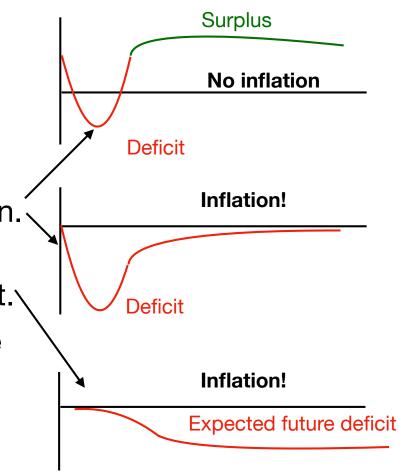

Inflation and Interest Rates

John H. Cochrane Hoover Institution

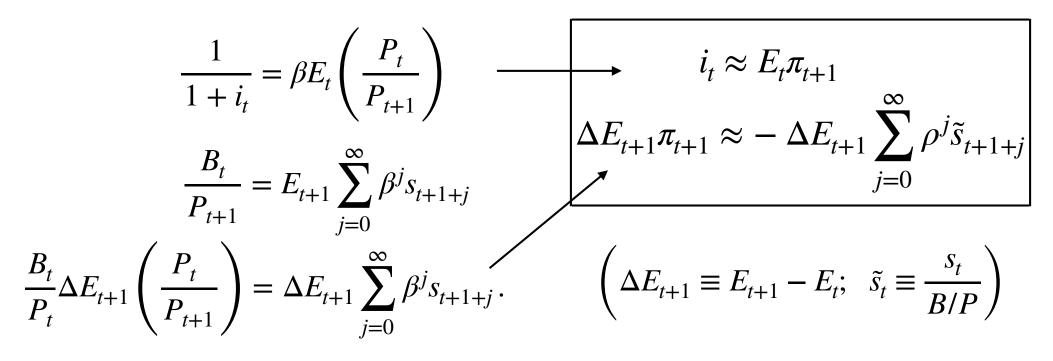
Ads

- The Fiscal Theory of the Price Level
- "Expectations and the Neutrality of Interest Rates"
- "Fiscal Histories"
- https://www.johnhcochrane.com/
- "Interest rates and inflation" Grumpy Economist

Fiscal theory of the price level


Nominal government debt

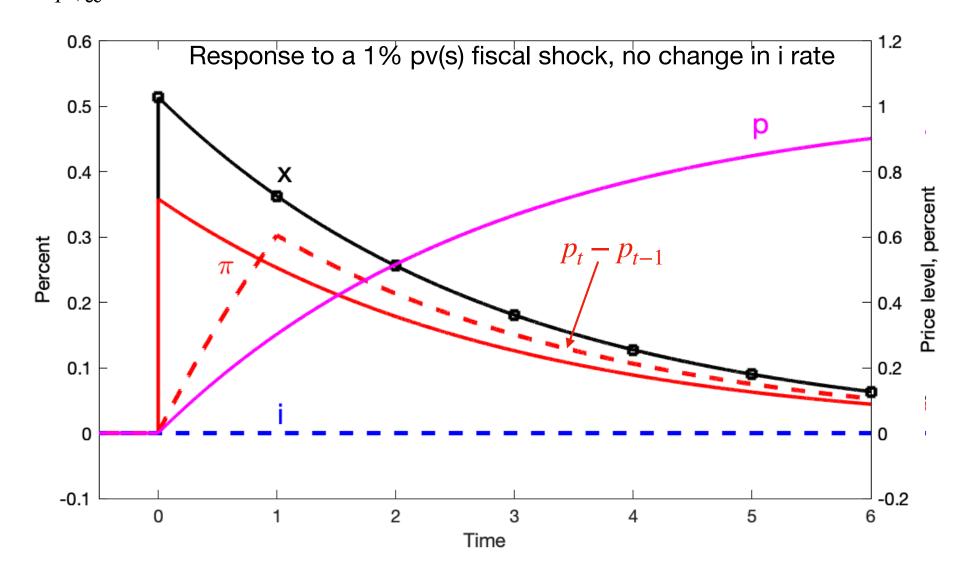
price level


= Present value of primary government surpluses

$$\frac{B_{t-1}}{P_t} = E_t \sum_{j=0}^{\infty} \frac{1}{R_{t,t+j}} s_{t+j}$$

- Debt vs. *long run* ability/will to repay. Like stocks & bonds.
 Not necessarily *today's* deficits or debt
 - Not necessarily *today's* deficits or debt.
 "Stock" vs. Keynesian "flow."
 - Lots of debt/deficit possible with no inflation.
 That's typical or good policy.
 - Inflation can surprise, with no current deficit.
 - Higher discount rate / interest costs = more inflation. Empirically important.
 - "Nominal anchor;" foundation for more complex dynamics. Sticky prices, DSGE.

