will not fit the observed

13 See Kim and Orphanides (2005) – they compare models that use and do not use survey data,
and perform Monte Carlo simulations on the effect of survey data, finding that survey data
counter many of the small sample problems just discussed (note that we use surveys of cash rate
expectations and bond yields, whereas they use surveys of the expected yield on US Treasury
notes).
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yields exactly. Note that because the aτ and b′τ are functions of (K + ΣΛ),
Equation (8) on its own does not help us separate expected future short rates
(determined by K) from term premia (determined by Λ).

We can use the discrete version of Equation (2), however, to write the state
equation for the latent factors xt as

xt = e−Khxt−h + εεε t (9)

where in our case h = 7/365 (to account for weekly sampling of the data) and
εεε t ∼ N(0,Ωh) with Ωh =

´ h
0 e−Ks

ΣΣ
′e−K′sds.14 In Equation (9) K appears on its

own, and so with estimates of the latent factors xt we can infer information about
K separate from Λ.

On dates for which there are survey forecasts, Equation (7) changes slightly. Using
Equations (1) and (9) we can express cash rate forecasts as

ỹt,τ = ρ +1′ · e−Kτxt + η̃t,τ (10)

where: τ is the length of time between t and the forecast date; ỹt,τ is the cash rate
forecast; and η̃t,τ denotes the forecast error. Similarly, for bond yield forecasts we
can write

ȳt,τ = a10 +b′10 · e
−Kτxt + η̄t,τ (11)

where: ȳt,τ is the yield forecast; and η̄t,τ denotes the forecast error.15 Note that in
both Equations (10) and (11), K appears on its own, which helps us identify K and
Λ separately.

14 Ωh can be evaluated as −vec−1(((K⊗ I)+(I⊗K))−1vec(e−Kh
ΣΣ
′e−K′h−ΣΣ

′)). See Kim and
Orphanides (2005).

15 Here we treat a yield to maturity as a zero-coupon yield. Analysis of historically observed
yield data shows that the observed yield to maturity on a 10-year bond and the estimated
10-year zero-coupon yield are in fact very close, so this should not be a problem: the difference
between the two yield measures is symmetric about zero and has an average absolute size of
only 4 basis points. This is less than the precision of the forecast data, which is only reported
to the nearest 10 basis points, and well below the forecast error of 50 basis points per square
root year that we have assumed (see Appendix C for technical specifications of the model
implementation).
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Incorporating the forecast data into our estimation, we can stack Equations (8),
(10) and (11) to give the observation equation

yt,0.25
...

yt,10
ỹt,τ1...
ỹt,τn1

ȳt,τ1...
ȳt,τn2


=



a0.25
...

a10
ρ
...
ρ

a10
...

a10


+



b′0.25
...

b′10
1′ · e−τ1K

...
1′ · e−τn1

K

b′10 · e
−τ1K

...
b′10 · e

−τn2
K


xt +



ηt,0.25
...

ηt,10
η̃t,τ1...
η̃t,τn1

η̄t,τ1...
η̄t,τn2


or in matrix notation

ỹt = ã+ B̃xt + η̃ηη t . (12)

To summarise, Equations (12) and (9) then make up the Kalman filter observation
and state equations, respectively. These can be used to compute the maximum
likelihood estimate of xt and the parameters ρ, Σ, λλλ 0, Λ and K, using the zero-
coupon yield data and survey data, which together constitute ỹt . See Appendix C
for further details. As mentioned earlier, K enters our equations separately from
Λ via the dynamics of xt , given by Equation (9), and via the survey forecasts as
given in Equation (12).

To estimate the parameters of the model we randomly generate a vector of starting
parameters, specify the starting values of the latent factors xt , and then use the
MATLAB® fmincon function to search for a log-likelihood maximum. The
search is based on a sequential quadratic programming routine. This is repeated
2 000 times and the set of parameters producing the highest likelihood is chosen.

This estimation procedure is displayed graphically in Figure 1. One at a time,
each of the 2 000 randomly generated sets of initial parameters are fed into the
optimisation routine. The routine uses the initial parameter guess to construct the
parameters used by the model, such as a and B. Using the Kalman filter, the yield
data are used to estimate the latent factors and model implied yields. The Kalman
filter also produces the log-likelihood, which the optimisation routine uses to
choose a new set of candidate parameters, and the procedure is then repeated. Once
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Figure 1: Flow Diagram of Estimation Procedure
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the optimisation routine has ended, the highest log-likelihood and the associated
parameter values are stored, and the process begins again. After 2 000 iterations,
the parameters that produced the highest overall log-likelihood value are chosen.