Fiscal theory of monetary policy FTPL + Interest rate target

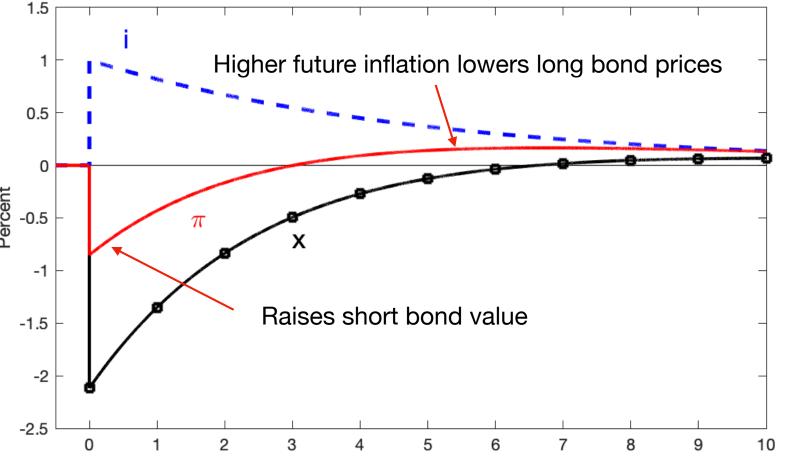

- Central Bank sets expected inflation; fiscal policy determines unexpected inflation.
- Central Bank remains powerful! But can't stop all inflation.
- A (and the only) full, economic, theory of inflation under interest rate targets, consistent with current institutions (interest rate targets, no "equilibrium selection policy).
- Makes long run sense. Short run dynamics? Sticky prices...

Fiscal theory with sticky prices, fiscal shock

$$x_t = E_t x_{t+1} - \sigma(i_t - E_t \pi_{t+1})$$
$$\pi_t = \beta E_t \pi_{t+1} + \kappa x_t$$
$$v_{t+1} = v_t + i_t - \pi_{t+1} - \tilde{s}_{t+1}$$
$$0 = \lim_{T \to \infty} E_t \rho^T v_T$$

ρ

- No price level jump. Slowly inflate away debt. ($\pi > i$.)
- Inflation eventually goes away even with no i response.
- Very simple case! Much more generality is possible, including i rules, endogenous s, complex NK/DSGE etc.
- Recipe for writing papers.



Monetary shock. No fiscal change. Long term debt

$$x_{t} = E_{t}x_{t+1} - \sigma(i_{t} - E_{t}\pi_{t+1}) \quad \bullet \quad (\sum_{j}Q_{t}^{(j)}B_{t-1}^{(j)})/P_{t} = E_{t}\sum_{j}\beta^{j}s_{t+j}$$

$$\pi_{t} = \beta E_{t}\pi_{t+1} + \kappa x_{t} \qquad \qquad \text{Higher i future } \pi - \text{lower O}$$

Higher i, future π = lower Q. Same s. P_t falls.

- Fed can only lower current by raising future inflation.
 ``Unpleasant interest rate arithmetic."
- Easy to miss the future inflation. "stepping on a rake"
- *Not* standard intuition (higher rates lower demand, Phillips curve). Works (better) with flexible prices!

 $\rho v_{t+1} = v_t + r_{t+1}^n - \pi_{t+1} - \tilde{s}_{t+1}$

 $E_t r_{t+1}^n = i_t$ new

 $0 = \lim E_t \rho^T v_T$

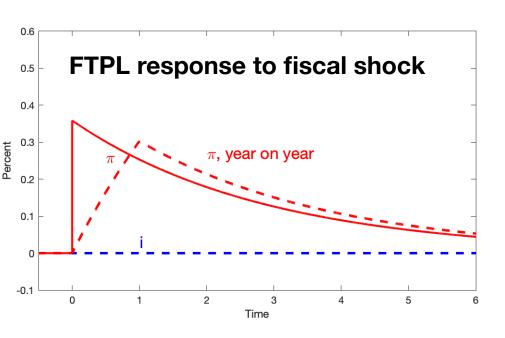
 $r_{t+1}^n = \omega q_{t+1} - q_t$


 $T \rightarrow \infty$

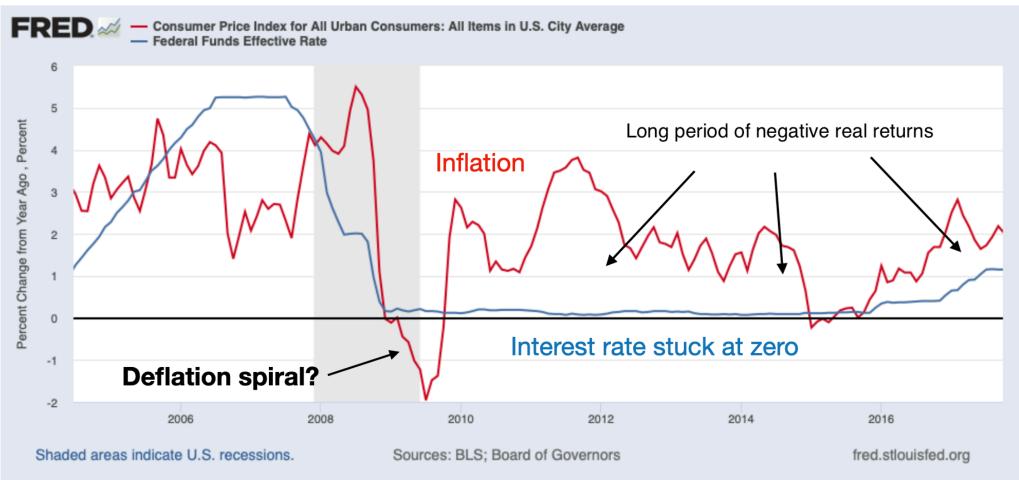
- Central banks can and should do this in response to a fiscal shock.
 Smoother inflation has less output effect.
- Taylor rule adds such a response automatically.

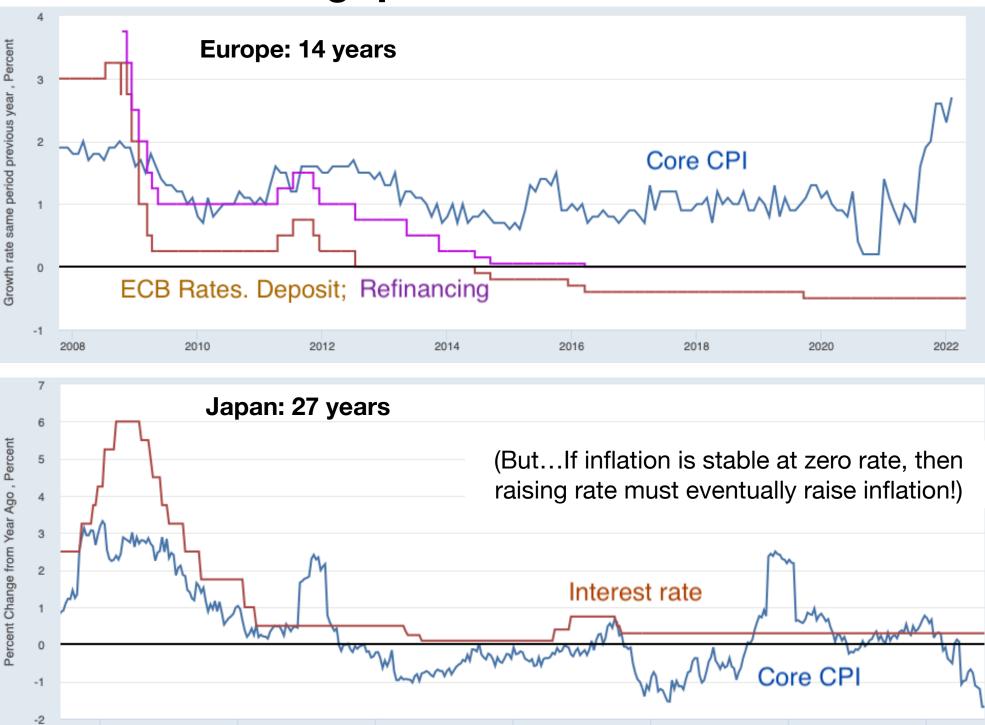
Act II: Current events

Inflation

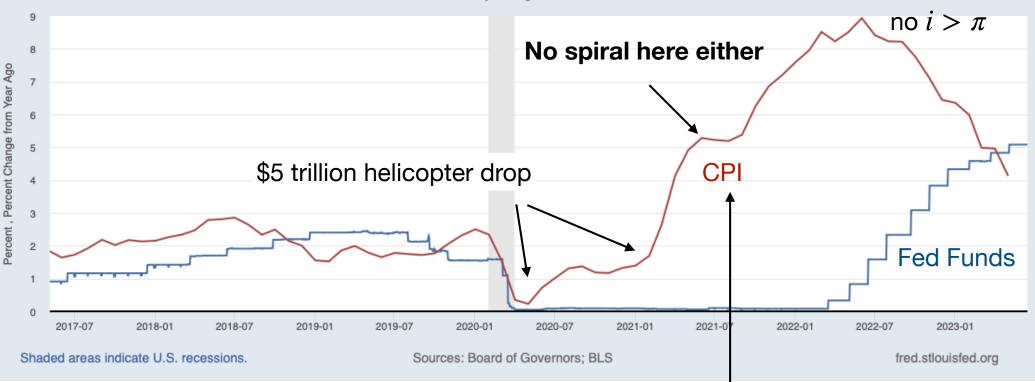

Inflation eases, no 1980s $i > \pi$

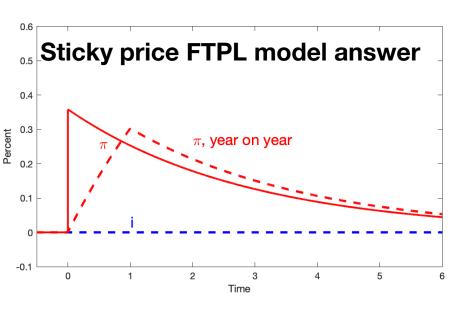
- Why did inflation start?
- "Greed," "supply shocks," "monopoly" are relative prices.
- Why does inflation plateau and ease, not spiral, with $i < \pi$?