A number of alternative optimisation procedures are possible. We explored
simulated annealing, as well as some other in-built MATLAB® functions, but
found that the procedure described above gave the best (highest likelihood values
in reasonable time) results.

Finally, from Equation (9) we have Et [xt+τ ] = e−Kτxt , so that having estimated the
parameters and latent factors of the model, using Equation (1) we can calculate for
time t the expected future short rate (efsr) at time t + τ as

efsrt,τ = ρ +1′ · e−Kτxt .

Similarly, from Equation (5) where we are now considering xt under the risk-
neutral probability distribution, for K∗= K +ΣΛ and µµµ

∗= K∗−1
Σλλλ 0 we have that

E∗t [xt+τ ] = e−K∗τxt−(I−e−K∗τ)µµµ
∗ (see, for example, Kim and Orphanides 2005).
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Hence at time t, the model implied forward rate (fr) for time t + τ in the future is
given by

frt,τ = ρ +1′ · (e−K∗τxt− (I− e−K∗τ)µµµ
∗).

But the forward rate at time t applying at time t + τ in the future consists of
expectations of the cash rate at time t + τ plus the term premium. Hence, our
estimate at time t of the term premium (tp) associated with borrowing or lending
at time t + τ in the future is given by

tpt,τ = frt,τ − efsrt,τ .

5. Results

We estimate the model over two time horizons. First we use all available data so
that our sample runs from July 1992 to April 2007. Then we restrict the sample
to the period July 1996 to April 2007. This shorter sample covers the period
when inflation expectations have been reasonably stable and consistent with the
Reserve Bank’s inflation target, and corresponds to a period of stable growth and
low inflation. (In both cases we use the first six months of data to estimate the
latent factors, but discard it when estimating model parameters.)

5.1 The Period 1993 to 2007

The primary variables of interest are the estimated expected future short rates and
term premia, which are shown in Figure 2.

As expected, the forward rate and the expected future short rate tend to track each
other closely at the 1-year time horizon, while at longer horizons they diverge,
with more substantial positive and negative term premia emerging. Estimated term
premia peak around 1994–1995, a period when inflation, inflation expectations
and interest rates were all rising and economic growth was somewhat volatile.
Term premia then fell steadily until around 1998, before increasing again over
the next year or two. The period 1999–2000 saw a marked slowdown in global
economic growth, a rise in inflation and bond yields, and a depreciation of the
Australian dollar from around US 65 cents to around US 50 cents. From around
2001 to the end of the sample, term premia have been fairly steady.
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Figure 2: Decomposition of the Forward Rate
Model estimated using 1993–2007 data sample
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Figure 2 shows that expected future short rates are more stable than the forward
rate, so that term premia tend to increase when yields are rising and decrease
when yields are falling, especially for the longer-horizon samples. This result sits
well with economic intuition. It seems obvious that market participants’ view of
the overnight cash rate a few years hence should be relatively stable – bullish
macroeconomic news that would perhaps imply an increased chance of a near-
term monetary tightening may raise the market’s forecast of short-term interest
rates, but its effect on expected interest rates years into the future is likely to be
relatively small. Despite this, yields on long-term government bonds do react to
such news, and to a greater extent than may seem warranted purely by changing
forecasts of the real economy. As such, variations in long-term bond yields seem
to be partly driven by factors other than expected future short rates, and these other
factors show up as term premia in our model.

An alternate explanation raised in the literature is that this phenomenon is model
driven, since the amount of variation seen in expectations of the future short rate
far into the future can be significantly affected by the K matrix. In particular, large
diagonal entries in the K matrix imply fast mean reversion of latent factors. This
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in turn means that expected future short rates will revert to the long-run value, ρ ,
very quickly, so that while yields may move, expected future short rates will vary
little. However, this does not seem to affect our results (see discussion of the K
matrix below).