Federal Funds Effective Rate (left) Consumer Price Index for All Urban Consumers: All Ite Federal Debt Held by the Public (right)


- +\$5T debt. (\$3T reserves). Checks to people, businesses.
- No "deficit now, repayment later." No lower real rates.
- M? Same QE did not produce π .
- Evidently, people did not save reserves/debt as a good investment.
- Easing just as rates start to rise, as in model. Persistent inflation?

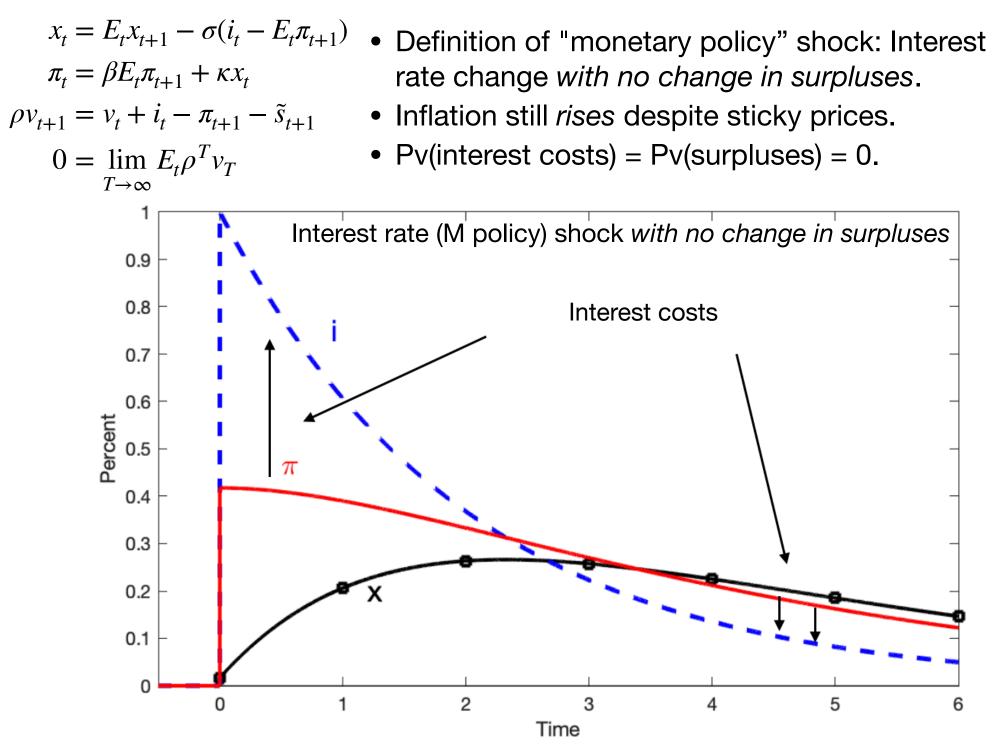
A test of theories: 2008 and zero bound


- 2008/2009: No big deflation, though widely predicted. Debt/price = EPV(surplus). No deflation because of *fiscal* policy.
- Long zero bound: no spiral, no sunspots, though widely predicted. Only FTPL: inflation *can be* stable, quiet at ZLB.
- Immense QE: No monetary hyperinflation, though widely predicted.
- Fiscal? Not great, but no news. Unexpectedly low interest rates/costs.


The long quiet stable zero bound

Federal Funds Effective Rate
 Consumer Price Index for All Urban Consumers: All Items in U.S. City Average