Another interesting consideration is the fall in term premia, particularly
pronounced between 1996 and 1998, and its subsequent stabilisation. Again,
this is to some extent a function of falling yields and more stable expected
future short rates. On the other hand, notwithstanding the preceding discussion,
there is nothing in the model which forces term premia, as opposed to expected
future short rates, to fall. It is also interesting to note that the up-ticks in term
premia associated with higher inflation become more muted as time progresses.
For example, underlying inflation peaked at similar levels during the periods
1994–1995, 2000–2001 and 2005–2006, yet in each case the response from term
premia was very different – in the first period term premia rose by roughly
2 percentage points, in the second period by half a percentage point, and in the
third period not at all (1999 also saw inflation rising, and term premia up by
around 1 percentage point, but inflation peaked at a lower level than in the other
three cases). The fall in the general level of term premia, and the more muted
response of term premia to economic shocks, coincides with a period of relatively
stable inflation and economic growth, and may reflect growing credibility of the
Reserve Bank’s inflation target among financial market participants. These factors
undoubtedly affected both yields and term premia, making it difficult to establish
causality, but it is nonetheless clear that our model-implied term premia behave as
we might expect over this period.

The sustained negative term premia in the latter part of the sample is an interesting
result of the model. Studies for other countries have also found negative term
premia, although not to the same extent as our results. It is possible that model
misspecification could be partly responsible for the size of the negative term
premia, with the model placing the short rate too high and therefore term premia
too low (we return to this point below). Alternatively, Australia’s relatively small
supply of government bonds may have resulted in yields being bid down by
risk-averse and mandate-constrained investors. Indeed, over the latter part of
the sample, government bond yields consistently implied lower forward rates
than those seen in analysts’ forecasts of the cash rate. From late 2000 to the
end of the sample, bond yields have, on average, implied 2-year forward rates
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which are around half a percentage point below those seen in analysts’ forecasts.
Bond-implied forward rates were briefly above analysts’ forecasts of the cash
rate in 2002, when positive term premia were last seen. Over 2006 and 2007,
the differential (while negative) narrowed, which also accords with our model
estimates that show term premia tending slowly towards zero over the period.

In general, by allowing a flexible specification of term premia we also allow
negative term premia to arise; these are in any case relatively small and have
occurred over a period for which it is not inconceivable that negative term premia
of the magnitude estimated indeed existed. We also note that, given the historical
variability seen in the actual cash rate over the past decade or so, the level of
variability seen in our estimates of the expected future cash rate seems reasonable.

Table 1: Parameter Estimates
Model estimated using 1993–2007 data sample

Index number (i)
Parameter 1 2 3
ρ 6.97 (0.19) – –
(K)1i 1.81 (0.06) 0 0
(K)2i −0.79 (0.04) 0.06 (0.00) 0
(K)3i 23.99 (0.50) 4.41 (0.22) 0.99 (0.02)
(Σ)ii 0.15 (0.01) 0.20 (0.01) 0.42 (0.02)
λ0,i −0.11 (0.02) 0.19 (0.02) −0.23 (0.05)
(Λ)1i −324.10 (1.03) −43.17 (0.21) −0.01 (0.00)
(Λ)2i 17.29 (0.28) 15.75 (0.30) 3.87 (0.05)
(Λ)3i −68.11 (0.22) 82.39 (0.58) −10.69 (0.38)

Notes: ρ and (Σ)ii are given in percentage points. Standard errors are shown in parentheses.

In Table 1 we present the estimated parameters of the model. Focusing first on the
K matrix, consistent with Kim and Orphanides (2005), the smallest (K)ii estimated
(in our case for the second latent factor) is quite small, at 0.06. In a single-
factor model such a number would imply a half-life (being the time taken for a
latent factor to revert half way back to its mean value of zero after experiencing
a shock) of around 12.3 years (the other two half-lives would be 140 and
256 days). In term structure models such as ours, such a slow moving factor
captures the longer-term characteristics of interest rates, which tend to follow the
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business cycle or other gradual trends, and may not mean revert for many years.
Such small diagonal entries of K will improve estimation of expected future short
rates at longer horizons. These estimated expectations would otherwise simply be
flat and given by ρ .

Figure 3: Estimated Latent Factors
Model estimated using 1993–2007 data sample
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The latent factors are the processes that drive the evolution of interest rates. While
they have no definitive economic interpretation, it is nevertheless interesting to
examine how the model captures the yield curve with these three factors. Figure 3
displays the estimated latent factors of the model, along with various yield curve
measures. The first latent factor is highly correlated with the curvature of the
yield curve, where here we measure curvature as the 3-month yield plus the
10-year yield less twice the 2-year yield. The second latent factor exhibits a close
relationship with long-term interest rates and consequently displays very slow
mean reversion. This factor has a correlation coefficient of−0.96 with the 10-year
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yield. Finally, the third latent factor closely resembles short-term interest rates; it
has a correlation coefficient of 0.98 with the 3-month yield.