Inflation eases,



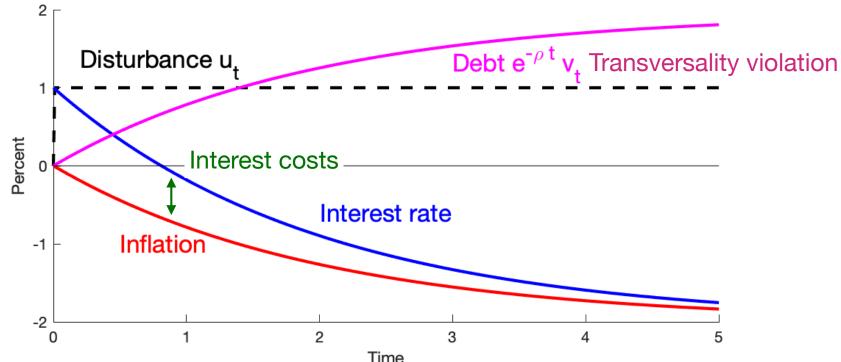
- Adaptive: Inflation will spiral up until $i > \pi$.
- NK model: Central bank can completely control inflation. $i_t = \phi(\pi_t - \pi_t^*), \phi > 1$. There cannot be a fiscal shock, as "passive" fiscal policy always changes s_{t+j} so that $B_{t-1}/P_t = EPV(s)$ after CB chooses P_t .
- →Inflation broke out because the Fed did not announce an equilibrium-selection policy and threaten hyperinflation should inflation exceed its target. ??

Act III. The future. Fiscal - monetary interaction

- Higher interest rates?
 - Higher interest costs on debt. 100% D/Y; 1% rate = 1% of GDP deficits
 - Disinflation: bondholder windfall.
 - Recession: bailout, stimulus, etc.
- Conventional models include joint fiscal / monetary tightening.
- What happens if fiscal policy cannot / does not go along? Inflation does not fall. This is true in conventional new and old Keynesian models too.
- Containing inflation requires joint fiscal monetary (and usually growthoriented microeconomic) policy.

Fiscal theory with price stickiness, short debt

Standard new-Keynesian model


$$\begin{aligned} x_t &= E_t x_{t+1} - \sigma(i_t - E_t \pi_{t+1}) \\ \pi_t &= \beta E_t \pi_{t+1} + \kappa x_t \\ i_t &= \phi \pi_t + u_t; \ \phi > 1 \\ u_{t+1} &= \eta u_t + \varepsilon_{t+1} \end{aligned}$$

 $\rho v_{t+1} = v_t + i_t - \pi_{t+1} - \tilde{s}_{t+1}$ "Passive"

- NK model with a transitory AR(1) shock lowers inflation.
- But "passive" fiscal raises taxes to pay interest cost & bondholder windfall.
- Choose {u_t}(not AR(1)) to give the same i path, no fiscal change: *Inflation rises*! (Roughly, i_t π_{t+1} averages zero).
- NK inflation reduction comes from equilibrium selection, with "passive" fiscal tightening! *Despite* higher rates, not *because* of higher rates.
- Without fiscal shock, *higher rates do not lower inflation in the standard NK model!*

Fiscal foundations of adaptive expectations /old Keynesian

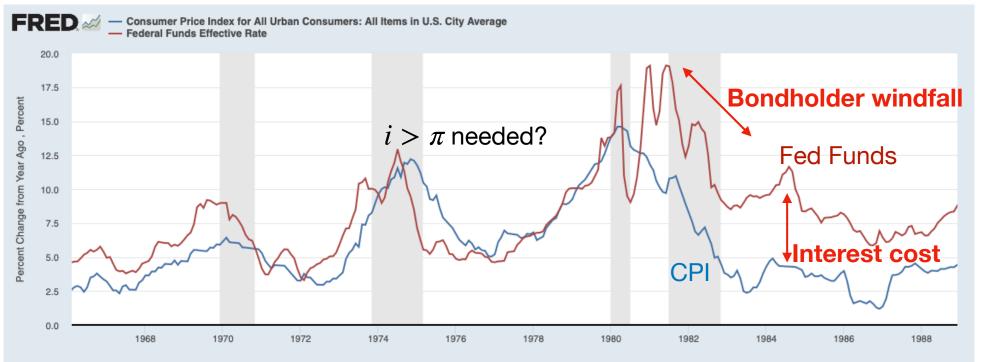
- Disinflation requires fiscal tightening to pay interest costs on debt.
- Paper: Interest rates with no change in fiscal policy *cannot* change long-run inflation. Adaptive expectations doesn't work either!
- Intuition: pv of real interest cost on debt = 0 → average real interest to move inflation = 0.

•
$$0 = \int_0^\infty e^{-rj} r_j dj; \ \pi_\infty = -\sigma \kappa \int_0^\infty r_j dj.$$