Interpreting the term premia parameters is much more difficult as there are more
of them and their effect on model outputs depends crucially on the sign and size
of the xt latent factors. Hence it is probably more intuitive to focus on the term
premia produced (Figure 2) than on the actual numbers given in Table 1.

Finally the value of the constant ρ , which gives the short rate in steady-state and
is estimated at 6.97 per cent, appears a little high. As mentioned earlier, it may be
that the model is placing the long-run equilibrium short rate at a higher level than
is warranted, thereby contributing to persistently negative term premia. The data
sample does encompass the mid 1990s, formative years for the inflation-targeting
regime and a period of relatively high cash rates which may have pushed up the
estimate. Note also that our model gives the short rate at any time t as ρ plus
the sum of the latent factors at t, and while the latent factors decay to zero, this
happens very slowly. In fact over the sample period the value of x1,t + x2,t + x3,t
has averaged −1.49 per cent. As the short rate is given by ρ + x1,t + x2,t + x3,t ,
the equilibrium short rate over the sample could therefore be interpreted as being
closer to 5½ per cent rather than to 7 per cent.

Actual and model-implied forward rates are shown in Figure 4. The fit is not
perfect, but at any time the dynamic term structure model has much less flexibility
in generating yields along the curve than the model used to estimate the zero-
coupon yields – it must rely on the three latent factor values to generate an entire
yield curve. Hence we would not expect the model to be perfect. Rather, we trust
that it broadly characterises the observed actual yields, which appears to be the
case – model errors are generally small and hover around zero, only departing
when yields rise or fall particularly quickly.
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Figure 4: Forward Rates – Actual and Model
Model estimated using 1993–2007 data sample
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5.2 The Period 1997 to 2007

The data sample used in Section 5.1 spans the adoption by the Reserve Bank of the
2 to 3 per cent inflation target, the decline in inflation expectations, and the formal
acknowledgement of Reserve Bank independence. As a result, there may be a
structural break for which the model does not account. To check the robustness of
the results to this possibility we estimate the model again using a restricted sample
which encompasses the more stable period from 1997 to early 2007. Although the
model estimates over this shorter sample are quite similar to those for the full
sample, it is interesting to compare the two.

The estimated expected future short rates and term premia are given in Figure 5.
The most obvious difference between Figure 5 and Figure 2 is the more stable
expected future short rates and, consequently, the more variable term premia seen
in the shorter sample. This is unlikely to be related to the K matrix since the shorter
sample has one latent factor which is even slower to mean revert than in the case of
the longer sample. The term premia parameters Λ and λλλ 0 are numerically larger in
the short sample model indicating, all else equal, that changes in yields will have
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a larger impact on term premia (and so a smaller impact on expected future short
rates) than in the longer sample.

Figure 5: Decomposition of the Forward Rate
Model estimated using 1997–2007 data sample
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In the shorter sample model there is an apparent upward trend in short rate
expectations from around 2004 or earlier. Again it is hard to determine exactly
what caused this, but it did occur during a time of rising cash rates, low but
rising inflation, falling unemployment and stable growth. So for the 1-year ahead
forecast at least, the trend seems plausible. The trend in the 5-year ahead forecast
is smaller but still apparent. However, being of the order of less than one-quarter of
a percentage point, it is probably not significant given the precision of the model .

Despite differences between the models one should keep in mind that the two are
actually quite similar – the differences regard the degree of certain phenomena,
not their existence. In fact, the estimates produced by the two models are
generally within half a percentage point of each other; by comparison, Kim and
Orphanides (2005), who also estimate models over two different sample periods,
find differences in the order of around 2 percentage points.
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The estimated parameters of the model over the short sample are given in Table 2.
Similar to the longer sample, the smallest (K)ii estimated (in this case for the
first latent factor) is small at 0.01. In a single-factor model such a number would
imply a half-life of around 130 years (the other two half-lives would be 94 and
459 days). The extremely slow mean reversion of the first latent factor is likely
due to the short sample period used, which spans a period of strong growth and
low inflation, and in particular does not span a ‘full’ economic cycle encompassing
a sizeable economic downturn.

Table 2: Parameter Estimates
Model estimated using 1997–2007 data sample

Index number (i)
Parameter 1 2 3
ρ 6.78 (0.06) – –
(K)1i 0.01 (0.00) 0 0
(K)2i 0.55 (0.01) 2.69 (0.04) 0
(K)3i 2.88 (0.05) 17.38 (0.11) 0.55 (0.01)
(Σ)ii 0.08 (0.00) 0.15 (0.01) 0.30 (0.01)
λ0,i 1.45 (0.01) −1.91 (0.03) −1.06 (0.02)
(Λ)1i 465.20 (0.39) 440.07 (0.26) 12.81 (0.09)
(Λ)2i −699.87 (0.44) −763.06 (0.48) 1.16 (0.03)
(Λ)3i −171.60 (0.21) −396.64 (0.28) −109.58 (0.17)

Notes: ρ and (Σ)ii are given in percentage points. Standard errors are shown in parentheses.

Figure 6 shows that the first latent factor exhibits slow mean reversion, and is in
fact highly correlated with the slope of the yield curve (correlation coefficient of
−0.97). In contrast, the much faster mean reverting third latent factor is highly
correlated with the 3-month yield (correlation coefficient of 0.98), while the
second latent factor is correlated with both the level and the curvature of yields.

It is interesting to note that for the shorter sample model, ρ is estimated at
6.78 per cent, below the 6.97 per cent estimated for the longer sample model.
As touched on earlier, the credibility of the Reserve Bank’s inflation target was
being tested around 1994, which resulted in interest rates, and especially long-term
rates, rising quite strongly. There may therefore be a structural change in interest
rate dynamics around 1995–1996, associated with the Reserve Bank’s success
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Figure 6: Estimated Latent Factors
Model estimated using 1997-2007 data sample
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in reducing inflation and the moderation in inflation expectations, for which the
model cannot account. The fact that the estimated equilibrium short rate is lower
over the shorter sample is consistent with this. The lower value of ρ also manifests
itself in less persistently negative term premia than those seen in the longer sample
(note that similar to the longer sample model, the sum of latent factors averaged
−1.56 per cent, giving an effective estimated short rate over the period of close to
5¼ per cent).

As a final point, it is interesting to compare our term premia estimates with those
derived for US data. Figure 7 shows 1-, 3- and 5-year term premia as estimated
by us for Australian data, as well as corresponding term premia estimated by Kim
and Wright (2005), who also use the Kim and Orphanides model, for US data.16

One can see that, excepting a level difference between the two series, the estimated
Australian and US term premia track each other relatively closely – the correlation
coefficient between the two series is 0.84 for the 1-year ahead term premia, 0.90
for the 3-year ahead term premia, and 0.81 for the 5-year ahead term premia. These

16 Available from http://www.federalreserve.gov/Pubs/feds/2005/200533/feds200533.xls.
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Figure 7: Estimated Term Premia
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results suggest that term premia may be driven by global, as opposed to country-
specific, phenomena, as typified for example by the global ‘search for yield’ that
received so much attention earlier this decade.

6. Conclusion

We have used data on coupon-bearing Australian Government bonds and OIS rates
to estimate risk-free zero-coupon yield and forward curves for Australia from 1992
to 2007. These curves, and analysts’ forecasts of future interest rates, were then
used to fit an affine term structure model to Australian interest rates, with the aim
of decomposing forward rates into expected future short rates and term premia.

The model produces plausible results, although given the complexity of the model
and the difficulty of calibrating it to the data, a false level of precision should not be
attributed to the results. The results show a large and sustained fall in term premia
from around 1996 to 2007, when inflation credibility became more entrenched and
so inflation expectations declined. This period displays relatively low inflation,
stable economic growth and stable bond yields.
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The model suggests that there have been small negative term premia for some
periods. The finding of negative term premia has been a global phenomenon during
the early to mid 2000s, as seen in the decline in long-term interest rates. This could
reflect the widely discussed ‘search for yield’ that occurred over this period, or
may be explained by an over-shooting of bond yields. In Australia’s case, the
relatively low supply of government bonds, which has tended to fall over the
period considered, may have contributed to negative term premia as risk-averse
and mandate-constrained investors bid up the price of these bonds.

Notwithstanding the above discussion, the results seem to imply that expected
future short rates are relatively stable in Australia. The results also imply that,
based on expectations of future monetary policy, yields on government bonds
have been lower than might be expected, with term premia attached to these bonds
consequently being negative, at least towards the end of our sample period.
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Appendix A: Zero-coupon Yields

We estimate zero-coupon yields using the Merrill Lynch Exponential Spline
(MLES) methodology adapted from Li et al (2001). This technique appears to
be very efficient, and produces a good fit for the input data (technical details are
given later in this Appendix).