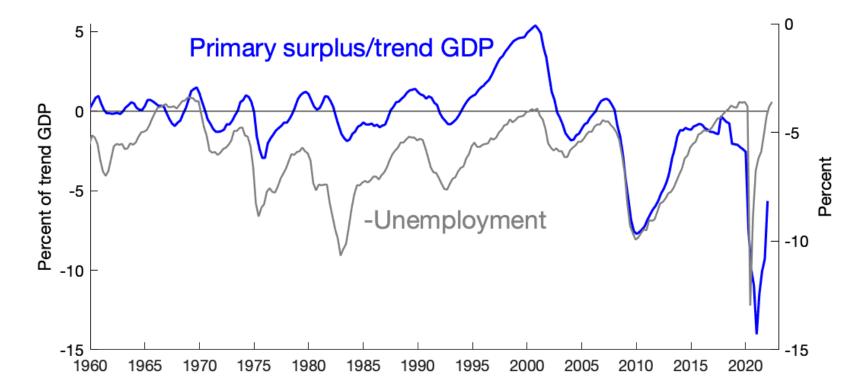
$$x_{t} = -\sigma(i_{t} - \pi_{t-1})$$

$$\pi_{t} = \pi_{t-1} + \kappa x_{t}$$

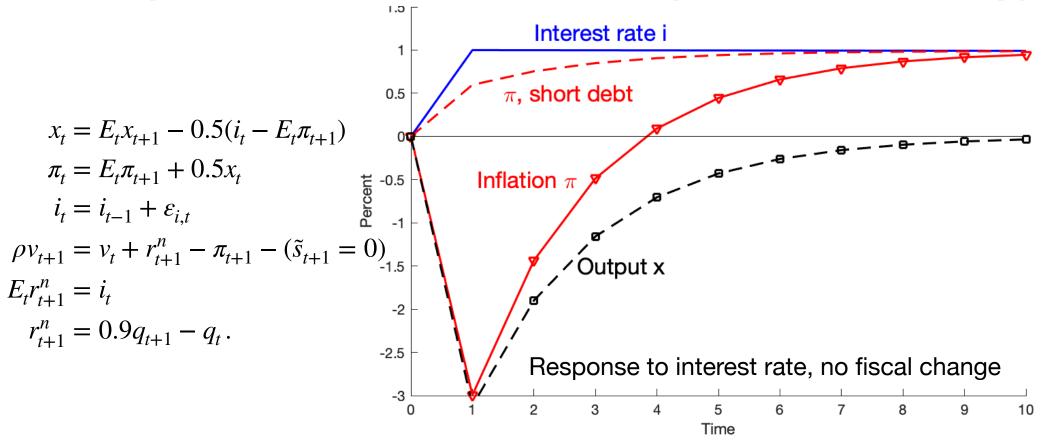
$$\rho v_{t+1} = v_{t} + i_{t} - \pi_{t+1}$$


$$i_{t} = \phi \pi_{t} + u_{t}$$

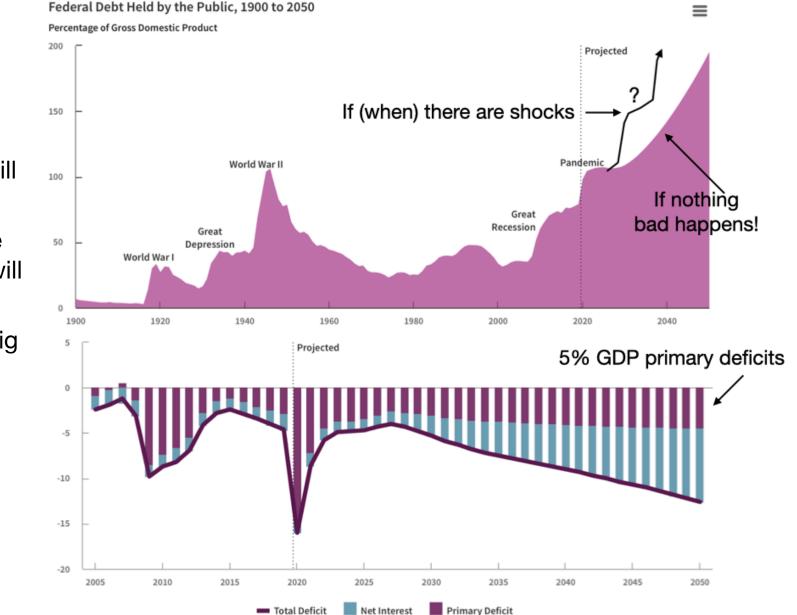
$$\sigma \kappa = 1; \ \phi = 1.5;$$


$$\rho = 0.99$$

(Continuous time)


1980s were a joint monetary, fiscal, and microeconomic disinflation

Shaded areas indicate U.



The imperfect best we have so far (without fiscal help)