The hardest data to fit is for maturities around the 1-year mark, where from early
2001 the input data for any given day transitions from OIS rates (used as input
data for maturities extending up to 1 year into the future) to bond yields (used for
maturities greater than or equal to 18 months into the future). Although we regard
OIS rates as the closest available substitute for risk-free Treasury note yields, they
are not Treasury notes – they are swap contracts as opposed to physical bonds or
notes, and they trade in a different market to physical bonds or notes, which may
mean that the factors affecting OIS pricing are sometimes different from those
affecting note or bond pricing. That being said, the MLES procedure still provides
a good fit to the data even here – the average absolute error between the 1-year OIS
yield and the MLES estimated 1-year yield is around 3½ basis points; the largest
error is only 12 basis points and the error is larger than 10 basis points only three
times. Taking a broader perspective, the fit of the MLES method is in fact very
good, with the daily mean absolute error between fitted yields and actual yields
averaging less than 2 basis points, and peaking at only 6 basis points.

Another potential and related criticism is the mixing together of OIS and bond
yields to estimate a single yield curve. We believe that although Treasury note
yields would be preferable for short maturity data inputs, in their absence, OIS
rates are the next best, and in fact a very good, substitute. They are virtually risk-
free and so can sensibly be used in the estimation of our risk-free yield curve, and
they fulfil a vital function in supplying information about the short end of the yield
curve that would otherwise be unavailable.

In any case, given that we are fitting a flexible term structure model, so long as the
evolution of OIS yields through time is comparable to the evolution of Treasury
note or bond yields, any residual risk premia inherent in OIS yields should be
captured as short-dated term premia in the model. Overall, while Treasury note
yields would be preferable, in their absence OIS yields provide a very good
substitute.
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We display estimated 1-, 3- and 5-year zero-coupon yields, as well as the interbank
overnight cash rate in Figure A1.

Figure A1: Zero-coupon Yields
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The technical details of the MLES methodology are as follows. We model the
theoretical discount function d(t) as a linear combination of hyperbolic basis
functions.17 The discount function is assumed to be of the form

d(t) =
D∑

k=1

λk
1

1+ kαt
(A1)

where D is the number of basis functions (in our case D = 8), and α is an
exogenous parameter, taken as 5 per cent.

Once we have estimated the λk coefficients we have a smooth discount function.
From this it is a simple matter to compute the zero-coupon yield curve, given by

z(t) =−logd(t)
t

17 The discount function d(t) gives the value today of 1 unit at time t in the future.
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and the (instantaneous) forward curve given by

f (t) = z(t)+ tz′(t).

Given the assumed form of the discount function, the theoretical price of bond i is
given by

B̂i =
mi∑
j=1

ci jd(τi j)

where ci j is the jth cash flow of bond i, occurring at time τi j, and mi is the number
of cash flows belonging to bond i. That is, the price of bond i is the sum of its
discounted cash flows.

The price of a bond is the linear sum of its discounted cash flows. The discount
function is assumed to be a linear sum of basis functions. This linearity allows us
to write the vector of bond prices or OIS rates B as

B = Xβββ + εεε (A2)

where BT = [B1, · · · ,Bn] is the vector of observed prices,18 X is a n×D matrix
with Xik =

∑mi
j=1 ci j

1
1+kατi j

, βββ = (λ1, · · · ,λD)T and εεε a vector of errors.

For W the weight matrix,19 if we wished to minimise the weighted squared pricing
errors εεε

TWεεε , then the solution would be given by

β̂ββ = (XTWX)−1XTWB. (A3)

We wish to impose some restrictions on d(t) however: d(0), the discount rate at
t = 0 should be 1, that is, one dollar today is worth one dollar. Also, the cash
rate (as of today) is known and fixed, and so should be reflected in the discount
function. These requirements complicate matters slightly.

From Equation (A1) it is clear that d(0) =
∑D

k=1 λk. Hence requiring d(0) = 1 is
equivalent to requiring λD = 1−

∑D−1
k=1 λk.

18 For OIS contracts the ‘observed price’ corresponds to the price of a discount security paying
the OIS yield.

19 The weight attached to each bond is taken as its inverse duration. This has the effect of
minimising fitted yield errors, as opposed to price errors.
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Writing fk(t) = 1
1+kαt , we can ensure that the 1-day yield is given by the overnight

cash rate, r say, by requiring

d(
1

365
) =

D∑
k=1

λk fk(
1

365
) =

1
1+ 1

365
r

100
. (A4)

Writing y = (1 + 1
365

r
100)

−1, from Equation (A4) these two constraints are
equivalent to

y = λ1 f1(
1

365
)+ · · ·+λD−1 fD−1(

1
365

)+(1−
D−1∑
k=1

λk) fD(
1

365
)

= λ1( f1(
1

365
)− fD(

1
365

))+ · · ·+λD−1( fD−1(
1

365
)− fD(

1
365

))+ fD(
1

365
)

and hence

λD−1 =
y− fD( 1

365)

fD−1(
1

365)− fD( 1
365)
− (λ1

f1(
1

365)− fD( 1
365)

fD−1(
1

365)− fD( 1
365)

+ · · ·

+λD−2
fD−2(

1
365)− fD( 1

365)

fD−1(
1

365)− fD( 1
365)

)

= λ
∗
D−1 (A5)

We first impose the d(0) = 1 constraint. Writing xi for the ith column of the X
matrix, Equation (A2) becomes

B = x1λ1 + · · ·+xD−1λD−1 +xDλD + εεε

= x1λ1 + · · ·+xD−1λD−1 +xD(1−
D−1∑
k=1

λk)+ εεε

so that
B−xD = (x1−xD)λ1 + · · ·+(xD−1−xD)λD−1 + εεε. (A6)

Writing B̂ = B− xD, x̂i = xi− xD, X̂ = (x̂1, · · · , x̂D−1) and β̂ββ = (λ1, · · · ,λD−1)
T ,

Equation (A6) becomes
B̂ = X̂ β̂ββ + εεε. (A7)
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The estimate of β̂ββ which minimises εεε
TWεεε is (X̂TWX̂)−1X̂TW B̂. Hence we have

found the least squares estimate of βββ from Equation (A2), subject to the d(0) = 1
constraint.

If we now start from Equation (A7), replace λD−1 with λ
∗
D−1 from Equation (A5)

and follow the procedure above, we obtain our estimator. In this case the estimator
of β̃ββ = (λ1, · · · ,λD−2)

T which solves

B̃ = X̃ β̃ββ + εεε (A8)

for B̃ = B̂ − y− fD( 1
365)

fD−1(
1

365)− fD( 1
365)

x̂D−1 and X̃ = (x̃1, · · · , x̃D−2) for

x̃i = x̂i−
fi(

1
365)− fD( 1

365)
fD−1(

1
365)− fD( 1

365)
x̂D−1 is given by

β̃ββ = (X̃TWX̃)−1X̃TW B̃. (A9)

Hence we have solved Equation (A2) subject to both desired constraints.
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Appendix B: Risk-neutral Bond Pricing

Here we examine why bonds should be priced under the risk-neutral measure. To
simplify the analysis we work with a single factor model, that is

rt = ρ + xt (B1)
dxt =−kxtdt +σdWt (B2)
λt = λ0 +λ1xt (B3)

where all variables are scalars.

Consider the probability space (Ω,F ,P) with associated filtration Ft taken as the
augmented filtration of σ{Ws|s ≤ t} (see, for example, Steele 2001). Xt is an Ito
process if

dXt = µxdt +σxdWt

for µx and σx adapted to Ft . Ito’s lemma then states that for any function F(x, t)
such that F is twice differentiable in x and differentiable in t,

dF =

(
∂F
∂ t

+ µx
∂F
∂x

+
1
2

σ
2
x

∂
2F

∂x2

)
dt +σx

∂F
∂x

dWt .

Applying Ito’s lemma to Equation (B1) we trivially get

drt =−kxtdt +σdWt

≡ µrdt +σrdWt .

Now let PA(rt , t) and PB(rt , t) denote the time t price of two zero-coupon bonds
with different maturity dates. Then by Ito’s lemma, Pi (i = A, B) will satisfy

dPi =

(
∂Pi

∂ t
+ µr

∂Pi

∂ r
+

1
2

σ
2
r

∂
2Pi

∂ r2

)
dt +σr

∂Pi

∂ r
dWt (B4)

≡ µ
idt +σ

idWt . (B5)

Consider a portfolio that is long one A bond and short h B bonds. At time t this
portfolio has value

Vt = PA−hPB. (B6)
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If held for dt, the portfolio’s value changes by

dVt = dPA−hdPB

= (µ
A−hµ

B)dt +(σA−hσ
B)dWt . (B7)

Hence we can make the portfolio instantaneously riskless by choosing h = σ
A/σ

B.
In this case, the portfolio must earn the risk-free rate rt and so

dVt = rtVtdt. (B8)

Substituting Equations (B6) and (B7) into Equation (B8) and setting h = σ
A/σ

B

leads to

µ
A− σ

A

σ
B µ

B = rt(P
A− σ

A

σ
B PB)

or
µ

A− rtP
A

σ
A =

µ
B− rtP

B

σ
B .