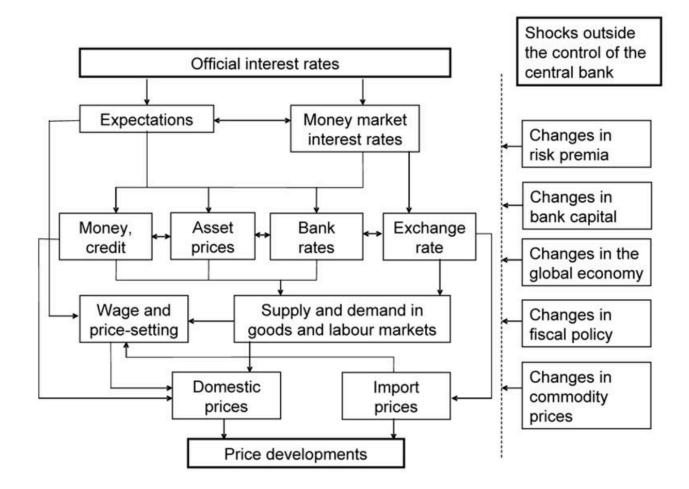
- Only ``unpleasant arithmetic," move inflation around; Only unexpected rate rises; Only with long term debt, weaker for short debt. More for longerlasting rate rises, weaker for transitory rises. Less for more sticky prices.
- Works by reallocating wealth among bond holders. Not Sticky prices, raise real rates, lower AD, Phillips curve. On central bank websites / speeches?
- A better model? Empirical work for how rates without fiscal help affect inflation? Or, maybe this is it!

The fiscal future

- CBO: Projection, not expectation.
 Evidently, people don't think this will happen.
- Danger 1: People lose faith that it will get fixed.
- Danger 2: Next big shock?
- Note: inflation / default will not solve the main problem, future spending!

Inflation's important lessons

Conventional wisdoms now wrong:


- It's supply; growth now, not demand.
- Secular stagnation, fiscal stimulus.
- MMT, r<g, "go big," debt need not be repaid.
- Endless appetite for debt.
- Endless low real rates, interest costs.
- "Jobs" are now a cost, not a benefit.

The End

(Extra slides for questions)

What we definitely do not know, courtesy ECB

The chart below provides a schematic illustration of the main transmission channels of monetary policy decisions.

Source: https://www.ecb.europa.eu/mopo/intro/transmission/html/index.en.html

Requests for generality

$$\begin{aligned} x_{t} &= E_{t}x_{t+1} - \sigma(i_{t} - E_{t}\pi_{t+1}) \\ \pi_{t} &= \beta E_{t}\pi_{t+1} + \kappa x_{t} \\ i_{t} &= \theta_{i\pi}\pi_{t} + \theta_{ix}x_{t} + u_{i,t} \\ \tilde{s}_{t+1} &= \theta_{s\pi}\pi_{t+1} + \theta_{sx}x_{t+1} + \alpha v_{t}^{*} + u_{s,t+1} \\ \tilde{s}_{t+1} &= \theta_{s\pi}\pi_{t+1} + \theta_{sx}x_{t+1} + \alpha v_{t}^{*} + u_{s,t+1} \\ \rho v_{t+1} &= v_{t}^{*} + r_{t+1}^{n} - \pi_{t+1}^{*} - \tilde{s}_{t+1} \\ \rho v_{t+1} &= v_{t} + r_{t+1}^{n} - \pi_{t+1} - \tilde{s}_{t+1} \\ E_{t}\pi_{t+1}^{*} &= E_{t}\pi_{t+1} \\ \Delta E_{t+1}\pi_{t+1}^{*} &= -\beta_{s}\varepsilon_{s,t+1} - \beta_{i}\varepsilon_{i,t+1} \\ E_{t}r_{t+1}^{n} &= i_{t} \\ r_{t+1}^{n} &= \omega q_{t+1} - q_{t} \\ u_{i,t+1} &= \eta_{i}u_{i,t} + \varepsilon_{i,t+1} \\ u_{s,t+1} &= \eta_{s}u_{s,t} + \varepsilon_{s,t+1} . \end{aligned}$$
Fiscal and monetary rules; Endogenous surpluses Surpluses Surpluses are surpluses and the set of the se

surpluses

(What about money?)

Theory

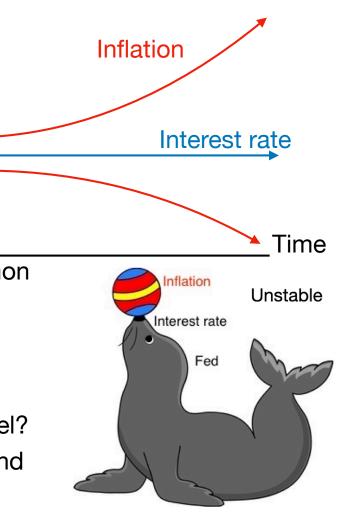
- Cash and reserves are government debt.
- Yes, \$5 trillion from helicopters = inflation...
- What if you get \$5 trillion but give up \$5 trillion Treasury bonds? QE did not cause inflation!
- Composition vs. overall quantity of debt.
 "Wealth" vs. "portfolio" effect. Backing vs. liquidity demand + limited supply.

Apply to our world

- Fed sets interest rate, not money supply.
- There are no reserve requirements, limits on inside money.
- M? \$3-4 trillion reserves pay market interest. Money and bonds are nearly perfect substitutes.
- Great theory, but MV=PY does not apply to current institutions. Like gold.
- We need a theory of inflation under interest rate targets, with no money supply control.