Hence the ratio (µ − rtP)/σ is independent of the choice of bond, and so there
must exist a function λr such that

µ− rtP
σ

= λr (B9)

holds for any bond price P.

Now substituting µ and σ as identified by Equations (B4) and (B5) into
Equation (B9) results in a Black-Scholes type partial differential equation

∂P
∂ t

= rtP− (µr−λrσr)
∂P
∂ r
− 1

2
σ

2
r

∂
2P

∂ r2 (B10)

which is solved subject to appropriate boundary conditions (bonds pay 1 unit at
maturity) and the radiation condition P→ 0 as r→ ∞.

The Feynman-Kac formula then says that the solution to Equation (B10) is given
by

Pt,τ = E∗t
[

exp(−
ˆ T

t
rsds)

]
where rt satisfies

drt = (µr−λrσr)dt +σrdW ∗t ; dW ∗t = dWt +λrdt

and W ∗t is standard Brownian motion in the risk-neutral measure associated with
E∗.
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Appendix C: Model Implementation

C.1 Formulas for aτ and bτ

From Kim and Orphanides (2005) we take the following formulas (with
corrections):

aτ =
1
τ

(
(K∗µµµ∗)′(M1,τ − τI)K∗−1′1

−1
2

1′K∗−1(M2,τ −ΣΣ
′M1,τ −M′1,τΣΣ

′+ τΣΣ
′)K∗−1′1+ τρ

)
bτ =

1
τ

M1,τ1

where

M1,τ =−K∗−1′
(

e−K∗
′
τ − I

)
M2,τ =−vec−1

(
((K∗⊗ I)+(I⊗K∗))−1vec

(
e−K∗τ

ΣΣ
′e−K∗

′
τ −ΣΣ

′
))

with K∗ = K +ΣΛ, µµµ
∗ = K∗−1

Σλλλ 0, vec taking a matrix to a vector column-wise,
and vec−1 doing the opposite.

C.2 The Kalman Filter

Our implementation of the Kalman filter is based on that used by Duffee and
Stanton (2004). The recursion goes from t = 1 forward, and is as follows:

1. Using the current value of xt , compute the one-step-ahead forecast of xt , given
by xt+1|t = e−Khxt , and its variance matrix Pt+1|t = e−KhPt|t(e

−Kh)′+Ωh.

2. Compute the one-step-ahead forecast of yt , given by yt+1|t = a + Bxt+1|t , and
its variance matrix Vt+1|t = BPt+1|tB

′+ R, where R is the zero-coupon bond
measurement error variance matrix.

3. Compute the forecast errors of yt+1|t , given by et+1 = yt+1−yt+1|t .

4. Update the prediction of xt+1 with xt+1|t+1 = xt+1|t +Pt+1|tB
′V−1

t+1|tet+1 and the

variance with Pt+1|t+1 = Pt+1|t−Pt+1|tB
′V−1

t+1|tBPt+1|t .
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For times t when we have analysts’ forecasts, replace yt , a, B and R by ỹt , ã, B̃
and R̃, respectively.

We then choose our parameter vector Θ to solve

Θ
∗ =

argmax
Θ

n∑
t=1

LL(et ,Vt|t−1)

where the sample is n periods long, and the period-t approximate log-likelihood is
given by

LL(et ,Vt|t−1) =−1
2

(
log |Vt|t−1|+ et

′V−1
t|t−1et

)
.

C.3 Implementation

To implement the model we restrict the parameters to those which result in K and
K∗ having positive eigenvalues. This results in e−Ks→ 0 and e−K∗s→ 0 as s→∞,
which ensures the stability of the model (see Equation (9) and the formulas for aτ

and bτ). We also require that the σi, being variances, are positive.

By way of parameter choices that must be made, we set x1 = [0.005, 0.03, 0.01]′

(with an initial standard deviation of 10 per cent) and then discard the first
six months of the estimation. The standard deviation of zero-coupon yield
measurement errors is set to 10 basis points, while those of the survey forecasts
are set to 50 basis points per square root year.

Finally, the standard errors in Tables 1 and 2 are calculated using a random walk
chain Metropolis-Hastings algorithm – for details see Geweke (1992).
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