Expectations and the neutrality of interest rates

- Goal: Better model of how interest rates affect inflation. FTPL + NK/ DSGE. Ends up needing back to basics.
- What is our basic theory of inflation under interest rate targets, with no money supply control, MV=PY?
- Which minimal central frictions do we need on top of that?
- Do / how do higher nominal rates lower inflation?
- Essay: Analogy to Lucas 1972 "Expectations and the neutrality of money."


Theory of inflation under interest rate targets

Fed stabilizes inflation with adaptive E.

a)

c) Higher rates lower (future) inflation. Captures common policy/pundit beliefs.

But... Adaptive expectations always and everywhere, necessary minimal component? Expectations of the model \neq expectations in the model? There is no simple, rational theory for the basic sign and operation of monetary policy?

Theory of inflation under interest rate targets

Model
$$x_t = E_t x_{t+1} - \sigma(i_t - \pi_t^e)$$

 $\pi_t = \pi_t^e + \kappa x_t$
Inflation dynamics $\pi_t = (1 + \sigma\kappa)\pi_t^e - \sigma\kappa i_t$.
2) Rational expectations $\pi^e = E_t \pi_{t+1} \rightarrow E_t \pi_{t+1} = \frac{1}{1 + \sigma\kappa}\pi_t + \frac{\sigma\kappa}{1 + \sigma\kappa}i_t$
a) Sargent-Wallace (1975): Inflation is *stable*,
but *indeterminate* under a peg.
b) New-Keynesian.
 $i_t = \phi \pi_t \rightarrow E_t \pi_{t+1} = \frac{1 + \phi \sigma\kappa}{1 + \sigma\kappa} \pi_t$
• Central bank *destabilizes* inflation to select
equilibria. Opposite of adaptive model.
• Central banks don't do that.
c) Higher interest rates *raise* inflation unless there
is a jump to a different equilibrium. Lower inflation
comes from equilibrium selection.

New-Keynesian equilibrium selection

Flex price model for really simple algebra:

$$i_{t} = E_{t}\pi_{t+1}$$

$$i_{t} = \phi\pi_{t} + u_{t} = i_{t}^{*} + \phi(\pi_{t} - \pi_{t}^{*})$$

$$i_{t}^{*} = E_{t}\pi_{t+1}^{*}$$

Equilibrium:

$$E_t(\pi_{t+1} - \pi_{t+1}^*) = \phi(\pi_t - \pi_t^*)$$

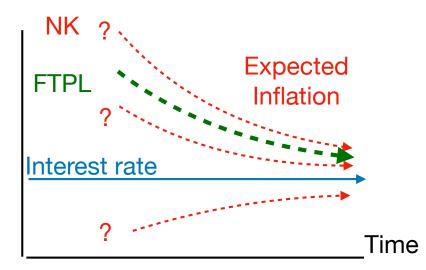
 $i_t = i_t^*; \ \pi_t = \pi_t^*$ is the unique non-explosive (locally bounded) equilibrium.

- Central bank picks inflation target $\{\pi_t^*\}$. Implement with an *interest rate policy* $i_t^* = E_t \pi_{t+1}^*$ (observed) that sets expected inflation, and a separate *equilibrium* selection policy (unobserved off-equilibrium threats) destabilizing the economy for all but one unexpected inflation.
- The central bank *fully* determines inflation.
- Central banks don't do this. Like MV=PY, gold, another beautiful theory that does not apply to current institutions.
- Whether interest raise or lower inflation depends entirely on equilibrium selection.
- "Open mouth" operation. Iid $\{\pi_t^*\}$, i_t is constant, π_t is any desired iid process!

Theory of inflation under interest rate targets

Model
$$x_t = E_t x_{t+1} - \sigma(i_t - \pi_t^e)$$

 $\pi_t = \pi_t^e + \kappa x_t$
Inflation dynamics $\pi_t = (1 + \sigma \kappa) \pi_t^e - \sigma \kappa i_t$.
2) Rational expectations $\pi^e = E_t \pi_{t+1} \rightarrow E_t \pi_{t+1} = \frac{1}{1 + \sigma \kappa} \pi_t + \frac{\sigma \kappa}{1 + \sigma \kappa} i_t$


c) Fiscal theory of the price level

$$\Delta E_{t+1}\pi_{t+1} = \Delta E_{t+1} \sum_{j=0}^{\infty} \rho^{j} (-\tilde{s}_{t+1+j} + r_{t+1+j}); \quad \Delta E_{t+1} \equiv E_{t+1} - E_{t}$$

- Inflation is stable and determinate (at last); obeys long-run neutrality.
- A complete theory of inflation under an interest rate target, like MV=PY, but consistent with today's institutions.
- The only such theory we have! "Test?"

d) Issues:

- Is inflation stable/determinate under a peg?
- Do higher interest rates raise/lower inflation?

